123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979 |
- /*
- * linux/mm/percpu.c - percpu memory allocator
- *
- * Copyright (C) 2009 SUSE Linux Products GmbH
- * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
- *
- * This file is released under the GPLv2.
- *
- * This is percpu allocator which can handle both static and dynamic
- * areas. Percpu areas are allocated in chunks in vmalloc area. Each
- * chunk is consisted of num_possible_cpus() units and the first chunk
- * is used for static percpu variables in the kernel image (special
- * boot time alloc/init handling necessary as these areas need to be
- * brought up before allocation services are running). Unit grows as
- * necessary and all units grow or shrink in unison. When a chunk is
- * filled up, another chunk is allocated. ie. in vmalloc area
- *
- * c0 c1 c2
- * ------------------- ------------------- ------------
- * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
- * ------------------- ...... ------------------- .... ------------
- *
- * Allocation is done in offset-size areas of single unit space. Ie,
- * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
- * c1:u1, c1:u2 and c1:u3. Percpu access can be done by configuring
- * percpu base registers UNIT_SIZE apart.
- *
- * There are usually many small percpu allocations many of them as
- * small as 4 bytes. The allocator organizes chunks into lists
- * according to free size and tries to allocate from the fullest one.
- * Each chunk keeps the maximum contiguous area size hint which is
- * guaranteed to be eqaul to or larger than the maximum contiguous
- * area in the chunk. This helps the allocator not to iterate the
- * chunk maps unnecessarily.
- *
- * Allocation state in each chunk is kept using an array of integers
- * on chunk->map. A positive value in the map represents a free
- * region and negative allocated. Allocation inside a chunk is done
- * by scanning this map sequentially and serving the first matching
- * entry. This is mostly copied from the percpu_modalloc() allocator.
- * Chunks are also linked into a rb tree to ease address to chunk
- * mapping during free.
- *
- * To use this allocator, arch code should do the followings.
- *
- * - define CONFIG_HAVE_DYNAMIC_PER_CPU_AREA
- *
- * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
- * regular address to percpu pointer and back
- *
- * - use pcpu_setup_first_chunk() during percpu area initialization to
- * setup the first chunk containing the kernel static percpu area
- */
- #include <linux/bitmap.h>
- #include <linux/bootmem.h>
- #include <linux/list.h>
- #include <linux/mm.h>
- #include <linux/module.h>
- #include <linux/mutex.h>
- #include <linux/percpu.h>
- #include <linux/pfn.h>
- #include <linux/rbtree.h>
- #include <linux/slab.h>
- #include <linux/vmalloc.h>
- #include <asm/cacheflush.h>
- #include <asm/tlbflush.h>
- #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
- #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
- struct pcpu_chunk {
- struct list_head list; /* linked to pcpu_slot lists */
- struct rb_node rb_node; /* key is chunk->vm->addr */
- int free_size; /* free bytes in the chunk */
- int contig_hint; /* max contiguous size hint */
- struct vm_struct *vm; /* mapped vmalloc region */
- int map_used; /* # of map entries used */
- int map_alloc; /* # of map entries allocated */
- int *map; /* allocation map */
- bool immutable; /* no [de]population allowed */
- struct page *page[]; /* #cpus * UNIT_PAGES */
- };
- static int pcpu_unit_pages __read_mostly;
- static int pcpu_unit_size __read_mostly;
- static int pcpu_chunk_size __read_mostly;
- static int pcpu_nr_slots __read_mostly;
- static size_t pcpu_chunk_struct_size __read_mostly;
- /* the address of the first chunk which starts with the kernel static area */
- void *pcpu_base_addr __read_mostly;
- EXPORT_SYMBOL_GPL(pcpu_base_addr);
- /* the size of kernel static area */
- static int pcpu_static_size __read_mostly;
- /*
- * One mutex to rule them all.
- *
- * The following mutex is grabbed in the outermost public alloc/free
- * interface functions and released only when the operation is
- * complete. As such, every function in this file other than the
- * outermost functions are called under pcpu_mutex.
- *
- * It can easily be switched to use spinlock such that only the area
- * allocation and page population commit are protected with it doing
- * actual [de]allocation without holding any lock. However, given
- * what this allocator does, I think it's better to let them run
- * sequentially.
