page_alloc.c 124 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/suspend.h>
  27. #include <linux/pagevec.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/slab.h>
  30. #include <linux/oom.h>
  31. #include <linux/notifier.h>
  32. #include <linux/topology.h>
  33. #include <linux/sysctl.h>
  34. #include <linux/cpu.h>
  35. #include <linux/cpuset.h>
  36. #include <linux/memory_hotplug.h>
  37. #include <linux/nodemask.h>
  38. #include <linux/vmalloc.h>
  39. #include <linux/mempolicy.h>
  40. #include <linux/stop_machine.h>
  41. #include <linux/sort.h>
  42. #include <linux/pfn.h>
  43. #include <linux/backing-dev.h>
  44. #include <linux/fault-inject.h>
  45. #include <linux/page-isolation.h>
  46. #include <linux/memcontrol.h>
  47. #include <asm/tlbflush.h>
  48. #include <asm/div64.h>
  49. #include "internal.h"
  50. /*
  51. * Array of node states.
  52. */
  53. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  54. [N_POSSIBLE] = NODE_MASK_ALL,
  55. [N_ONLINE] = { { [0] = 1UL } },
  56. #ifndef CONFIG_NUMA
  57. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  58. #ifdef CONFIG_HIGHMEM
  59. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  60. #endif
  61. [N_CPU] = { { [0] = 1UL } },
  62. #endif /* NUMA */
  63. };
  64. EXPORT_SYMBOL(node_states);
  65. unsigned long totalram_pages __read_mostly;
  66. unsigned long totalreserve_pages __read_mostly;
  67. long nr_swap_pages;
  68. int percpu_pagelist_fraction;
  69. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  70. int pageblock_order __read_mostly;
  71. #endif
  72. static void __free_pages_ok(struct page *page, unsigned int order);
  73. /*
  74. * results with 256, 32 in the lowmem_reserve sysctl:
  75. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  76. * 1G machine -> (16M dma, 784M normal, 224M high)
  77. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  78. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  79. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  80. *
  81. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  82. * don't need any ZONE_NORMAL reservation
  83. */
  84. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  85. #ifdef CONFIG_ZONE_DMA
  86. 256,
  87. #endif
  88. #ifdef CONFIG_ZONE_DMA32
  89. 256,
  90. #endif
  91. #ifdef CONFIG_HIGHMEM
  92. 32,
  93. #endif
  94. 32,
  95. };
  96. EXPORT_SYMBOL(totalram_pages);
  97. static char * const zone_names[MAX_NR_ZONES] = {
  98. #ifdef CONFIG_ZONE_DMA
  99. "DMA",
  100. #endif
  101. #ifdef CONFIG_ZONE_DMA32
  102. "DMA32",
  103. #endif
  104. "Normal",
  105. #ifdef CONFIG_HIGHMEM
  106. "HighMem",
  107. #endif
  108. "Movable",
  109. };
  110. int min_free_kbytes = 1024;
  111. unsigned long __meminitdata nr_kernel_pages;
  112. unsigned long __meminitdata nr_all_pages;
  113. static unsigned long __meminitdata dma_reserve;
  114. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  115. /*
  116. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  117. * ranges of memory (RAM) that may be registered with add_active_range().
  118. * Ranges passed to add_active_range() will be merged if possible
  119. * so the number of times add_active_range() can be called is
  120. * related to the number of nodes and the number of holes
  121. */
  122. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  123. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  124. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  125. #else
  126. #if MAX_NUMNODES >= 32
  127. /* If there can be many nodes, allow up to 50 holes per node */
  128. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  129. #else
  130. /* By default, allow up to 256 distinct regions */
  131. #define MAX_ACTIVE_REGIONS 256
  132. #endif
  133. #endif
  134. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  135. static int __meminitdata nr_nodemap_entries;
  136. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  137. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  138. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  139. static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
  140. static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
  141. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  142. unsigned long __initdata required_kernelcore;
  143. static unsigned long __initdata required_movablecore;
  144. unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  145. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  146. int movable_zone;
  147. EXPORT_SYMBOL(movable_zone);
  148. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  149. #if MAX_NUMNODES > 1
  150. int nr_node_ids __read_mostly = MAX_NUMNODES;
  151. EXPORT_SYMBOL(nr_node_ids);
  152. #endif
  153. int page_group_by_mobility_disabled __read_mostly;
  154. static void set_pageblock_migratetype(struct page *page, int migratetype)
  155. {
  156. set_pageblock_flags_group(page, (unsigned long)migratetype,
  157. PB_migrate, PB_migrate_end);
  158. }
  159. #ifdef CONFIG_DEBUG_VM
  160. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  161. {
  162. int ret = 0;
  163. unsigned seq;
  164. unsigned long pfn = page_to_pfn(page);
  165. do {
  166. seq = zone_span_seqbegin(zone);
  167. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  168. ret = 1;
  169. else if (pfn < zone->zone_start_pfn)
  170. ret = 1;
  171. } while (zone_span_seqretry(zone, seq));
  172. return ret;
  173. }
  174. static int page_is_consistent(struct zone *zone, struct page *page)
  175. {
  176. if (!pfn_valid_within(page_to_pfn(page)))
  177. return 0;
  178. if (zone != page_zone(page))
  179. return 0;
  180. return 1;
  181. }
  182. /*
  183. * Temporary debugging check for pages not lying within a given zone.
