delayed-inode.c 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970
  1. /*
  2. * Copyright (C) 2011 Fujitsu. All rights reserved.
  3. * Written by Miao Xie <miaox@cn.fujitsu.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public
  7. * License v2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public
  15. * License along with this program; if not, write to the
  16. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17. * Boston, MA 021110-1307, USA.
  18. */
  19. #include <linux/slab.h>
  20. #include "delayed-inode.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #define BTRFS_DELAYED_WRITEBACK 400
  24. #define BTRFS_DELAYED_BACKGROUND 100
  25. static struct kmem_cache *delayed_node_cache;
  26. int __init btrfs_delayed_inode_init(void)
  27. {
  28. delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  29. sizeof(struct btrfs_delayed_node),
  30. 0,
  31. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  32. NULL);
  33. if (!delayed_node_cache)
  34. return -ENOMEM;
  35. return 0;
  36. }
  37. void btrfs_delayed_inode_exit(void)
  38. {
  39. if (delayed_node_cache)
  40. kmem_cache_destroy(delayed_node_cache);
  41. }
  42. static inline void btrfs_init_delayed_node(
  43. struct btrfs_delayed_node *delayed_node,
  44. struct btrfs_root *root, u64 inode_id)
  45. {
  46. delayed_node->root = root;
  47. delayed_node->inode_id = inode_id;
  48. atomic_set(&delayed_node->refs, 0);
  49. delayed_node->count = 0;
  50. delayed_node->in_list = 0;
  51. delayed_node->inode_dirty = 0;
  52. delayed_node->ins_root = RB_ROOT;
  53. delayed_node->del_root = RB_ROOT;
  54. mutex_init(&delayed_node->mutex);
  55. delayed_node->index_cnt = 0;
  56. INIT_LIST_HEAD(&delayed_node->n_list);
  57. INIT_LIST_HEAD(&delayed_node->p_list);
  58. delayed_node->bytes_reserved = 0;
  59. memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
  60. }
  61. static inline int btrfs_is_continuous_delayed_item(
  62. struct btrfs_delayed_item *item1,
  63. struct btrfs_delayed_item *item2)
  64. {
  65. if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  66. item1->key.objectid == item2->key.objectid &&
  67. item1->key.type == item2->key.type &&
  68. item1->key.offset + 1 == item2->key.offset)
  69. return 1;
  70. return 0;
  71. }
  72. static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
  73. struct btrfs_root *root)
  74. {
  75. return root->fs_info->delayed_root;
  76. }
  77. static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
  78. {
  79. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  80. struct btrfs_root *root = btrfs_inode->root;
  81. u64 ino = btrfs_ino(inode);
  82. struct btrfs_delayed_node *node;
  83. node = ACCESS_ONCE(btrfs_inode->delayed_node);
  84. if (node) {
  85. atomic_inc(&node->refs);
  86. return node;
  87. }
  88. spin_lock(&root->inode_lock);
  89. node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  90. if (node) {
  91. if (btrfs_inode->delayed_node) {
  92. atomic_inc(&node->refs); /* can be accessed */
  93. BUG_ON(btrfs_inode->delayed_node != node);
  94. spin_unlock(&root->inode_lock);
  95. return node;
  96. }
  97. btrfs_inode->delayed_node = node;
  98. atomic_inc(&node->refs); /* can be accessed */
  99. atomic_inc(&node->refs); /* cached in the inode */
  100. spin_unlock(&root->inode_lock);
  101. return node;
  102. }
  103. spin_unlock(&root->inode_lock);
  104. return NULL;
  105. }
  106. /* Will return either the node or PTR_ERR(-ENOMEM) */
  107. static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
  108. struct inode *inode)
  109. {
  110. struct btrfs_delayed_node *node;
  111. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  112. struct btrfs_root *root = btrfs_inode->root;
  113. u64 ino = btrfs_ino(inode);
  114. int ret;
  115. again:
  116. node = btrfs_get_delayed_node(inode);
  117. if (node)
  118. return node;
  119. node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
  120. if (!node)
  121. return ERR_PTR(-ENOMEM);
  122. btrfs_init_delayed_node(node, root, ino);
  123. atomic_inc(&node->refs); /* cached in the btrfs inode */
  124. atomic_inc(&node->refs); /* can be accessed */
  125. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  126. if (ret) {
  127. kmem_cache_free(delayed_node_cache, node);
  128. return ERR_PTR(ret);
  129. }
  130. spin_lock(&root->inode_lock);
  131. ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
  132. if (ret == -EEXIST) {
  133. kmem_cache_free(delayed_node_cache, node);
  134. spin_unlock(&root->inode_lock);
  135. radix_tree_preload_end();
  136. goto again;
  137. }
  138. btrfs_inode->delayed_node = node;
  139. spin_unlock(&root->inode_lock);
  140. radix_tree_preload_end();
  141. return node;
  142. }
  143. /*
  144. * Call it when holding delayed_node->mutex
  145. *
  146. * If mod = 1, add this node into the prepared list.
  147. */
  148. static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
  149. struct btrfs_delayed_node *node,
  150. int mod)
  151. {
  152. spin_lock(&root->lock);
  153. if (node->in_list) {
  154. if (!list_empty(&node->p_list))
  155. list_move_tail(&node->p_list, &root->prepare_list);
  156. else if (mod)
  157. list_add_tail(&node->p_list, &root->prepare_list);
  158. } else {
  159. list_add_tail(&node->n_list, &root->node_list);
  160. list_add_tail(&node->p_list, &root->prepare_list);
  161. atomic_inc(&node->refs); /* inserted into list */
  162. root->nodes++;
  163. node->in_list = 1;
  164. }
  165. spin_unlock(&root->lock);
  166. }
  167. /* Call it when holding delayed_node->mutex */
  168. static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
  169. struct btrfs_delayed_node *node)
  170. {
  171. spin_lock(&root->lock);
  172. if (node->in_list) {
  173. root->nodes--;
  174. atomic_dec(&node->refs); /* not in the list */
  175. list_del_init(&node->n_list);
  176. if (!list_empty(&node->p_list))
  177. list_del_init(&node->p_list);
  178. node->in_list = 0;
  179. }
  180. spin_unlock(&root->lock);
  181. }
  182. struct btrfs_delayed_node *btrfs_first_delayed_node(
  183. struct btrfs_delayed_root *delayed_root)
  184. {
  185. struct list_head *p;
  186. struct btrfs_delayed_node *node = NULL;
  187. spin_lock(&delayed_root->lock);
  188. if (list_empty(&delayed_root->node_list))
  189. goto out;
  190. p = delayed_root->node_list.next;
  191. node = list_entry(p, struct btrfs_delayed_node, n_list);
  192. atomic_inc(&node->refs);
  193. out:
  194. spin_unlock(&delayed_root->lock);
  195. return node;
  196. }
  197. struct btrfs_delayed_node *btrfs_next_delayed_node(
  198. struct btrfs_delayed_node *node)
  199. {
  200. struct btrfs_delayed_root *delayed_root;
  201. struct list_head *p;
  202. struct btrfs_delayed_node *next = NULL;
  203. delayed_root = node->root->fs_info->delayed_root;
  204. spin_lock(&delayed_root->lock);
  205. if (!node->in_list) { /* not in the list */
  206. if (list_empty(&delayed_root->node_list))
  207. goto out;
  208. p = delayed_root->node_list.next;
  209. } else if (list_is_last(&node->n_list, &delayed_root->node_list))
  210. goto out;
  211. else
  212. p = node->n_list.next;
  213. next = list_entry(p, struct btrfs_delayed_node, n_list);
  214. atomic_inc(&next->refs);
  215. out:
  216. spin_unlock(&delayed_root->lock);
  217. return next;
  218. }
  219. static void __btrfs_release_delayed_node(
  220. struct btrfs_delayed_node *delayed_node,
  221. int mod)
  222. {
  223. struct btrfs_delayed_root *delayed_root;
  224. if (!delayed_node)
  225. return;
  226. delayed_root = delayed_node->root->fs_info->delayed_root;
