memblock.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988
  1. /*
  2. * Procedures for maintaining information about logical memory blocks.
  3. *
  4. * Peter Bergner, IBM Corp. June 2001.
  5. * Copyright (C) 2001 Peter Bergner.
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/slab.h>
  14. #include <linux/init.h>
  15. #include <linux/bitops.h>
  16. #include <linux/poison.h>
  17. #include <linux/pfn.h>
  18. #include <linux/debugfs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/memblock.h>
  21. static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
  22. static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
  23. struct memblock memblock __initdata_memblock = {
  24. .memory.regions = memblock_memory_init_regions,
  25. .memory.cnt = 1, /* empty dummy entry */
  26. .memory.max = INIT_MEMBLOCK_REGIONS,
  27. .reserved.regions = memblock_reserved_init_regions,
  28. .reserved.cnt = 1, /* empty dummy entry */
  29. .reserved.max = INIT_MEMBLOCK_REGIONS,
  30. .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
  31. };
  32. int memblock_debug __initdata_memblock;
  33. static int memblock_can_resize __initdata_memblock;
  34. /* inline so we don't get a warning when pr_debug is compiled out */
  35. static inline const char *memblock_type_name(struct memblock_type *type)
  36. {
  37. if (type == &memblock.memory)
  38. return "memory";
  39. else if (type == &memblock.reserved)
  40. return "reserved";
  41. else
  42. return "unknown";
  43. }
  44. /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
  45. static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
  46. {
  47. return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
  48. }
  49. /*
  50. * Address comparison utilities
  51. */
  52. static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
  53. phys_addr_t base2, phys_addr_t size2)
  54. {
  55. return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
  56. }
  57. static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
  58. phys_addr_t base, phys_addr_t size)
  59. {
  60. unsigned long i;
  61. for (i = 0; i < type->cnt; i++) {
  62. phys_addr_t rgnbase = type->regions[i].base;
  63. phys_addr_t rgnsize = type->regions[i].size;
  64. if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
  65. break;
  66. }
  67. return (i < type->cnt) ? i : -1;
  68. }
  69. /*
  70. * Find, allocate, deallocate or reserve unreserved regions. All allocations
  71. * are top-down.
  72. */
  73. static phys_addr_t __init_memblock memblock_find_region(phys_addr_t start, phys_addr_t end,
  74. phys_addr_t size, phys_addr_t align)
  75. {
  76. phys_addr_t base, res_base;
  77. long j;
  78. /* In case, huge size is requested */
  79. if (end < size)
  80. return 0;
  81. base = round_down(end - size, align);
  82. /* Prevent allocations returning 0 as it's also used to
  83. * indicate an allocation failure
  84. */
  85. if (start == 0)
  86. start = PAGE_SIZE;
  87. while (start <= base) {
  88. j = memblock_overlaps_region(&memblock.reserved, base, size);
  89. if (j < 0)
  90. return base;
  91. res_base = memblock.reserved.regions[j].base;
  92. if (res_base < size)
  93. break;
  94. base = round_down(res_base - size, align);
  95. }
  96. return 0;
  97. }
  98. /*
  99. * Find a free area with specified alignment in a specific range.