- */
- static DEFINE_MUTEX(pcpu_mutex);
- static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
- static struct rb_root pcpu_addr_root = RB_ROOT; /* chunks by address */
- static int __pcpu_size_to_slot(int size)
- {
- int highbit = fls(size); /* size is in bytes */
- return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
- }
- static int pcpu_size_to_slot(int size)
- {
- if (size == pcpu_unit_size)
- return pcpu_nr_slots - 1;
- return __pcpu_size_to_slot(size);
- }
- static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
- {
- if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
- return 0;
- return pcpu_size_to_slot(chunk->free_size);
- }
- static int pcpu_page_idx(unsigned int cpu, int page_idx)
- {
- return cpu * pcpu_unit_pages + page_idx;
- }
- static struct page **pcpu_chunk_pagep(struct pcpu_chunk *chunk,
- unsigned int cpu, int page_idx)
- {
- return &chunk->page[pcpu_page_idx(cpu, page_idx)];
- }
- static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
- unsigned int cpu, int page_idx)
- {
- return (unsigned long)chunk->vm->addr +
- (pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT);
- }
- static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk,
- int page_idx)
- {
- return *pcpu_chunk_pagep(chunk, 0, page_idx) != NULL;
- }
- /**
- * pcpu_realloc - versatile realloc
- * @p: the current pointer (can be NULL for new allocations)
- * @size: the current size in bytes (can be 0 for new allocations)
- * @new_size: the wanted new size in bytes (can be 0 for free)
- *
- * More robust realloc which can be used to allocate, resize or free a
- * memory area of arbitrary size. If the needed size goes over
- * PAGE_SIZE, kernel VM is used.
- *
- * RETURNS:
- * The new pointer on success, NULL on failure.
- */
- static void *pcpu_realloc(void *p, size_t size, size_t new_size)
- {
- void *new;
- if (new_size <= PAGE_SIZE)
- new = kmalloc(new_size, GFP_KERNEL);
- else
- new = vmalloc(new_size);
- if (new_size && !new)
- return NULL;
- memcpy(new, p, min(size, new_size));
- if (new_size > size)
- memset(new + size, 0, new_size - size);
- if (size <= PAGE_SIZE)
- kfree(p);
- else
- vfree(p);
- return new;
- }
- /**
- * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
- * @chunk: chunk of interest
- * @oslot: the previous slot it was on
- *
- * This function is called after an allocation or free changed @chunk.
- * New slot according to the changed state is determined and @chunk is
- * moved to the slot.
- */
- static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
- {
- int nslot = pcpu_chunk_slot(chunk);
- if (oslot != nslot) {
- if (oslot < nslot)
- list_move(&chunk->list, &pcpu_slot[nslot]);
- else
- list_move_tail(&chunk->list, &pcpu_slot[nslot]);
- }
- }
- static struct rb_node **pcpu_chunk_rb_search(void *addr,
- struct rb_node **parentp)
- {
- struct rb_node **p = &pcpu_addr_root.rb_node;
- struct rb_node *parent = NULL;
- struct pcpu_chunk *chunk;
- while (*p) {
- parent = *p;
- chunk = rb_entry(parent, struct pcpu_chunk, rb_node);
- if (addr < chunk->vm->addr)
- p = &(*p)->rb_left;
- else if (addr > chunk->vm->addr)
- p = &(*p)->rb_right;
- else
- break;
- }
- if (parentp)
- *parentp = parent;
- return p;
- }
- /**
- * pcpu_chunk_addr_search - search for chunk containing specified address
- * @addr: address to search for
- *
- * Look for chunk which might contain @addr. More specifically, it
- * searchs for the chunk with the highest start address which isn't
- * beyond @addr.
- *
- * RETURNS:
- * The address of the found chunk.
- */
- static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
- {
- struct rb_node *n, *parent;
- struct pcpu_chunk *chunk;
- n = *pcpu_chunk_rb_search(addr, &parent);
- if (!n) {
- /* no exactly matching chunk, the parent is the closest */
- n = parent;
- BUG_ON(!n);
- }
- chunk = rb_entry(n, struct pcpu_chunk, rb_node);
- if (addr < chunk->vm->addr) {
- /* the parent was the next one, look for the previous one */
- n = rb_prev(n);
- BUG_ON(!n);
- chunk = rb_entry(n, struct pcpu_chunk, rb_node);
- }
- return chunk;
- }
- /**
- * pcpu_chunk_addr_insert - insert chunk into address rb tree
- * @new: chunk to insert
- *
- * Insert @new into address rb tree.
