intel.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742
  1. #include <linux/init.h>
  2. #include <linux/kernel.h>
  3. #include <linux/string.h>
  4. #include <linux/bitops.h>
  5. #include <linux/smp.h>
  6. #include <linux/sched.h>
  7. #include <linux/thread_info.h>
  8. #include <linux/module.h>
  9. #include <linux/uaccess.h>
  10. #include <asm/processor.h>
  11. #include <asm/pgtable.h>
  12. #include <asm/msr.h>
  13. #include <asm/bugs.h>
  14. #include <asm/cpu.h>
  15. #ifdef CONFIG_X86_64
  16. #include <linux/topology.h>
  17. #endif
  18. #include "cpu.h"
  19. #ifdef CONFIG_X86_LOCAL_APIC
  20. #include <asm/mpspec.h>
  21. #include <asm/apic.h>
  22. #endif
  23. static void __cpuinit early_init_intel(struct cpuinfo_x86 *c)
  24. {
  25. u64 misc_enable;
  26. /* Unmask CPUID levels if masked: */
  27. if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
  28. rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
  29. if (misc_enable & MSR_IA32_MISC_ENABLE_LIMIT_CPUID) {
  30. misc_enable &= ~MSR_IA32_MISC_ENABLE_LIMIT_CPUID;
  31. wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
  32. c->cpuid_level = cpuid_eax(0);
  33. get_cpu_cap(c);
  34. }
  35. }
  36. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  37. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  38. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  39. if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) {
  40. unsigned lower_word;
  41. wrmsr(MSR_IA32_UCODE_REV, 0, 0);
  42. /* Required by the SDM */
  43. sync_core();
  44. rdmsr(MSR_IA32_UCODE_REV, lower_word, c->microcode);
  45. }
  46. /*
  47. * Atom erratum AAE44/AAF40/AAG38/AAH41:
  48. *
  49. * A race condition between speculative fetches and invalidating
  50. * a large page. This is worked around in microcode, but we
  51. * need the microcode to have already been loaded... so if it is
  52. * not, recommend a BIOS update and disable large pages.
  53. */
  54. if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
  55. c->microcode < 0x20e) {
  56. printk(KERN_WARNING "Atom PSE erratum detected, BIOS microcode update recommended\n");
  57. clear_cpu_cap(c, X86_FEATURE_PSE);
  58. }
  59. #ifdef CONFIG_X86_64
  60. set_cpu_cap(c, X86_FEATURE_SYSENTER32);
  61. #else
  62. /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
  63. if (c->x86 == 15 && c->x86_cache_alignment == 64)
  64. c->x86_cache_alignment = 128;
  65. #endif
  66. /* CPUID workaround for 0F33/0F34 CPU */
  67. if (c->x86 == 0xF && c->x86_model == 0x3
  68. && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
  69. c->x86_phys_bits = 36;
  70. /*
  71. * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
  72. * with P/T states and does not stop in deep C-states.
  73. *
  74. * It is also reliable across cores and sockets. (but not across
  75. * cabinets - we turn it off in that case explicitly.)
  76. */
  77. if (c->x86_power & (1 << 8)) {
  78. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  79. set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
  80. if (!check_tsc_unstable())
  81. sched_clock_stable = 1;
  82. }
  83. /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
  84. if (c->x86 == 6) {
  85. switch (c->x86_model) {
  86. case 0x27: /* Penwell */
  87. case 0x35: /* Cloverview */
  88. set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
  89. break;
  90. default:
  91. break;
  92. }
  93. }
  94. /*
  95. * There is a known erratum on Pentium III and Core Solo
  96. * and Core Duo CPUs.
  97. * " Page with PAT set to WC while associated MTRR is UC
  98. * may consolidate to UC "
  99. * Because of this erratum, it is better to stick with
  100. * setting WC in MTRR rather than using PAT on these CPUs.
  101. *
  102. * Enable PAT WC only on P4, Core 2 or later CPUs.