  227. mutex_lock(&delayed_node->mutex);
  228. if (delayed_node->count)
  229. btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
  230. else
  231. btrfs_dequeue_delayed_node(delayed_root, delayed_node);
  232. mutex_unlock(&delayed_node->mutex);
  233. if (atomic_dec_and_test(&delayed_node->refs)) {
  234. struct btrfs_root *root = delayed_node->root;
  235. spin_lock(&root->inode_lock);
  236. if (atomic_read(&delayed_node->refs) == 0) {
  237. radix_tree_delete(&root->delayed_nodes_tree,
  238. delayed_node->inode_id);
  239. kmem_cache_free(delayed_node_cache, delayed_node);
  240. }
  241. spin_unlock(&root->inode_lock);
  242. }
  243. }
  244. static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
  245. {
  246. __btrfs_release_delayed_node(node, 0);
  247. }
  248. struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
  249. struct btrfs_delayed_root *delayed_root)
  250. {
  251. struct list_head *p;
  252. struct btrfs_delayed_node *node = NULL;
  253. spin_lock(&delayed_root->lock);
  254. if (list_empty(&delayed_root->prepare_list))
  255. goto out;
  256. p = delayed_root->prepare_list.next;
  257. list_del_init(p);
  258. node = list_entry(p, struct btrfs_delayed_node, p_list);
  259. atomic_inc(&node->refs);
  260. out:
  261. spin_unlock(&delayed_root->lock);
  262. return node;
  263. }
  264. static inline void btrfs_release_prepared_delayed_node(
  265. struct btrfs_delayed_node *node)
  266. {
  267. __btrfs_release_delayed_node(node, 1);
  268. }
  269. struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
  270. {
  271. struct btrfs_delayed_item *item;
  272. item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
  273. if (item) {
  274. item->data_len = data_len;
  275. item->ins_or_del = 0;
  276. item->bytes_reserved = 0;
  277. item->delayed_node = NULL;
  278. atomic_set(&item->refs, 1);
  279. }
  280. return item;
  281. }
  282. /*
  283. * __btrfs_lookup_delayed_item - look up the delayed item by key
  284. * @delayed_node: pointer to the delayed node
  285. * @key: the key to look up
  286. * @prev: used to store the prev item if the right item isn't found
  287. * @next: used to store the next item if the right item isn't found
  288. *
  289. * Note: if we don't find the right item, we will return the prev item and
  290. * the next item.
  291. */
  292. static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
  293. struct rb_root *root,
  294. struct btrfs_key *key,
  295. struct btrfs_delayed_item **prev,
  296. struct btrfs_delayed_item **next)
  297. {
  298. struct rb_node *node, *prev_node = NULL;
  299. struct btrfs_delayed_item *delayed_item = NULL;
  300. int ret = 0;
  301. node = root->rb_node;
  302. while (node) {
  303. delayed_item = rb_entry(node, struct btrfs_delayed_item,
  304. rb_node);
  305. prev_node = node;
  306. ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
  307. if (ret < 0)
  308. node = node->rb_right;
  309. else if (ret > 0)
  310. node = node->rb_left;
  311. else
  312. return delayed_item;
  313. }
  314. if (prev) {
  315. if (!prev_node)
  316. *prev = NULL;
  317. else if (ret < 0)
  318. *prev = delayed_item;
  319. else if ((node = rb_prev(prev_node)) != NULL) {
  320. *prev = rb_entry(node, struct btrfs_delayed_item,
  321. rb_node);
  322. } else
  323. *prev = NULL;
  324. }
  325. if (next) {
  326. if (!prev_node)
  327. *next = NULL;
  328. else if (ret > 0)
  329. *next = delayed_item;
  330. else if ((node = rb_next(prev_node)) != NULL) {
  331. *next = rb_entry(node, struct btrfs_delayed_item,
  332. rb_node);
  333. } else
  334. *next = NULL;
  335. }
  336. return NULL;
  337. }
  338. struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
  339. struct btrfs_delayed_node *delayed_node,
  340. struct btrfs_key *key)
  341. {
  342. struct btrfs_delayed_item *item;
  343. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  344. NULL, NULL);
  345. return item;
  346. }
  347. struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
  348. struct btrfs_delayed_node *delayed_node,
  349. struct btrfs_key *key)
  350. {
  351. struct btrfs_delayed_item *item;
  352. item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
  353. NULL, NULL);
  354. return item;
  355. }
  356. struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
  357. struct btrfs_delayed_node *delayed_node,
  358. struct btrfs_key *key)
  359. {
  360. struct btrfs_delayed_item *item, *next;
  361. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  362. NULL, &next);
  363. if (!item)
  364. item = next;
  365. return item;
  366. }
  367. struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
  368. struct btrfs_delayed_node *delayed_node,
  369. struct btrfs_key *key)
  370. {
  371. struct btrfs_delayed_item *item, *next;
  372. item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
  373. NULL, &next);
  374. if (!item)
  375. item = next;
  376. return item;
  377. }
  378. static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
  379. struct btrfs_delayed_item *ins,
  380. int action)
  381. {
  382. struct rb_node **p, *node;
  383. struct rb_node *parent_node = NULL;
  384. struct rb_root *root;
  385. struct btrfs_delayed_item *item;
  386. int cmp;
  387. if (action == BTRFS_DELAYED_INSERTION_ITEM)
  388. root = &delayed_node->ins_root;
  389. else if (action == BTRFS_DELAYED_DELETION_ITEM)
  390. root = &delayed_node->del_root;
  391. else
  392. BUG();
  393. p = &root->rb_node;
  394. node = &ins->rb_node;
  395. while (*p) {
  396. parent_node = *p;
  397. item = rb_entry(parent_node, struct btrfs_delayed_item,
  398. rb_node);
  399. cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
  400. if (cmp < 0)
  401. p = &(*p)->rb_right;
  402. else if (cmp > 0)
  403. p = &(*p)->rb_left;
  404. else
  405. return -EEXIST;
  406. }
  407. rb_link_node(node, parent_node, p);
  408. rb_insert_color(node, root);
  409. ins->delayed_node = delayed_node;
  410. ins->ins_or_del = action;
  411. if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
  412. action == BTRFS_DELAYED_INSERTION_ITEM &&
  413. ins->key.offset >= delayed_node->index_cnt)
  414. delayed_node->index_cnt = ins->key.offset + 1;
  415. delayed_node->count++;
  416. atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
  417. return 0;
  418. }
  419. static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
  420. struct btrfs_delayed_item *item)
  421. {
  422. return __btrfs_add_delayed_item(node, item,
  423. BTRFS_DELAYED_INSERTION_ITEM);
  424. }
  425. static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
  426. struct btrfs_delayed_item *item)
  427. {
  428. return __btrfs_add_delayed_item(node, item,
  429. BTRFS_DELAYED_DELETION_ITEM);
  430. }
  431. static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
  432. {
  433. struct rb_root *root;
  434. struct btrfs_delayed_root *delayed_root;
  435. delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
  436. BUG_ON(!delayed_root);
  437. BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
  438. delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
  439. if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
  440. root = &delayed_item->delayed_node->ins_root;
  441. else
  442. root = &delayed_item->delayed_node->del_root;
  443. rb_erase(&delayed_item->rb_node, root);
  444. delayed_item->delayed_node->count--;
  445. if (atomic_dec_return(&delayed_root->items) <
  446. BTRFS_DELAYED_BACKGROUND &&
  447. waitqueue_active(&delayed_root->wait))