- */
- static void pcpu_chunk_addr_insert(struct pcpu_chunk *new)
- {
- struct rb_node **p, *parent;
- p = pcpu_chunk_rb_search(new->vm->addr, &parent);
- BUG_ON(*p);
- rb_link_node(&new->rb_node, parent, p);
- rb_insert_color(&new->rb_node, &pcpu_addr_root);
- }
- /**
- * pcpu_split_block - split a map block
- * @chunk: chunk of interest
- * @i: index of map block to split
- * @head: head size in bytes (can be 0)
- * @tail: tail size in bytes (can be 0)
- *
- * Split the @i'th map block into two or three blocks. If @head is
- * non-zero, @head bytes block is inserted before block @i moving it
- * to @i+1 and reducing its size by @head bytes.
- *
- * If @tail is non-zero, the target block, which can be @i or @i+1
- * depending on @head, is reduced by @tail bytes and @tail byte block
- * is inserted after the target block.
- *
- * RETURNS:
- * 0 on success, -errno on failure.
- */
- static int pcpu_split_block(struct pcpu_chunk *chunk, int i, int head, int tail)
- {
- int nr_extra = !!head + !!tail;
- int target = chunk->map_used + nr_extra;
- /* reallocation required? */
- if (chunk->map_alloc < target) {
- int new_alloc = chunk->map_alloc;
- int *new;
- while (new_alloc < target)
- new_alloc *= 2;
- new = pcpu_realloc(chunk->map,
- chunk->map_alloc * sizeof(new[0]),
- new_alloc * sizeof(new[0]));
- if (!new)
- return -ENOMEM;
- chunk->map_alloc = new_alloc;
- chunk->map = new;
- }
- /* insert a new subblock */
- memmove(&chunk->map[i + nr_extra], &chunk->map[i],
- sizeof(chunk->map[0]) * (chunk->map_used - i));
- chunk->map_used += nr_extra;
- if (head) {
- chunk->map[i + 1] = chunk->map[i] - head;
- chunk->map[i++] = head;
- }
- if (tail) {
- chunk->map[i++] -= tail;
- chunk->map[i] = tail;
- }
- return 0;
- }
- /**
- * pcpu_alloc_area - allocate area from a pcpu_chunk
- * @chunk: chunk of interest
- * @size: wanted size in bytes
- * @align: wanted align
- *
- * Try to allocate @size bytes area aligned at @align from @chunk.
- * Note that this function only allocates the offset. It doesn't
- * populate or map the area.
- *
- * RETURNS:
- * Allocated offset in @chunk on success, -errno on failure.
- */
- static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
- {
- int oslot = pcpu_chunk_slot(chunk);
- int max_contig = 0;
- int i, off;
- /*
- * The static chunk initially doesn't have map attached
- * because kmalloc wasn't available during init. Give it one.
- */
- if (unlikely(!chunk->map)) {
- chunk->map = pcpu_realloc(NULL, 0,
- PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
- if (!chunk->map)
- return -ENOMEM;
- chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
- chunk->map[chunk->map_used++] = -pcpu_static_size;
- if (chunk->free_size)
- chunk->map[chunk->map_used++] = chunk->free_size;
- }
- for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
- bool is_last = i + 1 == chunk->map_used;
- int head, tail;
- /* extra for alignment requirement */
- head = ALIGN(off, align) - off;
- BUG_ON(i == 0 && head != 0);
- if (chunk->map[i] < 0)
- continue;
- if (chunk->map[i] < head + size) {
- max_contig = max(chunk->map[i], max_contig);
- continue;
- }
- /*
- * If head is small or the previous block is free,
- * merge'em. Note that 'small' is defined as smaller
- * than sizeof(int), which is very small but isn't too
- * uncommon for percpu allocations.
