tree.c 106 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403
  1. /*
  2. * Read-Copy Update mechanism for mutual exclusion
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17. *
  18. * Copyright IBM Corporation, 2008
  19. *
  20. * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21. * Manfred Spraul <manfred@colorfullife.com>
  22. * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
  23. *
  24. * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  25. * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  26. *
  27. * For detailed explanation of Read-Copy Update mechanism see -
  28. * Documentation/RCU
  29. */
  30. #include <linux/types.h>
  31. #include <linux/kernel.h>
  32. #include <linux/init.h>
  33. #include <linux/spinlock.h>
  34. #include <linux/smp.h>
  35. #include <linux/rcupdate.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/sched.h>
  38. #include <linux/nmi.h>
  39. #include <linux/atomic.h>
  40. #include <linux/bitops.h>
  41. #include <linux/export.h>
  42. #include <linux/completion.h>
  43. #include <linux/moduleparam.h>
  44. #include <linux/module.h>
  45. #include <linux/percpu.h>
  46. #include <linux/notifier.h>
  47. #include <linux/cpu.h>
  48. #include <linux/mutex.h>
  49. #include <linux/time.h>
  50. #include <linux/kernel_stat.h>
  51. #include <linux/wait.h>
  52. #include <linux/kthread.h>
  53. #include <linux/prefetch.h>
  54. #include <linux/delay.h>
  55. #include <linux/stop_machine.h>
  56. #include <linux/random.h>
  57. #include <linux/ftrace_event.h>
  58. #include <linux/suspend.h>
  59. #include "tree.h"
  60. #include <trace/events/rcu.h>
  61. #include "rcu.h"
  62. MODULE_ALIAS("rcutree");
  63. #ifdef MODULE_PARAM_PREFIX
  64. #undef MODULE_PARAM_PREFIX
  65. #endif
  66. #define MODULE_PARAM_PREFIX "rcutree."
  67. /* Data structures. */
  68. static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
  69. static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
  70. /*
  71. * In order to export the rcu_state name to the tracing tools, it
  72. * needs to be added in the __tracepoint_string section.
  73. * This requires defining a separate variable tp_<sname>_varname
  74. * that points to the string being used, and this will allow
  75. * the tracing userspace tools to be able to decipher the string
  76. * address to the matching string.
  77. */
  78. #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
  79. static char sname##_varname[] = #sname; \
  80. static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
  81. struct rcu_state sname##_state = { \
  82. .level = { &sname##_state.node[0] }, \
  83. .call = cr, \
  84. .fqs_state = RCU_GP_IDLE, \
  85. .gpnum = 0UL - 300UL, \
  86. .completed = 0UL - 300UL, \
  87. .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
  88. .orphan_nxttail = &sname##_state.orphan_nxtlist, \
  89. .orphan_donetail = &sname##_state.orphan_donelist, \
  90. .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
  91. .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
  92. .name = sname##_varname, \
  93. .abbr = sabbr, \
  94. }; \
  95. DEFINE_PER_CPU(struct rcu_data, sname##_data)
  96. RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
  97. RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
  98. static struct rcu_state *rcu_state;
  99. LIST_HEAD(rcu_struct_flavors);
  100. /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
  101. static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
  102. module_param(rcu_fanout_leaf, int, 0444);
  103. int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
  104. static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
  105. NUM_RCU_LVL_0,
  106. NUM_RCU_LVL_1,
  107. NUM_RCU_LVL_2,
  108. NUM_RCU_LVL_3,
  109. NUM_RCU_LVL_4,
  110. };
  111. int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
  112. /*
  113. * The rcu_scheduler_active variable transitions from zero to one just
  114. * before the first task is spawned. So when this variable is zero, RCU
  115. * can assume that there is but one task, allowing RCU to (for example)
  116. * optimize synchronize_sched() to a simple barrier(). When this variable
  117. * is one, RCU must actually do all the hard work required to detect real
  118. * grace periods. This variable is also used to suppress boot-time false
  119. * positives from lockdep-RCU error checking.
  120. */
  121. int rcu_scheduler_active __read_mostly;
  122. EXPORT_SYMBOL_GPL(rcu_scheduler_active);
  123. /*
  124. * The rcu_scheduler_fully_active variable transitions from zero to one
  125. * during the early_initcall() processing, which is after the scheduler
  126. * is capable of creating new tasks. So RCU processing (for example,
  127. * creating tasks for RCU priority boosting) must be delayed until after
  128. * rcu_scheduler_fully_active transitions from zero to one. We also
  129. * currently delay invocation of any RCU callbacks until after this point.
  130. *
  131. * It might later prove better for people registering RCU callbacks during
  132. * early boot to take responsibility for these callbacks, but one step at
  133. * a time.
  134. */
  135. static int rcu_scheduler_fully_active __read_mostly;
  136. #ifdef CONFIG_RCU_BOOST
  137. /*
  138. * Control variables for per-CPU and per-rcu_node kthreads. These
  139. * handle all flavors of RCU.
  140. */
  141. static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
  142. DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
  143. DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
  144. DEFINE_PER_CPU(char, rcu_cpu_has_work);
  145. #endif /* #ifdef CONFIG_RCU_BOOST */
  146. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
  147. static void invoke_rcu_core(void);
  148. static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
  149. /*
  150. * Track the rcutorture test sequence number and the update version
  151. * number within a given test. The rcutorture_testseq is incremented
  152. * on every rcutorture module load and unload, so has an odd value
  153. * when a test is running. The rcutorture_vernum is set to zero
  154. * when rcutorture starts and is incremented on each rcutorture update.
  155. * These variables enable correlating rcutorture output with the
  156. * RCU tracing information.
  157. */
  158. unsigned long rcutorture_testseq;
  159. unsigned long rcutorture_vernum;
  160. /*
  161. * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
  162. * permit this function to be invoked without holding the root rcu_node
  163. * structure's ->lock, but of course results can be subject to change.
  164. */
  165. static int rcu_gp_in_progress(struct rcu_state *rsp)
  166. {
  167. return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
  168. }
  169. /*
  170. * Note a quiescent state. Because we do not need to know
  171. * how many quiescent states passed, just if there was at least
  172. * one since the start of the grace period, this just sets a flag.
  173. * The caller must have disabled preemption.
  174. */
  175. void rcu_sched_qs(int cpu)
  176. {
  177. struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
  178. if (rdp->passed_quiesce == 0)
  179. trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
  180. rdp->passed_quiesce = 1;
  181. }
  182. void rcu_bh_qs(int cpu)
  183. {
  184. struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
  185. if (rdp->passed_quiesce == 0)
  186. trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
  187. rdp->passed_quiesce = 1;
  188. }
  189. /*
  190. * Note a context switch. This is a quiescent state for RCU-sched,
  191. * and requires special handling for preemptible RCU.
  192. * The caller must have disabled preemption.
  193. */
  194. void rcu_note_context_switch(int cpu)
  195. {
  196. trace_rcu_utilization(TPS("Start context switch"));
  197. rcu_sched_qs(cpu);
  198. rcu_preempt_note_context_switch(cpu);
  199. trace_rcu_utilization(TPS("End context switch"));
  200. }
  201. EXPORT_SYMBOL_GPL(rcu_note_context_switch);
  202. static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
  203. .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
  204. .dynticks = ATOMIC_INIT(1),
  205. #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
  206. .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
  207. .dynticks_idle = ATOMIC_INIT(1),
  208. #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  209. };
  210. static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
  211. static long qhimark = 10000; /* If this many pending, ignore blimit. */
  212. static long qlowmark = 100; /* Once only this many pending, use blimit. */
  213. module_param(blimit, long, 0444);
  214. module_param(qhimark, long, 0444);
  215. module_param(qlowmark, long, 0444);
  216. static ulong jiffies_till_first_fqs = ULONG_MAX;
  217. static ulong jiffies_till_next_fqs = ULONG_MAX;
  218. module_param(jiffies_till_first_fqs, ulong, 0644);
  219. module_param(jiffies_till_next_fqs, ulong, 0644);
  220. static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
  221. struct rcu_data *rdp);
  222. static void force_qs_rnp(struct rcu_state *rsp,
  223. int (*f)(struct rcu_data *rsp, bool *isidle,
  224. unsigned long *maxj),
  225. bool *isidle, unsigned long *maxj);
  226. static void force_quiescent_state(struct rcu_state *rsp);
  227. static int rcu_pending(int cpu);
  228. /*
  229. * Return the number of RCU-sched batches processed thus far for debug & stats.
  230. */
  231. long rcu_batches_completed_sched(void)
  232. {
  233. return rcu_sched_state.completed;
  234. }
  235. EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
  236. /*
  237. * Return the number of RCU BH batches processed thus far for debug & stats.
  238. */
  239. long rcu_batches_completed_bh(void)
  240. {
  241. return rcu_bh_state.completed;
  242. }
  243. EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
  244. /*
  245. * Force a quiescent state for RCU BH.
  246. */
  247. void rcu_bh_force_quiescent_state(void)
  248. {
  249. force_quiescent_state(&rcu_bh_state);
  250. }
  251. EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
  252. /*
  253. * Record the number of times rcutorture tests have been initiated and
  254. * terminated. This information allows the debugfs tracing stats to be
  255. * correlated to the rcutorture messages, even when the rcutorture module
  256. * is being repeatedly loaded and unloaded. In other words, we cannot
  257. * store this state in rcutorture itself.
  258. */
  259. void rcutorture_record_test_transition(void)
  260. {
  261. rcutorture_testseq++;
  262. rcutorture_vernum = 0;
  263. }
  264. EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
  265. /*
  266. * Record the number of writer passes through the current rcutorture test.
  267. * This is also used to correlate debugfs tracing stats with the rcutorture
  268. * messages.
  269. */
  270. void rcutorture_record_progress(unsigned long vernum)
  271. {
  272. rcutorture_vernum++;
  273. }
  274. EXPORT_SYMBOL_GPL(rcutorture_record_progress);
  275. /*
  276. * Force a quiescent state for RCU-sched.
  277. */
  278. void rcu_sched_force_quiescent_state(void)
  279. {
  280. force_quiescent_state(&rcu_sched_state);
  281. }
  282. EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
  283. /*
  284. * Does the CPU have callbacks ready to be invoked?
  285. */
  286. static int
  287. cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
  288. {
  289. return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
  290. rdp->nxttail[RCU_DONE_TAIL] != NULL;
  291. }
  292. /*
  293. * Does the current CPU require a not-yet-started grace period?
  294. * The caller must have disabled interrupts to prevent races with
  295. * normal callback registry.
  296. */
  297. static int
  298. cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
  299. {
  300. int i;
  301. if (rcu_gp_in_progress(rsp))
  302. return 0; /* No, a grace period is already in progress. */
  303. if (rcu_nocb_needs_gp(rsp))
  304. return 1; /* Yes, a no-CBs CPU needs one. */
  305. if (!rdp->nxttail[RCU_NEXT_TAIL])
  306. return 0; /* No, this is a no-CBs (or offline) CPU. */
  307. if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
  308. return 1; /* Yes, this CPU has newly registered callbacks. */
  309. for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
  310. if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
  311. ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
  312. rdp->nxtcompleted[i]))
  313. return 1; /* Yes, CBs for future grace period. */
  314. return 0; /* No grace period needed. */
  315. }
  316. /*
  317. * Return the root node of the specified rcu_state structure.
  318. */
  319. static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
  320. {
  321. return &rsp->node[0];
  322. }
  323. /*
  324. * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
  325. *
  326. * If the new value of the ->dynticks_nesting counter now is zero,
  327. * we really have entered idle, and must do the appropriate accounting.
  328. * The caller must have disabled interrupts.
  329. */
  330. static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
  331. bool user)
  332. {
  333. trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
  334. if (!user && !is_idle_task(current)) {
  335. struct task_struct *idle __maybe_unused =
  336. idle_task(smp_processor_id());
  337. trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
  338. ftrace_dump(DUMP_ORIG);
  339. WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
  340. current->pid, current->comm,
  341. idle->pid, idle->comm); /* must be idle task! */
  342. }
  343. rcu_prepare_for_idle(smp_processor_id());
  344. /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
  345. smp_mb__before_atomic_inc(); /* See above. */
  346. atomic_inc(&rdtp->dynticks);
  347. smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
  348. WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
  349. /*
  350. * It is illegal to enter an extended quiescent state while
  351. * in an RCU read-side critical section.
  352. */
  353. rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
  354. "Illegal idle entry in RCU read-side critical section.");
  355. rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
  356. "Illegal idle entry in RCU-bh read-side critical section.");
  357. rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
  358. "Illegal idle entry in RCU-sched read-side critical section.");
  359. }
  360. /*
  361. * Enter an RCU extended quiescent state, which can be either the
  362. * idle loop or adaptive-tickless usermode execution.
  363. */
  364. static void rcu_eqs_enter(bool user)
  365. {
  366. long long oldval;
  367. struct rcu_dynticks *rdtp;
  368. rdtp = this_cpu_ptr(&rcu_dynticks);
  369. oldval = rdtp->dynticks_nesting;
  370. WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
  371. if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
  372. rdtp->dynticks_nesting = 0;
  373. else
  374. rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
  375. rcu_eqs_enter_common(rdtp, oldval, user);
  376. }
  377. /**
  378. * rcu_idle_enter - inform RCU that current CPU is entering idle
  379. *
  380. * Enter idle mode, in other words, -leave- the mode in which RCU
  381. * read-side critical sections can occur. (Though RCU read-side
  382. * critical sections can occur in irq handlers in idle, a possibility
  383. * handled by irq_enter() and irq_exit().)
  384. *
  385. * We crowbar the ->dynticks_nesting field to zero to allow for
  386. * the possibility of usermode upcalls having messed up our count
  387. * of interrupt nesting level during the prior busy period.
  388. */
  389. void rcu_idle_enter(void)
  390. {
  391. unsigned long flags;
  392. local_irq_save(flags);
  393. rcu_eqs_enter(false);
  394. rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
  395. local_irq_restore(flags);
  396. }
  397. EXPORT_SYMBOL_GPL(rcu_idle_enter);
  398. #ifdef CONFIG_RCU_USER_QS
  399. /**
  400. * rcu_user_enter - inform RCU that we are resuming userspace.
  401. *
  402. * Enter RCU idle mode right before resuming userspace. No use of RCU
  403. * is permitted between this call and rcu_user_exit(). This way the
  404. * CPU doesn't need to maintain the tick for RCU maintenance purposes
  405. * when the CPU runs in userspace.
  406. */
  407. void rcu_user_enter(void)
  408. {
  409. rcu_eqs_enter(1);
  410. }
  411. #endif /* CONFIG_RCU_USER_QS */
  412. /**
  413. * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
  414. *
  415. * Exit from an interrupt handler, which might possibly result in entering
  416. * idle mode, in other words, leaving the mode in which read-side critical
  417. * sections can occur.
  418. *
  419. * This code assumes that the idle loop never does anything that might
  420. * result in unbalanced calls to irq_enter() and irq_exit(). If your
  421. * architecture violates this assumption, RCU will give you what you
  422. * deserve, good and hard. But very infrequently and irreproducibly.
  423. *
  424. * Use things like work queues to work around this limitation.
  425. *
  426. * You have been warned.