  448. wake_up(&delayed_root->wait);
  449. }
  450. static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
  451. {
  452. if (item) {
  453. __btrfs_remove_delayed_item(item);
  454. if (atomic_dec_and_test(&item->refs))
  455. kfree(item);
  456. }
  457. }
  458. struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
  459. struct btrfs_delayed_node *delayed_node)
  460. {
  461. struct rb_node *p;
  462. struct btrfs_delayed_item *item = NULL;
  463. p = rb_first(&delayed_node->ins_root);
  464. if (p)
  465. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  466. return item;
  467. }
  468. struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
  469. struct btrfs_delayed_node *delayed_node)
  470. {
  471. struct rb_node *p;
  472. struct btrfs_delayed_item *item = NULL;
  473. p = rb_first(&delayed_node->del_root);
  474. if (p)
  475. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  476. return item;
  477. }
  478. struct btrfs_delayed_item *__btrfs_next_delayed_item(
  479. struct btrfs_delayed_item *item)
  480. {
  481. struct rb_node *p;
  482. struct btrfs_delayed_item *next = NULL;
  483. p = rb_next(&item->rb_node);
  484. if (p)
  485. next = rb_entry(p, struct btrfs_delayed_item, rb_node);
  486. return next;
  487. }
  488. static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
  489. u64 root_id)
  490. {
  491. struct btrfs_key root_key;
  492. if (root->objectid == root_id)
  493. return root;
  494. root_key.objectid = root_id;
  495. root_key.type = BTRFS_ROOT_ITEM_KEY;
  496. root_key.offset = (u64)-1;
  497. return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
  498. }
  499. static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
  500. struct btrfs_root *root,
  501. struct btrfs_delayed_item *item)
  502. {
  503. struct btrfs_block_rsv *src_rsv;
  504. struct btrfs_block_rsv *dst_rsv;
  505. u64 num_bytes;
  506. int ret;
  507. if (!trans->bytes_reserved)
  508. return 0;
  509. src_rsv = trans->block_rsv;
  510. dst_rsv = &root->fs_info->delayed_block_rsv;
  511. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  512. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  513. if (!ret) {
  514. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  515. item->key.objectid,
  516. num_bytes, 1);
  517. item->bytes_reserved = num_bytes;
  518. }
  519. return ret;
  520. }
  521. static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
  522. struct btrfs_delayed_item *item)
  523. {
  524. struct btrfs_block_rsv *rsv;
  525. if (!item->bytes_reserved)
  526. return;
  527. rsv = &root->fs_info->delayed_block_rsv;
  528. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  529. item->key.objectid, item->bytes_reserved,
  530. 0);
  531. btrfs_block_rsv_release(root, rsv,
  532. item->bytes_reserved);
  533. }
  534. static int btrfs_delayed_inode_reserve_metadata(
  535. struct btrfs_trans_handle *trans,
  536. struct btrfs_root *root,
  537. struct inode *inode,
  538. struct btrfs_delayed_node *node)
  539. {
  540. struct btrfs_block_rsv *src_rsv;
  541. struct btrfs_block_rsv *dst_rsv;
  542. u64 num_bytes;
  543. int ret;
  544. bool release = false;
  545. src_rsv = trans->block_rsv;
  546. dst_rsv = &root->fs_info->delayed_block_rsv;
  547. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  548. /*
  549. * btrfs_dirty_inode will update the inode under btrfs_join_transaction
  550. * which doesn't reserve space for speed. This is a problem since we
  551. * still need to reserve space for this update, so try to reserve the
  552. * space.
  553. *
  554. * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
  555. * we're accounted for.
  556. */
  557. if (!src_rsv || (!trans->bytes_reserved &&
  558. src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
  559. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  560. BTRFS_RESERVE_NO_FLUSH);
  561. /*
  562. * Since we're under a transaction reserve_metadata_bytes could
  563. * try to commit the transaction which will make it return
  564. * EAGAIN to make us stop the transaction we have, so return
  565. * ENOSPC instead so that btrfs_dirty_inode knows what to do.
  566. */
  567. if (ret == -EAGAIN)
  568. ret = -ENOSPC;
  569. if (!ret) {
  570. node->bytes_reserved = num_bytes;
  571. trace_btrfs_space_reservation(root->fs_info,
  572. "delayed_inode",
  573. btrfs_ino(inode),
  574. num_bytes, 1);
  575. }
  576. return ret;
  577. } else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
  578. spin_lock(&BTRFS_I(inode)->lock);
  579. if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  580. &BTRFS_I(inode)->runtime_flags)) {
  581. spin_unlock(&BTRFS_I(inode)->lock);
  582. release = true;
  583. goto migrate;
  584. }
  585. spin_unlock(&BTRFS_I(inode)->lock);
  586. /* Ok we didn't have space pre-reserved. This shouldn't happen
  587. * too often but it can happen if we do delalloc to an existing
  588. * inode which gets dirtied because of the time update, and then
  589. * isn't touched again until after the transaction commits and
  590. * then we try to write out the data. First try to be nice and
  591. * reserve something strictly for us. If not be a pain and try
  592. * to steal from the delalloc block rsv.
  593. */
  594. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  595. BTRFS_RESERVE_NO_FLUSH);
  596. if (!ret)
  597. goto out;
  598. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  599. if (!ret)
  600. goto out;
  601. /*
  602. * Ok this is a problem, let's just steal from the global rsv
  603. * since this really shouldn't happen that often.
  604. */
  605. WARN_ON(1);
  606. ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
  607. dst_rsv, num_bytes);
  608. goto out;
  609. }
  610. migrate:
  611. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  612. out:
  613. /*
  614. * Migrate only takes a reservation, it doesn't touch the size of the
  615. * block_rsv. This is to simplify people who don't normally have things
  616. * migrated from their block rsv. If they go to release their
  617. * reservation, that will decrease the size as well, so if migrate
  618. * reduced size we'd end up with a negative size. But for the
  619. * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
  620. * but we could in fact do this reserve/migrate dance several times
  621. * between the time we did the original reservation and we'd clean it
  622. * up. So to take care of this, release the space for the meta
  623. * reservation here. I think it may be time for a documentation page on
  624. * how block rsvs. work.
  625. */
  626. if (!ret) {
  627. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  628. btrfs_ino(inode), num_bytes, 1);
  629. node->bytes_reserved = num_bytes;
  630. }
  631. if (release) {
  632. trace_btrfs_space_reservation(root->fs_info, "delalloc",
  633. btrfs_ino(inode), num_bytes, 0);
  634. btrfs_block_rsv_release(root, src_rsv, num_bytes);
  635. }
  636. return ret;
  637. }
  638. static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
  639. struct btrfs_delayed_node *node)
  640. {
  641. struct btrfs_block_rsv *rsv;
  642. if (!node->bytes_reserved)
  643. return;
  644. rsv = &root->fs_info->delayed_block_rsv;
  645. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  646. node->inode_id, node->bytes_reserved, 0);
  647. btrfs_block_rsv_release(root, rsv,
  648. node->bytes_reserved);
  649. node->bytes_reserved = 0;
  650. }
  651. /*
  652. * This helper will insert some continuous items into the same leaf according
  653. * to the free space of the leaf.