  184. */
  185. static int bad_range(struct zone *zone, struct page *page)
  186. {
  187. if (page_outside_zone_boundaries(zone, page))
  188. return 1;
  189. if (!page_is_consistent(zone, page))
  190. return 1;
  191. return 0;
  192. }
  193. #else
  194. static inline int bad_range(struct zone *zone, struct page *page)
  195. {
  196. return 0;
  197. }
  198. #endif
  199. static void bad_page(struct page *page)
  200. {
  201. void *pc = page_get_page_cgroup(page);
  202. printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
  203. "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
  204. current->comm, page, (int)(2*sizeof(unsigned long)),
  205. (unsigned long)page->flags, page->mapping,
  206. page_mapcount(page), page_count(page));
  207. if (pc) {
  208. printk(KERN_EMERG "cgroup:%p\n", pc);
  209. page_reset_bad_cgroup(page);
  210. }
  211. printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
  212. KERN_EMERG "Backtrace:\n");
  213. dump_stack();
  214. page->flags &= ~(1 << PG_lru |
  215. 1 << PG_private |
  216. 1 << PG_locked |
  217. 1 << PG_active |
  218. 1 << PG_dirty |
  219. 1 << PG_reclaim |
  220. 1 << PG_slab |
  221. 1 << PG_swapcache |
  222. 1 << PG_writeback |
  223. 1 << PG_buddy );
  224. set_page_count(page, 0);
  225. reset_page_mapcount(page);
  226. page->mapping = NULL;
  227. add_taint(TAINT_BAD_PAGE);
  228. }
  229. /*
  230. * Higher-order pages are called "compound pages". They are structured thusly:
  231. *
  232. * The first PAGE_SIZE page is called the "head page".
  233. *
  234. * The remaining PAGE_SIZE pages are called "tail pages".
  235. *
  236. * All pages have PG_compound set. All pages have their ->private pointing at
  237. * the head page (even the head page has this).
  238. *
  239. * The first tail page's ->lru.next holds the address of the compound page's
  240. * put_page() function. Its ->lru.prev holds the order of allocation.
  241. * This usage means that zero-order pages may not be compound.
  242. */
  243. static void free_compound_page(struct page *page)
  244. {
  245. __free_pages_ok(page, compound_order(page));
  246. }
  247. static void prep_compound_page(struct page *page, unsigned long order)
  248. {
  249. int i;
  250. int nr_pages = 1 << order;
  251. set_compound_page_dtor(page, free_compound_page);
  252. set_compound_order(page, order);
  253. __SetPageHead(page);
  254. for (i = 1; i < nr_pages; i++) {
  255. struct page *p = page + i;
  256. __SetPageTail(p);
  257. p->first_page = page;
  258. }
  259. }
  260. static void destroy_compound_page(struct page *page, unsigned long order)
  261. {
  262. int i;
  263. int nr_pages = 1 << order;
  264. if (unlikely(compound_order(page) != order))
  265. bad_page(page);
  266. if (unlikely(!PageHead(page)))
  267. bad_page(page);
  268. __ClearPageHead(page);
  269. for (i = 1; i < nr_pages; i++) {
  270. struct page *p = page + i;
  271. if (unlikely(!PageTail(p) |
  272. (p->first_page != page)))
  273. bad_page(page);
  274. __ClearPageTail(p);
  275. }
  276. }
  277. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  278. {
  279. int i;
  280. /*
  281. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  282. * and __GFP_HIGHMEM from hard or soft interrupt context.
  283. */
  284. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  285. for (i = 0; i < (1 << order); i++)
  286. clear_highpage(page + i);
  287. }
  288. static inline void set_page_order(struct page *page, int order)
  289. {
  290. set_page_private(page, order);
  291. __SetPageBuddy(page);
  292. }
  293. static inline void rmv_page_order(struct page *page)
  294. {
  295. __ClearPageBuddy(page);
  296. set_page_private(page, 0);
  297. }
  298. /*
  299. * Locate the struct page for both the matching buddy in our
  300. * pair (buddy1) and the combined O(n+1) page they form (page).
  301. *
  302. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  303. * the following equation:
  304. * B2 = B1 ^ (1 << O)
  305. * For example, if the starting buddy (buddy2) is #8 its order
  306. * 1 buddy is #10:
  307. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  308. *
  309. * 2) Any buddy B will have an order O+1 parent P which
  310. * satisfies the following equation:
  311. * P = B & ~(1 << O)
  312. *
  313. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  314. */
  315. static inline struct page *
  316. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  317. {
  318. unsigned long buddy_idx = page_idx ^ (1 << order);
  319. return page + (buddy_idx - page_idx);
  320. }
  321. static inline unsigned long
  322. __find_combined_index(unsigned long page_idx, unsigned int order)
  323. {
  324. return (page_idx & ~(1 << order));
  325. }
  326. /*
  327. * This function checks whether a page is free && is the buddy
  328. * we can do coalesce a page and its buddy if
  329. * (a) the buddy is not in a hole &&
  330. * (b) the buddy is in the buddy system &&
  331. * (c) a page and its buddy have the same order &&
  332. * (d) a page and its buddy are in the same zone.
  333. *
  334. * For recording whether a page is in the buddy system, we use PG_buddy.
  335. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  336. *
  337. * For recording page's order, we use page_private(page).
  338. */
  339. static inline int page_is_buddy(struct page *page, struct page *buddy,
  340. int order)
  341. {
  342. if (!pfn_valid_within(page_to_pfn(buddy)))
  343. return 0;
  344. if (page_zone_id(page) != page_zone_id(buddy))
  345. return 0;
  346. if (PageBuddy(buddy) && page_order(buddy) == order) {
  347. BUG_ON(page_count(buddy) != 0);
  348. return 1;
  349. }
  350. return 0;
  351. }
  352. /*
  353. * Freeing function for a buddy system allocator.
  354. *
  355. * The concept of a buddy system is to maintain direct-mapped table
  356. * (containing bit values) for memory blocks of various "orders".
  357. * The bottom level table contains the map for the smallest allocatable
  358. * units of memory (here, pages), and each level above it describes
  359. * pairs of units from the levels below, hence, "buddies".
  360. * At a high level, all that happens here is marking the table entry
  361. * at the bottom level available, and propagating the changes upward
  362. * as necessary, plus some accounting needed to play nicely with other
  363. * parts of the VM system.
  364. * At each level, we keep a list of pages, which are heads of continuous
  365. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  366. * order is recorded in page_private(page) field.
  367. * So when we are allocating or freeing one, we can derive the state of the
  368. * other. That is, if we allocate a small block, and both were
  369. * free, the remainder of the region must be split into blocks.
  370. * If a block is freed, and its buddy is also free, then this
  371. * triggers coalescing into a block of larger size.