  103. */
  104. if (c->x86 == 6 && c->x86_model < 15)
  105. clear_cpu_cap(c, X86_FEATURE_PAT);
  106. #ifdef CONFIG_KMEMCHECK
  107. /*
  108. * P4s have a "fast strings" feature which causes single-
  109. * stepping REP instructions to only generate a #DB on
  110. * cache-line boundaries.
  111. *
  112. * Ingo Molnar reported a Pentium D (model 6) and a Xeon
  113. * (model 2) with the same problem.
  114. */
  115. if (c->x86 == 15) {
  116. rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
  117. if (misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING) {
  118. printk(KERN_INFO "kmemcheck: Disabling fast string operations\n");
  119. misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING;
  120. wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
  121. }
  122. }
  123. #endif
  124. /*
  125. * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
  126. * clear the fast string and enhanced fast string CPU capabilities.
  127. */
  128. if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
  129. rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
  130. if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
  131. printk(KERN_INFO "Disabled fast string operations\n");
  132. setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
  133. setup_clear_cpu_cap(X86_FEATURE_ERMS);
  134. }
  135. }
  136. }
  137. #ifdef CONFIG_X86_32
  138. /*
  139. * Early probe support logic for ppro memory erratum #50
  140. *
  141. * This is called before we do cpu ident work
  142. */
  143. int __cpuinit ppro_with_ram_bug(void)
  144. {
  145. /* Uses data from early_cpu_detect now */
  146. if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
  147. boot_cpu_data.x86 == 6 &&
  148. boot_cpu_data.x86_model == 1 &&
  149. boot_cpu_data.x86_mask < 8) {
  150. printk(KERN_INFO "Pentium Pro with Errata#50 detected. Taking evasive action.\n");
  151. return 1;
  152. }
  153. return 0;
  154. }
  155. #ifdef CONFIG_X86_F00F_BUG
  156. static void __cpuinit trap_init_f00f_bug(void)
  157. {
  158. __set_fixmap(FIX_F00F_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO);
  159. /*
  160. * Update the IDT descriptor and reload the IDT so that
  161. * it uses the read-only mapped virtual address.
  162. */
  163. idt_descr.address = fix_to_virt(FIX_F00F_IDT);
  164. load_idt(&idt_descr);
  165. }
  166. #endif
  167. static void __cpuinit intel_smp_check(struct cpuinfo_x86 *c)
  168. {
  169. /* calling is from identify_secondary_cpu() ? */
  170. if (!c->cpu_index)
  171. return;
  172. /*
  173. * Mask B, Pentium, but not Pentium MMX
  174. */
  175. if (c->x86 == 5 &&
  176. c->x86_mask >= 1 && c->x86_mask <= 4 &&
  177. c->x86_model <= 3) {
  178. /*
  179. * Remember we have B step Pentia with bugs
  180. */
  181. WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
  182. "with B stepping processors.\n");
  183. }
  184. }
  185. static void __cpuinit intel_workarounds(struct cpuinfo_x86 *c)
  186. {
  187. unsigned long lo, hi;
  188. #ifdef CONFIG_X86_F00F_BUG
  189. /*
  190. * All current models of Pentium and Pentium with MMX technology CPUs
  191. * have the F0 0F bug, which lets nonprivileged users lock up the
  192. * system.
  193. * Note that the workaround only should be initialized once...
  194. */
  195. c->f00f_bug = 0;
  196. if (!paravirt_enabled() && c->x86 == 5) {
  197. static int f00f_workaround_enabled;
  198. c->f00f_bug = 1;
  199. if (!f00f_workaround_enabled) {
  200. trap_init_f00f_bug();
  201. printk(KERN_NOTICE "Intel Pentium with F0 0F bug - workaround enabled.\n");
  202. f00f_workaround_enabled = 1;
  203. }
  204. }
  205. #endif
  206. /*
  207. * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
  208. * model 3 mask 3
  209. */
  210. if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
  211. clear_cpu_cap(c, X86_FEATURE_SEP);
  212. /*
  213. * P4 Xeon errata 037 workaround.
  214. * Hardware prefetcher may cause stale data to be loaded into the cache.