  427. */
  428. void rcu_irq_exit(void)
  429. {
  430. unsigned long flags;
  431. long long oldval;
  432. struct rcu_dynticks *rdtp;
  433. local_irq_save(flags);
  434. rdtp = this_cpu_ptr(&rcu_dynticks);
  435. oldval = rdtp->dynticks_nesting;
  436. rdtp->dynticks_nesting--;
  437. WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
  438. if (rdtp->dynticks_nesting)
  439. trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
  440. else
  441. rcu_eqs_enter_common(rdtp, oldval, true);
  442. rcu_sysidle_enter(rdtp, 1);
  443. local_irq_restore(flags);
  444. }
  445. /*
  446. * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
  447. *
  448. * If the new value of the ->dynticks_nesting counter was previously zero,
  449. * we really have exited idle, and must do the appropriate accounting.
  450. * The caller must have disabled interrupts.
  451. */
  452. static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
  453. int user)
  454. {
  455. smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
  456. atomic_inc(&rdtp->dynticks);
  457. /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
  458. smp_mb__after_atomic_inc(); /* See above. */
  459. WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
  460. rcu_cleanup_after_idle(smp_processor_id());
  461. trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
  462. if (!user && !is_idle_task(current)) {
  463. struct task_struct *idle __maybe_unused =
  464. idle_task(smp_processor_id());
  465. trace_rcu_dyntick(TPS("Error on exit: not idle task"),
  466. oldval, rdtp->dynticks_nesting);
  467. ftrace_dump(DUMP_ORIG);
  468. WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
  469. current->pid, current->comm,
  470. idle->pid, idle->comm); /* must be idle task! */
  471. }
  472. }
  473. /*
  474. * Exit an RCU extended quiescent state, which can be either the
  475. * idle loop or adaptive-tickless usermode execution.
  476. */
  477. static void rcu_eqs_exit(bool user)
  478. {
  479. struct rcu_dynticks *rdtp;
  480. long long oldval;
  481. rdtp = this_cpu_ptr(&rcu_dynticks);
  482. oldval = rdtp->dynticks_nesting;
  483. WARN_ON_ONCE(oldval < 0);
  484. if (oldval & DYNTICK_TASK_NEST_MASK)
  485. rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
  486. else
  487. rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
  488. rcu_eqs_exit_common(rdtp, oldval, user);
  489. }
  490. /**
  491. * rcu_idle_exit - inform RCU that current CPU is leaving idle
  492. *
  493. * Exit idle mode, in other words, -enter- the mode in which RCU
  494. * read-side critical sections can occur.
  495. *
  496. * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
  497. * allow for the possibility of usermode upcalls messing up our count
  498. * of interrupt nesting level during the busy period that is just
  499. * now starting.
  500. */
  501. void rcu_idle_exit(void)
  502. {
  503. unsigned long flags;
  504. local_irq_save(flags);
  505. rcu_eqs_exit(false);
  506. rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
  507. local_irq_restore(flags);
  508. }
  509. EXPORT_SYMBOL_GPL(rcu_idle_exit);
  510. #ifdef CONFIG_RCU_USER_QS
  511. /**
  512. * rcu_user_exit - inform RCU that we are exiting userspace.
  513. *
  514. * Exit RCU idle mode while entering the kernel because it can
  515. * run a RCU read side critical section anytime.
  516. */
  517. void rcu_user_exit(void)
  518. {
  519. rcu_eqs_exit(1);
  520. }
  521. #endif /* CONFIG_RCU_USER_QS */
  522. /**
  523. * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
  524. *
  525. * Enter an interrupt handler, which might possibly result in exiting
  526. * idle mode, in other words, entering the mode in which read-side critical
  527. * sections can occur.
  528. *
  529. * Note that the Linux kernel is fully capable of entering an interrupt
  530. * handler that it never exits, for example when doing upcalls to
  531. * user mode! This code assumes that the idle loop never does upcalls to
  532. * user mode. If your architecture does do upcalls from the idle loop (or
  533. * does anything else that results in unbalanced calls to the irq_enter()
  534. * and irq_exit() functions), RCU will give you what you deserve, good
  535. * and hard. But very infrequently and irreproducibly.
  536. *
  537. * Use things like work queues to work around this limitation.
  538. *
  539. * You have been warned.
  540. */
  541. void rcu_irq_enter(void)
  542. {
  543. unsigned long flags;
  544. struct rcu_dynticks *rdtp;
  545. long long oldval;
  546. local_irq_save(flags);
  547. rdtp = this_cpu_ptr(&rcu_dynticks);
  548. oldval = rdtp->dynticks_nesting;
  549. rdtp->dynticks_nesting++;
  550. WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
  551. if (oldval)
  552. trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
  553. else
  554. rcu_eqs_exit_common(rdtp, oldval, true);
  555. rcu_sysidle_exit(rdtp, 1);
  556. local_irq_restore(flags);
  557. }
  558. /**
  559. * rcu_nmi_enter - inform RCU of entry to NMI context
  560. *
  561. * If the CPU was idle with dynamic ticks active, and there is no
  562. * irq handler running, this updates rdtp->dynticks_nmi to let the
  563. * RCU grace-period handling know that the CPU is active.
  564. */
  565. void rcu_nmi_enter(void)
  566. {
  567. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  568. if (rdtp->dynticks_nmi_nesting == 0 &&
  569. (atomic_read(&rdtp->dynticks) & 0x1))
  570. return;
  571. rdtp->dynticks_nmi_nesting++;
  572. smp_mb__before_atomic_inc(); /* Force delay from prior write. */
  573. atomic_inc(&rdtp->dynticks);
  574. /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
  575. smp_mb__after_atomic_inc(); /* See above. */
  576. WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
  577. }
  578. /**
  579. * rcu_nmi_exit - inform RCU of exit from NMI context
  580. *
  581. * If the CPU was idle with dynamic ticks active, and there is no
  582. * irq handler running, this updates rdtp->dynticks_nmi to let the
  583. * RCU grace-period handling know that the CPU is no longer active.
  584. */
  585. void rcu_nmi_exit(void)
  586. {
  587. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  588. if (rdtp->dynticks_nmi_nesting == 0 ||
  589. --rdtp->dynticks_nmi_nesting != 0)
  590. return;
  591. /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
  592. smp_mb__before_atomic_inc(); /* See above. */
  593. atomic_inc(&rdtp->dynticks);
  594. smp_mb__after_atomic_inc(); /* Force delay to next write. */
  595. WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
  596. }
  597. /**
  598. * __rcu_is_watching - are RCU read-side critical sections safe?
  599. *
  600. * Return true if RCU is watching the running CPU, which means that
  601. * this CPU can safely enter RCU read-side critical sections. Unlike
  602. * rcu_is_watching(), the caller of __rcu_is_watching() must have at
  603. * least disabled preemption.
  604. */
  605. bool __rcu_is_watching(void)
  606. {
  607. return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
  608. }
  609. /**
  610. * rcu_is_watching - see if RCU thinks that the current CPU is idle
  611. *
  612. * If the current CPU is in its idle loop and is neither in an interrupt
  613. * or NMI handler, return true.
  614. */
  615. bool rcu_is_watching(void)
  616. {
  617. int ret;
  618. preempt_disable();
  619. ret = __rcu_is_watching();
  620. preempt_enable();
  621. return ret;
  622. }
  623. EXPORT_SYMBOL_GPL(rcu_is_watching);
  624. #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
  625. /*
  626. * Is the current CPU online? Disable preemption to avoid false positives
  627. * that could otherwise happen due to the current CPU number being sampled,
  628. * this task being preempted, its old CPU being taken offline, resuming
  629. * on some other CPU, then determining that its old CPU is now offline.
  630. * It is OK to use RCU on an offline processor during initial boot, hence
  631. * the check for rcu_scheduler_fully_active. Note also that it is OK
  632. * for a CPU coming online to use RCU for one jiffy prior to marking itself
  633. * online in the cpu_online_mask. Similarly, it is OK for a CPU going
  634. * offline to continue to use RCU for one jiffy after marking itself
  635. * offline in the cpu_online_mask. This leniency is necessary given the
  636. * non-atomic nature of the online and offline processing, for example,
  637. * the fact that a CPU enters the scheduler after completing the CPU_DYING
  638. * notifiers.
  639. *
  640. * This is also why RCU internally marks CPUs online during the
  641. * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
  642. *
  643. * Disable checking if in an NMI handler because we cannot safely report
  644. * errors from NMI handlers anyway.
  645. */
  646. bool rcu_lockdep_current_cpu_online(void)
  647. {
  648. struct rcu_data *rdp;
  649. struct rcu_node *rnp;
  650. bool ret;
  651. if (in_nmi())
  652. return 1;
  653. preempt_disable();
  654. rdp = this_cpu_ptr(&rcu_sched_data);
  655. rnp = rdp->mynode;
  656. ret = (rdp->grpmask & rnp->qsmaskinit) ||
  657. !rcu_scheduler_fully_active;
  658. preempt_enable();
  659. return ret;
  660. }
  661. EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
  662. #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
  663. /**
  664. * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
  665. *
  666. * If the current CPU is idle or running at a first-level (not nested)
  667. * interrupt from idle, return true. The caller must have at least
  668. * disabled preemption.
  669. */
  670. static int rcu_is_cpu_rrupt_from_idle(void)
  671. {
  672. return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
  673. }
  674. /*
  675. * Snapshot the specified CPU's dynticks counter so that we can later
  676. * credit them with an implicit quiescent state. Return 1 if this CPU
  677. * is in dynticks idle mode, which is an extended quiescent state.
  678. */
  679. static int dyntick_save_progress_counter(struct rcu_data *rdp,
  680. bool *isidle, unsigned long *maxj)
  681. {
  682. rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
  683. rcu_sysidle_check_cpu(rdp, isidle, maxj);
  684. return (rdp->dynticks_snap & 0x1) == 0;
  685. }
  686. /*
  687. * Return true if the specified CPU has passed through a quiescent
  688. * state by virtue of being in or having passed through an dynticks
  689. * idle state since the last call to dyntick_save_progress_counter()
  690. * for this same CPU, or by virtue of having been offline.
  691. */
  692. static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
  693. bool *isidle, unsigned long *maxj)
  694. {
  695. unsigned int curr;
  696. unsigned int snap;
  697. curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
  698. snap = (unsigned int)rdp->dynticks_snap;
  699. /*
  700. * If the CPU passed through or entered a dynticks idle phase with
  701. * no active irq/NMI handlers, then we can safely pretend that the CPU
  702. * already acknowledged the request to pass through a quiescent
  703. * state. Either way, that CPU cannot possibly be in an RCU
  704. * read-side critical section that started before the beginning
  705. * of the current RCU grace period.
  706. */
  707. if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
  708. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
  709. rdp->dynticks_fqs++;
  710. return 1;
  711. }
  712. /*
  713. * Check for the CPU being offline, but only if the grace period
  714. * is old enough. We don't need to worry about the CPU changing
  715. * state: If we see it offline even once, it has been through a
  716. * quiescent state.
  717. *
  718. * The reason for insisting that the grace period be at least
  719. * one jiffy old is that CPUs that are not quite online and that
  720. * have just gone offline can still execute RCU read-side critical
  721. * sections.
  722. */
  723. if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
  724. return 0; /* Grace period is not old enough. */
  725. barrier();
  726. if (cpu_is_offline(rdp->cpu)) {
  727. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
  728. rdp->offline_fqs++;
  729. return 1;
  730. }
  731. /*
  732. * There is a possibility that a CPU in adaptive-ticks state
  733. * might run in the kernel with the scheduling-clock tick disabled
  734. * for an extended time period. Invoke rcu_kick_nohz_cpu() to
  735. * force the CPU to restart the scheduling-clock tick in this
  736. * CPU is in this state.
  737. */
  738. rcu_kick_nohz_cpu(rdp->cpu);
  739. return 0;
  740. }
  741. static void record_gp_stall_check_time(struct rcu_state *rsp)
  742. {
  743. unsigned long j = ACCESS_ONCE(jiffies);
  744. rsp->gp_start = j;
  745. smp_wmb(); /* Record start time before stall time. */
  746. rsp->jiffies_stall = j + rcu_jiffies_till_stall_check();
  747. }
  748. /*
  749. * Dump stacks of all tasks running on stalled CPUs. This is a fallback
  750. * for architectures that do not implement trigger_all_cpu_backtrace().
  751. * The NMI-triggered stack traces are more accurate because they are
  752. * printed by the target CPU.
  753. */
  754. static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
  755. {
  756. int cpu;
  757. unsigned long flags;
  758. struct rcu_node *rnp;
  759. rcu_for_each_leaf_node(rsp, rnp) {
  760. raw_spin_lock_irqsave(&rnp->lock, flags);
  761. if (rnp->qsmask != 0) {
  762. for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
  763. if (rnp->qsmask & (1UL << cpu))
  764. dump_cpu_task(rnp->grplo + cpu);
  765. }
  766. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  767. }
  768. }
  769. static void print_other_cpu_stall(struct rcu_state *rsp)
  770. {
  771. int cpu;
  772. long delta;
  773. unsigned long flags;
  774. int ndetected = 0;
  775. struct rcu_node *rnp = rcu_get_root(rsp);
  776. long totqlen = 0;
  777. /* Only let one CPU complain about others per time interval. */
  778. raw_spin_lock_irqsave(&rnp->lock, flags);
  779. delta = jiffies - rsp->jiffies_stall;
  780. if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
  781. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  782. return;
  783. }
  784. rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
  785. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  786. /*
  787. * OK, time to rat on our buddy...
  788. * See Documentation/RCU/stallwarn.txt for info on how to debug
  789. * RCU CPU stall warnings.
  790. */
  791. pr_err("INFO: %s detected stalls on CPUs/tasks:",
  792. rsp->name);
  793. print_cpu_stall_info_begin();
  794. rcu_for_each_leaf_node(rsp, rnp) {
  795. raw_spin_lock_irqsave(&rnp->lock, flags);
  796. ndetected += rcu_print_task_stall(rnp);
  797. if (rnp->qsmask != 0) {
  798. for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
  799. if (rnp->qsmask & (1UL << cpu)) {
  800. print_cpu_stall_info(rsp,
  801. rnp->grplo + cpu);
  802. ndetected++;
  803. }
  804. }
  805. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  806. }
  807. /*
  808. * Now rat on any tasks that got kicked up to the root rcu_node
  809. * due to CPU offlining.
  810. */
  811. rnp = rcu_get_root(rsp);
  812. raw_spin_lock_irqsave(&rnp->lock, flags);
  813. ndetected += rcu_print_task_stall(rnp);
  814. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  815. print_cpu_stall_info_end();
  816. for_each_possible_cpu(cpu)
  817. totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
  818. pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
  819. smp_processor_id(), (long)(jiffies - rsp->gp_start),
  820. rsp->gpnum, rsp->completed, totqlen);
  821. if (ndetected == 0)
  822. pr_err("INFO: Stall ended before state dump start\n");
  823. else if (!trigger_all_cpu_backtrace())
  824. rcu_dump_cpu_stacks(rsp);
  825. /* Complain about tasks blocking the grace period. */
  826. rcu_print_detail_task_stall(rsp);
  827. force_quiescent_state(rsp); /* Kick them all. */
  828. }
  829. static void print_cpu_stall(struct rcu_state *rsp)
  830. {
  831. int cpu;
  832. unsigned long flags;
  833. struct rcu_node *rnp = rcu_get_root(rsp);
  834. long totqlen = 0;
  835. /*
  836. * OK, time to rat on ourselves...