  100. */
  101. phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, phys_addr_t end,
  102. phys_addr_t size, phys_addr_t align)
  103. {
  104. long i;
  105. BUG_ON(0 == size);
  106. /* Pump up max_addr */
  107. if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
  108. end = memblock.current_limit;
  109. /* We do a top-down search, this tends to limit memory
  110. * fragmentation by keeping early boot allocs near the
  111. * top of memory
  112. */
  113. for (i = memblock.memory.cnt - 1; i >= 0; i--) {
  114. phys_addr_t memblockbase = memblock.memory.regions[i].base;
  115. phys_addr_t memblocksize = memblock.memory.regions[i].size;
  116. phys_addr_t bottom, top, found;
  117. if (memblocksize < size)
  118. continue;
  119. if ((memblockbase + memblocksize) <= start)
  120. break;
  121. bottom = max(memblockbase, start);
  122. top = min(memblockbase + memblocksize, end);
  123. if (bottom >= top)
  124. continue;
  125. found = memblock_find_region(bottom, top, size, align);
  126. if (found)
  127. return found;
  128. }
  129. return 0;
  130. }
  131. /*
  132. * Free memblock.reserved.regions
  133. */
  134. int __init_memblock memblock_free_reserved_regions(void)
  135. {
  136. if (memblock.reserved.regions == memblock_reserved_init_regions)
  137. return 0;
  138. return memblock_free(__pa(memblock.reserved.regions),
  139. sizeof(struct memblock_region) * memblock.reserved.max);
  140. }
  141. /*
  142. * Reserve memblock.reserved.regions
  143. */
  144. int __init_memblock memblock_reserve_reserved_regions(void)
  145. {
  146. if (memblock.reserved.regions == memblock_reserved_init_regions)
  147. return 0;
  148. return memblock_reserve(__pa(memblock.reserved.regions),
  149. sizeof(struct memblock_region) * memblock.reserved.max);
  150. }
  151. static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
  152. {
  153. type->total_size -= type->regions[r].size;
  154. memmove(&type->regions[r], &type->regions[r + 1],
  155. (type->cnt - (r + 1)) * sizeof(type->regions[r]));
  156. type->cnt--;
  157. /* Special case for empty arrays */
  158. if (type->cnt == 0) {
  159. WARN_ON(type->total_size != 0);
  160. type->cnt = 1;
  161. type->regions[0].base = 0;
  162. type->regions[0].size = 0;
  163. memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
  164. }
  165. }
  166. static int __init_memblock memblock_double_array(struct memblock_type *type)
  167. {
  168. struct memblock_region *new_array, *old_array;
  169. phys_addr_t old_size, new_size, addr;
  170. int use_slab = slab_is_available();
  171. /* We don't allow resizing until we know about the reserved regions
  172. * of memory that aren't suitable for allocation
  173. */
  174. if (!memblock_can_resize)
  175. return -1;
  176. /* Calculate new doubled size */
  177. old_size = type->max * sizeof(struct memblock_region);
  178. new_size = old_size << 1;
  179. /* Try to find some space for it.
  180. *
  181. * WARNING: We assume that either slab_is_available() and we use it or
  182. * we use MEMBLOCK for allocations. That means that this is unsafe to use
  183. * when bootmem is currently active (unless bootmem itself is implemented
  184. * on top of MEMBLOCK which isn't the case yet)
  185. *
  186. * This should however not be an issue for now, as we currently only
  187. * call into MEMBLOCK while it's still active, or much later when slab is
  188. * active for memory hotplug operations
  189. */
  190. if (use_slab) {
  191. new_array = kmalloc(new_size, GFP_KERNEL);
  192. addr = new_array ? __pa(new_array) : 0;
  193. } else
  194. addr = memblock_find_in_range(0, MEMBLOCK_ALLOC_ACCESSIBLE, new_size, sizeof(phys_addr_t));
  195. if (!addr) {
  196. pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
  197. memblock_type_name(type), type->max, type->max * 2);
  198. return -1;
  199. }
  200. new_array = __va(addr);
  201. memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
  202. memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
  203. /* Found space, we now need to move the array over before
  204. * we add the reserved region since it may be our reserved
  205. * array itself that is full.
  206. */
  207. memcpy(new_array, type->regions, old_size);
  208. memset(new_array + type->max, 0, old_size);
  209. old_array = type->regions;
  210. type->regions = new_array;
  211. type->max <<= 1;
  212. /* If we use SLAB that's it, we are done */
  213. if (use_slab)
  214. return 0;
  215. /* Add the new reserved region now. Should not fail ! */
  216. BUG_ON(memblock_reserve(addr, new_size));
  217. /* If the array wasn't our static init one, then free it. We only do
  218. * that before SLAB is available as later on, we don't know whether
  219. * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
  220. * anyways
  221. */
  222. if (old_array != memblock_memory_init_regions &&
  223. old_array != memblock_reserved_init_regions)
  224. memblock_free(__pa(old_array), old_size);
  225. return 0;
  226. }
  227. /**
  228. * memblock_merge_regions - merge neighboring compatible regions
  229. * @type: memblock type to scan
  230. *
  231. * Scan @type and merge neighboring compatible regions.