  215. */
  216. if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
  217. rdmsr(MSR_IA32_MISC_ENABLE, lo, hi);
  218. if ((lo & MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE) == 0) {
  219. printk (KERN_INFO "CPU: C0 stepping P4 Xeon detected.\n");
  220. printk (KERN_INFO "CPU: Disabling hardware prefetching (Errata 037)\n");
  221. lo |= MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE;
  222. wrmsr(MSR_IA32_MISC_ENABLE, lo, hi);
  223. }
  224. }
  225. /*
  226. * See if we have a good local APIC by checking for buggy Pentia,
  227. * i.e. all B steppings and the C2 stepping of P54C when using their
  228. * integrated APIC (see 11AP erratum in "Pentium Processor
  229. * Specification Update").
  230. */
  231. if (cpu_has_apic && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
  232. (c->x86_mask < 0x6 || c->x86_mask == 0xb))
  233. set_cpu_cap(c, X86_FEATURE_11AP);
  234. #ifdef CONFIG_X86_INTEL_USERCOPY
  235. /*
  236. * Set up the preferred alignment for movsl bulk memory moves
  237. */
  238. switch (c->x86) {
  239. case 4: /* 486: untested */
  240. break;
  241. case 5: /* Old Pentia: untested */
  242. break;
  243. case 6: /* PII/PIII only like movsl with 8-byte alignment */
  244. movsl_mask.mask = 7;
  245. break;
  246. case 15: /* P4 is OK down to 8-byte alignment */
  247. movsl_mask.mask = 7;
  248. break;
  249. }
  250. #endif
  251. #ifdef CONFIG_X86_NUMAQ
  252. numaq_tsc_disable();
  253. #endif
  254. intel_smp_check(c);
  255. }
  256. #else
  257. static void __cpuinit intel_workarounds(struct cpuinfo_x86 *c)
  258. {
  259. }
  260. #endif
  261. static void __cpuinit srat_detect_node(struct cpuinfo_x86 *c)
  262. {
  263. #ifdef CONFIG_NUMA
  264. unsigned node;
  265. int cpu = smp_processor_id();
  266. /* Don't do the funky fallback heuristics the AMD version employs
  267. for now. */
  268. node = numa_cpu_node(cpu);
  269. if (node == NUMA_NO_NODE || !node_online(node)) {
  270. /* reuse the value from init_cpu_to_node() */
  271. node = cpu_to_node(cpu);
  272. }
  273. numa_set_node(cpu, node);
  274. #endif
  275. }
  276. /*
  277. * find out the number of processor cores on the die
  278. */
  279. static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
  280. {
  281. unsigned int eax, ebx, ecx, edx;
  282. if (c->cpuid_level < 4)
  283. return 1;
  284. /* Intel has a non-standard dependency on %ecx for this CPUID level. */
  285. cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
  286. if (eax & 0x1f)
  287. return (eax >> 26) + 1;
  288. else
  289. return 1;
  290. }
  291. static void __cpuinit detect_vmx_virtcap(struct cpuinfo_x86 *c)
  292. {
  293. /* Intel VMX MSR indicated features */
  294. #define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW 0x00200000
  295. #define X86_VMX_FEATURE_PROC_CTLS_VNMI 0x00400000
  296. #define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS 0x80000000
  297. #define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC 0x00000001
  298. #define X86_VMX_FEATURE_PROC_CTLS2_EPT 0x00000002
  299. #define X86_VMX_FEATURE_PROC_CTLS2_VPID 0x00000020
  300. u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
  301. clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
  302. clear_cpu_cap(c, X86_FEATURE_VNMI);
  303. clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
  304. clear_cpu_cap(c, X86_FEATURE_EPT);
  305. clear_cpu_cap(c, X86_FEATURE_VPID);
  306. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
  307. msr_ctl = vmx_msr_high | vmx_msr_low;
  308. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
  309. set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
  310. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
  311. set_cpu_cap(c, X86_FEATURE_VNMI);
  312. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
  313. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  314. vmx_msr_low, vmx_msr_high);