- */
- if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
- if (chunk->map[i - 1] > 0)
- chunk->map[i - 1] += head;
- else {
- chunk->map[i - 1] -= head;
- chunk->free_size -= head;
- }
- chunk->map[i] -= head;
- off += head;
- head = 0;
- }
- /* if tail is small, just keep it around */
- tail = chunk->map[i] - head - size;
- if (tail < sizeof(int))
- tail = 0;
- /* split if warranted */
- if (head || tail) {
- if (pcpu_split_block(chunk, i, head, tail))
- return -ENOMEM;
- if (head) {
- i++;
- off += head;
- max_contig = max(chunk->map[i - 1], max_contig);
- }
- if (tail)
- max_contig = max(chunk->map[i + 1], max_contig);
- }
- /* update hint and mark allocated */
- if (is_last)
- chunk->contig_hint = max_contig; /* fully scanned */
- else
- chunk->contig_hint = max(chunk->contig_hint,
- max_contig);
- chunk->free_size -= chunk->map[i];
- chunk->map[i] = -chunk->map[i];
- pcpu_chunk_relocate(chunk, oslot);
- return off;
- }
- chunk->contig_hint = max_contig; /* fully scanned */
- pcpu_chunk_relocate(chunk, oslot);
- /*
- * Tell the upper layer that this chunk has no area left.
- * Note that this is not an error condition but a notification
- * to upper layer that it needs to look at other chunks.
- * -ENOSPC is chosen as it isn't used in memory subsystem and
- * matches the meaning in a way.
- */
- return -ENOSPC;
- }
- /**
- * pcpu_free_area - free area to a pcpu_chunk
- * @chunk: chunk of interest
- * @freeme: offset of area to free
- *
- * Free area starting from @freeme to @chunk. Note that this function
- * only modifies the allocation map. It doesn't depopulate or unmap
- * the area.
- */
- static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
- {
- int oslot = pcpu_chunk_slot(chunk);
- int i, off;
- for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
- if (off == freeme)
- break;
- BUG_ON(off != freeme);
- BUG_ON(chunk->map[i] > 0);
- chunk->map[i] = -chunk->map[i];
- chunk->free_size += chunk->map[i];
- /* merge with previous? */
- if (i > 0 && chunk->map[i - 1] >= 0) {
- chunk->map[i - 1] += chunk->map[i];
- chunk->map_used--;
- memmove(&chunk->map[i], &chunk->map[i + 1],
- (chunk->map_used - i) * sizeof(chunk->map[0]));
- i--;
- }
- /* merge with next? */
- if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
- chunk->map[i] += chunk->map[i + 1];
- chunk->map_used--;
- memmove(&chunk->map[i + 1], &chunk->map[i + 2],
- (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
- }
- chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
- pcpu_chunk_relocate(chunk, oslot);
- }
- /**
- * pcpu_unmap - unmap pages out of a pcpu_chunk
- * @chunk: chunk of interest
- * @page_start: page index of the first page to unmap
- * @page_end: page index of the last page to unmap + 1
- * @flush: whether to flush cache and tlb or not
- *
- * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
- * If @flush is true, vcache is flushed before unmapping and tlb
- * after.
- */
- static void pcpu_unmap(struct pcpu_chunk *chunk, int page_start, int page_end,
- bool flush)
- {
- unsigned int last = num_possible_cpus() - 1;
- unsigned int cpu;
- /* unmap must not be done on immutable chunk */
- WARN_ON(chunk->immutable);
- /*
- * Each flushing trial can be very expensive, issue flush on
- * the whole region at once rather than doing it for each cpu.
- * This could be an overkill but is more scalable.
- */
- if (flush)
- flush_cache_vunmap(pcpu_chunk_addr(chunk, 0, page_start),
- pcpu_chunk_addr(chunk, last, page_end));
- for_each_possible_cpu(cpu)
- unmap_kernel_range_noflush(
- pcpu_chunk_addr(chunk, cpu, page_start),
- (page_end - page_start) << PAGE_SHIFT);
- /* ditto as flush_cache_vunmap() */
- if (flush)
- flush_tlb_kernel_range(pcpu_chunk_addr(chunk, 0, page_start),
- pcpu_chunk_addr(chunk, last, page_end));
- }
- /**
- * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
- * @chunk: chunk to depopulate
- * @off: offset to the area to depopulate
- * @size: size of the area to depopulate in bytes
- * @flush: whether to flush cache and tlb or not
- *
- * For each cpu, depopulate and unmap pages [@page_start,@page_end)
- * from @chunk. If @flush is true, vcache is flushed before unmapping
- * and tlb after.