  654. */
  655. static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
  656. struct btrfs_root *root,
  657. struct btrfs_path *path,
  658. struct btrfs_delayed_item *item)
  659. {
  660. struct btrfs_delayed_item *curr, *next;
  661. int free_space;
  662. int total_data_size = 0, total_size = 0;
  663. struct extent_buffer *leaf;
  664. char *data_ptr;
  665. struct btrfs_key *keys;
  666. u32 *data_size;
  667. struct list_head head;
  668. int slot;
  669. int nitems;
  670. int i;
  671. int ret = 0;
  672. BUG_ON(!path->nodes[0]);
  673. leaf = path->nodes[0];
  674. free_space = btrfs_leaf_free_space(root, leaf);
  675. INIT_LIST_HEAD(&head);
  676. next = item;
  677. nitems = 0;
  678. /*
  679. * count the number of the continuous items that we can insert in batch
  680. */
  681. while (total_size + next->data_len + sizeof(struct btrfs_item) <=
  682. free_space) {
  683. total_data_size += next->data_len;
  684. total_size += next->data_len + sizeof(struct btrfs_item);
  685. list_add_tail(&next->tree_list, &head);
  686. nitems++;
  687. curr = next;
  688. next = __btrfs_next_delayed_item(curr);
  689. if (!next)
  690. break;
  691. if (!btrfs_is_continuous_delayed_item(curr, next))
  692. break;
  693. }
  694. if (!nitems) {
  695. ret = 0;
  696. goto out;
  697. }
  698. /*
  699. * we need allocate some memory space, but it might cause the task
  700. * to sleep, so we set all locked nodes in the path to blocking locks
  701. * first.
  702. */
  703. btrfs_set_path_blocking(path);
  704. keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
  705. if (!keys) {
  706. ret = -ENOMEM;
  707. goto out;
  708. }
  709. data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
  710. if (!data_size) {
  711. ret = -ENOMEM;
  712. goto error;
  713. }
  714. /* get keys of all the delayed items */
  715. i = 0;
  716. list_for_each_entry(next, &head, tree_list) {
  717. keys[i] = next->key;
  718. data_size[i] = next->data_len;
  719. i++;
  720. }
  721. /* reset all the locked nodes in the patch to spinning locks. */
  722. btrfs_clear_path_blocking(path, NULL, 0);
  723. /* insert the keys of the items */
  724. setup_items_for_insert(trans, root, path, keys, data_size,
  725. total_data_size, total_size, nitems);
  726. /* insert the dir index items */
  727. slot = path->slots[0];
  728. list_for_each_entry_safe(curr, next, &head, tree_list) {
  729. data_ptr = btrfs_item_ptr(leaf, slot, char);
  730. write_extent_buffer(leaf, &curr->data,
  731. (unsigned long)data_ptr,
  732. curr->data_len);
  733. slot++;
  734. btrfs_delayed_item_release_metadata(root, curr);
  735. list_del(&curr->tree_list);
  736. btrfs_release_delayed_item(curr);
  737. }
  738. error:
  739. kfree(data_size);
  740. kfree(keys);
  741. out:
  742. return ret;
  743. }
  744. /*
  745. * This helper can just do simple insertion that needn't extend item for new
  746. * data, such as directory name index insertion, inode insertion.
  747. */
  748. static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
  749. struct btrfs_root *root,
  750. struct btrfs_path *path,
  751. struct btrfs_delayed_item *delayed_item)
  752. {
  753. struct extent_buffer *leaf;
  754. struct btrfs_item *item;
  755. char *ptr;
  756. int ret;
  757. ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
  758. delayed_item->data_len);
  759. if (ret < 0 && ret != -EEXIST)
  760. return ret;
  761. leaf = path->nodes[0];
  762. item = btrfs_item_nr(leaf, path->slots[0]);
  763. ptr = btrfs_item_ptr(leaf, path->slots[0], char);
  764. write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
  765. delayed_item->data_len);
  766. btrfs_mark_buffer_dirty(leaf);
  767. btrfs_delayed_item_release_metadata(root, delayed_item);
  768. return 0;
  769. }
  770. /*
  771. * we insert an item first, then if there are some continuous items, we try
  772. * to insert those items into the same leaf.
  773. */
  774. static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
  775. struct btrfs_path *path,
  776. struct btrfs_root *root,
  777. struct btrfs_delayed_node *node)
  778. {
  779. struct btrfs_delayed_item *curr, *prev;
  780. int ret = 0;
  781. do_again:
  782. mutex_lock(&node->mutex);
  783. curr = __btrfs_first_delayed_insertion_item(node);
  784. if (!curr)
  785. goto insert_end;
  786. ret = btrfs_insert_delayed_item(trans, root, path, curr);
  787. if (ret < 0) {
  788. btrfs_release_path(path);
  789. goto insert_end;
  790. }
  791. prev = curr;
  792. curr = __btrfs_next_delayed_item(prev);
  793. if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
  794. /* insert the continuous items into the same leaf */
  795. path->slots[0]++;
  796. btrfs_batch_insert_items(trans, root, path, curr);
  797. }
  798. btrfs_release_delayed_item(prev);
  799. btrfs_mark_buffer_dirty(path->nodes[0]);
  800. btrfs_release_path(path);
  801. mutex_unlock(&node->mutex);
  802. goto do_again;
  803. insert_end:
  804. mutex_unlock(&node->mutex);
  805. return ret;
  806. }
  807. static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
  808. struct btrfs_root *root,
  809. struct btrfs_path *path,
  810. struct btrfs_delayed_item *item)
  811. {
  812. struct btrfs_delayed_item *curr, *next;
  813. struct extent_buffer *leaf;
  814. struct btrfs_key key;
  815. struct list_head head;
  816. int nitems, i, last_item;
  817. int ret = 0;
  818. BUG_ON(!path->nodes[0]);
  819. leaf = path->nodes[0];
  820. i = path->slots[0];
  821. last_item = btrfs_header_nritems(leaf) - 1;
  822. if (i > last_item)
  823. return -ENOENT; /* FIXME: Is errno suitable? */
  824. next = item;
  825. INIT_LIST_HEAD(&head);
  826. btrfs_item_key_to_cpu(leaf, &key, i);
  827. nitems = 0;
  828. /*
  829. * count the number of the dir index items that we can delete in batch
  830. */
  831. while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
  832. list_add_tail(&next->tree_list, &head);
  833. nitems++;
  834. curr = next;
  835. next = __btrfs_next_delayed_item(curr);
  836. if (!next)
  837. break;
  838. if (!btrfs_is_continuous_delayed_item(curr, next))
  839. break;
  840. i++;
  841. if (i > last_item)
  842. break;
  843. btrfs_item_key_to_cpu(leaf, &key, i);
  844. }
  845. if (!nitems)
  846. return 0;
  847. ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
  848. if (ret)
  849. goto out;
  850. list_for_each_entry_safe(curr, next, &head, tree_list) {
  851. btrfs_delayed_item_release_metadata(root, curr);
  852. list_del(&curr->tree_list);
  853. btrfs_release_delayed_item(curr);
  854. }
  855. out:
  856. return ret;
  857. }
  858. static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
  859. struct btrfs_path *path,
  860. struct btrfs_root *root,
  861. struct btrfs_delayed_node *node)
  862. {
  863. struct btrfs_delayed_item *curr, *prev;
  864. int ret = 0;
  865. do_again:
  866. mutex_lock(&node->mutex);
  867. curr = __btrfs_first_delayed_deletion_item(node);
  868. if (!curr)
  869. goto delete_fail;
  870. ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
  871. if (ret < 0)
  872. goto delete_fail;
  873. else if (ret > 0) {
  874. /*
  875. * can't find the item which the node points to, so this node
  876. * is invalid, just drop it.