  837. * See Documentation/RCU/stallwarn.txt for info on how to debug
  838. * RCU CPU stall warnings.
  839. */
  840. pr_err("INFO: %s self-detected stall on CPU", rsp->name);
  841. print_cpu_stall_info_begin();
  842. print_cpu_stall_info(rsp, smp_processor_id());
  843. print_cpu_stall_info_end();
  844. for_each_possible_cpu(cpu)
  845. totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
  846. pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
  847. jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
  848. if (!trigger_all_cpu_backtrace())
  849. dump_stack();
  850. raw_spin_lock_irqsave(&rnp->lock, flags);
  851. if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
  852. rsp->jiffies_stall = jiffies +
  853. 3 * rcu_jiffies_till_stall_check() + 3;
  854. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  855. set_need_resched(); /* kick ourselves to get things going. */
  856. }
  857. static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
  858. {
  859. unsigned long completed;
  860. unsigned long gpnum;
  861. unsigned long gps;
  862. unsigned long j;
  863. unsigned long js;
  864. struct rcu_node *rnp;
  865. if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
  866. return;
  867. j = ACCESS_ONCE(jiffies);
  868. /*
  869. * Lots of memory barriers to reject false positives.
  870. *
  871. * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
  872. * then rsp->gp_start, and finally rsp->completed. These values
  873. * are updated in the opposite order with memory barriers (or
  874. * equivalent) during grace-period initialization and cleanup.
  875. * Now, a false positive can occur if we get an new value of
  876. * rsp->gp_start and a old value of rsp->jiffies_stall. But given
  877. * the memory barriers, the only way that this can happen is if one
  878. * grace period ends and another starts between these two fetches.
  879. * Detect this by comparing rsp->completed with the previous fetch
  880. * from rsp->gpnum.
  881. *
  882. * Given this check, comparisons of jiffies, rsp->jiffies_stall,
  883. * and rsp->gp_start suffice to forestall false positives.
  884. */
  885. gpnum = ACCESS_ONCE(rsp->gpnum);
  886. smp_rmb(); /* Pick up ->gpnum first... */
  887. js = ACCESS_ONCE(rsp->jiffies_stall);
  888. smp_rmb(); /* ...then ->jiffies_stall before the rest... */
  889. gps = ACCESS_ONCE(rsp->gp_start);
  890. smp_rmb(); /* ...and finally ->gp_start before ->completed. */
  891. completed = ACCESS_ONCE(rsp->completed);
  892. if (ULONG_CMP_GE(completed, gpnum) ||
  893. ULONG_CMP_LT(j, js) ||
  894. ULONG_CMP_GE(gps, js))
  895. return; /* No stall or GP completed since entering function. */
  896. rnp = rdp->mynode;
  897. if (rcu_gp_in_progress(rsp) &&
  898. (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
  899. /* We haven't checked in, so go dump stack. */
  900. print_cpu_stall(rsp);
  901. } else if (rcu_gp_in_progress(rsp) &&
  902. ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
  903. /* They had a few time units to dump stack, so complain. */
  904. print_other_cpu_stall(rsp);
  905. }
  906. }
  907. /**
  908. * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
  909. *
  910. * Set the stall-warning timeout way off into the future, thus preventing
  911. * any RCU CPU stall-warning messages from appearing in the current set of
  912. * RCU grace periods.
  913. *
  914. * The caller must disable hard irqs.
  915. */
  916. void rcu_cpu_stall_reset(void)
  917. {
  918. struct rcu_state *rsp;
  919. for_each_rcu_flavor(rsp)
  920. rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
  921. }
  922. /*
  923. * Initialize the specified rcu_data structure's callback list to empty.
  924. */
  925. static void init_callback_list(struct rcu_data *rdp)
  926. {
  927. int i;
  928. if (init_nocb_callback_list(rdp))
  929. return;
  930. rdp->nxtlist = NULL;
  931. for (i = 0; i < RCU_NEXT_SIZE; i++)
  932. rdp->nxttail[i] = &rdp->nxtlist;
  933. }
  934. /*
  935. * Determine the value that ->completed will have at the end of the
  936. * next subsequent grace period. This is used to tag callbacks so that
  937. * a CPU can invoke callbacks in a timely fashion even if that CPU has
  938. * been dyntick-idle for an extended period with callbacks under the
  939. * influence of RCU_FAST_NO_HZ.
  940. *
  941. * The caller must hold rnp->lock with interrupts disabled.
  942. */
  943. static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
  944. struct rcu_node *rnp)
  945. {
  946. /*
  947. * If RCU is idle, we just wait for the next grace period.
  948. * But we can only be sure that RCU is idle if we are looking
  949. * at the root rcu_node structure -- otherwise, a new grace
  950. * period might have started, but just not yet gotten around
  951. * to initializing the current non-root rcu_node structure.
  952. */
  953. if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
  954. return rnp->completed + 1;
  955. /*
  956. * Otherwise, wait for a possible partial grace period and
  957. * then the subsequent full grace period.
  958. */
  959. return rnp->completed + 2;
  960. }
  961. /*
  962. * Trace-event helper function for rcu_start_future_gp() and
  963. * rcu_nocb_wait_gp().
  964. */
  965. static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
  966. unsigned long c, const char *s)
  967. {
  968. trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
  969. rnp->completed, c, rnp->level,
  970. rnp->grplo, rnp->grphi, s);
  971. }
  972. /*
  973. * Start some future grace period, as needed to handle newly arrived
  974. * callbacks. The required future grace periods are recorded in each
  975. * rcu_node structure's ->need_future_gp field.
  976. *
  977. * The caller must hold the specified rcu_node structure's ->lock.
  978. */
  979. static unsigned long __maybe_unused
  980. rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
  981. {
  982. unsigned long c;
  983. int i;
  984. struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
  985. /*
  986. * Pick up grace-period number for new callbacks. If this
  987. * grace period is already marked as needed, return to the caller.
  988. */
  989. c = rcu_cbs_completed(rdp->rsp, rnp);
  990. trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
  991. if (rnp->need_future_gp[c & 0x1]) {
  992. trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
  993. return c;
  994. }
  995. /*
  996. * If either this rcu_node structure or the root rcu_node structure
  997. * believe that a grace period is in progress, then we must wait
  998. * for the one following, which is in "c". Because our request
  999. * will be noticed at the end of the current grace period, we don't
  1000. * need to explicitly start one.
  1001. */
  1002. if (rnp->gpnum != rnp->completed ||
  1003. ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
  1004. rnp->need_future_gp[c & 0x1]++;
  1005. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
  1006. return c;
  1007. }
  1008. /*
  1009. * There might be no grace period in progress. If we don't already
  1010. * hold it, acquire the root rcu_node structure's lock in order to
  1011. * start one (if needed).
  1012. */
  1013. if (rnp != rnp_root)
  1014. raw_spin_lock(&rnp_root->lock);
  1015. /*
  1016. * Get a new grace-period number. If there really is no grace
  1017. * period in progress, it will be smaller than the one we obtained
  1018. * earlier. Adjust callbacks as needed. Note that even no-CBs
  1019. * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
  1020. */
  1021. c = rcu_cbs_completed(rdp->rsp, rnp_root);
  1022. for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
  1023. if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
  1024. rdp->nxtcompleted[i] = c;
  1025. /*
  1026. * If the needed for the required grace period is already
  1027. * recorded, trace and leave.
  1028. */
  1029. if (rnp_root->need_future_gp[c & 0x1]) {
  1030. trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
  1031. goto unlock_out;
  1032. }
  1033. /* Record the need for the future grace period. */
  1034. rnp_root->need_future_gp[c & 0x1]++;
  1035. /* If a grace period is not already in progress, start one. */
  1036. if (rnp_root->gpnum != rnp_root->completed) {
  1037. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
  1038. } else {
  1039. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
  1040. rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
  1041. }
  1042. unlock_out:
  1043. if (rnp != rnp_root)
  1044. raw_spin_unlock(&rnp_root->lock);
  1045. return c;
  1046. }
  1047. /*
  1048. * Clean up any old requests for the just-ended grace period. Also return
  1049. * whether any additional grace periods have been requested. Also invoke
  1050. * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
  1051. * waiting for this grace period to complete.
  1052. */
  1053. static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
  1054. {
  1055. int c = rnp->completed;
  1056. int needmore;
  1057. struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
  1058. rcu_nocb_gp_cleanup(rsp, rnp);
  1059. rnp->need_future_gp[c & 0x1] = 0;
  1060. needmore = rnp->need_future_gp[(c + 1) & 0x1];
  1061. trace_rcu_future_gp(rnp, rdp, c,
  1062. needmore ? TPS("CleanupMore") : TPS("Cleanup"));
  1063. return needmore;
  1064. }
  1065. /*
  1066. * If there is room, assign a ->completed number to any callbacks on
  1067. * this CPU that have not already been assigned. Also accelerate any
  1068. * callbacks that were previously assigned a ->completed number that has
  1069. * since proven to be too conservative, which can happen if callbacks get
  1070. * assigned a ->completed number while RCU is idle, but with reference to
  1071. * a non-root rcu_node structure. This function is idempotent, so it does
  1072. * not hurt to call it repeatedly.
  1073. *
  1074. * The caller must hold rnp->lock with interrupts disabled.
  1075. */
  1076. static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
  1077. struct rcu_data *rdp)
  1078. {
  1079. unsigned long c;
  1080. int i;
  1081. /* If the CPU has no callbacks, nothing to do. */
  1082. if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
  1083. return;
  1084. /*
  1085. * Starting from the sublist containing the callbacks most
  1086. * recently assigned a ->completed number and working down, find the
  1087. * first sublist that is not assignable to an upcoming grace period.
  1088. * Such a sublist has something in it (first two tests) and has
  1089. * a ->completed number assigned that will complete sooner than
  1090. * the ->completed number for newly arrived callbacks (last test).
  1091. *
  1092. * The key point is that any later sublist can be assigned the
  1093. * same ->completed number as the newly arrived callbacks, which
  1094. * means that the callbacks in any of these later sublist can be
  1095. * grouped into a single sublist, whether or not they have already
  1096. * been assigned a ->completed number.
  1097. */
  1098. c = rcu_cbs_completed(rsp, rnp);
  1099. for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
  1100. if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
  1101. !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
  1102. break;
  1103. /*
  1104. * If there are no sublist for unassigned callbacks, leave.
  1105. * At the same time, advance "i" one sublist, so that "i" will
  1106. * index into the sublist where all the remaining callbacks should
  1107. * be grouped into.
  1108. */
  1109. if (++i >= RCU_NEXT_TAIL)
  1110. return;
  1111. /*
  1112. * Assign all subsequent callbacks' ->completed number to the next
  1113. * full grace period and group them all in the sublist initially
  1114. * indexed by "i".
  1115. */
  1116. for (; i <= RCU_NEXT_TAIL; i++) {
  1117. rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
  1118. rdp->nxtcompleted[i] = c;
  1119. }
  1120. /* Record any needed additional grace periods. */
  1121. rcu_start_future_gp(rnp, rdp);
  1122. /* Trace depending on how much we were able to accelerate. */
  1123. if (!*rdp->nxttail[RCU_WAIT_TAIL])
  1124. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
  1125. else
  1126. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
  1127. }
  1128. /*
  1129. * Move any callbacks whose grace period has completed to the
  1130. * RCU_DONE_TAIL sublist, then compact the remaining sublists and
  1131. * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
  1132. * sublist. This function is idempotent, so it does not hurt to
  1133. * invoke it repeatedly. As long as it is not invoked -too- often...
  1134. *
  1135. * The caller must hold rnp->lock with interrupts disabled.
  1136. */
  1137. static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
  1138. struct rcu_data *rdp)
  1139. {
  1140. int i, j;
  1141. /* If the CPU has no callbacks, nothing to do. */
  1142. if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
  1143. return;
  1144. /*
  1145. * Find all callbacks whose ->completed numbers indicate that they
  1146. * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
  1147. */
  1148. for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
  1149. if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
  1150. break;
  1151. rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
  1152. }
  1153. /* Clean up any sublist tail pointers that were misordered above. */
  1154. for (j = RCU_WAIT_TAIL; j < i; j++)
  1155. rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
  1156. /* Copy down callbacks to fill in empty sublists. */
  1157. for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
  1158. if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
  1159. break;
  1160. rdp->nxttail[j] = rdp->nxttail[i];
  1161. rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
  1162. }
  1163. /* Classify any remaining callbacks. */
  1164. rcu_accelerate_cbs(rsp, rnp, rdp);
  1165. }
  1166. /*
  1167. * Update CPU-local rcu_data state to record the beginnings and ends of
  1168. * grace periods. The caller must hold the ->lock of the leaf rcu_node
  1169. * structure corresponding to the current CPU, and must have irqs disabled.
  1170. */
  1171. static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
  1172. {
  1173. /* Handle the ends of any preceding grace periods first. */
  1174. if (rdp->completed == rnp->completed) {
  1175. /* No grace period end, so just accelerate recent callbacks. */
  1176. rcu_accelerate_cbs(rsp, rnp, rdp);
  1177. } else {
  1178. /* Advance callbacks. */
  1179. rcu_advance_cbs(rsp, rnp, rdp);
  1180. /* Remember that we saw this grace-period completion. */
  1181. rdp->completed = rnp->completed;
  1182. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
  1183. }
  1184. if (rdp->gpnum != rnp->gpnum) {
  1185. /*
  1186. * If the current grace period is waiting for this CPU,
  1187. * set up to detect a quiescent state, otherwise don't
  1188. * go looking for one.
  1189. */
  1190. rdp->gpnum = rnp->gpnum;
  1191. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
  1192. rdp->passed_quiesce = 0;
  1193. rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
  1194. zero_cpu_stall_ticks(rdp);
  1195. }
  1196. }
  1197. static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
  1198. {
  1199. unsigned long flags;
  1200. struct rcu_node *rnp;
  1201. local_irq_save(flags);
  1202. rnp = rdp->mynode;
  1203. if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
  1204. rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
  1205. !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
  1206. local_irq_restore(flags);
  1207. return;
  1208. }
  1209. __note_gp_changes(rsp, rnp, rdp);
  1210. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1211. }
  1212. /*
  1213. * Initialize a new grace period. Return 0 if no grace period required.
  1214. */
  1215. static int rcu_gp_init(struct rcu_state *rsp)
  1216. {
  1217. struct rcu_data *rdp;
  1218. struct rcu_node *rnp = rcu_get_root(rsp);
  1219. rcu_bind_gp_kthread();
  1220. raw_spin_lock_irq(&rnp->lock);
  1221. if (rsp->gp_flags == 0) {
  1222. /* Spurious wakeup, tell caller to go back to sleep. */
  1223. raw_spin_unlock_irq(&rnp->lock);
  1224. return 0;
  1225. }
  1226. rsp->gp_flags = 0; /* Clear all flags: New grace period. */
  1227. if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
  1228. /*
  1229. * Grace period already in progress, don't start another.
  1230. * Not supposed to be able to happen.