- */
- static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size,
- bool flush)
- {
- int page_start = PFN_DOWN(off);
- int page_end = PFN_UP(off + size);
- int unmap_start = -1;
- int uninitialized_var(unmap_end);
- unsigned int cpu;
- int i;
- for (i = page_start; i < page_end; i++) {
- for_each_possible_cpu(cpu) {
- struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);
- if (!*pagep)
- continue;
- __free_page(*pagep);
- /*
- * If it's partial depopulation, it might get
- * populated or depopulated again. Mark the
- * page gone.
- */
- *pagep = NULL;
- unmap_start = unmap_start < 0 ? i : unmap_start;
- unmap_end = i + 1;
- }
- }
- if (unmap_start >= 0)
- pcpu_unmap(chunk, unmap_start, unmap_end, flush);
- }
- /**
- * pcpu_map - map pages into a pcpu_chunk
- * @chunk: chunk of interest
- * @page_start: page index of the first page to map
- * @page_end: page index of the last page to map + 1
- *
- * For each cpu, map pages [@page_start,@page_end) into @chunk.
- * vcache is flushed afterwards.
- */
- static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end)
- {
- unsigned int last = num_possible_cpus() - 1;
- unsigned int cpu;
- int err;
- /* map must not be done on immutable chunk */
- WARN_ON(chunk->immutable);
- for_each_possible_cpu(cpu) {
- err = map_kernel_range_noflush(
- pcpu_chunk_addr(chunk, cpu, page_start),
- (page_end - page_start) << PAGE_SHIFT,
- PAGE_KERNEL,
- pcpu_chunk_pagep(chunk, cpu, page_start));
- if (err < 0)
- return err;
- }
- /* flush at once, please read comments in pcpu_unmap() */
- flush_cache_vmap(pcpu_chunk_addr(chunk, 0, page_start),
- pcpu_chunk_addr(chunk, last, page_end));
- return 0;
- }
- /**
- * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
- * @chunk: chunk of interest
- * @off: offset to the area to populate
- * @size: size of the area to populate in bytes
- *
- * For each cpu, populate and map pages [@page_start,@page_end) into
- * @chunk. The area is cleared on return.
- */
- static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
- {
- const gfp_t alloc_mask = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
- int page_start = PFN_DOWN(off);
- int page_end = PFN_UP(off + size);
- int map_start = -1;
- int map_end;
- unsigned int cpu;
- int i;
- for (i = page_start; i < page_end; i++) {
- if (pcpu_chunk_page_occupied(chunk, i)) {
- if (map_start >= 0) {
- if (pcpu_map(chunk, map_start, map_end))
- goto err;
- map_start = -1;
- }
- continue;
- }
- map_start = map_start < 0 ? i : map_start;
- map_end = i + 1;
- for_each_possible_cpu(cpu) {
- struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);
- *pagep = alloc_pages_node(cpu_to_node(cpu),
- alloc_mask, 0);
- if (!*pagep)
- goto err;
- }
- }
- if (map_start >= 0 && pcpu_map(chunk, map_start, map_end))
- goto err;
- for_each_possible_cpu(cpu)
- memset(chunk->vm->addr + cpu * pcpu_unit_size + off, 0,
- size);
- return 0;
- err:
- /* likely under heavy memory pressure, give memory back */
- pcpu_depopulate_chunk(chunk, off, size, true);
- return -ENOMEM;
- }
- static void free_pcpu_chunk(struct pcpu_chunk *chunk)
- {
- if (!chunk)
- return;
- if (chunk->vm)
- free_vm_area(chunk->vm);
- pcpu_realloc(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]), 0);
- kfree(chunk);
- }
- static struct pcpu_chunk *alloc_pcpu_chunk(void)
- {
- struct pcpu_chunk *chunk;
- chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
- if (!chunk)
- return NULL;
- chunk->map = pcpu_realloc(NULL, 0,
- PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
- chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
- chunk->map[chunk->map_used++] = pcpu_unit_size;
- chunk->vm = get_vm_area(pcpu_chunk_size, GFP_KERNEL);
- if (!chunk->vm) {
- free_pcpu_chunk(chunk);
- return NULL;
- }
- INIT_LIST_HEAD(&chunk->list);
- chunk->free_size = pcpu_unit_size;
- chunk->contig_hint = pcpu_unit_size;
- return chunk;
- }
- /**
- * __alloc_percpu - allocate percpu area
- * @size: size of area to allocate in bytes
- * @align: alignment of area (max PAGE_SIZE)
- *
- * Allocate percpu area of @size bytes aligned at @align. Might
- * sleep. Might trigger writeouts.