  372. *
  373. * -- wli
  374. */
  375. static inline void __free_one_page(struct page *page,
  376. struct zone *zone, unsigned int order)
  377. {
  378. unsigned long page_idx;
  379. int order_size = 1 << order;
  380. int migratetype = get_pageblock_migratetype(page);
  381. if (unlikely(PageCompound(page)))
  382. destroy_compound_page(page, order);
  383. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  384. VM_BUG_ON(page_idx & (order_size - 1));
  385. VM_BUG_ON(bad_range(zone, page));
  386. __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
  387. while (order < MAX_ORDER-1) {
  388. unsigned long combined_idx;
  389. struct page *buddy;
  390. buddy = __page_find_buddy(page, page_idx, order);
  391. if (!page_is_buddy(page, buddy, order))
  392. break; /* Move the buddy up one level. */
  393. list_del(&buddy->lru);
  394. zone->free_area[order].nr_free--;
  395. rmv_page_order(buddy);
  396. combined_idx = __find_combined_index(page_idx, order);
  397. page = page + (combined_idx - page_idx);
  398. page_idx = combined_idx;
  399. order++;
  400. }
  401. set_page_order(page, order);
  402. list_add(&page->lru,
  403. &zone->free_area[order].free_list[migratetype]);
  404. zone->free_area[order].nr_free++;
  405. }
  406. static inline int free_pages_check(struct page *page)
  407. {
  408. if (unlikely(page_mapcount(page) |
  409. (page->mapping != NULL) |
  410. (page_get_page_cgroup(page) != NULL) |
  411. (page_count(page) != 0) |
  412. (page->flags & (
  413. 1 << PG_lru |
  414. 1 << PG_private |
  415. 1 << PG_locked |
  416. 1 << PG_active |
  417. 1 << PG_slab |
  418. 1 << PG_swapcache |
  419. 1 << PG_writeback |
  420. 1 << PG_reserved |
  421. 1 << PG_buddy ))))
  422. bad_page(page);
  423. if (PageDirty(page))
  424. __ClearPageDirty(page);
  425. /*
  426. * For now, we report if PG_reserved was found set, but do not
  427. * clear it, and do not free the page. But we shall soon need
  428. * to do more, for when the ZERO_PAGE count wraps negative.
  429. */
  430. return PageReserved(page);
  431. }
  432. /*
  433. * Frees a list of pages.
  434. * Assumes all pages on list are in same zone, and of same order.
  435. * count is the number of pages to free.
  436. *
  437. * If the zone was previously in an "all pages pinned" state then look to
  438. * see if this freeing clears that state.
  439. *
  440. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  441. * pinned" detection logic.
  442. */
  443. static void free_pages_bulk(struct zone *zone, int count,
  444. struct list_head *list, int order)
  445. {
  446. spin_lock(&zone->lock);
  447. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  448. zone->pages_scanned = 0;
  449. while (count--) {
  450. struct page *page;
  451. VM_BUG_ON(list_empty(list));
  452. page = list_entry(list->prev, struct page, lru);
  453. /* have to delete it as __free_one_page list manipulates */
  454. list_del(&page->lru);
  455. __free_one_page(page, zone, order);
  456. }
  457. spin_unlock(&zone->lock);
  458. }
  459. static void free_one_page(struct zone *zone, struct page *page, int order)
  460. {
  461. spin_lock(&zone->lock);
  462. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  463. zone->pages_scanned = 0;
  464. __free_one_page(page, zone, order);
  465. spin_unlock(&zone->lock);
  466. }
  467. static void __free_pages_ok(struct page *page, unsigned int order)
  468. {
  469. unsigned long flags;
  470. int i;
  471. int reserved = 0;
  472. for (i = 0 ; i < (1 << order) ; ++i)
  473. reserved += free_pages_check(page + i);
  474. if (reserved)
  475. return;
  476. if (!PageHighMem(page))
  477. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  478. arch_free_page(page, order);
  479. kernel_map_pages(page, 1 << order, 0);
  480. local_irq_save(flags);
  481. __count_vm_events(PGFREE, 1 << order);
  482. free_one_page(page_zone(page), page, order);
  483. local_irq_restore(flags);
  484. }
  485. /*
  486. * permit the bootmem allocator to evade page validation on high-order frees
  487. */
  488. void __init __free_pages_bootmem(struct page *page, unsigned int order)
  489. {
  490. if (order == 0) {
  491. __ClearPageReserved(page);
  492. set_page_count(page, 0);
  493. set_page_refcounted(page);
  494. __free_page(page);
  495. } else {
  496. int loop;
  497. prefetchw(page);
  498. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  499. struct page *p = &page[loop];
  500. if (loop + 1 < BITS_PER_LONG)
  501. prefetchw(p + 1);
  502. __ClearPageReserved(p);
  503. set_page_count(p, 0);
  504. }
  505. set_page_refcounted(page);
  506. __free_pages(page, order);
  507. }
  508. }
  509. /*
  510. * The order of subdivision here is critical for the IO subsystem.
  511. * Please do not alter this order without good reasons and regression
  512. * testing. Specifically, as large blocks of memory are subdivided,
  513. * the order in which smaller blocks are delivered depends on the order
  514. * they're subdivided in this function. This is the primary factor
  515. * influencing the order in which pages are delivered to the IO
  516. * subsystem according to empirical testing, and this is also justified
  517. * by considering the behavior of a buddy system containing a single
  518. * large block of memory acted on by a series of small allocations.
  519. * This behavior is a critical factor in sglist merging's success.
  520. *
  521. * -- wli
  522. */
  523. static inline void expand(struct zone *zone, struct page *page,
  524. int low, int high, struct free_area *area,
  525. int migratetype)
  526. {
  527. unsigned long size = 1 << high;
  528. while (high > low) {
  529. area--;
  530. high--;
  531. size >>= 1;
  532. VM_BUG_ON(bad_range(zone, &page[size]));
  533. list_add(&page[size].lru, &area->free_list[migratetype]);
  534. area->nr_free++;
  535. set_page_order(&page[size], high);
  536. }
  537. }
  538. /*
  539. * This page is about to be returned from the page allocator
  540. */
  541. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  542. {
  543. if (unlikely(page_mapcount(page) |
  544. (page->mapping != NULL) |
  545. (page_get_page_cgroup(page) != NULL) |
  546. (page_count(page) != 0) |
  547. (page->flags & (
  548. 1 << PG_lru |
  549. 1 << PG_private |
  550. 1 << PG_locked |
  551. 1 << PG_active |
  552. 1 << PG_dirty |
  553. 1 << PG_slab |
  554. 1 << PG_swapcache |
  555. 1 << PG_writeback |
  556. 1 << PG_reserved |
  557. 1 << PG_buddy ))))
  558. bad_page(page);
  559. /*
  560. * For now, we report if PG_reserved was found set, but do not
  561. * clear it, and do not allocate the page: as a safety net.