  1231. */
  1232. raw_spin_unlock_irq(&rnp->lock);
  1233. return 0;
  1234. }
  1235. /* Advance to a new grace period and initialize state. */
  1236. record_gp_stall_check_time(rsp);
  1237. smp_wmb(); /* Record GP times before starting GP. */
  1238. rsp->gpnum++;
  1239. trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
  1240. raw_spin_unlock_irq(&rnp->lock);
  1241. /* Exclude any concurrent CPU-hotplug operations. */
  1242. mutex_lock(&rsp->onoff_mutex);
  1243. /*
  1244. * Set the quiescent-state-needed bits in all the rcu_node
  1245. * structures for all currently online CPUs in breadth-first order,
  1246. * starting from the root rcu_node structure, relying on the layout
  1247. * of the tree within the rsp->node[] array. Note that other CPUs
  1248. * will access only the leaves of the hierarchy, thus seeing that no
  1249. * grace period is in progress, at least until the corresponding
  1250. * leaf node has been initialized. In addition, we have excluded
  1251. * CPU-hotplug operations.
  1252. *
  1253. * The grace period cannot complete until the initialization
  1254. * process finishes, because this kthread handles both.
  1255. */
  1256. rcu_for_each_node_breadth_first(rsp, rnp) {
  1257. raw_spin_lock_irq(&rnp->lock);
  1258. rdp = this_cpu_ptr(rsp->rda);
  1259. rcu_preempt_check_blocked_tasks(rnp);
  1260. rnp->qsmask = rnp->qsmaskinit;
  1261. ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
  1262. WARN_ON_ONCE(rnp->completed != rsp->completed);
  1263. ACCESS_ONCE(rnp->completed) = rsp->completed;
  1264. if (rnp == rdp->mynode)
  1265. __note_gp_changes(rsp, rnp, rdp);
  1266. rcu_preempt_boost_start_gp(rnp);
  1267. trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
  1268. rnp->level, rnp->grplo,
  1269. rnp->grphi, rnp->qsmask);
  1270. raw_spin_unlock_irq(&rnp->lock);
  1271. #ifdef CONFIG_PROVE_RCU_DELAY
  1272. if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
  1273. system_state == SYSTEM_RUNNING)
  1274. udelay(200);
  1275. #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
  1276. cond_resched();
  1277. }
  1278. mutex_unlock(&rsp->onoff_mutex);
  1279. return 1;
  1280. }
  1281. /*
  1282. * Do one round of quiescent-state forcing.
  1283. */
  1284. static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
  1285. {
  1286. int fqs_state = fqs_state_in;
  1287. bool isidle = false;
  1288. unsigned long maxj;
  1289. struct rcu_node *rnp = rcu_get_root(rsp);
  1290. rsp->n_force_qs++;
  1291. if (fqs_state == RCU_SAVE_DYNTICK) {
  1292. /* Collect dyntick-idle snapshots. */
  1293. if (is_sysidle_rcu_state(rsp)) {
  1294. isidle = 1;
  1295. maxj = jiffies - ULONG_MAX / 4;
  1296. }
  1297. force_qs_rnp(rsp, dyntick_save_progress_counter,
  1298. &isidle, &maxj);
  1299. rcu_sysidle_report_gp(rsp, isidle, maxj);
  1300. fqs_state = RCU_FORCE_QS;
  1301. } else {
  1302. /* Handle dyntick-idle and offline CPUs. */
  1303. isidle = 0;
  1304. force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
  1305. }
  1306. /* Clear flag to prevent immediate re-entry. */
  1307. if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
  1308. raw_spin_lock_irq(&rnp->lock);
  1309. rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
  1310. raw_spin_unlock_irq(&rnp->lock);
  1311. }
  1312. return fqs_state;
  1313. }
  1314. /*
  1315. * Clean up after the old grace period.
  1316. */
  1317. static void rcu_gp_cleanup(struct rcu_state *rsp)
  1318. {
  1319. unsigned long gp_duration;
  1320. int nocb = 0;
  1321. struct rcu_data *rdp;
  1322. struct rcu_node *rnp = rcu_get_root(rsp);
  1323. raw_spin_lock_irq(&rnp->lock);
  1324. gp_duration = jiffies - rsp->gp_start;
  1325. if (gp_duration > rsp->gp_max)
  1326. rsp->gp_max = gp_duration;
  1327. /*
  1328. * We know the grace period is complete, but to everyone else
  1329. * it appears to still be ongoing. But it is also the case
  1330. * that to everyone else it looks like there is nothing that
  1331. * they can do to advance the grace period. It is therefore
  1332. * safe for us to drop the lock in order to mark the grace
  1333. * period as completed in all of the rcu_node structures.
  1334. */
  1335. raw_spin_unlock_irq(&rnp->lock);
  1336. /*
  1337. * Propagate new ->completed value to rcu_node structures so
  1338. * that other CPUs don't have to wait until the start of the next
  1339. * grace period to process their callbacks. This also avoids
  1340. * some nasty RCU grace-period initialization races by forcing
  1341. * the end of the current grace period to be completely recorded in
  1342. * all of the rcu_node structures before the beginning of the next
  1343. * grace period is recorded in any of the rcu_node structures.
  1344. */
  1345. rcu_for_each_node_breadth_first(rsp, rnp) {
  1346. raw_spin_lock_irq(&rnp->lock);
  1347. ACCESS_ONCE(rnp->completed) = rsp->gpnum;
  1348. rdp = this_cpu_ptr(rsp->rda);
  1349. if (rnp == rdp->mynode)
  1350. __note_gp_changes(rsp, rnp, rdp);
  1351. nocb += rcu_future_gp_cleanup(rsp, rnp);
  1352. raw_spin_unlock_irq(&rnp->lock);
  1353. cond_resched();
  1354. }
  1355. rnp = rcu_get_root(rsp);
  1356. raw_spin_lock_irq(&rnp->lock);
  1357. rcu_nocb_gp_set(rnp, nocb);
  1358. rsp->completed = rsp->gpnum; /* Declare grace period done. */
  1359. trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
  1360. rsp->fqs_state = RCU_GP_IDLE;
  1361. rdp = this_cpu_ptr(rsp->rda);
  1362. rcu_advance_cbs(rsp, rnp, rdp); /* Reduce false positives below. */
  1363. if (cpu_needs_another_gp(rsp, rdp)) {
  1364. rsp->gp_flags = RCU_GP_FLAG_INIT;
  1365. trace_rcu_grace_period(rsp->name,
  1366. ACCESS_ONCE(rsp->gpnum),
  1367. TPS("newreq"));
  1368. }
  1369. raw_spin_unlock_irq(&rnp->lock);
  1370. }
  1371. /*
  1372. * Body of kthread that handles grace periods.
  1373. */
  1374. static int __noreturn rcu_gp_kthread(void *arg)
  1375. {
  1376. int fqs_state;
  1377. int gf;
  1378. unsigned long j;
  1379. int ret;
  1380. struct rcu_state *rsp = arg;
  1381. struct rcu_node *rnp = rcu_get_root(rsp);
  1382. for (;;) {
  1383. /* Handle grace-period start. */
  1384. for (;;) {
  1385. trace_rcu_grace_period(rsp->name,
  1386. ACCESS_ONCE(rsp->gpnum),
  1387. TPS("reqwait"));
  1388. wait_event_interruptible(rsp->gp_wq,
  1389. ACCESS_ONCE(rsp->gp_flags) &
  1390. RCU_GP_FLAG_INIT);
  1391. if (rcu_gp_init(rsp))
  1392. break;
  1393. cond_resched();
  1394. flush_signals(current);
  1395. trace_rcu_grace_period(rsp->name,
  1396. ACCESS_ONCE(rsp->gpnum),
  1397. TPS("reqwaitsig"));
  1398. }
  1399. /* Handle quiescent-state forcing. */
  1400. fqs_state = RCU_SAVE_DYNTICK;
  1401. j = jiffies_till_first_fqs;
  1402. if (j > HZ) {
  1403. j = HZ;
  1404. jiffies_till_first_fqs = HZ;
  1405. }
  1406. ret = 0;
  1407. for (;;) {
  1408. if (!ret)
  1409. rsp->jiffies_force_qs = jiffies + j;
  1410. trace_rcu_grace_period(rsp->name,
  1411. ACCESS_ONCE(rsp->gpnum),
  1412. TPS("fqswait"));
  1413. ret = wait_event_interruptible_timeout(rsp->gp_wq,
  1414. ((gf = ACCESS_ONCE(rsp->gp_flags)) &
  1415. RCU_GP_FLAG_FQS) ||
  1416. (!ACCESS_ONCE(rnp->qsmask) &&
  1417. !rcu_preempt_blocked_readers_cgp(rnp)),
  1418. j);
  1419. /* If grace period done, leave loop. */
  1420. if (!ACCESS_ONCE(rnp->qsmask) &&
  1421. !rcu_preempt_blocked_readers_cgp(rnp))
  1422. break;
  1423. /* If time for quiescent-state forcing, do it. */
  1424. if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
  1425. (gf & RCU_GP_FLAG_FQS)) {
  1426. trace_rcu_grace_period(rsp->name,
  1427. ACCESS_ONCE(rsp->gpnum),
  1428. TPS("fqsstart"));
  1429. fqs_state = rcu_gp_fqs(rsp, fqs_state);
  1430. trace_rcu_grace_period(rsp->name,
  1431. ACCESS_ONCE(rsp->gpnum),
  1432. TPS("fqsend"));
  1433. cond_resched();
  1434. } else {
  1435. /* Deal with stray signal. */
  1436. cond_resched();
  1437. flush_signals(current);
  1438. trace_rcu_grace_period(rsp->name,
  1439. ACCESS_ONCE(rsp->gpnum),
  1440. TPS("fqswaitsig"));
  1441. }
  1442. j = jiffies_till_next_fqs;
  1443. if (j > HZ) {
  1444. j = HZ;
  1445. jiffies_till_next_fqs = HZ;
  1446. } else if (j < 1) {
  1447. j = 1;
  1448. jiffies_till_next_fqs = 1;
  1449. }
  1450. }
  1451. /* Handle grace-period end. */
  1452. rcu_gp_cleanup(rsp);
  1453. }
  1454. }
  1455. static void rsp_wakeup(struct irq_work *work)
  1456. {
  1457. struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work);
  1458. /* Wake up rcu_gp_kthread() to start the grace period. */
  1459. wake_up(&rsp->gp_wq);
  1460. }
  1461. /*
  1462. * Start a new RCU grace period if warranted, re-initializing the hierarchy
  1463. * in preparation for detecting the next grace period. The caller must hold
  1464. * the root node's ->lock and hard irqs must be disabled.
  1465. *
  1466. * Note that it is legal for a dying CPU (which is marked as offline) to
  1467. * invoke this function. This can happen when the dying CPU reports its
  1468. * quiescent state.
  1469. */
  1470. static void
  1471. rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
  1472. struct rcu_data *rdp)
  1473. {
  1474. if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
  1475. /*
  1476. * Either we have not yet spawned the grace-period
  1477. * task, this CPU does not need another grace period,
  1478. * or a grace period is already in progress.
  1479. * Either way, don't start a new grace period.
  1480. */
  1481. return;
  1482. }
  1483. rsp->gp_flags = RCU_GP_FLAG_INIT;
  1484. trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
  1485. TPS("newreq"));
  1486. /*
  1487. * We can't do wakeups while holding the rnp->lock, as that
  1488. * could cause possible deadlocks with the rq->lock. Defer
  1489. * the wakeup to interrupt context. And don't bother waking
  1490. * up the running kthread.
  1491. */
  1492. if (current != rsp->gp_kthread)
  1493. irq_work_queue(&rsp->wakeup_work);
  1494. }
  1495. /*
  1496. * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
  1497. * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
  1498. * is invoked indirectly from rcu_advance_cbs(), which would result in
  1499. * endless recursion -- or would do so if it wasn't for the self-deadlock
  1500. * that is encountered beforehand.
  1501. */
  1502. static void
  1503. rcu_start_gp(struct rcu_state *rsp)
  1504. {
  1505. struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
  1506. struct rcu_node *rnp = rcu_get_root(rsp);
  1507. /*
  1508. * If there is no grace period in progress right now, any
  1509. * callbacks we have up to this point will be satisfied by the
  1510. * next grace period. Also, advancing the callbacks reduces the
  1511. * probability of false positives from cpu_needs_another_gp()
  1512. * resulting in pointless grace periods. So, advance callbacks
  1513. * then start the grace period!
  1514. */
  1515. rcu_advance_cbs(rsp, rnp, rdp);
  1516. rcu_start_gp_advanced(rsp, rnp, rdp);
  1517. }
  1518. /*
  1519. * Report a full set of quiescent states to the specified rcu_state
  1520. * data structure. This involves cleaning up after the prior grace
  1521. * period and letting rcu_start_gp() start up the next grace period
  1522. * if one is needed. Note that the caller must hold rnp->lock, which
  1523. * is released before return.
  1524. */
  1525. static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
  1526. __releases(rcu_get_root(rsp)->lock)
  1527. {
  1528. WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
  1529. raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
  1530. wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
  1531. }
  1532. /*
  1533. * Similar to rcu_report_qs_rdp(), for which it is a helper function.
  1534. * Allows quiescent states for a group of CPUs to be reported at one go
  1535. * to the specified rcu_node structure, though all the CPUs in the group
  1536. * must be represented by the same rcu_node structure (which need not be
  1537. * a leaf rcu_node structure, though it often will be). That structure's
  1538. * lock must be held upon entry, and it is released before return.
  1539. */
  1540. static void
  1541. rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
  1542. struct rcu_node *rnp, unsigned long flags)
  1543. __releases(rnp->lock)
  1544. {
  1545. struct rcu_node *rnp_c;
  1546. /* Walk up the rcu_node hierarchy. */
  1547. for (;;) {
  1548. if (!(rnp->qsmask & mask)) {
  1549. /* Our bit has already been cleared, so done. */
  1550. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1551. return;
  1552. }
  1553. rnp->qsmask &= ~mask;
  1554. trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
  1555. mask, rnp->qsmask, rnp->level,
  1556. rnp->grplo, rnp->grphi,
  1557. !!rnp->gp_tasks);
  1558. if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
  1559. /* Other bits still set at this level, so done. */
  1560. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1561. return;
  1562. }
  1563. mask = rnp->grpmask;
  1564. if (rnp->parent == NULL) {
  1565. /* No more levels. Exit loop holding root lock. */
  1566. break;
  1567. }
  1568. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1569. rnp_c = rnp;
  1570. rnp = rnp->parent;
  1571. raw_spin_lock_irqsave(&rnp->lock, flags);
  1572. WARN_ON_ONCE(rnp_c->qsmask);
  1573. }
  1574. /*
  1575. * Get here if we are the last CPU to pass through a quiescent
  1576. * state for this grace period. Invoke rcu_report_qs_rsp()
  1577. * to clean up and start the next grace period if one is needed.
  1578. */
  1579. rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
  1580. }
  1581. /*
  1582. * Record a quiescent state for the specified CPU to that CPU's rcu_data
  1583. * structure. This must be either called from the specified CPU, or
  1584. * called when the specified CPU is known to be offline (and when it is
  1585. * also known that no other CPU is concurrently trying to help the offline
  1586. * CPU). The lastcomp argument is used to make sure we are still in the
  1587. * grace period of interest. We don't want to end the current grace period
  1588. * based on quiescent states detected in an earlier grace period!