  315. msr_ctl2 = vmx_msr_high | vmx_msr_low;
  316. if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
  317. (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
  318. set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
  319. if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
  320. set_cpu_cap(c, X86_FEATURE_EPT);
  321. if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
  322. set_cpu_cap(c, X86_FEATURE_VPID);
  323. }
  324. }
  325. static void __cpuinit init_intel(struct cpuinfo_x86 *c)
  326. {
  327. unsigned int l2 = 0;
  328. early_init_intel(c);
  329. intel_workarounds(c);
  330. /*
  331. * Detect the extended topology information if available. This
  332. * will reinitialise the initial_apicid which will be used
  333. * in init_intel_cacheinfo()
  334. */
  335. detect_extended_topology(c);
  336. l2 = init_intel_cacheinfo(c);
  337. if (c->cpuid_level > 9) {
  338. unsigned eax = cpuid_eax(10);
  339. /* Check for version and the number of counters */
  340. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  341. set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
  342. }
  343. if (cpu_has_xmm2)
  344. set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
  345. if (cpu_has_ds) {
  346. unsigned int l1;
  347. rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
  348. if (!(l1 & (1<<11)))
  349. set_cpu_cap(c, X86_FEATURE_BTS);
  350. if (!(l1 & (1<<12)))
  351. set_cpu_cap(c, X86_FEATURE_PEBS);
  352. }
  353. if (c->x86 == 6 && c->x86_model == 29 && cpu_has_clflush)
  354. set_cpu_cap(c, X86_FEATURE_CLFLUSH_MONITOR);
  355. #ifdef CONFIG_X86_64
  356. if (c->x86 == 15)
  357. c->x86_cache_alignment = c->x86_clflush_size * 2;
  358. if (c->x86 == 6)
  359. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  360. #else
  361. /*
  362. * Names for the Pentium II/Celeron processors
  363. * detectable only by also checking the cache size.
  364. * Dixon is NOT a Celeron.
  365. */
  366. if (c->x86 == 6) {
  367. char *p = NULL;
  368. switch (c->x86_model) {
  369. case 5:
  370. if (l2 == 0)
  371. p = "Celeron (Covington)";
  372. else if (l2 == 256)
  373. p = "Mobile Pentium II (Dixon)";
  374. break;
  375. case 6:
  376. if (l2 == 128)
  377. p = "Celeron (Mendocino)";
  378. else if (c->x86_mask == 0 || c->x86_mask == 5)
  379. p = "Celeron-A";
  380. break;
  381. case 8:
  382. if (l2 == 128)
  383. p = "Celeron (Coppermine)";
  384. break;
  385. }
  386. if (p)
  387. strcpy(c->x86_model_id, p);
  388. }
  389. if (c->x86 == 15)
  390. set_cpu_cap(c, X86_FEATURE_P4);
  391. if (c->x86 == 6)
  392. set_cpu_cap(c, X86_FEATURE_P3);
  393. #endif
  394. if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
  395. /*
  396. * let's use the legacy cpuid vector 0x1 and 0x4 for topology
  397. * detection.
  398. */
  399. c->x86_max_cores = intel_num_cpu_cores(c);
  400. #ifdef CONFIG_X86_32
  401. detect_ht(c);
  402. #endif
  403. }
  404. /* Work around errata */
  405. srat_detect_node(c);
  406. if (cpu_has(c, X86_FEATURE_VMX))
  407. detect_vmx_virtcap(c);
  408. /*
  409. * Initialize MSR_IA32_ENERGY_PERF_BIAS if BIOS did not.
  410. * x86_energy_perf_policy(8) is available to change it at run-time
  411. */
  412. if (cpu_has(c, X86_FEATURE_EPB)) {
  413. u64 epb;
  414. rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
  415. if ((epb & 0xF) == ENERGY_PERF_BIAS_PERFORMANCE) {
  416. printk_once(KERN_WARNING "ENERGY_PERF_BIAS:"
  417. " Set to 'normal', was 'performance'\n"
  418. "ENERGY_PERF_BIAS: View and update with"
  419. " x86_energy_perf_policy(8)\n");
  420. epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
  421. wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
  422. }
  423. }
  424. }
  425. #ifdef CONFIG_X86_32
  426. static unsigned int __cpuinit intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
  427. {
  428. /*
  429. * Intel PIII Tualatin. This comes in two flavours.