  232. */
  233. static void __init_memblock memblock_merge_regions(struct memblock_type *type)
  234. {
  235. int i = 0;
  236. /* cnt never goes below 1 */
  237. while (i < type->cnt - 1) {
  238. struct memblock_region *this = &type->regions[i];
  239. struct memblock_region *next = &type->regions[i + 1];
  240. if (this->base + this->size != next->base ||
  241. memblock_get_region_node(this) !=
  242. memblock_get_region_node(next)) {
  243. BUG_ON(this->base + this->size > next->base);
  244. i++;
  245. continue;
  246. }
  247. this->size += next->size;
  248. memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next));
  249. type->cnt--;
  250. }
  251. }
  252. /**
  253. * memblock_insert_region - insert new memblock region
  254. * @type: memblock type to insert into
  255. * @idx: index for the insertion point
  256. * @base: base address of the new region
  257. * @size: size of the new region
  258. *
  259. * Insert new memblock region [@base,@base+@size) into @type at @idx.
  260. * @type must already have extra room to accomodate the new region.
  261. */
  262. static void __init_memblock memblock_insert_region(struct memblock_type *type,
  263. int idx, phys_addr_t base,
  264. phys_addr_t size, int nid)
  265. {
  266. struct memblock_region *rgn = &type->regions[idx];
  267. BUG_ON(type->cnt >= type->max);
  268. memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
  269. rgn->base = base;
  270. rgn->size = size;
  271. memblock_set_region_node(rgn, nid);
  272. type->cnt++;
  273. type->total_size += size;
  274. }
  275. /**
  276. * memblock_add_region - add new memblock region
  277. * @type: memblock type to add new region into
  278. * @base: base address of the new region
  279. * @size: size of the new region
  280. * @nid: nid of the new region
  281. *
  282. * Add new memblock region [@base,@base+@size) into @type. The new region
  283. * is allowed to overlap with existing ones - overlaps don't affect already
  284. * existing regions. @type is guaranteed to be minimal (all neighbouring
  285. * compatible regions are merged) after the addition.
  286. *
  287. * RETURNS:
  288. * 0 on success, -errno on failure.
  289. */
  290. static int __init_memblock memblock_add_region(struct memblock_type *type,
  291. phys_addr_t base, phys_addr_t size, int nid)
  292. {
  293. bool insert = false;
  294. phys_addr_t obase = base;
  295. phys_addr_t end = base + memblock_cap_size(base, &size);
  296. int i, nr_new;
  297. /* special case for empty array */
  298. if (type->regions[0].size == 0) {
  299. WARN_ON(type->cnt != 1 || type->total_size);
  300. type->regions[0].base = base;
  301. type->regions[0].size = size;
  302. memblock_set_region_node(&type->regions[0], nid);
  303. type->total_size = size;
  304. return 0;
  305. }
  306. repeat:
  307. /*
  308. * The following is executed twice. Once with %false @insert and
  309. * then with %true. The first counts the number of regions needed
  310. * to accomodate the new area. The second actually inserts them.
  311. */
  312. base = obase;
  313. nr_new = 0;
  314. for (i = 0; i < type->cnt; i++) {
  315. struct memblock_region *rgn = &type->regions[i];
  316. phys_addr_t rbase = rgn->base;
  317. phys_addr_t rend = rbase + rgn->size;
  318. if (rbase >= end)
  319. break;
  320. if (rend <= base)
  321. continue;
  322. /*
  323. * @rgn overlaps. If it separates the lower part of new
  324. * area, insert that portion.
  325. */
  326. if (rbase > base) {
  327. nr_new++;
  328. if (insert)
  329. memblock_insert_region(type, i++, base,
  330. rbase - base, nid);
  331. }
  332. /* area below @rend is dealt with, forget about it */
  333. base = min(rend, end);
  334. }
  335. /* insert the remaining portion */
  336. if (base < end) {
  337. nr_new++;
  338. if (insert)
  339. memblock_insert_region(type, i, base, end - base, nid);
  340. }
  341. /*
  342. * If this was the first round, resize array and repeat for actual
  343. * insertions; otherwise, merge and return.