  877. */
  878. prev = curr;
  879. curr = __btrfs_next_delayed_item(prev);
  880. btrfs_release_delayed_item(prev);
  881. ret = 0;
  882. btrfs_release_path(path);
  883. if (curr) {
  884. mutex_unlock(&node->mutex);
  885. goto do_again;
  886. } else
  887. goto delete_fail;
  888. }
  889. btrfs_batch_delete_items(trans, root, path, curr);
  890. btrfs_release_path(path);
  891. mutex_unlock(&node->mutex);
  892. goto do_again;
  893. delete_fail:
  894. btrfs_release_path(path);
  895. mutex_unlock(&node->mutex);
  896. return ret;
  897. }
  898. static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
  899. {
  900. struct btrfs_delayed_root *delayed_root;
  901. if (delayed_node && delayed_node->inode_dirty) {
  902. BUG_ON(!delayed_node->root);
  903. delayed_node->inode_dirty = 0;
  904. delayed_node->count--;
  905. delayed_root = delayed_node->root->fs_info->delayed_root;
  906. if (atomic_dec_return(&delayed_root->items) <
  907. BTRFS_DELAYED_BACKGROUND &&
  908. waitqueue_active(&delayed_root->wait))
  909. wake_up(&delayed_root->wait);
  910. }
  911. }
  912. static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  913. struct btrfs_root *root,
  914. struct btrfs_path *path,
  915. struct btrfs_delayed_node *node)
  916. {
  917. struct btrfs_key key;
  918. struct btrfs_inode_item *inode_item;
  919. struct extent_buffer *leaf;
  920. int ret;
  921. key.objectid = node->inode_id;
  922. btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
  923. key.offset = 0;
  924. ret = btrfs_lookup_inode(trans, root, path, &key, 1);
  925. if (ret > 0) {
  926. btrfs_release_path(path);
  927. return -ENOENT;
  928. } else if (ret < 0) {
  929. return ret;
  930. }
  931. btrfs_unlock_up_safe(path, 1);
  932. leaf = path->nodes[0];
  933. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  934. struct btrfs_inode_item);
  935. write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
  936. sizeof(struct btrfs_inode_item));
  937. btrfs_mark_buffer_dirty(leaf);
  938. btrfs_release_path(path);
  939. btrfs_delayed_inode_release_metadata(root, node);
  940. btrfs_release_delayed_inode(node);
  941. return 0;
  942. }
  943. static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  944. struct btrfs_root *root,
  945. struct btrfs_path *path,
  946. struct btrfs_delayed_node *node)
  947. {
  948. int ret;
  949. mutex_lock(&node->mutex);
  950. if (!node->inode_dirty) {
  951. mutex_unlock(&node->mutex);
  952. return 0;
  953. }
  954. ret = __btrfs_update_delayed_inode(trans, root, path, node);
  955. mutex_unlock(&node->mutex);
  956. return ret;
  957. }
  958. static inline int
  959. __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  960. struct btrfs_path *path,
  961. struct btrfs_delayed_node *node)
  962. {
  963. int ret;
  964. ret = btrfs_insert_delayed_items(trans, path, node->root, node);
  965. if (ret)
  966. return ret;
  967. ret = btrfs_delete_delayed_items(trans, path, node->root, node);
  968. if (ret)
  969. return ret;
  970. ret = btrfs_update_delayed_inode(trans, node->root, path, node);
  971. return ret;
  972. }
  973. /*
  974. * Called when committing the transaction.
  975. * Returns 0 on success.
  976. * Returns < 0 on error and returns with an aborted transaction with any
  977. * outstanding delayed items cleaned up.
  978. */
  979. static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  980. struct btrfs_root *root, int nr)
  981. {
  982. struct btrfs_delayed_root *delayed_root;
  983. struct btrfs_delayed_node *curr_node, *prev_node;
  984. struct btrfs_path *path;
  985. struct btrfs_block_rsv *block_rsv;
  986. int ret = 0;
  987. bool count = (nr > 0);
  988. if (trans->aborted)
  989. return -EIO;
  990. path = btrfs_alloc_path();
  991. if (!path)
  992. return -ENOMEM;
  993. path->leave_spinning = 1;
  994. block_rsv = trans->block_rsv;
  995. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  996. delayed_root = btrfs_get_delayed_root(root);
  997. curr_node = btrfs_first_delayed_node(delayed_root);
  998. while (curr_node && (!count || (count && nr--))) {
  999. ret = __btrfs_commit_inode_delayed_items(trans, path,
  1000. curr_node);
  1001. if (ret) {
  1002. btrfs_release_delayed_node(curr_node);
  1003. curr_node = NULL;
  1004. btrfs_abort_transaction(trans, root, ret);
  1005. break;
  1006. }
  1007. prev_node = curr_node;
  1008. curr_node = btrfs_next_delayed_node(curr_node);
  1009. btrfs_release_delayed_node(prev_node);
  1010. }
  1011. if (curr_node)
  1012. btrfs_release_delayed_node(curr_node);
  1013. btrfs_free_path(path);
  1014. trans->block_rsv = block_rsv;
  1015. return ret;
  1016. }
  1017. int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  1018. struct btrfs_root *root)
  1019. {
  1020. return __btrfs_run_delayed_items(trans, root, -1);
  1021. }
  1022. int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
  1023. struct btrfs_root *root, int nr)
  1024. {
  1025. return __btrfs_run_delayed_items(trans, root, nr);
  1026. }
  1027. int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  1028. struct inode *inode)
  1029. {
  1030. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1031. struct btrfs_path *path;
  1032. struct btrfs_block_rsv *block_rsv;
  1033. int ret;
  1034. if (!delayed_node)
  1035. return 0;
  1036. mutex_lock(&delayed_node->mutex);
  1037. if (!delayed_node->count) {
  1038. mutex_unlock(&delayed_node->mutex);
  1039. btrfs_release_delayed_node(delayed_node);
  1040. return 0;
  1041. }
  1042. mutex_unlock(&delayed_node->mutex);
  1043. path = btrfs_alloc_path();
  1044. if (!path)
  1045. return -ENOMEM;
  1046. path->leave_spinning = 1;
  1047. block_rsv = trans->block_rsv;
  1048. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1049. ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1050. btrfs_release_delayed_node(delayed_node);
  1051. btrfs_free_path(path);
  1052. trans->block_rsv = block_rsv;
  1053. return ret;
  1054. }
  1055. int btrfs_commit_inode_delayed_inode(struct inode *inode)
  1056. {
  1057. struct btrfs_trans_handle *trans;
  1058. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1059. struct btrfs_path *path;
  1060. struct btrfs_block_rsv *block_rsv;
  1061. int ret;
  1062. if (!delayed_node)
  1063. return 0;
  1064. mutex_lock(&delayed_node->mutex);
  1065. if (!delayed_node->inode_dirty) {
  1066. mutex_unlock(&delayed_node->mutex);
  1067. btrfs_release_delayed_node(delayed_node);
  1068. return 0;
  1069. }
  1070. mutex_unlock(&delayed_node->mutex);
  1071. trans = btrfs_join_transaction(delayed_node->root);
  1072. if (IS_ERR(trans)) {
  1073. ret = PTR_ERR(trans);
  1074. goto out;
  1075. }
  1076. path = btrfs_alloc_path();