  1589. */
  1590. static void
  1591. rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
  1592. {
  1593. unsigned long flags;
  1594. unsigned long mask;
  1595. struct rcu_node *rnp;
  1596. rnp = rdp->mynode;
  1597. raw_spin_lock_irqsave(&rnp->lock, flags);
  1598. if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
  1599. rnp->completed == rnp->gpnum) {
  1600. /*
  1601. * The grace period in which this quiescent state was
  1602. * recorded has ended, so don't report it upwards.
  1603. * We will instead need a new quiescent state that lies
  1604. * within the current grace period.
  1605. */
  1606. rdp->passed_quiesce = 0; /* need qs for new gp. */
  1607. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1608. return;
  1609. }
  1610. mask = rdp->grpmask;
  1611. if ((rnp->qsmask & mask) == 0) {
  1612. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1613. } else {
  1614. rdp->qs_pending = 0;
  1615. /*
  1616. * This GP can't end until cpu checks in, so all of our
  1617. * callbacks can be processed during the next GP.
  1618. */
  1619. rcu_accelerate_cbs(rsp, rnp, rdp);
  1620. rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
  1621. }
  1622. }
  1623. /*
  1624. * Check to see if there is a new grace period of which this CPU
  1625. * is not yet aware, and if so, set up local rcu_data state for it.
  1626. * Otherwise, see if this CPU has just passed through its first
  1627. * quiescent state for this grace period, and record that fact if so.
  1628. */
  1629. static void
  1630. rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
  1631. {
  1632. /* Check for grace-period ends and beginnings. */
  1633. note_gp_changes(rsp, rdp);
  1634. /*
  1635. * Does this CPU still need to do its part for current grace period?
  1636. * If no, return and let the other CPUs do their part as well.
  1637. */
  1638. if (!rdp->qs_pending)
  1639. return;
  1640. /*
  1641. * Was there a quiescent state since the beginning of the grace
  1642. * period? If no, then exit and wait for the next call.
  1643. */
  1644. if (!rdp->passed_quiesce)
  1645. return;
  1646. /*
  1647. * Tell RCU we are done (but rcu_report_qs_rdp() will be the
  1648. * judge of that).
  1649. */
  1650. rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
  1651. }
  1652. #ifdef CONFIG_HOTPLUG_CPU
  1653. /*
  1654. * Send the specified CPU's RCU callbacks to the orphanage. The
  1655. * specified CPU must be offline, and the caller must hold the
  1656. * ->orphan_lock.
  1657. */
  1658. static void
  1659. rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
  1660. struct rcu_node *rnp, struct rcu_data *rdp)
  1661. {
  1662. /* No-CBs CPUs do not have orphanable callbacks. */
  1663. if (rcu_is_nocb_cpu(rdp->cpu))
  1664. return;
  1665. /*
  1666. * Orphan the callbacks. First adjust the counts. This is safe
  1667. * because _rcu_barrier() excludes CPU-hotplug operations, so it
  1668. * cannot be running now. Thus no memory barrier is required.
  1669. */
  1670. if (rdp->nxtlist != NULL) {
  1671. rsp->qlen_lazy += rdp->qlen_lazy;
  1672. rsp->qlen += rdp->qlen;
  1673. rdp->n_cbs_orphaned += rdp->qlen;
  1674. rdp->qlen_lazy = 0;
  1675. ACCESS_ONCE(rdp->qlen) = 0;
  1676. }
  1677. /*
  1678. * Next, move those callbacks still needing a grace period to
  1679. * the orphanage, where some other CPU will pick them up.
  1680. * Some of the callbacks might have gone partway through a grace
  1681. * period, but that is too bad. They get to start over because we
  1682. * cannot assume that grace periods are synchronized across CPUs.
  1683. * We don't bother updating the ->nxttail[] array yet, instead
  1684. * we just reset the whole thing later on.
  1685. */
  1686. if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
  1687. *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
  1688. rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
  1689. *rdp->nxttail[RCU_DONE_TAIL] = NULL;
  1690. }
  1691. /*
  1692. * Then move the ready-to-invoke callbacks to the orphanage,
  1693. * where some other CPU will pick them up. These will not be
  1694. * required to pass though another grace period: They are done.
  1695. */
  1696. if (rdp->nxtlist != NULL) {
  1697. *rsp->orphan_donetail = rdp->nxtlist;
  1698. rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
  1699. }
  1700. /* Finally, initialize the rcu_data structure's list to empty. */
  1701. init_callback_list(rdp);
  1702. }
  1703. /*
  1704. * Adopt the RCU callbacks from the specified rcu_state structure's
  1705. * orphanage. The caller must hold the ->orphan_lock.
  1706. */
  1707. static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
  1708. {
  1709. int i;
  1710. struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
  1711. /* No-CBs CPUs are handled specially. */
  1712. if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
  1713. return;
  1714. /* Do the accounting first. */
  1715. rdp->qlen_lazy += rsp->qlen_lazy;
  1716. rdp->qlen += rsp->qlen;
  1717. rdp->n_cbs_adopted += rsp->qlen;
  1718. if (rsp->qlen_lazy != rsp->qlen)
  1719. rcu_idle_count_callbacks_posted();
  1720. rsp->qlen_lazy = 0;
  1721. rsp->qlen = 0;
  1722. /*
  1723. * We do not need a memory barrier here because the only way we
  1724. * can get here if there is an rcu_barrier() in flight is if
  1725. * we are the task doing the rcu_barrier().
  1726. */
  1727. /* First adopt the ready-to-invoke callbacks. */
  1728. if (rsp->orphan_donelist != NULL) {
  1729. *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
  1730. *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
  1731. for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
  1732. if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
  1733. rdp->nxttail[i] = rsp->orphan_donetail;
  1734. rsp->orphan_donelist = NULL;
  1735. rsp->orphan_donetail = &rsp->orphan_donelist;
  1736. }
  1737. /* And then adopt the callbacks that still need a grace period. */
  1738. if (rsp->orphan_nxtlist != NULL) {
  1739. *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
  1740. rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
  1741. rsp->orphan_nxtlist = NULL;
  1742. rsp->orphan_nxttail = &rsp->orphan_nxtlist;
  1743. }
  1744. }
  1745. /*
  1746. * Trace the fact that this CPU is going offline.
  1747. */
  1748. static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
  1749. {
  1750. RCU_TRACE(unsigned long mask);
  1751. RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
  1752. RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
  1753. RCU_TRACE(mask = rdp->grpmask);
  1754. trace_rcu_grace_period(rsp->name,
  1755. rnp->gpnum + 1 - !!(rnp->qsmask & mask),
  1756. TPS("cpuofl"));
  1757. }
  1758. /*
  1759. * The CPU has been completely removed, and some other CPU is reporting
  1760. * this fact from process context. Do the remainder of the cleanup,
  1761. * including orphaning the outgoing CPU's RCU callbacks, and also
  1762. * adopting them. There can only be one CPU hotplug operation at a time,
  1763. * so no other CPU can be attempting to update rcu_cpu_kthread_task.
  1764. */
  1765. static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
  1766. {
  1767. unsigned long flags;
  1768. unsigned long mask;
  1769. int need_report = 0;
  1770. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  1771. struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
  1772. /* Adjust any no-longer-needed kthreads. */
  1773. rcu_boost_kthread_setaffinity(rnp, -1);
  1774. /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
  1775. /* Exclude any attempts to start a new grace period. */
  1776. mutex_lock(&rsp->onoff_mutex);
  1777. raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
  1778. /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
  1779. rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
  1780. rcu_adopt_orphan_cbs(rsp);
  1781. /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
  1782. mask = rdp->grpmask; /* rnp->grplo is constant. */
  1783. do {
  1784. raw_spin_lock(&rnp->lock); /* irqs already disabled. */
  1785. rnp->qsmaskinit &= ~mask;
  1786. if (rnp->qsmaskinit != 0) {
  1787. if (rnp != rdp->mynode)
  1788. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  1789. break;
  1790. }
  1791. if (rnp == rdp->mynode)
  1792. need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
  1793. else
  1794. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  1795. mask = rnp->grpmask;
  1796. rnp = rnp->parent;
  1797. } while (rnp != NULL);
  1798. /*
  1799. * We still hold the leaf rcu_node structure lock here, and
  1800. * irqs are still disabled. The reason for this subterfuge is
  1801. * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
  1802. * held leads to deadlock.
  1803. */
  1804. raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
  1805. rnp = rdp->mynode;
  1806. if (need_report & RCU_OFL_TASKS_NORM_GP)
  1807. rcu_report_unblock_qs_rnp(rnp, flags);
  1808. else
  1809. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1810. if (need_report & RCU_OFL_TASKS_EXP_GP)
  1811. rcu_report_exp_rnp(rsp, rnp, true);
  1812. WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
  1813. "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
  1814. cpu, rdp->qlen, rdp->nxtlist);
  1815. init_callback_list(rdp);
  1816. /* Disallow further callbacks on this CPU. */
  1817. rdp->nxttail[RCU_NEXT_TAIL] = NULL;
  1818. mutex_unlock(&rsp->onoff_mutex);
  1819. }
  1820. #else /* #ifdef CONFIG_HOTPLUG_CPU */
  1821. static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
  1822. {
  1823. }
  1824. static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
  1825. {
  1826. }
  1827. #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
  1828. /*
  1829. * Invoke any RCU callbacks that have made it to the end of their grace
  1830. * period. Thottle as specified by rdp->blimit.
  1831. */
  1832. static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
  1833. {
  1834. unsigned long flags;
  1835. struct rcu_head *next, *list, **tail;
  1836. long bl, count, count_lazy;
  1837. int i;
  1838. /* If no callbacks are ready, just return. */
  1839. if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
  1840. trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
  1841. trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
  1842. need_resched(), is_idle_task(current),
  1843. rcu_is_callbacks_kthread());
  1844. return;
  1845. }
  1846. /*
  1847. * Extract the list of ready callbacks, disabling to prevent
  1848. * races with call_rcu() from interrupt handlers.
  1849. */
  1850. local_irq_save(flags);
  1851. WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
  1852. bl = rdp->blimit;
  1853. trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
  1854. list = rdp->nxtlist;
  1855. rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
  1856. *rdp->nxttail[RCU_DONE_TAIL] = NULL;
  1857. tail = rdp->nxttail[RCU_DONE_TAIL];
  1858. for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
  1859. if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
  1860. rdp->nxttail[i] = &rdp->nxtlist;
  1861. local_irq_restore(flags);
  1862. /* Invoke callbacks. */
  1863. count = count_lazy = 0;
  1864. while (list) {
  1865. next = list->next;
  1866. prefetch(next);
  1867. debug_rcu_head_unqueue(list);
  1868. if (__rcu_reclaim(rsp->name, list))
  1869. count_lazy++;
  1870. list = next;
  1871. /* Stop only if limit reached and CPU has something to do. */
  1872. if (++count >= bl &&
  1873. (need_resched() ||
  1874. (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
  1875. break;
  1876. }
  1877. local_irq_save(flags);
  1878. trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
  1879. is_idle_task(current),
  1880. rcu_is_callbacks_kthread());
  1881. /* Update count, and requeue any remaining callbacks. */
  1882. if (list != NULL) {
  1883. *tail = rdp->nxtlist;
  1884. rdp->nxtlist = list;
  1885. for (i = 0; i < RCU_NEXT_SIZE; i++)
  1886. if (&rdp->nxtlist == rdp->nxttail[i])
  1887. rdp->nxttail[i] = tail;
  1888. else
  1889. break;
  1890. }
  1891. smp_mb(); /* List handling before counting for rcu_barrier(). */
  1892. rdp->qlen_lazy -= count_lazy;
  1893. ACCESS_ONCE(rdp->qlen) -= count;
  1894. rdp->n_cbs_invoked += count;
  1895. /* Reinstate batch limit if we have worked down the excess. */
  1896. if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
  1897. rdp->blimit = blimit;
  1898. /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
  1899. if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
  1900. rdp->qlen_last_fqs_check = 0;
  1901. rdp->n_force_qs_snap = rsp->n_force_qs;
  1902. } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
  1903. rdp->qlen_last_fqs_check = rdp->qlen;
  1904. WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
  1905. local_irq_restore(flags);
  1906. /* Re-invoke RCU core processing if there are callbacks remaining. */
  1907. if (cpu_has_callbacks_ready_to_invoke(rdp))
  1908. invoke_rcu_core();
  1909. }
  1910. /*
  1911. * Check to see if this CPU is in a non-context-switch quiescent state
  1912. * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
  1913. * Also schedule RCU core processing.
  1914. *
  1915. * This function must be called from hardirq context. It is normally
  1916. * invoked from the scheduling-clock interrupt. If rcu_pending returns
  1917. * false, there is no point in invoking rcu_check_callbacks().
  1918. */
  1919. void rcu_check_callbacks(int cpu, int user)
  1920. {
  1921. trace_rcu_utilization(TPS("Start scheduler-tick"));
  1922. increment_cpu_stall_ticks();
  1923. if (user || rcu_is_cpu_rrupt_from_idle()) {
  1924. /*
  1925. * Get here if this CPU took its interrupt from user
  1926. * mode or from the idle loop, and if this is not a
  1927. * nested interrupt. In this case, the CPU is in
  1928. * a quiescent state, so note it.
  1929. *
  1930. * No memory barrier is required here because both
  1931. * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
  1932. * variables that other CPUs neither access nor modify,
  1933. * at least not while the corresponding CPU is online.
  1934. */
  1935. rcu_sched_qs(cpu);
  1936. rcu_bh_qs(cpu);
  1937. } else if (!in_softirq()) {
  1938. /*
  1939. * Get here if this CPU did not take its interrupt from
  1940. * softirq, in other words, if it is not interrupting
  1941. * a rcu_bh read-side critical section. This is an _bh
  1942. * critical section, so note it.
  1943. */
  1944. rcu_bh_qs(cpu);
  1945. }
  1946. rcu_preempt_check_callbacks(cpu);
  1947. if (rcu_pending(cpu))
  1948. invoke_rcu_core();
  1949. trace_rcu_utilization(TPS("End scheduler-tick"));
  1950. }
  1951. /*
  1952. * Scan the leaf rcu_node structures, processing dyntick state for any that
  1953. * have not yet encountered a quiescent state, using the function specified.
  1954. * Also initiate boosting for any threads blocked on the root rcu_node.
  1955. *
  1956. * The caller must have suppressed start of new grace periods.