- *
- * RETURNS:
- * Percpu pointer to the allocated area on success, NULL on failure.
- */
- void *__alloc_percpu(size_t size, size_t align)
- {
- void *ptr = NULL;
- struct pcpu_chunk *chunk;
- int slot, off;
- if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
- WARN(true, "illegal size (%zu) or align (%zu) for "
- "percpu allocation\n", size, align);
- return NULL;
- }
- mutex_lock(&pcpu_mutex);
- /* allocate area */
- for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
- list_for_each_entry(chunk, &pcpu_slot[slot], list) {
- if (size > chunk->contig_hint)
- continue;
- off = pcpu_alloc_area(chunk, size, align);
- if (off >= 0)
- goto area_found;
- if (off != -ENOSPC)
- goto out_unlock;
- }
- }
- /* hmmm... no space left, create a new chunk */
- chunk = alloc_pcpu_chunk();
- if (!chunk)
- goto out_unlock;
- pcpu_chunk_relocate(chunk, -1);
- pcpu_chunk_addr_insert(chunk);
- off = pcpu_alloc_area(chunk, size, align);
- if (off < 0)
- goto out_unlock;
- area_found:
- /* populate, map and clear the area */
- if (pcpu_populate_chunk(chunk, off, size)) {
- pcpu_free_area(chunk, off);
- goto out_unlock;
- }
- ptr = __addr_to_pcpu_ptr(chunk->vm->addr + off);
- out_unlock:
- mutex_unlock(&pcpu_mutex);
- return ptr;
- }
- EXPORT_SYMBOL_GPL(__alloc_percpu);
- static void pcpu_kill_chunk(struct pcpu_chunk *chunk)
- {
- WARN_ON(chunk->immutable);
- pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size, false);
- list_del(&chunk->list);
- rb_erase(&chunk->rb_node, &pcpu_addr_root);
- free_pcpu_chunk(chunk);
- }
- /**
- * free_percpu - free percpu area
- * @ptr: pointer to area to free
- *
- * Free percpu area @ptr. Might sleep.
- */
- void free_percpu(void *ptr)
- {
- void *addr = __pcpu_ptr_to_addr(ptr);
- struct pcpu_chunk *chunk;
- int off;
- if (!ptr)
- return;
- mutex_lock(&pcpu_mutex);
- chunk = pcpu_chunk_addr_search(addr);
- off = addr - chunk->vm->addr;
- pcpu_free_area(chunk, off);
- /* the chunk became fully free, kill one if there are other free ones */
- if (chunk->free_size == pcpu_unit_size) {
- struct pcpu_chunk *pos;
- list_for_each_entry(pos,
- &pcpu_slot[pcpu_chunk_slot(chunk)], list)
- if (pos != chunk) {
- pcpu_kill_chunk(pos);
- break;
- }
- }
- mutex_unlock(&pcpu_mutex);
- }
- EXPORT_SYMBOL_GPL(free_percpu);
- /**
- * pcpu_setup_first_chunk - initialize the first percpu chunk
- * @get_page_fn: callback to fetch page pointer
- * @static_size: the size of static percpu area in bytes
- * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, 0 for auto
- * @free_size: free size in bytes, 0 for auto
- * @base_addr: mapped address, NULL for auto
- * @populate_pte_fn: callback to allocate pagetable, NULL if unnecessary
- *
- * Initialize the first percpu chunk which contains the kernel static
- * perpcu area. This function is to be called from arch percpu area
- * setup path. The first two parameters are mandatory. The rest are
- * optional.
- *
- * @get_page_fn() should return pointer to percpu page given cpu
- * number and page number. It should at least return enough pages to
- * cover the static area. The returned pages for static area should
- * have been initialized with valid data. If @unit_size is specified,
- * it can also return pages after the static area. NULL return
- * indicates end of pages for the cpu. Note that @get_page_fn() must
- * return the same number of pages for all cpus.
- *
- * @unit_size, if non-zero, determines unit size and must be aligned
- * to PAGE_SIZE and equal to or larger than @static_size + @free_size.