  562. */
  563. if (PageReserved(page))
  564. return 1;
  565. page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
  566. 1 << PG_referenced | 1 << PG_arch_1 |
  567. 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
  568. set_page_private(page, 0);
  569. set_page_refcounted(page);
  570. arch_alloc_page(page, order);
  571. kernel_map_pages(page, 1 << order, 1);
  572. if (gfp_flags & __GFP_ZERO)
  573. prep_zero_page(page, order, gfp_flags);
  574. if (order && (gfp_flags & __GFP_COMP))
  575. prep_compound_page(page, order);
  576. return 0;
  577. }
  578. /*
  579. * Go through the free lists for the given migratetype and remove
  580. * the smallest available page from the freelists
  581. */
  582. static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  583. int migratetype)
  584. {
  585. unsigned int current_order;
  586. struct free_area * area;
  587. struct page *page;
  588. /* Find a page of the appropriate size in the preferred list */
  589. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  590. area = &(zone->free_area[current_order]);
  591. if (list_empty(&area->free_list[migratetype]))
  592. continue;
  593. page = list_entry(area->free_list[migratetype].next,
  594. struct page, lru);
  595. list_del(&page->lru);
  596. rmv_page_order(page);
  597. area->nr_free--;
  598. __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
  599. expand(zone, page, order, current_order, area, migratetype);
  600. return page;
  601. }
  602. return NULL;
  603. }
  604. /*
  605. * This array describes the order lists are fallen back to when
  606. * the free lists for the desirable migrate type are depleted
  607. */
  608. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  609. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  610. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  611. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  612. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  613. };
  614. /*
  615. * Move the free pages in a range to the free lists of the requested type.
  616. * Note that start_page and end_pages are not aligned on a pageblock
  617. * boundary. If alignment is required, use move_freepages_block()
  618. */
  619. int move_freepages(struct zone *zone,
  620. struct page *start_page, struct page *end_page,
  621. int migratetype)
  622. {
  623. struct page *page;
  624. unsigned long order;
  625. int pages_moved = 0;
  626. #ifndef CONFIG_HOLES_IN_ZONE
  627. /*
  628. * page_zone is not safe to call in this context when
  629. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  630. * anyway as we check zone boundaries in move_freepages_block().
  631. * Remove at a later date when no bug reports exist related to
  632. * grouping pages by mobility
  633. */
  634. BUG_ON(page_zone(start_page) != page_zone(end_page));
  635. #endif
  636. for (page = start_page; page <= end_page;) {
  637. if (!pfn_valid_within(page_to_pfn(page))) {
  638. page++;
  639. continue;
  640. }
  641. if (!PageBuddy(page)) {
  642. page++;
  643. continue;
  644. }
  645. order = page_order(page);
  646. list_del(&page->lru);
  647. list_add(&page->lru,
  648. &zone->free_area[order].free_list[migratetype]);
  649. page += 1 << order;
  650. pages_moved += 1 << order;
  651. }
  652. return pages_moved;
  653. }
  654. int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
  655. {
  656. unsigned long start_pfn, end_pfn;
  657. struct page *start_page, *end_page;
  658. start_pfn = page_to_pfn(page);
  659. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  660. start_page = pfn_to_page(start_pfn);
  661. end_page = start_page + pageblock_nr_pages - 1;
  662. end_pfn = start_pfn + pageblock_nr_pages - 1;
  663. /* Do not cross zone boundaries */
  664. if (start_pfn < zone->zone_start_pfn)
  665. start_page = page;
  666. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  667. return 0;
  668. return move_freepages(zone, start_page, end_page, migratetype);
  669. }
  670. /* Remove an element from the buddy allocator from the fallback list */
  671. static struct page *__rmqueue_fallback(struct zone *zone, int order,
  672. int start_migratetype)
  673. {
  674. struct free_area * area;
  675. int current_order;
  676. struct page *page;
  677. int migratetype, i;
  678. /* Find the largest possible block of pages in the other list */
  679. for (current_order = MAX_ORDER-1; current_order >= order;
  680. --current_order) {
  681. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  682. migratetype = fallbacks[start_migratetype][i];
  683. /* MIGRATE_RESERVE handled later if necessary */
  684. if (migratetype == MIGRATE_RESERVE)
  685. continue;
  686. area = &(zone->free_area[current_order]);
  687. if (list_empty(&area->free_list[migratetype]))
  688. continue;
  689. page = list_entry(area->free_list[migratetype].next,
  690. struct page, lru);
  691. area->nr_free--;
  692. /*
  693. * If breaking a large block of pages, move all free
  694. * pages to the preferred allocation list. If falling
  695. * back for a reclaimable kernel allocation, be more
  696. * agressive about taking ownership of free pages
  697. */
  698. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  699. start_migratetype == MIGRATE_RECLAIMABLE) {
  700. unsigned long pages;
  701. pages = move_freepages_block(zone, page,
  702. start_migratetype);
  703. /* Claim the whole block if over half of it is free */
  704. if (pages >= (1 << (pageblock_order-1)))
  705. set_pageblock_migratetype(page,
  706. start_migratetype);
  707. migratetype = start_migratetype;
  708. }
  709. /* Remove the page from the freelists */
  710. list_del(&page->lru);
  711. rmv_page_order(page);
  712. __mod_zone_page_state(zone, NR_FREE_PAGES,
  713. -(1UL << order));
  714. if (current_order == pageblock_order)
  715. set_pageblock_migratetype(page,
  716. start_migratetype);
  717. expand(zone, page, order, current_order, area, migratetype);
  718. return page;
  719. }
  720. }
  721. /* Use MIGRATE_RESERVE rather than fail an allocation */
  722. return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
  723. }
  724. /*
  725. * Do the hard work of removing an element from the buddy allocator.