  1957. */
  1958. static void force_qs_rnp(struct rcu_state *rsp,
  1959. int (*f)(struct rcu_data *rsp, bool *isidle,
  1960. unsigned long *maxj),
  1961. bool *isidle, unsigned long *maxj)
  1962. {
  1963. unsigned long bit;
  1964. int cpu;
  1965. unsigned long flags;
  1966. unsigned long mask;
  1967. struct rcu_node *rnp;
  1968. rcu_for_each_leaf_node(rsp, rnp) {
  1969. cond_resched();
  1970. mask = 0;
  1971. raw_spin_lock_irqsave(&rnp->lock, flags);
  1972. if (!rcu_gp_in_progress(rsp)) {
  1973. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1974. return;
  1975. }
  1976. if (rnp->qsmask == 0) {
  1977. rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
  1978. continue;
  1979. }
  1980. cpu = rnp->grplo;
  1981. bit = 1;
  1982. for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
  1983. if ((rnp->qsmask & bit) != 0) {
  1984. if ((rnp->qsmaskinit & bit) != 0)
  1985. *isidle = 0;
  1986. if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
  1987. mask |= bit;
  1988. }
  1989. }
  1990. if (mask != 0) {
  1991. /* rcu_report_qs_rnp() releases rnp->lock. */
  1992. rcu_report_qs_rnp(mask, rsp, rnp, flags);
  1993. continue;
  1994. }
  1995. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1996. }
  1997. rnp = rcu_get_root(rsp);
  1998. if (rnp->qsmask == 0) {
  1999. raw_spin_lock_irqsave(&rnp->lock, flags);
  2000. rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
  2001. }
  2002. }
  2003. /*
  2004. * Force quiescent states on reluctant CPUs, and also detect which
  2005. * CPUs are in dyntick-idle mode.
  2006. */
  2007. static void force_quiescent_state(struct rcu_state *rsp)
  2008. {
  2009. unsigned long flags;
  2010. bool ret;
  2011. struct rcu_node *rnp;
  2012. struct rcu_node *rnp_old = NULL;
  2013. /* Funnel through hierarchy to reduce memory contention. */
  2014. rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
  2015. for (; rnp != NULL; rnp = rnp->parent) {
  2016. ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
  2017. !raw_spin_trylock(&rnp->fqslock);
  2018. if (rnp_old != NULL)
  2019. raw_spin_unlock(&rnp_old->fqslock);
  2020. if (ret) {
  2021. rsp->n_force_qs_lh++;
  2022. return;
  2023. }
  2024. rnp_old = rnp;
  2025. }
  2026. /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
  2027. /* Reached the root of the rcu_node tree, acquire lock. */
  2028. raw_spin_lock_irqsave(&rnp_old->lock, flags);
  2029. raw_spin_unlock(&rnp_old->fqslock);
  2030. if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
  2031. rsp->n_force_qs_lh++;
  2032. raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
  2033. return; /* Someone beat us to it. */
  2034. }
  2035. rsp->gp_flags |= RCU_GP_FLAG_FQS;
  2036. raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
  2037. wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
  2038. }
  2039. /*
  2040. * This does the RCU core processing work for the specified rcu_state
  2041. * and rcu_data structures. This may be called only from the CPU to
  2042. * whom the rdp belongs.
  2043. */
  2044. static void
  2045. __rcu_process_callbacks(struct rcu_state *rsp)
  2046. {
  2047. unsigned long flags;
  2048. struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
  2049. WARN_ON_ONCE(rdp->beenonline == 0);
  2050. /* Update RCU state based on any recent quiescent states. */
  2051. rcu_check_quiescent_state(rsp, rdp);
  2052. /* Does this CPU require a not-yet-started grace period? */
  2053. local_irq_save(flags);
  2054. if (cpu_needs_another_gp(rsp, rdp)) {
  2055. raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
  2056. rcu_start_gp(rsp);
  2057. raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
  2058. } else {
  2059. local_irq_restore(flags);
  2060. }
  2061. /* If there are callbacks ready, invoke them. */
  2062. if (cpu_has_callbacks_ready_to_invoke(rdp))
  2063. invoke_rcu_callbacks(rsp, rdp);
  2064. }
  2065. /*
  2066. * Do RCU core processing for the current CPU.
  2067. */
  2068. static void rcu_process_callbacks(struct softirq_action *unused)
  2069. {
  2070. struct rcu_state *rsp;
  2071. if (cpu_is_offline(smp_processor_id()))
  2072. return;
  2073. trace_rcu_utilization(TPS("Start RCU core"));
  2074. for_each_rcu_flavor(rsp)
  2075. __rcu_process_callbacks(rsp);
  2076. trace_rcu_utilization(TPS("End RCU core"));
  2077. }
  2078. /*
  2079. * Schedule RCU callback invocation. If the specified type of RCU
  2080. * does not support RCU priority boosting, just do a direct call,
  2081. * otherwise wake up the per-CPU kernel kthread. Note that because we
  2082. * are running on the current CPU with interrupts disabled, the
  2083. * rcu_cpu_kthread_task cannot disappear out from under us.
  2084. */
  2085. static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
  2086. {
  2087. if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
  2088. return;
  2089. if (likely(!rsp->boost)) {
  2090. rcu_do_batch(rsp, rdp);
  2091. return;
  2092. }
  2093. invoke_rcu_callbacks_kthread();
  2094. }
  2095. static void invoke_rcu_core(void)
  2096. {
  2097. if (cpu_online(smp_processor_id()))
  2098. raise_softirq(RCU_SOFTIRQ);
  2099. }
  2100. /*
  2101. * Handle any core-RCU processing required by a call_rcu() invocation.
  2102. */
  2103. static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
  2104. struct rcu_head *head, unsigned long flags)
  2105. {
  2106. /*
  2107. * If called from an extended quiescent state, invoke the RCU
  2108. * core in order to force a re-evaluation of RCU's idleness.
  2109. */
  2110. if (!rcu_is_watching() && cpu_online(smp_processor_id()))
  2111. invoke_rcu_core();
  2112. /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
  2113. if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
  2114. return;
  2115. /*
  2116. * Force the grace period if too many callbacks or too long waiting.
  2117. * Enforce hysteresis, and don't invoke force_quiescent_state()
  2118. * if some other CPU has recently done so. Also, don't bother
  2119. * invoking force_quiescent_state() if the newly enqueued callback
  2120. * is the only one waiting for a grace period to complete.
  2121. */
  2122. if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
  2123. /* Are we ignoring a completed grace period? */
  2124. note_gp_changes(rsp, rdp);
  2125. /* Start a new grace period if one not already started. */
  2126. if (!rcu_gp_in_progress(rsp)) {
  2127. struct rcu_node *rnp_root = rcu_get_root(rsp);
  2128. raw_spin_lock(&rnp_root->lock);
  2129. rcu_start_gp(rsp);
  2130. raw_spin_unlock(&rnp_root->lock);
  2131. } else {
  2132. /* Give the grace period a kick. */
  2133. rdp->blimit = LONG_MAX;
  2134. if (rsp->n_force_qs == rdp->n_force_qs_snap &&
  2135. *rdp->nxttail[RCU_DONE_TAIL] != head)
  2136. force_quiescent_state(rsp);
  2137. rdp->n_force_qs_snap = rsp->n_force_qs;
  2138. rdp->qlen_last_fqs_check = rdp->qlen;
  2139. }
  2140. }
  2141. }
  2142. /*
  2143. * RCU callback function to leak a callback.
  2144. */
  2145. static void rcu_leak_callback(struct rcu_head *rhp)
  2146. {
  2147. }
  2148. /*
  2149. * Helper function for call_rcu() and friends. The cpu argument will
  2150. * normally be -1, indicating "currently running CPU". It may specify
  2151. * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
  2152. * is expected to specify a CPU.
  2153. */
  2154. static void
  2155. __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
  2156. struct rcu_state *rsp, int cpu, bool lazy)
  2157. {
  2158. unsigned long flags;
  2159. struct rcu_data *rdp;
  2160. WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
  2161. if (debug_rcu_head_queue(head)) {
  2162. /* Probable double call_rcu(), so leak the callback. */
  2163. ACCESS_ONCE(head->func) = rcu_leak_callback;
  2164. WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
  2165. return;
  2166. }
  2167. head->func = func;
  2168. head->next = NULL;
  2169. /*
  2170. * Opportunistically note grace-period endings and beginnings.
  2171. * Note that we might see a beginning right after we see an
  2172. * end, but never vice versa, since this CPU has to pass through
  2173. * a quiescent state betweentimes.
  2174. */
  2175. local_irq_save(flags);
  2176. rdp = this_cpu_ptr(rsp->rda);
  2177. /* Add the callback to our list. */
  2178. if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
  2179. int offline;
  2180. if (cpu != -1)
  2181. rdp = per_cpu_ptr(rsp->rda, cpu);
  2182. offline = !__call_rcu_nocb(rdp, head, lazy);
  2183. WARN_ON_ONCE(offline);
  2184. /* _call_rcu() is illegal on offline CPU; leak the callback. */
  2185. local_irq_restore(flags);
  2186. return;
  2187. }
  2188. ACCESS_ONCE(rdp->qlen)++;
  2189. if (lazy)
  2190. rdp->qlen_lazy++;
  2191. else
  2192. rcu_idle_count_callbacks_posted();
  2193. smp_mb(); /* Count before adding callback for rcu_barrier(). */
  2194. *rdp->nxttail[RCU_NEXT_TAIL] = head;
  2195. rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
  2196. if (__is_kfree_rcu_offset((unsigned long)func))
  2197. trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
  2198. rdp->qlen_lazy, rdp->qlen);
  2199. else
  2200. trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
  2201. /* Go handle any RCU core processing required. */
  2202. __call_rcu_core(rsp, rdp, head, flags);
  2203. local_irq_restore(flags);
  2204. }
  2205. /*
  2206. * Queue an RCU-sched callback for invocation after a grace period.
  2207. */
  2208. void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
  2209. {
  2210. __call_rcu(head, func, &rcu_sched_state, -1, 0);
  2211. }
  2212. EXPORT_SYMBOL_GPL(call_rcu_sched);
  2213. /*
  2214. * Queue an RCU callback for invocation after a quicker grace period.
  2215. */
  2216. void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
  2217. {
  2218. __call_rcu(head, func, &rcu_bh_state, -1, 0);
  2219. }
  2220. EXPORT_SYMBOL_GPL(call_rcu_bh);
  2221. /*
  2222. * Because a context switch is a grace period for RCU-sched and RCU-bh,
  2223. * any blocking grace-period wait automatically implies a grace period
  2224. * if there is only one CPU online at any point time during execution
  2225. * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
  2226. * occasionally incorrectly indicate that there are multiple CPUs online
  2227. * when there was in fact only one the whole time, as this just adds
  2228. * some overhead: RCU still operates correctly.
  2229. */
  2230. static inline int rcu_blocking_is_gp(void)
  2231. {
  2232. int ret;
  2233. might_sleep(); /* Check for RCU read-side critical section. */
  2234. preempt_disable();
  2235. ret = num_online_cpus() <= 1;
  2236. preempt_enable();
  2237. return ret;
  2238. }
  2239. /**
  2240. * synchronize_sched - wait until an rcu-sched grace period has elapsed.
  2241. *
  2242. * Control will return to the caller some time after a full rcu-sched
  2243. * grace period has elapsed, in other words after all currently executing
  2244. * rcu-sched read-side critical sections have completed. These read-side
  2245. * critical sections are delimited by rcu_read_lock_sched() and
  2246. * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
  2247. * local_irq_disable(), and so on may be used in place of
  2248. * rcu_read_lock_sched().
  2249. *
  2250. * This means that all preempt_disable code sequences, including NMI and
  2251. * non-threaded hardware-interrupt handlers, in progress on entry will
  2252. * have completed before this primitive returns. However, this does not
  2253. * guarantee that softirq handlers will have completed, since in some
  2254. * kernels, these handlers can run in process context, and can block.
  2255. *
  2256. * Note that this guarantee implies further memory-ordering guarantees.
  2257. * On systems with more than one CPU, when synchronize_sched() returns,
  2258. * each CPU is guaranteed to have executed a full memory barrier since the
  2259. * end of its last RCU-sched read-side critical section whose beginning
  2260. * preceded the call to synchronize_sched(). In addition, each CPU having
  2261. * an RCU read-side critical section that extends beyond the return from
  2262. * synchronize_sched() is guaranteed to have executed a full memory barrier
  2263. * after the beginning of synchronize_sched() and before the beginning of
  2264. * that RCU read-side critical section. Note that these guarantees include
  2265. * CPUs that are offline, idle, or executing in user mode, as well as CPUs
  2266. * that are executing in the kernel.
  2267. *
  2268. * Furthermore, if CPU A invoked synchronize_sched(), which returned
  2269. * to its caller on CPU B, then both CPU A and CPU B are guaranteed
  2270. * to have executed a full memory barrier during the execution of
  2271. * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
  2272. * again only if the system has more than one CPU).
  2273. *
  2274. * This primitive provides the guarantees made by the (now removed)
  2275. * synchronize_kernel() API. In contrast, synchronize_rcu() only
  2276. * guarantees that rcu_read_lock() sections will have completed.
  2277. * In "classic RCU", these two guarantees happen to be one and
  2278. * the same, but can differ in realtime RCU implementations.
  2279. */
  2280. void synchronize_sched(void)
  2281. {
  2282. rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
  2283. !lock_is_held(&rcu_lock_map) &&
  2284. !lock_is_held(&rcu_sched_lock_map),
  2285. "Illegal synchronize_sched() in RCU-sched read-side critical section");
  2286. if (rcu_blocking_is_gp())
  2287. return;
  2288. if (rcu_expedited)
  2289. synchronize_sched_expedited();
  2290. else
  2291. wait_rcu_gp(call_rcu_sched);
  2292. }
  2293. EXPORT_SYMBOL_GPL(synchronize_sched);
  2294. /**
  2295. * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
  2296. *
  2297. * Control will return to the caller some time after a full rcu_bh grace
  2298. * period has elapsed, in other words after all currently executing rcu_bh
  2299. * read-side critical sections have completed. RCU read-side critical
  2300. * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
  2301. * and may be nested.
  2302. *
  2303. * See the description of synchronize_sched() for more detailed information
  2304. * on memory ordering guarantees.
  2305. */
  2306. void synchronize_rcu_bh(void)
  2307. {
  2308. rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
  2309. !lock_is_held(&rcu_lock_map) &&
  2310. !lock_is_held(&rcu_sched_lock_map),
  2311. "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
  2312. if (rcu_blocking_is_gp())
  2313. return;
  2314. if (rcu_expedited)
  2315. synchronize_rcu_bh_expedited();
  2316. else
  2317. wait_rcu_gp(call_rcu_bh);
  2318. }
  2319. EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
  2320. static int synchronize_sched_expedited_cpu_stop(void *data)
  2321. {
  2322. /*
  2323. * There must be a full memory barrier on each affected CPU
  2324. * between the time that try_stop_cpus() is called and the
  2325. * time that it returns.
  2326. *
  2327. * In the current initial implementation of cpu_stop, the
  2328. * above condition is already met when the control reaches
  2329. * this point and the following smp_mb() is not strictly
  2330. * necessary. Do smp_mb() anyway for documentation and
  2331. * robustness against future implementation changes.
  2332. */
  2333. smp_mb(); /* See above comment block. */
  2334. return 0;
  2335. }
  2336. /**
  2337. * synchronize_sched_expedited - Brute-force RCU-sched grace period
  2338. *
  2339. * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
  2340. * approach to force the grace period to end quickly. This consumes
  2341. * significant time on all CPUs and is unfriendly to real-time workloads,
  2342. * so is thus not recommended for any sort of common-case code. In fact,
  2343. * if you are using synchronize_sched_expedited() in a loop, please
  2344. * restructure your code to batch your updates, and then use a single
  2345. * synchronize_sched() instead.