  1077. if (!path) {
  1078. ret = -ENOMEM;
  1079. goto trans_out;
  1080. }
  1081. path->leave_spinning = 1;
  1082. block_rsv = trans->block_rsv;
  1083. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1084. mutex_lock(&delayed_node->mutex);
  1085. if (delayed_node->inode_dirty)
  1086. ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
  1087. path, delayed_node);
  1088. else
  1089. ret = 0;
  1090. mutex_unlock(&delayed_node->mutex);
  1091. btrfs_free_path(path);
  1092. trans->block_rsv = block_rsv;
  1093. trans_out:
  1094. btrfs_end_transaction(trans, delayed_node->root);
  1095. btrfs_btree_balance_dirty(delayed_node->root);
  1096. out:
  1097. btrfs_release_delayed_node(delayed_node);
  1098. return ret;
  1099. }
  1100. void btrfs_remove_delayed_node(struct inode *inode)
  1101. {
  1102. struct btrfs_delayed_node *delayed_node;
  1103. delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
  1104. if (!delayed_node)
  1105. return;
  1106. BTRFS_I(inode)->delayed_node = NULL;
  1107. btrfs_release_delayed_node(delayed_node);
  1108. }
  1109. struct btrfs_async_delayed_node {
  1110. struct btrfs_root *root;
  1111. struct btrfs_delayed_node *delayed_node;
  1112. struct btrfs_work work;
  1113. };
  1114. static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
  1115. {
  1116. struct btrfs_async_delayed_node *async_node;
  1117. struct btrfs_trans_handle *trans;
  1118. struct btrfs_path *path;
  1119. struct btrfs_delayed_node *delayed_node = NULL;
  1120. struct btrfs_root *root;
  1121. struct btrfs_block_rsv *block_rsv;
  1122. int need_requeue = 0;
  1123. async_node = container_of(work, struct btrfs_async_delayed_node, work);
  1124. path = btrfs_alloc_path();
  1125. if (!path)
  1126. goto out;
  1127. path->leave_spinning = 1;
  1128. delayed_node = async_node->delayed_node;
  1129. root = delayed_node->root;
  1130. trans = btrfs_join_transaction(root);
  1131. if (IS_ERR(trans))
  1132. goto free_path;
  1133. block_rsv = trans->block_rsv;
  1134. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1135. __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1136. /*
  1137. * Maybe new delayed items have been inserted, so we need requeue
  1138. * the work. Besides that, we must dequeue the empty delayed nodes
  1139. * to avoid the race between delayed items balance and the worker.
  1140. * The race like this:
  1141. * Task1 Worker thread
  1142. * count == 0, needn't requeue
  1143. * also needn't insert the
  1144. * delayed node into prepare
  1145. * list again.
  1146. * add lots of delayed items
  1147. * queue the delayed node
  1148. * already in the list,
  1149. * and not in the prepare
  1150. * list, it means the delayed
  1151. * node is being dealt with
  1152. * by the worker.
  1153. * do delayed items balance
  1154. * the delayed node is being
  1155. * dealt with by the worker
  1156. * now, just wait.
  1157. * the worker goto idle.
  1158. * Task1 will sleep until the transaction is commited.
  1159. */
  1160. mutex_lock(&delayed_node->mutex);
  1161. if (delayed_node->count)
  1162. need_requeue = 1;
  1163. else
  1164. btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
  1165. delayed_node);
  1166. mutex_unlock(&delayed_node->mutex);
  1167. trans->block_rsv = block_rsv;
  1168. btrfs_end_transaction_dmeta(trans, root);
  1169. btrfs_btree_balance_dirty_nodelay(root);
  1170. free_path:
  1171. btrfs_free_path(path);
  1172. out:
  1173. if (need_requeue)
  1174. btrfs_requeue_work(&async_node->work);
  1175. else {
  1176. btrfs_release_prepared_delayed_node(delayed_node);
  1177. kfree(async_node);
  1178. }
  1179. }
  1180. static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
  1181. struct btrfs_root *root, int all)
  1182. {
  1183. struct btrfs_async_delayed_node *async_node;
  1184. struct btrfs_delayed_node *curr;
  1185. int count = 0;
  1186. again:
  1187. curr = btrfs_first_prepared_delayed_node(delayed_root);
  1188. if (!curr)
  1189. return 0;
  1190. async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
  1191. if (!async_node) {
  1192. btrfs_release_prepared_delayed_node(curr);
  1193. return -ENOMEM;
  1194. }
  1195. async_node->root = root;
  1196. async_node->delayed_node = curr;
  1197. async_node->work.func = btrfs_async_run_delayed_node_done;
  1198. async_node->work.flags = 0;
  1199. btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
  1200. count++;
  1201. if (all || count < 4)
  1202. goto again;
  1203. return 0;
  1204. }
  1205. void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
  1206. {
  1207. struct btrfs_delayed_root *delayed_root;
  1208. delayed_root = btrfs_get_delayed_root(root);
  1209. WARN_ON(btrfs_first_delayed_node(delayed_root));
  1210. }
  1211. void btrfs_balance_delayed_items(struct btrfs_root *root)
  1212. {
  1213. struct btrfs_delayed_root *delayed_root;
  1214. delayed_root = btrfs_get_delayed_root(root);
  1215. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1216. return;
  1217. if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
  1218. int ret;
  1219. ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
  1220. if (ret)
  1221. return;
  1222. wait_event_interruptible_timeout(
  1223. delayed_root->wait,
  1224. (atomic_read(&delayed_root->items) <
  1225. BTRFS_DELAYED_BACKGROUND),
  1226. HZ);
  1227. return;
  1228. }
  1229. btrfs_wq_run_delayed_node(delayed_root, root, 0);
  1230. }
  1231. /* Will return 0 or -ENOMEM */
  1232. int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
  1233. struct btrfs_root *root, const char *name,
  1234. int name_len, struct inode *dir,
  1235. struct btrfs_disk_key *disk_key, u8 type,
  1236. u64 index)
  1237. {
  1238. struct btrfs_delayed_node *delayed_node;
  1239. struct btrfs_delayed_item *delayed_item;
  1240. struct btrfs_dir_item *dir_item;
  1241. int ret;
  1242. delayed_node = btrfs_get_or_create_delayed_node(dir);
  1243. if (IS_ERR(delayed_node))
  1244. return PTR_ERR(delayed_node);
  1245. delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
  1246. if (!delayed_item) {
  1247. ret = -ENOMEM;
  1248. goto release_node;
  1249. }
  1250. delayed_item->key.objectid = btrfs_ino(dir);
  1251. btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
  1252. delayed_item->key.offset = index;
  1253. dir_item = (struct btrfs_dir_item *)delayed_item->data;
  1254. dir_item->location = *disk_key;
  1255. dir_item->transid = cpu_to_le64(trans->transid);
  1256. dir_item->data_len = 0;
  1257. dir_item->name_len = cpu_to_le16(name_len);
  1258. dir_item->type = type;
  1259. memcpy((char *)(dir_item + 1), name, name_len);
  1260. ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