  726. * Call me with the zone->lock already held.
  727. */
  728. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  729. int migratetype)
  730. {
  731. struct page *page;
  732. page = __rmqueue_smallest(zone, order, migratetype);
  733. if (unlikely(!page))
  734. page = __rmqueue_fallback(zone, order, migratetype);
  735. return page;
  736. }
  737. /*
  738. * Obtain a specified number of elements from the buddy allocator, all under
  739. * a single hold of the lock, for efficiency. Add them to the supplied list.
  740. * Returns the number of new pages which were placed at *list.
  741. */
  742. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  743. unsigned long count, struct list_head *list,
  744. int migratetype)
  745. {
  746. int i;
  747. spin_lock(&zone->lock);
  748. for (i = 0; i < count; ++i) {
  749. struct page *page = __rmqueue(zone, order, migratetype);
  750. if (unlikely(page == NULL))
  751. break;
  752. /*
  753. * Split buddy pages returned by expand() are received here
  754. * in physical page order. The page is added to the callers and
  755. * list and the list head then moves forward. From the callers
  756. * perspective, the linked list is ordered by page number in
  757. * some conditions. This is useful for IO devices that can
  758. * merge IO requests if the physical pages are ordered
  759. * properly.
  760. */
  761. list_add(&page->lru, list);
  762. set_page_private(page, migratetype);
  763. list = &page->lru;
  764. }
  765. spin_unlock(&zone->lock);
  766. return i;
  767. }
  768. #ifdef CONFIG_NUMA
  769. /*
  770. * Called from the vmstat counter updater to drain pagesets of this
  771. * currently executing processor on remote nodes after they have
  772. * expired.
  773. *
  774. * Note that this function must be called with the thread pinned to
  775. * a single processor.
  776. */
  777. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  778. {
  779. unsigned long flags;
  780. int to_drain;
  781. local_irq_save(flags);
  782. if (pcp->count >= pcp->batch)
  783. to_drain = pcp->batch;
  784. else
  785. to_drain = pcp->count;
  786. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  787. pcp->count -= to_drain;
  788. local_irq_restore(flags);
  789. }
  790. #endif
  791. /*
  792. * Drain pages of the indicated processor.
  793. *
  794. * The processor must either be the current processor and the
  795. * thread pinned to the current processor or a processor that
  796. * is not online.
  797. */
  798. static void drain_pages(unsigned int cpu)
  799. {
  800. unsigned long flags;
  801. struct zone *zone;
  802. for_each_zone(zone) {
  803. struct per_cpu_pageset *pset;
  804. struct per_cpu_pages *pcp;
  805. if (!populated_zone(zone))
  806. continue;
  807. pset = zone_pcp(zone, cpu);
  808. pcp = &pset->pcp;
  809. local_irq_save(flags);
  810. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  811. pcp->count = 0;
  812. local_irq_restore(flags);
  813. }
  814. }
  815. /*
  816. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  817. */
  818. void drain_local_pages(void *arg)
  819. {
  820. drain_pages(smp_processor_id());
  821. }
  822. /*
  823. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  824. */
  825. void drain_all_pages(void)
  826. {
  827. on_each_cpu(drain_local_pages, NULL, 0, 1);
  828. }
  829. #ifdef CONFIG_HIBERNATION
  830. void mark_free_pages(struct zone *zone)
  831. {
  832. unsigned long pfn, max_zone_pfn;
  833. unsigned long flags;
  834. int order, t;
  835. struct list_head *curr;
  836. if (!zone->spanned_pages)
  837. return;
  838. spin_lock_irqsave(&zone->lock, flags);
  839. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  840. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  841. if (pfn_valid(pfn)) {
  842. struct page *page = pfn_to_page(pfn);
  843. if (!swsusp_page_is_forbidden(page))
  844. swsusp_unset_page_free(page);
  845. }
  846. for_each_migratetype_order(order, t) {
  847. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  848. unsigned long i;
  849. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  850. for (i = 0; i < (1UL << order); i++)
  851. swsusp_set_page_free(pfn_to_page(pfn + i));
  852. }
  853. }
  854. spin_unlock_irqrestore(&zone->lock, flags);
  855. }
  856. #endif /* CONFIG_PM */
  857. /*
  858. * Free a 0-order page
  859. */
  860. static void free_hot_cold_page(struct page *page, int cold)
  861. {
  862. struct zone *zone = page_zone(page);
  863. struct per_cpu_pages *pcp;
  864. unsigned long flags;
  865. if (PageAnon(page))
  866. page->mapping = NULL;
  867. if (free_pages_check(page))
  868. return;
  869. if (!PageHighMem(page))
  870. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  871. arch_free_page(page, 0);
  872. kernel_map_pages(page, 1, 0);
  873. pcp = &zone_pcp(zone, get_cpu())->pcp;
  874. local_irq_save(flags);
  875. __count_vm_event(PGFREE);
  876. if (cold)
  877. list_add_tail(&page->lru, &pcp->list);
  878. else
  879. list_add(&page->lru, &pcp->list);
  880. set_page_private(page, get_pageblock_migratetype(page));
  881. pcp->count++;
  882. if (pcp->count >= pcp->high) {
  883. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  884. pcp->count -= pcp->batch;
  885. }
  886. local_irq_restore(flags);
  887. put_cpu();
  888. }
  889. void free_hot_page(struct page *page)
  890. {
  891. free_hot_cold_page(page, 0);
  892. }
  893. void free_cold_page(struct page *page)
  894. {
  895. free_hot_cold_page(page, 1);
  896. }
  897. /*
  898. * split_page takes a non-compound higher-order page, and splits it into
  899. * n (1<<order) sub-pages: page[0..n]
  900. * Each sub-page must be freed individually.
  901. *
  902. * Note: this is probably too low level an operation for use in drivers.
  903. * Please consult with lkml before using this in your driver.