  430. * One has 256kb of cache, the other 512. We have no way
  431. * to determine which, so we use a boottime override
  432. * for the 512kb model, and assume 256 otherwise.
  433. */
  434. if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
  435. size = 256;
  436. return size;
  437. }
  438. #endif
  439. #define TLB_INST_4K 0x01
  440. #define TLB_INST_4M 0x02
  441. #define TLB_INST_2M_4M 0x03
  442. #define TLB_INST_ALL 0x05
  443. #define TLB_INST_1G 0x06
  444. #define TLB_DATA_4K 0x11
  445. #define TLB_DATA_4M 0x12
  446. #define TLB_DATA_2M_4M 0x13
  447. #define TLB_DATA_4K_4M 0x14
  448. #define TLB_DATA_1G 0x16
  449. #define TLB_DATA0_4K 0x21
  450. #define TLB_DATA0_4M 0x22
  451. #define TLB_DATA0_2M_4M 0x23
  452. #define STLB_4K 0x41
  453. static const struct _tlb_table intel_tlb_table[] __cpuinitconst = {
  454. { 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" },
  455. { 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" },
  456. { 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" },
  457. { 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" },
  458. { 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" },
  459. { 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" },
  460. { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages */" },
  461. { 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  462. { 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  463. { 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  464. { 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
  465. { 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" },
  466. { 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" },
  467. { 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" },
  468. { 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
  469. { 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" },
  470. { 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" },
  471. { 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" },
  472. { 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" },
  473. { 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
  474. { 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" },
  475. { 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" },
  476. { 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" },
  477. { 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" },
  478. { 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
  479. { 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" },
  480. { 0x00, 0, 0 }
  481. };
  482. static void __cpuinit intel_tlb_lookup(const unsigned char desc)
  483. {
  484. unsigned char k;
  485. if (desc == 0)
  486. return;
  487. /* look up this descriptor in the table */
  488. for (k = 0; intel_tlb_table[k].descriptor != desc && \
  489. intel_tlb_table[k].descriptor != 0; k++)
  490. ;
  491. if (intel_tlb_table[k].tlb_type == 0)
  492. return;
  493. switch (intel_tlb_table[k].tlb_type) {
  494. case STLB_4K:
  495. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  496. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  497. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  498. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  499. break;
  500. case TLB_INST_ALL:
  501. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  502. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  503. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  504. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  505. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  506. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  507. break;
  508. case TLB_INST_4K:
  509. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  510. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  511. break;
  512. case TLB_INST_4M:
  513. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  514. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  515. break;
  516. case TLB_INST_2M_4M:
  517. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  518. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  519. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  520. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  521. break;
  522. case TLB_DATA_4K:
  523. case TLB_DATA0_4K:
  524. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  525. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  526. break;