  344. */
  345. if (!insert) {
  346. while (type->cnt + nr_new > type->max)
  347. if (memblock_double_array(type) < 0)
  348. return -ENOMEM;
  349. insert = true;
  350. goto repeat;
  351. } else {
  352. memblock_merge_regions(type);
  353. return 0;
  354. }
  355. }
  356. int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
  357. int nid)
  358. {
  359. return memblock_add_region(&memblock.memory, base, size, nid);
  360. }
  361. int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
  362. {
  363. return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
  364. }
  365. /**
  366. * memblock_isolate_range - isolate given range into disjoint memblocks
  367. * @type: memblock type to isolate range for
  368. * @base: base of range to isolate
  369. * @size: size of range to isolate
  370. * @start_rgn: out parameter for the start of isolated region
  371. * @end_rgn: out parameter for the end of isolated region
  372. *
  373. * Walk @type and ensure that regions don't cross the boundaries defined by
  374. * [@base,@base+@size). Crossing regions are split at the boundaries,
  375. * which may create at most two more regions. The index of the first
  376. * region inside the range is returned in *@start_rgn and end in *@end_rgn.
  377. *
  378. * RETURNS:
  379. * 0 on success, -errno on failure.
  380. */
  381. static int __init_memblock memblock_isolate_range(struct memblock_type *type,
  382. phys_addr_t base, phys_addr_t size,
  383. int *start_rgn, int *end_rgn)
  384. {
  385. phys_addr_t end = base + memblock_cap_size(base, &size);
  386. int i;
  387. *start_rgn = *end_rgn = 0;
  388. /* we'll create at most two more regions */
  389. while (type->cnt + 2 > type->max)
  390. if (memblock_double_array(type) < 0)
  391. return -ENOMEM;
  392. for (i = 0; i < type->cnt; i++) {
  393. struct memblock_region *rgn = &type->regions[i];
  394. phys_addr_t rbase = rgn->base;
  395. phys_addr_t rend = rbase + rgn->size;
  396. if (rbase >= end)
  397. break;
  398. if (rend <= base)
  399. continue;
  400. if (rbase < base) {
  401. /*
  402. * @rgn intersects from below. Split and continue
  403. * to process the next region - the new top half.
  404. */
  405. rgn->base = base;
  406. rgn->size -= base - rbase;
  407. type->total_size -= base - rbase;
  408. memblock_insert_region(type, i, rbase, base - rbase,
  409. memblock_get_region_node(rgn));
  410. } else if (rend > end) {
  411. /*
  412. * @rgn intersects from above. Split and redo the
  413. * current region - the new bottom half.
  414. */
  415. rgn->base = end;
  416. rgn->size -= end - rbase;
  417. type->total_size -= end - rbase;
  418. memblock_insert_region(type, i--, rbase, end - rbase,
  419. memblock_get_region_node(rgn));
  420. } else {
  421. /* @rgn is fully contained, record it */
  422. if (!*end_rgn)
  423. *start_rgn = i;
  424. *end_rgn = i + 1;
  425. }
  426. }
  427. return 0;
  428. }
  429. static int __init_memblock __memblock_remove(struct memblock_type *type,
  430. phys_addr_t base, phys_addr_t size)
  431. {
  432. int start_rgn, end_rgn;
  433. int i, ret;
  434. ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
  435. if (ret)
  436. return ret;
  437. for (i = end_rgn - 1; i >= start_rgn; i--)
  438. memblock_remove_region(type, i);
  439. return 0;
  440. }
  441. int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
  442. {
  443. return __memblock_remove(&memblock.memory, base, size);
  444. }
  445. int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
  446. {
  447. memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
  448. (unsigned long long)base,
  449. (unsigned long long)base + size,
  450. (void *)_RET_IP_);
  451. return __memblock_remove(&memblock.reserved, base, size);
  452. }
  453. int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
  454. {
  455. struct memblock_type *_rgn = &memblock.reserved;
  456. memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
  457. (unsigned long long)base,
  458. (unsigned long long)base + size,
  459. (void *)_RET_IP_);
  460. BUG_ON(0 == size);
  461. return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
  462. }
  463. /**
  464. * __next_free_mem_range - next function for for_each_free_mem_range()
  465. * @idx: pointer to u64 loop variable
  466. * @nid: nid: node selector, %MAX_NUMNODES for all nodes
  467. * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
  468. * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
  469. * @p_nid: ptr to int for nid of the range, can be %NULL
  470. *
  471. * Find the first free area from *@idx which matches @nid, fill the out
  472. * parameters, and update *@idx for the next iteration. The lower 32bit of
  473. * *@idx contains index into memory region and the upper 32bit indexes the
  474. * areas before each reserved region. For example, if reserved regions
  475. * look like the following,
  476. *
  477. * 0:[0-16), 1:[32-48), 2:[128-130)
  478. *
  479. * The upper 32bit indexes the following regions.