  904. */
  905. void split_page(struct page *page, unsigned int order)
  906. {
  907. int i;
  908. VM_BUG_ON(PageCompound(page));
  909. VM_BUG_ON(!page_count(page));
  910. for (i = 1; i < (1 << order); i++)
  911. set_page_refcounted(page + i);
  912. }
  913. /*
  914. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  915. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  916. * or two.
  917. */
  918. static struct page *buffered_rmqueue(struct zonelist *zonelist,
  919. struct zone *zone, int order, gfp_t gfp_flags)
  920. {
  921. unsigned long flags;
  922. struct page *page;
  923. int cold = !!(gfp_flags & __GFP_COLD);
  924. int cpu;
  925. int migratetype = allocflags_to_migratetype(gfp_flags);
  926. again:
  927. cpu = get_cpu();
  928. if (likely(order == 0)) {
  929. struct per_cpu_pages *pcp;
  930. pcp = &zone_pcp(zone, cpu)->pcp;
  931. local_irq_save(flags);
  932. if (!pcp->count) {
  933. pcp->count = rmqueue_bulk(zone, 0,
  934. pcp->batch, &pcp->list, migratetype);
  935. if (unlikely(!pcp->count))
  936. goto failed;
  937. }
  938. /* Find a page of the appropriate migrate type */
  939. if (cold) {
  940. list_for_each_entry_reverse(page, &pcp->list, lru)
  941. if (page_private(page) == migratetype)
  942. break;
  943. } else {
  944. list_for_each_entry(page, &pcp->list, lru)
  945. if (page_private(page) == migratetype)
  946. break;
  947. }
  948. /* Allocate more to the pcp list if necessary */
  949. if (unlikely(&page->lru == &pcp->list)) {
  950. pcp->count += rmqueue_bulk(zone, 0,
  951. pcp->batch, &pcp->list, migratetype);
  952. page = list_entry(pcp->list.next, struct page, lru);
  953. }
  954. list_del(&page->lru);
  955. pcp->count--;
  956. } else {
  957. spin_lock_irqsave(&zone->lock, flags);
  958. page = __rmqueue(zone, order, migratetype);
  959. spin_unlock(&zone->lock);
  960. if (!page)
  961. goto failed;
  962. }
  963. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  964. zone_statistics(zonelist, zone);
  965. local_irq_restore(flags);
  966. put_cpu();
  967. VM_BUG_ON(bad_range(zone, page));
  968. if (prep_new_page(page, order, gfp_flags))
  969. goto again;
  970. return page;
  971. failed:
  972. local_irq_restore(flags);
  973. put_cpu();
  974. return NULL;
  975. }
  976. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  977. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  978. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  979. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  980. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  981. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  982. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  983. #ifdef CONFIG_FAIL_PAGE_ALLOC
  984. static struct fail_page_alloc_attr {
  985. struct fault_attr attr;
  986. u32 ignore_gfp_highmem;
  987. u32 ignore_gfp_wait;
  988. u32 min_order;
  989. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  990. struct dentry *ignore_gfp_highmem_file;
  991. struct dentry *ignore_gfp_wait_file;
  992. struct dentry *min_order_file;
  993. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  994. } fail_page_alloc = {
  995. .attr = FAULT_ATTR_INITIALIZER,
  996. .ignore_gfp_wait = 1,
  997. .ignore_gfp_highmem = 1,
  998. .min_order = 1,
  999. };
  1000. static int __init setup_fail_page_alloc(char *str)
  1001. {
  1002. return setup_fault_attr(&fail_page_alloc.attr, str);
  1003. }
  1004. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1005. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1006. {
  1007. if (order < fail_page_alloc.min_order)
  1008. return 0;
  1009. if (gfp_mask & __GFP_NOFAIL)
  1010. return 0;
  1011. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1012. return 0;
  1013. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1014. return 0;
  1015. return should_fail(&fail_page_alloc.attr, 1 << order);
  1016. }
  1017. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1018. static int __init fail_page_alloc_debugfs(void)
  1019. {
  1020. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1021. struct dentry *dir;
  1022. int err;
  1023. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1024. "fail_page_alloc");
  1025. if (err)
  1026. return err;
  1027. dir = fail_page_alloc.attr.dentries.dir;
  1028. fail_page_alloc.ignore_gfp_wait_file =
  1029. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1030. &fail_page_alloc.ignore_gfp_wait);
  1031. fail_page_alloc.ignore_gfp_highmem_file =
  1032. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1033. &fail_page_alloc.ignore_gfp_highmem);
  1034. fail_page_alloc.min_order_file =
  1035. debugfs_create_u32("min-order", mode, dir,
  1036. &fail_page_alloc.min_order);
  1037. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1038. !fail_page_alloc.ignore_gfp_highmem_file ||
  1039. !fail_page_alloc.min_order_file) {
  1040. err = -ENOMEM;
  1041. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1042. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1043. debugfs_remove(fail_page_alloc.min_order_file);
  1044. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1045. }
  1046. return err;
  1047. }
  1048. late_initcall(fail_page_alloc_debugfs);
  1049. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1050. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1051. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1052. {
  1053. return 0;
  1054. }
  1055. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1056. /*
  1057. * Return 1 if free pages are above 'mark'. This takes into account the order
  1058. * of the allocation.
  1059. */
  1060. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1061. int classzone_idx, int alloc_flags)
  1062. {
  1063. /* free_pages my go negative - that's OK */
  1064. long min = mark;
  1065. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1066. int o;
  1067. if (alloc_flags & ALLOC_HIGH)
  1068. min -= min / 2;
  1069. if (alloc_flags & ALLOC_HARDER)
  1070. min -= min / 4;
  1071. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1072. return 0;
  1073. for (o = 0; o < order; o++) {
  1074. /* At the next order, this order's pages become unavailable */
  1075. free_pages -= z->free_area[o].nr_free << o;
  1076. /* Require fewer higher order pages to be free */
  1077. min >>= 1;
  1078. if (free_pages <= min)
  1079. return 0;
  1080. }
  1081. return 1;
  1082. }
  1083. #ifdef CONFIG_NUMA
  1084. /*
  1085. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1086. * skip over zones that are not allowed by the cpuset, or that have
  1087. * been recently (in last second) found to be nearly full. See further
  1088. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1089. * that have to skip over a lot of full or unallowed zones.