  1261. /*
  1262. * we have reserved enough space when we start a new transaction,
  1263. * so reserving metadata failure is impossible
  1264. */
  1265. BUG_ON(ret);
  1266. mutex_lock(&delayed_node->mutex);
  1267. ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
  1268. if (unlikely(ret)) {
  1269. printk(KERN_ERR "err add delayed dir index item(name: %s) into "
  1270. "the insertion tree of the delayed node"
  1271. "(root id: %llu, inode id: %llu, errno: %d)\n",
  1272. name,
  1273. (unsigned long long)delayed_node->root->objectid,
  1274. (unsigned long long)delayed_node->inode_id,
  1275. ret);
  1276. BUG();
  1277. }
  1278. mutex_unlock(&delayed_node->mutex);
  1279. release_node:
  1280. btrfs_release_delayed_node(delayed_node);
  1281. return ret;
  1282. }
  1283. static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
  1284. struct btrfs_delayed_node *node,
  1285. struct btrfs_key *key)
  1286. {
  1287. struct btrfs_delayed_item *item;
  1288. mutex_lock(&node->mutex);
  1289. item = __btrfs_lookup_delayed_insertion_item(node, key);
  1290. if (!item) {
  1291. mutex_unlock(&node->mutex);
  1292. return 1;
  1293. }
  1294. btrfs_delayed_item_release_metadata(root, item);
  1295. btrfs_release_delayed_item(item);
  1296. mutex_unlock(&node->mutex);
  1297. return 0;
  1298. }
  1299. int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
  1300. struct btrfs_root *root, struct inode *dir,
  1301. u64 index)
  1302. {
  1303. struct btrfs_delayed_node *node;
  1304. struct btrfs_delayed_item *item;
  1305. struct btrfs_key item_key;
  1306. int ret;
  1307. node = btrfs_get_or_create_delayed_node(dir);
  1308. if (IS_ERR(node))
  1309. return PTR_ERR(node);
  1310. item_key.objectid = btrfs_ino(dir);
  1311. btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
  1312. item_key.offset = index;
  1313. ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
  1314. if (!ret)
  1315. goto end;
  1316. item = btrfs_alloc_delayed_item(0);
  1317. if (!item) {
  1318. ret = -ENOMEM;
  1319. goto end;
  1320. }
  1321. item->key = item_key;
  1322. ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
  1323. /*
  1324. * we have reserved enough space when we start a new transaction,
  1325. * so reserving metadata failure is impossible.
  1326. */
  1327. BUG_ON(ret);
  1328. mutex_lock(&node->mutex);
  1329. ret = __btrfs_add_delayed_deletion_item(node, item);
  1330. if (unlikely(ret)) {
  1331. printk(KERN_ERR "err add delayed dir index item(index: %llu) "
  1332. "into the deletion tree of the delayed node"
  1333. "(root id: %llu, inode id: %llu, errno: %d)\n",
  1334. (unsigned long long)index,
  1335. (unsigned long long)node->root->objectid,
  1336. (unsigned long long)node->inode_id,
  1337. ret);
  1338. BUG();
  1339. }
  1340. mutex_unlock(&node->mutex);
  1341. end:
  1342. btrfs_release_delayed_node(node);
  1343. return ret;
  1344. }
  1345. int btrfs_inode_delayed_dir_index_count(struct inode *inode)
  1346. {
  1347. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1348. if (!delayed_node)
  1349. return -ENOENT;
  1350. /*
  1351. * Since we have held i_mutex of this directory, it is impossible that
  1352. * a new directory index is added into the delayed node and index_cnt
  1353. * is updated now. So we needn't lock the delayed node.
  1354. */
  1355. if (!delayed_node->index_cnt) {
  1356. btrfs_release_delayed_node(delayed_node);
  1357. return -EINVAL;
  1358. }
  1359. BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
  1360. btrfs_release_delayed_node(delayed_node);
  1361. return 0;
  1362. }
  1363. void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
  1364. struct list_head *del_list)
  1365. {
  1366. struct btrfs_delayed_node *delayed_node;
  1367. struct btrfs_delayed_item *item;
  1368. delayed_node = btrfs_get_delayed_node(inode);
  1369. if (!delayed_node)
  1370. return;
  1371. mutex_lock(&delayed_node->mutex);
  1372. item = __btrfs_first_delayed_insertion_item(delayed_node);
  1373. while (item) {
  1374. atomic_inc(&item->refs);
  1375. list_add_tail(&item->readdir_list, ins_list);
  1376. item = __btrfs_next_delayed_item(item);
  1377. }
  1378. item = __btrfs_first_delayed_deletion_item(delayed_node);
  1379. while (item) {
  1380. atomic_inc(&item->refs);
  1381. list_add_tail(&item->readdir_list, del_list);
  1382. item = __btrfs_next_delayed_item(item);
  1383. }
  1384. mutex_unlock(&delayed_node->mutex);
  1385. /*
  1386. * This delayed node is still cached in the btrfs inode, so refs
  1387. * must be > 1 now, and we needn't check it is going to be freed
  1388. * or not.
  1389. *
  1390. * Besides that, this function is used to read dir, we do not
  1391. * insert/delete delayed items in this period. So we also needn't
  1392. * requeue or dequeue this delayed node.
  1393. */
  1394. atomic_dec(&delayed_node->refs);
  1395. }
  1396. void btrfs_put_delayed_items(struct list_head *ins_list,
  1397. struct list_head *del_list)
  1398. {
  1399. struct btrfs_delayed_item *curr, *next;
  1400. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1401. list_del(&curr->readdir_list);
  1402. if (atomic_dec_and_test(&curr->refs))
  1403. kfree(curr);
  1404. }
  1405. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1406. list_del(&curr->readdir_list);
  1407. if (atomic_dec_and_test(&curr->refs))
  1408. kfree(curr);
  1409. }
  1410. }
  1411. int btrfs_should_delete_dir_index(struct list_head *del_list,
  1412. u64 index)
  1413. {
  1414. struct btrfs_delayed_item *curr, *next;
  1415. int ret;
  1416. if (list_empty(del_list))
  1417. return 0;
  1418. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1419. if (curr->key.offset > index)
  1420. break;
  1421. list_del(&curr->readdir_list);
  1422. ret = (curr->key.offset == index);
  1423. if (atomic_dec_and_test(&curr->refs))
  1424. kfree(curr);
  1425. if (ret)
  1426. return 1;
  1427. else
  1428. continue;
  1429. }
  1430. return 0;
  1431. }
  1432. /*
  1433. * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
  1434. *
  1435. */
  1436. int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
  1437. filldir_t filldir,
  1438. struct list_head *ins_list)
  1439. {
  1440. struct btrfs_dir_item *di;
  1441. struct btrfs_delayed_item *curr, *next;
  1442. struct btrfs_key location;
  1443. char *name;
  1444. int name_len;
  1445. int over = 0;
  1446. unsigned char d_type;
  1447. if (list_empty(ins_list))
  1448. return 0;
  1449. /*
  1450. * Changing the data of the delayed item is impossible. So
  1451. * we needn't lock them. And we have held i_mutex of the
  1452. * directory, nobody can delete any directory indexes now.