  2346. *
  2347. * Note that it is illegal to call this function while holding any lock
  2348. * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
  2349. * to call this function from a CPU-hotplug notifier. Failing to observe
  2350. * these restriction will result in deadlock.
  2351. *
  2352. * This implementation can be thought of as an application of ticket
  2353. * locking to RCU, with sync_sched_expedited_started and
  2354. * sync_sched_expedited_done taking on the roles of the halves
  2355. * of the ticket-lock word. Each task atomically increments
  2356. * sync_sched_expedited_started upon entry, snapshotting the old value,
  2357. * then attempts to stop all the CPUs. If this succeeds, then each
  2358. * CPU will have executed a context switch, resulting in an RCU-sched
  2359. * grace period. We are then done, so we use atomic_cmpxchg() to
  2360. * update sync_sched_expedited_done to match our snapshot -- but
  2361. * only if someone else has not already advanced past our snapshot.
  2362. *
  2363. * On the other hand, if try_stop_cpus() fails, we check the value
  2364. * of sync_sched_expedited_done. If it has advanced past our
  2365. * initial snapshot, then someone else must have forced a grace period
  2366. * some time after we took our snapshot. In this case, our work is
  2367. * done for us, and we can simply return. Otherwise, we try again,
  2368. * but keep our initial snapshot for purposes of checking for someone
  2369. * doing our work for us.
  2370. *
  2371. * If we fail too many times in a row, we fall back to synchronize_sched().
  2372. */
  2373. void synchronize_sched_expedited(void)
  2374. {
  2375. long firstsnap, s, snap;
  2376. int trycount = 0;
  2377. struct rcu_state *rsp = &rcu_sched_state;
  2378. /*
  2379. * If we are in danger of counter wrap, just do synchronize_sched().
  2380. * By allowing sync_sched_expedited_started to advance no more than
  2381. * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
  2382. * that more than 3.5 billion CPUs would be required to force a
  2383. * counter wrap on a 32-bit system. Quite a few more CPUs would of
  2384. * course be required on a 64-bit system.
  2385. */
  2386. if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
  2387. (ulong)atomic_long_read(&rsp->expedited_done) +
  2388. ULONG_MAX / 8)) {
  2389. synchronize_sched();
  2390. atomic_long_inc(&rsp->expedited_wrap);
  2391. return;
  2392. }
  2393. /*
  2394. * Take a ticket. Note that atomic_inc_return() implies a
  2395. * full memory barrier.
  2396. */
  2397. snap = atomic_long_inc_return(&rsp->expedited_start);
  2398. firstsnap = snap;
  2399. get_online_cpus();
  2400. WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
  2401. /*
  2402. * Each pass through the following loop attempts to force a
  2403. * context switch on each CPU.
  2404. */
  2405. while (try_stop_cpus(cpu_online_mask,
  2406. synchronize_sched_expedited_cpu_stop,
  2407. NULL) == -EAGAIN) {
  2408. put_online_cpus();
  2409. atomic_long_inc(&rsp->expedited_tryfail);
  2410. /* Check to see if someone else did our work for us. */
  2411. s = atomic_long_read(&rsp->expedited_done);
  2412. if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
  2413. /* ensure test happens before caller kfree */
  2414. smp_mb__before_atomic_inc(); /* ^^^ */
  2415. atomic_long_inc(&rsp->expedited_workdone1);
  2416. return;
  2417. }
  2418. /* No joy, try again later. Or just synchronize_sched(). */
  2419. if (trycount++ < 10) {
  2420. udelay(trycount * num_online_cpus());
  2421. } else {
  2422. wait_rcu_gp(call_rcu_sched);
  2423. atomic_long_inc(&rsp->expedited_normal);
  2424. return;
  2425. }
  2426. /* Recheck to see if someone else did our work for us. */
  2427. s = atomic_long_read(&rsp->expedited_done);
  2428. if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
  2429. /* ensure test happens before caller kfree */
  2430. smp_mb__before_atomic_inc(); /* ^^^ */
  2431. atomic_long_inc(&rsp->expedited_workdone2);
  2432. return;
  2433. }
  2434. /*
  2435. * Refetching sync_sched_expedited_started allows later
  2436. * callers to piggyback on our grace period. We retry
  2437. * after they started, so our grace period works for them,
  2438. * and they started after our first try, so their grace
  2439. * period works for us.
  2440. */
  2441. get_online_cpus();
  2442. snap = atomic_long_read(&rsp->expedited_start);
  2443. smp_mb(); /* ensure read is before try_stop_cpus(). */
  2444. }
  2445. atomic_long_inc(&rsp->expedited_stoppedcpus);
  2446. /*
  2447. * Everyone up to our most recent fetch is covered by our grace
  2448. * period. Update the counter, but only if our work is still
  2449. * relevant -- which it won't be if someone who started later
  2450. * than we did already did their update.
  2451. */
  2452. do {
  2453. atomic_long_inc(&rsp->expedited_done_tries);
  2454. s = atomic_long_read(&rsp->expedited_done);
  2455. if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
  2456. /* ensure test happens before caller kfree */
  2457. smp_mb__before_atomic_inc(); /* ^^^ */
  2458. atomic_long_inc(&rsp->expedited_done_lost);
  2459. break;
  2460. }
  2461. } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
  2462. atomic_long_inc(&rsp->expedited_done_exit);
  2463. put_online_cpus();
  2464. }
  2465. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  2466. /*
  2467. * Check to see if there is any immediate RCU-related work to be done
  2468. * by the current CPU, for the specified type of RCU, returning 1 if so.
  2469. * The checks are in order of increasing expense: checks that can be
  2470. * carried out against CPU-local state are performed first. However,
  2471. * we must check for CPU stalls first, else we might not get a chance.
  2472. */
  2473. static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
  2474. {
  2475. struct rcu_node *rnp = rdp->mynode;
  2476. rdp->n_rcu_pending++;
  2477. /* Check for CPU stalls, if enabled. */
  2478. check_cpu_stall(rsp, rdp);
  2479. /* Is the RCU core waiting for a quiescent state from this CPU? */
  2480. if (rcu_scheduler_fully_active &&
  2481. rdp->qs_pending && !rdp->passed_quiesce) {
  2482. rdp->n_rp_qs_pending++;
  2483. } else if (rdp->qs_pending && rdp->passed_quiesce) {
  2484. rdp->n_rp_report_qs++;
  2485. return 1;
  2486. }
  2487. /* Does this CPU have callbacks ready to invoke? */
  2488. if (cpu_has_callbacks_ready_to_invoke(rdp)) {
  2489. rdp->n_rp_cb_ready++;
  2490. return 1;
  2491. }
  2492. /* Has RCU gone idle with this CPU needing another grace period? */
  2493. if (cpu_needs_another_gp(rsp, rdp)) {
  2494. rdp->n_rp_cpu_needs_gp++;
  2495. return 1;
  2496. }
  2497. /* Has another RCU grace period completed? */
  2498. if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
  2499. rdp->n_rp_gp_completed++;
  2500. return 1;
  2501. }
  2502. /* Has a new RCU grace period started? */
  2503. if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
  2504. rdp->n_rp_gp_started++;
  2505. return 1;
  2506. }
  2507. /* nothing to do */
  2508. rdp->n_rp_need_nothing++;
  2509. return 0;
  2510. }
  2511. /*
  2512. * Check to see if there is any immediate RCU-related work to be done
  2513. * by the current CPU, returning 1 if so. This function is part of the
  2514. * RCU implementation; it is -not- an exported member of the RCU API.
  2515. */
  2516. static int rcu_pending(int cpu)
  2517. {
  2518. struct rcu_state *rsp;
  2519. for_each_rcu_flavor(rsp)
  2520. if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
  2521. return 1;
  2522. return 0;
  2523. }
  2524. /*
  2525. * Return true if the specified CPU has any callback. If all_lazy is
  2526. * non-NULL, store an indication of whether all callbacks are lazy.
  2527. * (If there are no callbacks, all of them are deemed to be lazy.)
  2528. */
  2529. static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
  2530. {
  2531. bool al = true;
  2532. bool hc = false;
  2533. struct rcu_data *rdp;
  2534. struct rcu_state *rsp;
  2535. for_each_rcu_flavor(rsp) {
  2536. rdp = per_cpu_ptr(rsp->rda, cpu);
  2537. if (!rdp->nxtlist)
  2538. continue;
  2539. hc = true;
  2540. if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
  2541. al = false;
  2542. break;
  2543. }
  2544. }
  2545. if (all_lazy)
  2546. *all_lazy = al;
  2547. return hc;
  2548. }
  2549. /*
  2550. * Helper function for _rcu_barrier() tracing. If tracing is disabled,
  2551. * the compiler is expected to optimize this away.
  2552. */
  2553. static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
  2554. int cpu, unsigned long done)
  2555. {
  2556. trace_rcu_barrier(rsp->name, s, cpu,
  2557. atomic_read(&rsp->barrier_cpu_count), done);
  2558. }
  2559. /*
  2560. * RCU callback function for _rcu_barrier(). If we are last, wake
  2561. * up the task executing _rcu_barrier().
  2562. */
  2563. static void rcu_barrier_callback(struct rcu_head *rhp)
  2564. {
  2565. struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
  2566. struct rcu_state *rsp = rdp->rsp;
  2567. if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
  2568. _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
  2569. complete(&rsp->barrier_completion);
  2570. } else {
  2571. _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
  2572. }
  2573. }
  2574. /*
  2575. * Called with preemption disabled, and from cross-cpu IRQ context.
  2576. */
  2577. static void rcu_barrier_func(void *type)
  2578. {
  2579. struct rcu_state *rsp = type;
  2580. struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
  2581. _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
  2582. atomic_inc(&rsp->barrier_cpu_count);
  2583. rsp->call(&rdp->barrier_head, rcu_barrier_callback);
  2584. }
  2585. /*
  2586. * Orchestrate the specified type of RCU barrier, waiting for all
  2587. * RCU callbacks of the specified type to complete.
  2588. */
  2589. static void _rcu_barrier(struct rcu_state *rsp)
  2590. {
  2591. int cpu;
  2592. struct rcu_data *rdp;
  2593. unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
  2594. unsigned long snap_done;
  2595. _rcu_barrier_trace(rsp, "Begin", -1, snap);
  2596. /* Take mutex to serialize concurrent rcu_barrier() requests. */
  2597. mutex_lock(&rsp->barrier_mutex);
  2598. /*
  2599. * Ensure that all prior references, including to ->n_barrier_done,
  2600. * are ordered before the _rcu_barrier() machinery.
  2601. */
  2602. smp_mb(); /* See above block comment. */
  2603. /*
  2604. * Recheck ->n_barrier_done to see if others did our work for us.
  2605. * This means checking ->n_barrier_done for an even-to-odd-to-even
  2606. * transition. The "if" expression below therefore rounds the old
  2607. * value up to the next even number and adds two before comparing.
  2608. */
  2609. snap_done = rsp->n_barrier_done;
  2610. _rcu_barrier_trace(rsp, "Check", -1, snap_done);
  2611. /*
  2612. * If the value in snap is odd, we needed to wait for the current
  2613. * rcu_barrier() to complete, then wait for the next one, in other
  2614. * words, we need the value of snap_done to be three larger than
  2615. * the value of snap. On the other hand, if the value in snap is
  2616. * even, we only had to wait for the next rcu_barrier() to complete,
  2617. * in other words, we need the value of snap_done to be only two
  2618. * greater than the value of snap. The "(snap + 3) & ~0x1" computes
  2619. * this for us (thank you, Linus!).
  2620. */
  2621. if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
  2622. _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
  2623. smp_mb(); /* caller's subsequent code after above check. */
  2624. mutex_unlock(&rsp->barrier_mutex);
  2625. return;
  2626. }
  2627. /*
  2628. * Increment ->n_barrier_done to avoid duplicate work. Use
  2629. * ACCESS_ONCE() to prevent the compiler from speculating
  2630. * the increment to precede the early-exit check.
  2631. */
  2632. ACCESS_ONCE(rsp->n_barrier_done)++;
  2633. WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
  2634. _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
  2635. smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
  2636. /*
  2637. * Initialize the count to one rather than to zero in order to
  2638. * avoid a too-soon return to zero in case of a short grace period
  2639. * (or preemption of this task). Exclude CPU-hotplug operations
  2640. * to ensure that no offline CPU has callbacks queued.
  2641. */
  2642. init_completion(&rsp->barrier_completion);
  2643. atomic_set(&rsp->barrier_cpu_count, 1);
  2644. get_online_cpus();
  2645. /*
  2646. * Force each CPU with callbacks to register a new callback.
  2647. * When that callback is invoked, we will know that all of the
  2648. * corresponding CPU's preceding callbacks have been invoked.
  2649. */
  2650. for_each_possible_cpu(cpu) {
  2651. if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
  2652. continue;
  2653. rdp = per_cpu_ptr(rsp->rda, cpu);
  2654. if (rcu_is_nocb_cpu(cpu)) {
  2655. _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
  2656. rsp->n_barrier_done);
  2657. atomic_inc(&rsp->barrier_cpu_count);
  2658. __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
  2659. rsp, cpu, 0);
  2660. } else if (ACCESS_ONCE(rdp->qlen)) {
  2661. _rcu_barrier_trace(rsp, "OnlineQ", cpu,
  2662. rsp->n_barrier_done);
  2663. smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
  2664. } else {
  2665. _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
  2666. rsp->n_barrier_done);
  2667. }
  2668. }
  2669. put_online_cpus();
  2670. /*
  2671. * Now that we have an rcu_barrier_callback() callback on each
  2672. * CPU, and thus each counted, remove the initial count.
  2673. */
  2674. if (atomic_dec_and_test(&rsp->barrier_cpu_count))
  2675. complete(&rsp->barrier_completion);
  2676. /* Increment ->n_barrier_done to prevent duplicate work. */
  2677. smp_mb(); /* Keep increment after above mechanism. */
  2678. ACCESS_ONCE(rsp->n_barrier_done)++;
  2679. WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
  2680. _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
  2681. smp_mb(); /* Keep increment before caller's subsequent code. */
  2682. /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
  2683. wait_for_completion(&rsp->barrier_completion);
  2684. /* Other rcu_barrier() invocations can now safely proceed. */
  2685. mutex_unlock(&rsp->barrier_mutex);
  2686. }
  2687. /**
  2688. * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
  2689. */
  2690. void rcu_barrier_bh(void)
  2691. {
  2692. _rcu_barrier(&rcu_bh_state);
  2693. }
  2694. EXPORT_SYMBOL_GPL(rcu_barrier_bh);
  2695. /**
  2696. * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
  2697. */
  2698. void rcu_barrier_sched(void)
  2699. {
  2700. _rcu_barrier(&rcu_sched_state);
  2701. }
  2702. EXPORT_SYMBOL_GPL(rcu_barrier_sched);
  2703. /*
  2704. * Do boot-time initialization of a CPU's per-CPU RCU data.