  1090. *
  1091. * If the zonelist cache is present in the passed in zonelist, then
  1092. * returns a pointer to the allowed node mask (either the current
  1093. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1094. *
  1095. * If the zonelist cache is not available for this zonelist, does
  1096. * nothing and returns NULL.
  1097. *
  1098. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1099. * a second since last zap'd) then we zap it out (clear its bits.)
  1100. *
  1101. * We hold off even calling zlc_setup, until after we've checked the
  1102. * first zone in the zonelist, on the theory that most allocations will
  1103. * be satisfied from that first zone, so best to examine that zone as
  1104. * quickly as we can.
  1105. */
  1106. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1107. {
  1108. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1109. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1110. zlc = zonelist->zlcache_ptr;
  1111. if (!zlc)
  1112. return NULL;
  1113. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1114. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1115. zlc->last_full_zap = jiffies;
  1116. }
  1117. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1118. &cpuset_current_mems_allowed :
  1119. &node_states[N_HIGH_MEMORY];
  1120. return allowednodes;
  1121. }
  1122. /*
  1123. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1124. * if it is worth looking at further for free memory:
  1125. * 1) Check that the zone isn't thought to be full (doesn't have its
  1126. * bit set in the zonelist_cache fullzones BITMAP).
  1127. * 2) Check that the zones node (obtained from the zonelist_cache
  1128. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1129. * Return true (non-zero) if zone is worth looking at further, or
  1130. * else return false (zero) if it is not.
  1131. *
  1132. * This check -ignores- the distinction between various watermarks,
  1133. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1134. * found to be full for any variation of these watermarks, it will
  1135. * be considered full for up to one second by all requests, unless
  1136. * we are so low on memory on all allowed nodes that we are forced
  1137. * into the second scan of the zonelist.
  1138. *
  1139. * In the second scan we ignore this zonelist cache and exactly
  1140. * apply the watermarks to all zones, even it is slower to do so.
  1141. * We are low on memory in the second scan, and should leave no stone
  1142. * unturned looking for a free page.
  1143. */
  1144. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
  1145. nodemask_t *allowednodes)
  1146. {
  1147. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1148. int i; /* index of *z in zonelist zones */
  1149. int n; /* node that zone *z is on */
  1150. zlc = zonelist->zlcache_ptr;
  1151. if (!zlc)
  1152. return 1;
  1153. i = z - zonelist->zones;
  1154. n = zlc->z_to_n[i];
  1155. /* This zone is worth trying if it is allowed but not full */
  1156. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1157. }
  1158. /*
  1159. * Given 'z' scanning a zonelist, set the corresponding bit in
  1160. * zlc->fullzones, so that subsequent attempts to allocate a page
  1161. * from that zone don't waste time re-examining it.
  1162. */
  1163. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
  1164. {
  1165. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1166. int i; /* index of *z in zonelist zones */
  1167. zlc = zonelist->zlcache_ptr;
  1168. if (!zlc)
  1169. return;
  1170. i = z - zonelist->zones;
  1171. set_bit(i, zlc->fullzones);
  1172. }
  1173. #else /* CONFIG_NUMA */
  1174. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1175. {
  1176. return NULL;
  1177. }
  1178. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
  1179. nodemask_t *allowednodes)
  1180. {
  1181. return 1;
  1182. }
  1183. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
  1184. {
  1185. }
  1186. #endif /* CONFIG_NUMA */
  1187. /*
  1188. * get_page_from_freelist goes through the zonelist trying to allocate
  1189. * a page.
  1190. */
  1191. static struct page *
  1192. get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
  1193. struct zonelist *zonelist, int alloc_flags)
  1194. {
  1195. struct zone **z;
  1196. struct page *page = NULL;
  1197. int classzone_idx = zone_idx(zonelist->zones[0]);
  1198. struct zone *zone;
  1199. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1200. int zlc_active = 0; /* set if using zonelist_cache */
  1201. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1202. enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
  1203. zonelist_scan:
  1204. /*
  1205. * Scan zonelist, looking for a zone with enough free.
  1206. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1207. */
  1208. z = zonelist->zones;
  1209. do {
  1210. /*
  1211. * In NUMA, this could be a policy zonelist which contains
  1212. * zones that may not be allowed by the current gfp_mask.
  1213. * Check the zone is allowed by the current flags
  1214. */
  1215. if (unlikely(alloc_should_filter_zonelist(zonelist))) {
  1216. if (highest_zoneidx == -1)
  1217. highest_zoneidx = gfp_zone(gfp_mask);
  1218. if (zone_idx(*z) > highest_zoneidx)
  1219. continue;
  1220. }
  1221. if (NUMA_BUILD && zlc_active &&
  1222. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1223. continue;
  1224. zone = *z;
  1225. if ((alloc_flags & ALLOC_CPUSET) &&
  1226. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1227. goto try_next_zone;
  1228. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1229. unsigned long mark;
  1230. if (alloc_flags & ALLOC_WMARK_MIN)
  1231. mark = zone->pages_min;
  1232. else if (alloc_flags & ALLOC_WMARK_LOW)
  1233. mark = zone->pages_low;
  1234. else
  1235. mark = zone->pages_high;
  1236. if (!zone_watermark_ok(zone, order, mark,
  1237. classzone_idx, alloc_flags)) {
  1238. if (!zone_reclaim_mode ||
  1239. !zone_reclaim(zone, gfp_mask, order))
  1240. goto this_zone_full;
  1241. }
  1242. }
  1243. page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
  1244. if (page)
  1245. break;
  1246. this_zone_full:
  1247. if (NUMA_BUILD)
  1248. zlc_mark_zone_full(zonelist, z);
  1249. try_next_zone:
  1250. if (NUMA_BUILD && !did_zlc_setup) {
  1251. /* we do zlc_setup after the first zone is tried */
  1252. allowednodes = zlc_setup(zonelist, alloc_flags);
  1253. zlc_active = 1;
  1254. did_zlc_setup = 1;
  1255. }
  1256. } while (*(++z) != NULL);
  1257. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1258. /* Disable zlc cache for second zonelist scan */
  1259. zlc_active = 0;
  1260. goto zonelist_scan;
  1261. }
  1262. return page;
  1263. }
  1264. /*
  1265. * This is the 'heart' of the zoned buddy allocator.