  1453. */
  1454. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1455. list_del(&curr->readdir_list);
  1456. if (curr->key.offset < filp->f_pos) {
  1457. if (atomic_dec_and_test(&curr->refs))
  1458. kfree(curr);
  1459. continue;
  1460. }
  1461. filp->f_pos = curr->key.offset;
  1462. di = (struct btrfs_dir_item *)curr->data;
  1463. name = (char *)(di + 1);
  1464. name_len = le16_to_cpu(di->name_len);
  1465. d_type = btrfs_filetype_table[di->type];
  1466. btrfs_disk_key_to_cpu(&location, &di->location);
  1467. over = filldir(dirent, name, name_len, curr->key.offset,
  1468. location.objectid, d_type);
  1469. if (atomic_dec_and_test(&curr->refs))
  1470. kfree(curr);
  1471. if (over)
  1472. return 1;
  1473. }
  1474. return 0;
  1475. }
  1476. BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
  1477. generation, 64);
  1478. BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
  1479. sequence, 64);
  1480. BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
  1481. transid, 64);
  1482. BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
  1483. BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
  1484. nbytes, 64);
  1485. BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
  1486. block_group, 64);
  1487. BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
  1488. BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
  1489. BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
  1490. BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
  1491. BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
  1492. BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
  1493. BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
  1494. BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
  1495. static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
  1496. struct btrfs_inode_item *inode_item,
  1497. struct inode *inode)
  1498. {
  1499. btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
  1500. btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
  1501. btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
  1502. btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
  1503. btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
  1504. btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
  1505. btrfs_set_stack_inode_generation(inode_item,
  1506. BTRFS_I(inode)->generation);
  1507. btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
  1508. btrfs_set_stack_inode_transid(inode_item, trans->transid);
  1509. btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
  1510. btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
  1511. btrfs_set_stack_inode_block_group(inode_item, 0);
  1512. btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
  1513. inode->i_atime.tv_sec);
  1514. btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
  1515. inode->i_atime.tv_nsec);
  1516. btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
  1517. inode->i_mtime.tv_sec);
  1518. btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
  1519. inode->i_mtime.tv_nsec);
  1520. btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
  1521. inode->i_ctime.tv_sec);
  1522. btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
  1523. inode->i_ctime.tv_nsec);
  1524. }
  1525. int btrfs_fill_inode(struct inode *inode, u32 *rdev)
  1526. {
  1527. struct btrfs_delayed_node *delayed_node;
  1528. struct btrfs_inode_item *inode_item;
  1529. struct btrfs_timespec *tspec;
  1530. delayed_node = btrfs_get_delayed_node(inode);
  1531. if (!delayed_node)
  1532. return -ENOENT;
  1533. mutex_lock(&delayed_node->mutex);
  1534. if (!delayed_node->inode_dirty) {
  1535. mutex_unlock(&delayed_node->mutex);
  1536. btrfs_release_delayed_node(delayed_node);
  1537. return -ENOENT;
  1538. }
  1539. inode_item = &delayed_node->inode_item;
  1540. i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
  1541. i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
  1542. btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
  1543. inode->i_mode = btrfs_stack_inode_mode(inode_item);
  1544. set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
  1545. inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
  1546. BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
  1547. inode->i_version = btrfs_stack_inode_sequence(inode_item);
  1548. inode->i_rdev = 0;
  1549. *rdev = btrfs_stack_inode_rdev(inode_item);
  1550. BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
  1551. tspec = btrfs_inode_atime(inode_item);
  1552. inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1553. inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1554. tspec = btrfs_inode_mtime(inode_item);
  1555. inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1556. inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1557. tspec = btrfs_inode_ctime(inode_item);
  1558. inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1559. inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1560. inode->i_generation = BTRFS_I(inode)->generation;
  1561. BTRFS_I(inode)->index_cnt = (u64)-1;
  1562. mutex_unlock(&delayed_node->mutex);
  1563. btrfs_release_delayed_node(delayed_node);
  1564. return 0;
  1565. }
  1566. int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
  1567. struct btrfs_root *root, struct inode *inode)
  1568. {
  1569. struct btrfs_delayed_node *delayed_node;
  1570. int ret = 0;
  1571. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1572. if (IS_ERR(delayed_node))
  1573. return PTR_ERR(delayed_node);
  1574. mutex_lock(&delayed_node->mutex);
  1575. if (delayed_node->inode_dirty) {
  1576. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1577. goto release_node;
  1578. }
  1579. ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
  1580. delayed_node);
  1581. if (ret)
  1582. goto release_node;
  1583. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1584. delayed_node->inode_dirty = 1;
  1585. delayed_node->count++;
  1586. atomic_inc(&root->fs_info->delayed_root->items);
  1587. release_node:
  1588. mutex_unlock(&delayed_node->mutex);
  1589. btrfs_release_delayed_node(delayed_node);
  1590. return ret;
  1591. }
  1592. static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
  1593. {
  1594. struct btrfs_root *root = delayed_node->root;
  1595. struct btrfs_delayed_item *curr_item, *prev_item;
  1596. mutex_lock(&delayed_node->mutex);
  1597. curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
  1598. while (curr_item) {
  1599. btrfs_delayed_item_release_metadata(root, curr_item);
  1600. prev_item = curr_item;
  1601. curr_item = __btrfs_next_delayed_item(prev_item);
  1602. btrfs_release_delayed_item(prev_item);
  1603. }
  1604. curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
  1605. while (curr_item) {
  1606. btrfs_delayed_item_release_metadata(root, curr_item);
  1607. prev_item = curr_item;
  1608. curr_item = __btrfs_next_delayed_item(prev_item);
  1609. btrfs_release_delayed_item(prev_item);
  1610. }
  1611. if (delayed_node->inode_dirty) {
  1612. btrfs_delayed_inode_release_metadata(root, delayed_node);
  1613. btrfs_release_delayed_inode(delayed_node);
  1614. }
  1615. mutex_unlock(&delayed_node->mutex);
  1616. }
  1617. void btrfs_kill_delayed_inode_items(struct inode *inode)
  1618. {
  1619. struct btrfs_delayed_node *delayed_node;
  1620. delayed_node = btrfs_get_delayed_node(inode);
  1621. if (!delayed_node)
  1622. return;
  1623. __btrfs_kill_delayed_node(delayed_node);
  1624. btrfs_release_delayed_node(delayed_node);
  1625. }
  1626. void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
  1627. {
  1628. u64 inode_id = 0;
  1629. struct btrfs_delayed_node *delayed_nodes[8];
  1630. int i, n;
  1631. while (1) {
  1632. spin_lock(&root->inode_lock);
  1633. n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
  1634. (void **)delayed_nodes, inode_id,
  1635. ARRAY_SIZE(delayed_nodes));
  1636. if (!n) {
  1637. spin_unlock(&root->inode_lock);
  1638. break;
  1639. }
  1640. inode_id = delayed_nodes[n - 1]->inode_id + 1;
  1641. for (i = 0; i < n; i++)
  1642. atomic_inc(&delayed_nodes[i]->refs);
  1643. spin_unlock(&root->inode_lock);
  1644. for (i = 0; i < n; i++) {
  1645. __btrfs_kill_delayed_node(delayed_nodes[i]);
  1646. btrfs_release_delayed_node(delayed_nodes[i]);
  1647. }
  1648. }
  1649. }
  1650. void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
  1651. {
  1652. struct btrfs_delayed_root *delayed_root;
  1653. struct btrfs_delayed_node *curr_node, *prev_node;
  1654. delayed_root = btrfs_get_delayed_root(root);
  1655. curr_node = btrfs_first_delayed_node(delayed_root);
  1656. while (curr_node) {
  1657. __btrfs_kill_delayed_node(curr_node);
  1658. prev_node = curr_node;
  1659. curr_node = btrfs_next_delayed_node(curr_node);
  1660. btrfs_release_delayed_node(prev_node);
  1661. }
  1662. }