  2705. */
  2706. static void __init
  2707. rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
  2708. {
  2709. unsigned long flags;
  2710. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  2711. struct rcu_node *rnp = rcu_get_root(rsp);
  2712. /* Set up local state, ensuring consistent view of global state. */
  2713. raw_spin_lock_irqsave(&rnp->lock, flags);
  2714. rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
  2715. init_callback_list(rdp);
  2716. rdp->qlen_lazy = 0;
  2717. ACCESS_ONCE(rdp->qlen) = 0;
  2718. rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
  2719. WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
  2720. WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
  2721. rdp->cpu = cpu;
  2722. rdp->rsp = rsp;
  2723. rcu_boot_init_nocb_percpu_data(rdp);
  2724. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2725. }
  2726. /*
  2727. * Initialize a CPU's per-CPU RCU data. Note that only one online or
  2728. * offline event can be happening at a given time. Note also that we
  2729. * can accept some slop in the rsp->completed access due to the fact
  2730. * that this CPU cannot possibly have any RCU callbacks in flight yet.
  2731. */
  2732. static void
  2733. rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
  2734. {
  2735. unsigned long flags;
  2736. unsigned long mask;
  2737. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  2738. struct rcu_node *rnp = rcu_get_root(rsp);
  2739. /* Exclude new grace periods. */
  2740. mutex_lock(&rsp->onoff_mutex);
  2741. /* Set up local state, ensuring consistent view of global state. */
  2742. raw_spin_lock_irqsave(&rnp->lock, flags);
  2743. rdp->beenonline = 1; /* We have now been online. */
  2744. rdp->preemptible = preemptible;
  2745. rdp->qlen_last_fqs_check = 0;
  2746. rdp->n_force_qs_snap = rsp->n_force_qs;
  2747. rdp->blimit = blimit;
  2748. init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
  2749. rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
  2750. rcu_sysidle_init_percpu_data(rdp->dynticks);
  2751. atomic_set(&rdp->dynticks->dynticks,
  2752. (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
  2753. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  2754. /* Add CPU to rcu_node bitmasks. */
  2755. rnp = rdp->mynode;
  2756. mask = rdp->grpmask;
  2757. do {
  2758. /* Exclude any attempts to start a new GP on small systems. */
  2759. raw_spin_lock(&rnp->lock); /* irqs already disabled. */
  2760. rnp->qsmaskinit |= mask;
  2761. mask = rnp->grpmask;
  2762. if (rnp == rdp->mynode) {
  2763. /*
  2764. * If there is a grace period in progress, we will
  2765. * set up to wait for it next time we run the
  2766. * RCU core code.
  2767. */
  2768. rdp->gpnum = rnp->completed;
  2769. rdp->completed = rnp->completed;
  2770. rdp->passed_quiesce = 0;
  2771. rdp->qs_pending = 0;
  2772. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
  2773. }
  2774. raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
  2775. rnp = rnp->parent;
  2776. } while (rnp != NULL && !(rnp->qsmaskinit & mask));
  2777. local_irq_restore(flags);
  2778. mutex_unlock(&rsp->onoff_mutex);
  2779. }
  2780. static void rcu_prepare_cpu(int cpu)
  2781. {
  2782. struct rcu_state *rsp;
  2783. for_each_rcu_flavor(rsp)
  2784. rcu_init_percpu_data(cpu, rsp,
  2785. strcmp(rsp->name, "rcu_preempt") == 0);
  2786. }
  2787. /*
  2788. * Handle CPU online/offline notification events.
  2789. */
  2790. static int rcu_cpu_notify(struct notifier_block *self,
  2791. unsigned long action, void *hcpu)
  2792. {
  2793. long cpu = (long)hcpu;
  2794. struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
  2795. struct rcu_node *rnp = rdp->mynode;
  2796. struct rcu_state *rsp;
  2797. trace_rcu_utilization(TPS("Start CPU hotplug"));
  2798. switch (action) {
  2799. case CPU_UP_PREPARE:
  2800. case CPU_UP_PREPARE_FROZEN:
  2801. rcu_prepare_cpu(cpu);
  2802. rcu_prepare_kthreads(cpu);
  2803. break;
  2804. case CPU_ONLINE:
  2805. case CPU_DOWN_FAILED:
  2806. rcu_boost_kthread_setaffinity(rnp, -1);
  2807. break;
  2808. case CPU_DOWN_PREPARE:
  2809. rcu_boost_kthread_setaffinity(rnp, cpu);
  2810. break;
  2811. case CPU_DYING:
  2812. case CPU_DYING_FROZEN:
  2813. for_each_rcu_flavor(rsp)
  2814. rcu_cleanup_dying_cpu(rsp);
  2815. break;
  2816. case CPU_DEAD:
  2817. case CPU_DEAD_FROZEN:
  2818. case CPU_UP_CANCELED:
  2819. case CPU_UP_CANCELED_FROZEN:
  2820. for_each_rcu_flavor(rsp)
  2821. rcu_cleanup_dead_cpu(cpu, rsp);
  2822. break;
  2823. default:
  2824. break;
  2825. }
  2826. trace_rcu_utilization(TPS("End CPU hotplug"));
  2827. return NOTIFY_OK;
  2828. }
  2829. static int rcu_pm_notify(struct notifier_block *self,
  2830. unsigned long action, void *hcpu)
  2831. {
  2832. switch (action) {
  2833. case PM_HIBERNATION_PREPARE:
  2834. case PM_SUSPEND_PREPARE:
  2835. if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
  2836. rcu_expedited = 1;
  2837. break;
  2838. case PM_POST_HIBERNATION:
  2839. case PM_POST_SUSPEND:
  2840. rcu_expedited = 0;
  2841. break;
  2842. default:
  2843. break;
  2844. }
  2845. return NOTIFY_OK;
  2846. }
  2847. /*
  2848. * Spawn the kthread that handles this RCU flavor's grace periods.
  2849. */
  2850. static int __init rcu_spawn_gp_kthread(void)
  2851. {
  2852. unsigned long flags;
  2853. struct rcu_node *rnp;
  2854. struct rcu_state *rsp;
  2855. struct task_struct *t;
  2856. for_each_rcu_flavor(rsp) {
  2857. t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
  2858. BUG_ON(IS_ERR(t));
  2859. rnp = rcu_get_root(rsp);
  2860. raw_spin_lock_irqsave(&rnp->lock, flags);
  2861. rsp->gp_kthread = t;
  2862. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2863. rcu_spawn_nocb_kthreads(rsp);
  2864. }
  2865. return 0;
  2866. }
  2867. early_initcall(rcu_spawn_gp_kthread);
  2868. /*
  2869. * This function is invoked towards the end of the scheduler's initialization
  2870. * process. Before this is called, the idle task might contain
  2871. * RCU read-side critical sections (during which time, this idle
  2872. * task is booting the system). After this function is called, the
  2873. * idle tasks are prohibited from containing RCU read-side critical
  2874. * sections. This function also enables RCU lockdep checking.
  2875. */
  2876. void rcu_scheduler_starting(void)
  2877. {
  2878. WARN_ON(num_online_cpus() != 1);
  2879. WARN_ON(nr_context_switches() > 0);
  2880. rcu_scheduler_active = 1;
  2881. }
  2882. /*
  2883. * Compute the per-level fanout, either using the exact fanout specified
  2884. * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
  2885. */
  2886. #ifdef CONFIG_RCU_FANOUT_EXACT
  2887. static void __init rcu_init_levelspread(struct rcu_state *rsp)
  2888. {
  2889. int i;
  2890. for (i = rcu_num_lvls - 1; i > 0; i--)
  2891. rsp->levelspread[i] = CONFIG_RCU_FANOUT;
  2892. rsp->levelspread[0] = rcu_fanout_leaf;
  2893. }
  2894. #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
  2895. static void __init rcu_init_levelspread(struct rcu_state *rsp)
  2896. {
  2897. int ccur;
  2898. int cprv;
  2899. int i;
  2900. cprv = nr_cpu_ids;
  2901. for (i = rcu_num_lvls - 1; i >= 0; i--) {
  2902. ccur = rsp->levelcnt[i];
  2903. rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
  2904. cprv = ccur;
  2905. }
  2906. }
  2907. #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
  2908. /*
  2909. * Helper function for rcu_init() that initializes one rcu_state structure.
  2910. */
  2911. static void __init rcu_init_one(struct rcu_state *rsp,
  2912. struct rcu_data __percpu *rda)
  2913. {
  2914. static char *buf[] = { "rcu_node_0",
  2915. "rcu_node_1",
  2916. "rcu_node_2",
  2917. "rcu_node_3" }; /* Match MAX_RCU_LVLS */
  2918. static char *fqs[] = { "rcu_node_fqs_0",
  2919. "rcu_node_fqs_1",
  2920. "rcu_node_fqs_2",
  2921. "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
  2922. int cpustride = 1;
  2923. int i;
  2924. int j;
  2925. struct rcu_node *rnp;
  2926. BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
  2927. /* Silence gcc 4.8 warning about array index out of range. */
  2928. if (rcu_num_lvls > RCU_NUM_LVLS)
  2929. panic("rcu_init_one: rcu_num_lvls overflow");
  2930. /* Initialize the level-tracking arrays. */
  2931. for (i = 0; i < rcu_num_lvls; i++)
  2932. rsp->levelcnt[i] = num_rcu_lvl[i];
  2933. for (i = 1; i < rcu_num_lvls; i++)
  2934. rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
  2935. rcu_init_levelspread(rsp);
  2936. /* Initialize the elements themselves, starting from the leaves. */
  2937. for (i = rcu_num_lvls - 1; i >= 0; i--) {
  2938. cpustride *= rsp->levelspread[i];
  2939. rnp = rsp->level[i];
  2940. for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
  2941. raw_spin_lock_init(&rnp->lock);
  2942. lockdep_set_class_and_name(&rnp->lock,
  2943. &rcu_node_class[i], buf[i]);
  2944. raw_spin_lock_init(&rnp->fqslock);
  2945. lockdep_set_class_and_name(&rnp->fqslock,
  2946. &rcu_fqs_class[i], fqs[i]);
  2947. rnp->gpnum = rsp->gpnum;
  2948. rnp->completed = rsp->completed;
  2949. rnp->qsmask = 0;
  2950. rnp->qsmaskinit = 0;
  2951. rnp->grplo = j * cpustride;
  2952. rnp->grphi = (j + 1) * cpustride - 1;
  2953. if (rnp->grphi >= NR_CPUS)
  2954. rnp->grphi = NR_CPUS - 1;
  2955. if (i == 0) {
  2956. rnp->grpnum = 0;
  2957. rnp->grpmask = 0;
  2958. rnp->parent = NULL;
  2959. } else {
  2960. rnp->grpnum = j % rsp->levelspread[i - 1];
  2961. rnp->grpmask = 1UL << rnp->grpnum;
  2962. rnp->parent = rsp->level[i - 1] +
  2963. j / rsp->levelspread[i - 1];
  2964. }
  2965. rnp->level = i;
  2966. INIT_LIST_HEAD(&rnp->blkd_tasks);
  2967. rcu_init_one_nocb(rnp);
  2968. }
  2969. }
  2970. rsp->rda = rda;
  2971. init_waitqueue_head(&rsp->gp_wq);
  2972. init_irq_work(&rsp->wakeup_work, rsp_wakeup);
  2973. rnp = rsp->level[rcu_num_lvls - 1];
  2974. for_each_possible_cpu(i) {
  2975. while (i > rnp->grphi)
  2976. rnp++;
  2977. per_cpu_ptr(rsp->rda, i)->mynode = rnp;
  2978. rcu_boot_init_percpu_data(i, rsp);
  2979. }
  2980. list_add(&rsp->flavors, &rcu_struct_flavors);
  2981. }
  2982. /*
  2983. * Compute the rcu_node tree geometry from kernel parameters. This cannot
  2984. * replace the definitions in tree.h because those are needed to size
  2985. * the ->node array in the rcu_state structure.
  2986. */
  2987. static void __init rcu_init_geometry(void)
  2988. {
  2989. ulong d;
  2990. int i;
  2991. int j;
  2992. int n = nr_cpu_ids;
  2993. int rcu_capacity[MAX_RCU_LVLS + 1];
  2994. /*
  2995. * Initialize any unspecified boot parameters.
  2996. * The default values of jiffies_till_first_fqs and
  2997. * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
  2998. * value, which is a function of HZ, then adding one for each
  2999. * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
  3000. */
  3001. d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
  3002. if (jiffies_till_first_fqs == ULONG_MAX)
  3003. jiffies_till_first_fqs = d;
  3004. if (jiffies_till_next_fqs == ULONG_MAX)
  3005. jiffies_till_next_fqs = d;
  3006. /* If the compile-time values are accurate, just leave. */
  3007. if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
  3008. nr_cpu_ids == NR_CPUS)
  3009. return;
  3010. /*
  3011. * Compute number of nodes that can be handled an rcu_node tree
  3012. * with the given number of levels. Setting rcu_capacity[0] makes
  3013. * some of the arithmetic easier.
  3014. */
  3015. rcu_capacity[0] = 1;
  3016. rcu_capacity[1] = rcu_fanout_leaf;
  3017. for (i = 2; i <= MAX_RCU_LVLS; i++)
  3018. rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
  3019. /*
  3020. * The boot-time rcu_fanout_leaf parameter is only permitted
  3021. * to increase the leaf-level fanout, not decrease it. Of course,
  3022. * the leaf-level fanout cannot exceed the number of bits in
  3023. * the rcu_node masks. Finally, the tree must be able to accommodate
  3024. * the configured number of CPUs. Complain and fall back to the
  3025. * compile-time values if these limits are exceeded.
  3026. */
  3027. if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
  3028. rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
  3029. n > rcu_capacity[MAX_RCU_LVLS]) {
  3030. WARN_ON(1);
  3031. return;
  3032. }
  3033. /* Calculate the number of rcu_nodes at each level of the tree. */
  3034. for (i = 1; i <= MAX_RCU_LVLS; i++)
  3035. if (n <= rcu_capacity[i]) {
  3036. for (j = 0; j <= i; j++)
  3037. num_rcu_lvl[j] =
  3038. DIV_ROUND_UP(n, rcu_capacity[i - j]);
  3039. rcu_num_lvls = i;
  3040. for (j = i + 1; j <= MAX_RCU_LVLS; j++)
  3041. num_rcu_lvl[j] = 0;
  3042. break;
  3043. }
  3044. /* Calculate the total number of rcu_node structures. */
  3045. rcu_num_nodes = 0;
  3046. for (i = 0; i <= MAX_RCU_LVLS; i++)
  3047. rcu_num_nodes += num_rcu_lvl[i];
  3048. rcu_num_nodes -= n;
  3049. }
  3050. void __init rcu_init(void)
  3051. {
  3052. int cpu;
  3053. rcu_bootup_announce();
  3054. rcu_init_geometry();
  3055. rcu_init_one(&rcu_bh_state, &rcu_bh_data);
  3056. rcu_init_one(&rcu_sched_state, &rcu_sched_data);
  3057. __rcu_init_preempt();
  3058. open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
  3059. /*
  3060. * We don't need protection against CPU-hotplug here because
  3061. * this is called early in boot, before either interrupts
  3062. * or the scheduler are operational.
  3063. */
  3064. cpu_notifier(rcu_cpu_notify, 0);
  3065. pm_notifier(rcu_pm_notify, 0);
  3066. for_each_online_cpu(cpu)
  3067. rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
  3068. }
  3069. #include "tree_plugin.h"