  480. *
  481. * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
  482. *
  483. * As both region arrays are sorted, the function advances the two indices
  484. * in lockstep and returns each intersection.
  485. */
  486. void __init_memblock __next_free_mem_range(u64 *idx, int nid,
  487. phys_addr_t *out_start,
  488. phys_addr_t *out_end, int *out_nid)
  489. {
  490. struct memblock_type *mem = &memblock.memory;
  491. struct memblock_type *rsv = &memblock.reserved;
  492. int mi = *idx & 0xffffffff;
  493. int ri = *idx >> 32;
  494. for ( ; mi < mem->cnt; mi++) {
  495. struct memblock_region *m = &mem->regions[mi];
  496. phys_addr_t m_start = m->base;
  497. phys_addr_t m_end = m->base + m->size;
  498. /* only memory regions are associated with nodes, check it */
  499. if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
  500. continue;
  501. /* scan areas before each reservation for intersection */
  502. for ( ; ri < rsv->cnt + 1; ri++) {
  503. struct memblock_region *r = &rsv->regions[ri];
  504. phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
  505. phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
  506. /* if ri advanced past mi, break out to advance mi */
  507. if (r_start >= m_end)
  508. break;
  509. /* if the two regions intersect, we're done */
  510. if (m_start < r_end) {
  511. if (out_start)
  512. *out_start = max(m_start, r_start);
  513. if (out_end)
  514. *out_end = min(m_end, r_end);
  515. if (out_nid)
  516. *out_nid = memblock_get_region_node(m);
  517. /*
  518. * The region which ends first is advanced
  519. * for the next iteration.
  520. */
  521. if (m_end <= r_end)
  522. mi++;
  523. else
  524. ri++;
  525. *idx = (u32)mi | (u64)ri << 32;
  526. return;
  527. }
  528. }
  529. }
  530. /* signal end of iteration */
  531. *idx = ULLONG_MAX;
  532. }
  533. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  534. /*
  535. * Common iterator interface used to define for_each_mem_range().
  536. */
  537. void __init_memblock __next_mem_pfn_range(int *idx, int nid,
  538. unsigned long *out_start_pfn,
  539. unsigned long *out_end_pfn, int *out_nid)
  540. {
  541. struct memblock_type *type = &memblock.memory;
  542. struct memblock_region *r;
  543. while (++*idx < type->cnt) {
  544. r = &type->regions[*idx];
  545. if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
  546. continue;
  547. if (nid == MAX_NUMNODES || nid == r->nid)
  548. break;
  549. }
  550. if (*idx >= type->cnt) {
  551. *idx = -1;
  552. return;
  553. }
  554. if (out_start_pfn)
  555. *out_start_pfn = PFN_UP(r->base);
  556. if (out_end_pfn)
  557. *out_end_pfn = PFN_DOWN(r->base + r->size);
  558. if (out_nid)
  559. *out_nid = r->nid;
  560. }
  561. /**
  562. * memblock_set_node - set node ID on memblock regions
  563. * @base: base of area to set node ID for
  564. * @size: size of area to set node ID for
  565. * @nid: node ID to set
  566. *
  567. * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
  568. * Regions which cross the area boundaries are split as necessary.
  569. *
  570. * RETURNS:
  571. * 0 on success, -errno on failure.
  572. */
  573. int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
  574. int nid)
  575. {
  576. struct memblock_type *type = &memblock.memory;
  577. int start_rgn, end_rgn;
  578. int i, ret;
  579. ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
  580. if (ret)
  581. return ret;
  582. for (i = start_rgn; i < end_rgn; i++)
  583. type->regions[i].nid = nid;
  584. memblock_merge_regions(type);
  585. return 0;
  586. }
  587. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  588. phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
  589. {
  590. phys_addr_t found;
  591. /* We align the size to limit fragmentation. Without this, a lot of
  592. * small allocs quickly eat up the whole reserve array on sparc
  593. */
  594. size = round_up(size, align);
  595. found = memblock_find_in_range(0, max_addr, size, align);
  596. if (found && !memblock_reserve(found, size))
  597. return found;
  598. return 0;
  599. }
  600. phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
  601. {
  602. phys_addr_t alloc;
  603. alloc = __memblock_alloc_base(size, align, max_addr);
  604. if (alloc == 0)
  605. panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
  606. (unsigned long long) size, (unsigned long long) max_addr);
  607. return alloc;
  608. }
  609. phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
  610. {
  611. return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
  612. }
  613. /*
  614. * Additional node-local top-down allocators.