  527. case TLB_DATA_4M:
  528. case TLB_DATA0_4M:
  529. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  530. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  531. break;
  532. case TLB_DATA_2M_4M:
  533. case TLB_DATA0_2M_4M:
  534. if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
  535. tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
  536. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  537. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  538. break;
  539. case TLB_DATA_4K_4M:
  540. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  541. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  542. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  543. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  544. break;
  545. }
  546. }
  547. static void __cpuinit intel_tlb_flushall_shift_set(struct cpuinfo_x86 *c)
  548. {
  549. switch ((c->x86 << 8) + c->x86_model) {
  550. case 0x60f: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
  551. case 0x616: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
  552. case 0x617: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
  553. case 0x61d: /* six-core 45 nm xeon "Dunnington" */
  554. tlb_flushall_shift = -1;
  555. break;
  556. case 0x61a: /* 45 nm nehalem, "Bloomfield" */
  557. case 0x61e: /* 45 nm nehalem, "Lynnfield" */
  558. case 0x625: /* 32 nm nehalem, "Clarkdale" */
  559. case 0x62c: /* 32 nm nehalem, "Gulftown" */
  560. case 0x62e: /* 45 nm nehalem-ex, "Beckton" */
  561. case 0x62f: /* 32 nm Xeon E7 */
  562. tlb_flushall_shift = 6;
  563. break;
  564. case 0x62a: /* SandyBridge */
  565. case 0x62d: /* SandyBridge, "Romely-EP" */
  566. tlb_flushall_shift = 5;
  567. break;
  568. case 0x63a: /* Ivybridge */
  569. tlb_flushall_shift = 1;
  570. break;
  571. default:
  572. tlb_flushall_shift = 6;
  573. }
  574. }
  575. static void __cpuinit intel_detect_tlb(struct cpuinfo_x86 *c)
  576. {
  577. int i, j, n;
  578. unsigned int regs[4];
  579. unsigned char *desc = (unsigned char *)regs;
  580. if (c->cpuid_level < 2)
  581. return;
  582. /* Number of times to iterate */
  583. n = cpuid_eax(2) & 0xFF;
  584. for (i = 0 ; i < n ; i++) {
  585. cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
  586. /* If bit 31 is set, this is an unknown format */
  587. for (j = 0 ; j < 3 ; j++)
  588. if (regs[j] & (1 << 31))
  589. regs[j] = 0;
  590. /* Byte 0 is level count, not a descriptor */
  591. for (j = 1 ; j < 16 ; j++)
  592. intel_tlb_lookup(desc[j]);
  593. }
  594. intel_tlb_flushall_shift_set(c);
  595. }
  596. static const struct cpu_dev __cpuinitconst intel_cpu_dev = {
  597. .c_vendor = "Intel",
  598. .c_ident = { "GenuineIntel" },
  599. #ifdef CONFIG_X86_32
  600. .c_models = {
  601. { .vendor = X86_VENDOR_INTEL, .family = 4, .model_names =
  602. {
  603. [0] = "486 DX-25/33",
  604. [1] = "486 DX-50",
  605. [2] = "486 SX",
  606. [3] = "486 DX/2",
  607. [4] = "486 SL",
  608. [5] = "486 SX/2",
  609. [7] = "486 DX/2-WB",
  610. [8] = "486 DX/4",
  611. [9] = "486 DX/4-WB"
  612. }
  613. },
  614. { .vendor = X86_VENDOR_INTEL, .family = 5, .model_names =
  615. {
  616. [0] = "Pentium 60/66 A-step",
  617. [1] = "Pentium 60/66",
  618. [2] = "Pentium 75 - 200",
  619. [3] = "OverDrive PODP5V83",
  620. [4] = "Pentium MMX",
  621. [7] = "Mobile Pentium 75 - 200",
  622. [8] = "Mobile Pentium MMX"
  623. }
  624. },
  625. { .vendor = X86_VENDOR_INTEL, .family = 6, .model_names =
  626. {
  627. [0] = "Pentium Pro A-step",
  628. [1] = "Pentium Pro",
  629. [3] = "Pentium II (Klamath)",
  630. [4] = "Pentium II (Deschutes)",
  631. [5] = "Pentium II (Deschutes)",
  632. [6] = "Mobile Pentium II",
  633. [7] = "Pentium III (Katmai)",
  634. [8] = "Pentium III (Coppermine)",
  635. [10] = "Pentium III (Cascades)",
  636. [11] = "Pentium III (Tualatin)",
  637. }
  638. },
  639. { .vendor = X86_VENDOR_INTEL, .family = 15, .model_names =
  640. {
  641. [0] = "Pentium 4 (Unknown)",
  642. [1] = "Pentium 4 (Willamette)",
  643. [2] = "Pentium 4 (Northwood)",
  644. [4] = "Pentium 4 (Foster)",
  645. [5] = "Pentium 4 (Foster)",
  646. }
  647. },
  648. },
  649. .c_size_cache = intel_size_cache,
  650. #endif
  651. .c_detect_tlb = intel_detect_tlb,
  652. .c_early_init = early_init_intel,
  653. .c_init = init_intel,
  654. .c_x86_vendor = X86_VENDOR_INTEL,
  655. };
  656. cpu_dev_register(intel_cpu_dev);