- *
- * @free_size determines the number of free bytes after the static
- * area in the first chunk. If zero, whatever left is available.
- * Specifying non-zero value make percpu leave the area after
- * @static_size + @free_size alone.
- *
- * Non-null @base_addr means that the caller already allocated virtual
- * region for the first chunk and mapped it. percpu must not mess
- * with the chunk. Note that @base_addr with 0 @unit_size or non-NULL
- * @populate_pte_fn doesn't make any sense.
- *
- * @populate_pte_fn is used to populate the pagetable. NULL means the
- * caller already populated the pagetable.
- *
- * RETURNS:
- * The determined pcpu_unit_size which can be used to initialize
- * percpu access.
- */
- size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
- size_t static_size, size_t unit_size,
- size_t free_size, void *base_addr,
- pcpu_populate_pte_fn_t populate_pte_fn)
- {
- static struct vm_struct static_vm;
- struct pcpu_chunk *static_chunk;
- unsigned int cpu;
- int nr_pages;
- int err, i;
- /* santiy checks */
- BUG_ON(!static_size);
- BUG_ON(!unit_size && free_size);
- BUG_ON(unit_size && unit_size < static_size + free_size);
- BUG_ON(unit_size & ~PAGE_MASK);
- BUG_ON(base_addr && !unit_size);
- BUG_ON(base_addr && populate_pte_fn);
- if (unit_size)
- pcpu_unit_pages = unit_size >> PAGE_SHIFT;
- else
- pcpu_unit_pages = max_t(int, PCPU_MIN_UNIT_SIZE >> PAGE_SHIFT,
- PFN_UP(static_size));
- pcpu_static_size = static_size;
- pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
- pcpu_chunk_size = num_possible_cpus() * pcpu_unit_size;
- pcpu_chunk_struct_size = sizeof(struct pcpu_chunk)
- + num_possible_cpus() * pcpu_unit_pages * sizeof(struct page *);
- /*
- * Allocate chunk slots. The additional last slot is for
- * empty chunks.
- */
- pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
- pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
- for (i = 0; i < pcpu_nr_slots; i++)
- INIT_LIST_HEAD(&pcpu_slot[i]);
- /* init static_chunk */
- static_chunk = alloc_bootmem(pcpu_chunk_struct_size);
- INIT_LIST_HEAD(&static_chunk->list);
- static_chunk->vm = &static_vm;
- if (free_size)
- static_chunk->free_size = free_size;
- else
- static_chunk->free_size = pcpu_unit_size - pcpu_static_size;
- static_chunk->contig_hint = static_chunk->free_size;
- /* allocate vm address */
- static_vm.flags = VM_ALLOC;
- static_vm.size = pcpu_chunk_size;
- if (!base_addr)
- vm_area_register_early(&static_vm, PAGE_SIZE);
- else {
- /*
- * Pages already mapped. No need to remap into
- * vmalloc area. In this case the static chunk can't
- * be mapped or unmapped by percpu and is marked
- * immutable.
- */
- static_vm.addr = base_addr;
- static_chunk->immutable = true;
- }
- /* assign pages */
- nr_pages = -1;
- for_each_possible_cpu(cpu) {
- for (i = 0; i < pcpu_unit_pages; i++) {
- struct page *page = get_page_fn(cpu, i);
- if (!page)
- break;
- *pcpu_chunk_pagep(static_chunk, cpu, i) = page;
- }
- BUG_ON(i < PFN_UP(pcpu_static_size));
- if (nr_pages < 0)
- nr_pages = i;
- else
- BUG_ON(nr_pages != i);
- }
- /* map them */
- if (populate_pte_fn) {
- for_each_possible_cpu(cpu)
- for (i = 0; i < nr_pages; i++)
- populate_pte_fn(pcpu_chunk_addr(static_chunk,
- cpu, i));
- err = pcpu_map(static_chunk, 0, nr_pages);
- if (err)
- panic("failed to setup static percpu area, err=%d\n",
- err);
- }
- /* link static_chunk in */
- pcpu_chunk_relocate(static_chunk, -1);
- pcpu_chunk_addr_insert(static_chunk);
- /* we're done */
- pcpu_base_addr = (void *)pcpu_chunk_addr(static_chunk, 0, 0);
- return pcpu_unit_size;
- }
|