  615. *
  616. * WARNING: Only available after early_node_map[] has been populated,
  617. * on some architectures, that is after all the calls to add_active_range()
  618. * have been done to populate it.
  619. */
  620. static phys_addr_t __init memblock_nid_range_rev(phys_addr_t start,
  621. phys_addr_t end, int *nid)
  622. {
  623. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  624. unsigned long start_pfn, end_pfn;
  625. int i;
  626. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, nid)
  627. if (end > PFN_PHYS(start_pfn) && end <= PFN_PHYS(end_pfn))
  628. return max(start, PFN_PHYS(start_pfn));
  629. #endif
  630. *nid = 0;
  631. return start;
  632. }
  633. phys_addr_t __init memblock_find_in_range_node(phys_addr_t start,
  634. phys_addr_t end,
  635. phys_addr_t size,
  636. phys_addr_t align, int nid)
  637. {
  638. struct memblock_type *mem = &memblock.memory;
  639. int i;
  640. BUG_ON(0 == size);
  641. /* Pump up max_addr */
  642. if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
  643. end = memblock.current_limit;
  644. for (i = mem->cnt - 1; i >= 0; i--) {
  645. struct memblock_region *r = &mem->regions[i];
  646. phys_addr_t base = max(start, r->base);
  647. phys_addr_t top = min(end, r->base + r->size);
  648. while (base < top) {
  649. phys_addr_t tbase, ret;
  650. int tnid;
  651. tbase = memblock_nid_range_rev(base, top, &tnid);
  652. if (nid == MAX_NUMNODES || tnid == nid) {
  653. ret = memblock_find_region(tbase, top, size, align);
  654. if (ret)
  655. return ret;
  656. }
  657. top = tbase;
  658. }
  659. }
  660. return 0;
  661. }
  662. phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
  663. {
  664. phys_addr_t found;
  665. /*
  666. * We align the size to limit fragmentation. Without this, a lot of
  667. * small allocs quickly eat up the whole reserve array on sparc
  668. */
  669. size = round_up(size, align);
  670. found = memblock_find_in_range_node(0, MEMBLOCK_ALLOC_ACCESSIBLE,
  671. size, align, nid);
  672. if (found && !memblock_reserve(found, size))
  673. return found;
  674. return 0;
  675. }
  676. phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
  677. {
  678. phys_addr_t res = memblock_alloc_nid(size, align, nid);
  679. if (res)
  680. return res;
  681. return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
  682. }
  683. /*
  684. * Remaining API functions
  685. */
  686. phys_addr_t __init memblock_phys_mem_size(void)
  687. {
  688. return memblock.memory.total_size;
  689. }
  690. /* lowest address */
  691. phys_addr_t __init_memblock memblock_start_of_DRAM(void)
  692. {
  693. return memblock.memory.regions[0].base;
  694. }
  695. phys_addr_t __init_memblock memblock_end_of_DRAM(void)
  696. {
  697. int idx = memblock.memory.cnt - 1;
  698. return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
  699. }
  700. void __init memblock_enforce_memory_limit(phys_addr_t limit)
  701. {
  702. unsigned long i;
  703. phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
  704. if (!limit)
  705. return;
  706. /* find out max address */
  707. for (i = 0; i < memblock.memory.cnt; i++) {
  708. struct memblock_region *r = &memblock.memory.regions[i];
  709. if (limit <= r->size) {
  710. max_addr = r->base + limit;
  711. break;
  712. }
  713. limit -= r->size;
  714. }
  715. /* truncate both memory and reserved regions */
  716. __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
  717. __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
  718. }
  719. static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
  720. {
  721. unsigned int left = 0, right = type->cnt;
  722. do {
  723. unsigned int mid = (right + left) / 2;
  724. if (addr < type->regions[mid].base)
  725. right = mid;
  726. else if (addr >= (type->regions[mid].base +
  727. type->regions[mid].size))
  728. left = mid + 1;
  729. else
  730. return mid;
  731. } while (left < right);
  732. return -1;
  733. }
  734. int __init memblock_is_reserved(phys_addr_t addr)
  735. {
  736. return memblock_search(&memblock.reserved, addr) != -1;
  737. }
  738. int __init_memblock memblock_is_memory(phys_addr_t addr)
  739. {
  740. return memblock_search(&memblock.memory, addr) != -1;
  741. }
  742. int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
  743. {
  744. int idx = memblock_search(&memblock.memory, base);
  745. phys_addr_t end = base + memblock_cap_size(base, &size);
  746. if (idx == -1)
  747. return 0;
  748. return memblock.memory.regions[idx].base <= base &&
  749. (memblock.memory.regions[idx].base +
  750. memblock.memory.regions[idx].size) >= end;
  751. }
  752. int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
  753. {
  754. memblock_cap_size(base, &size);
  755. return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
  756. }
  757. void __init_memblock memblock_set_current_limit(phys_addr_t limit)
  758. {
  759. memblock.current_limit = limit;
  760. }
  761. static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
  762. {
  763. unsigned long long base, size;
  764. int i;
  765. pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
  766. for (i = 0; i < type->cnt; i++) {
  767. struct memblock_region *rgn = &type->regions[i];
  768. char nid_buf[32] = "";
  769. base = rgn->base;
  770. size = rgn->size;
  771. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  772. if (memblock_get_region_node(rgn) != MAX_NUMNODES)
  773. snprintf(nid_buf, sizeof(nid_buf), " on node %d",
  774. memblock_get_region_node(rgn));
  775. #endif
  776. pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
  777. name, i, base, base + size - 1, size, nid_buf);
  778. }
  779. }
  780. void __init_memblock __memblock_dump_all(void)
  781. {
  782. pr_info("MEMBLOCK configuration:\n");
  783. pr_info(" memory size = %#llx reserved size = %#llx\n",
  784. (unsigned long long)memblock.memory.total_size,
  785. (unsigned long long)memblock.reserved.total_size);
  786. memblock_dump(&memblock.memory, "memory");
  787. memblock_dump(&memblock.reserved, "reserved");
  788. }
  789. void __init memblock_allow_resize(void)
  790. {
  791. memblock_can_resize = 1;
  792. }
  793. static int __init early_memblock(char *p)
  794. {
  795. if (p && strstr(p, "debug"))
  796. memblock_debug = 1;
  797. return 0;
  798. }
  799. early_param("memblock", early_memblock);
  800. #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
  801. static int memblock_debug_show(struct seq_file *m, void *private)
  802. {
  803. struct memblock_type *type = m->private;
  804. struct memblock_region *reg;
  805. int i;
  806. for (i = 0; i < type->cnt; i++) {
  807. reg = &type->regions[i];
  808. seq_printf(m, "%4d: ", i);
  809. if (sizeof(phys_addr_t) == 4)
  810. seq_printf(m, "0x%08lx..0x%08lx\n",
  811. (unsigned long)reg->base,
  812. (unsigned long)(reg->base + reg->size - 1));
  813. else
  814. seq_printf(m, "0x%016llx..0x%016llx\n",
  815. (unsigned long long)reg->base,
  816. (unsigned long long)(reg->base + reg->size - 1));
  817. }
  818. return 0;
  819. }
  820. static int memblock_debug_open(struct inode *inode, struct file *file)
  821. {
  822. return single_open(file, memblock_debug_show, inode->i_private);
  823. }
  824. static const struct file_operations memblock_debug_fops = {
  825. .open = memblock_debug_open,
  826. .read = seq_read,
  827. .llseek = seq_lseek,
  828. .release = single_release,
  829. };
  830. static int __init memblock_init_debugfs(void)
  831. {
  832. struct dentry *root = debugfs_create_dir("memblock", NULL);
  833. if (!root)
  834. return -ENXIO;
  835. debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
  836. debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
  837. return 0;
  838. }
  839. __initcall(memblock_init_debugfs);
  840. #endif /* CONFIG_DEBUG_FS */