  1266. */
  1267. struct page *
  1268. __alloc_pages(gfp_t gfp_mask, unsigned int order,
  1269. struct zonelist *zonelist)
  1270. {
  1271. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1272. struct zone **z;
  1273. struct page *page;
  1274. struct reclaim_state reclaim_state;
  1275. struct task_struct *p = current;
  1276. int do_retry;
  1277. int alloc_flags;
  1278. int did_some_progress;
  1279. might_sleep_if(wait);
  1280. if (should_fail_alloc_page(gfp_mask, order))
  1281. return NULL;
  1282. restart:
  1283. z = zonelist->zones; /* the list of zones suitable for gfp_mask */
  1284. if (unlikely(*z == NULL)) {
  1285. /*
  1286. * Happens if we have an empty zonelist as a result of
  1287. * GFP_THISNODE being used on a memoryless node
  1288. */
  1289. return NULL;
  1290. }
  1291. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  1292. zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  1293. if (page)
  1294. goto got_pg;
  1295. /*
  1296. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1297. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1298. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1299. * using a larger set of nodes after it has established that the
  1300. * allowed per node queues are empty and that nodes are
  1301. * over allocated.
  1302. */
  1303. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1304. goto nopage;
  1305. for (z = zonelist->zones; *z; z++)
  1306. wakeup_kswapd(*z, order);
  1307. /*
  1308. * OK, we're below the kswapd watermark and have kicked background
  1309. * reclaim. Now things get more complex, so set up alloc_flags according
  1310. * to how we want to proceed.
  1311. *
  1312. * The caller may dip into page reserves a bit more if the caller
  1313. * cannot run direct reclaim, or if the caller has realtime scheduling
  1314. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1315. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1316. */
  1317. alloc_flags = ALLOC_WMARK_MIN;
  1318. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  1319. alloc_flags |= ALLOC_HARDER;
  1320. if (gfp_mask & __GFP_HIGH)
  1321. alloc_flags |= ALLOC_HIGH;
  1322. if (wait)
  1323. alloc_flags |= ALLOC_CPUSET;
  1324. /*
  1325. * Go through the zonelist again. Let __GFP_HIGH and allocations
  1326. * coming from realtime tasks go deeper into reserves.
  1327. *
  1328. * This is the last chance, in general, before the goto nopage.
  1329. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1330. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1331. */
  1332. page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
  1333. if (page)
  1334. goto got_pg;
  1335. /* This allocation should allow future memory freeing. */
  1336. rebalance:
  1337. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  1338. && !in_interrupt()) {
  1339. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  1340. nofail_alloc:
  1341. /* go through the zonelist yet again, ignoring mins */
  1342. page = get_page_from_freelist(gfp_mask, order,
  1343. zonelist, ALLOC_NO_WATERMARKS);
  1344. if (page)
  1345. goto got_pg;
  1346. if (gfp_mask & __GFP_NOFAIL) {
  1347. congestion_wait(WRITE, HZ/50);
  1348. goto nofail_alloc;
  1349. }
  1350. }
  1351. goto nopage;
  1352. }
  1353. /* Atomic allocations - we can't balance anything */
  1354. if (!wait)
  1355. goto nopage;
  1356. cond_resched();
  1357. /* We now go into synchronous reclaim */
  1358. cpuset_memory_pressure_bump();
  1359. p->flags |= PF_MEMALLOC;
  1360. reclaim_state.reclaimed_slab = 0;
  1361. p->reclaim_state = &reclaim_state;
  1362. did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
  1363. p->reclaim_state = NULL;
  1364. p->flags &= ~PF_MEMALLOC;
  1365. cond_resched();
  1366. if (order != 0)
  1367. drain_all_pages();
  1368. if (likely(did_some_progress)) {
  1369. page = get_page_from_freelist(gfp_mask, order,
  1370. zonelist, alloc_flags);
  1371. if (page)
  1372. goto got_pg;
  1373. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1374. if (!try_set_zone_oom(zonelist)) {
  1375. schedule_timeout_uninterruptible(1);
  1376. goto restart;
  1377. }
  1378. /*
  1379. * Go through the zonelist yet one more time, keep
  1380. * very high watermark here, this is only to catch
  1381. * a parallel oom killing, we must fail if we're still
  1382. * under heavy pressure.
  1383. */
  1384. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  1385. zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  1386. if (page) {
  1387. clear_zonelist_oom(zonelist);
  1388. goto got_pg;
  1389. }
  1390. /* The OOM killer will not help higher order allocs so fail */
  1391. if (order > PAGE_ALLOC_COSTLY_ORDER) {
  1392. clear_zonelist_oom(zonelist);
  1393. goto nopage;
  1394. }
  1395. out_of_memory(zonelist, gfp_mask, order);
  1396. clear_zonelist_oom(zonelist);
  1397. goto restart;
  1398. }
  1399. /*
  1400. * Don't let big-order allocations loop unless the caller explicitly
  1401. * requests that. Wait for some write requests to complete then retry.
  1402. *
  1403. * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
  1404. * <= 3, but that may not be true in other implementations.
  1405. */
  1406. do_retry = 0;
  1407. if (!(gfp_mask & __GFP_NORETRY)) {
  1408. if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
  1409. (gfp_mask & __GFP_REPEAT))
  1410. do_retry = 1;
  1411. if (gfp_mask & __GFP_NOFAIL)
  1412. do_retry = 1;
  1413. }
  1414. if (do_retry) {
  1415. congestion_wait(WRITE, HZ/50);
  1416. goto rebalance;
  1417. }
  1418. nopage:
  1419. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1420. printk(KERN_WARNING "%s: page allocation failure."
  1421. " order:%d, mode:0x%x\n",
  1422. p->comm, order, gfp_mask);
  1423. dump_stack();
  1424. show_mem();
  1425. }
  1426. got_pg:
  1427. return page;
  1428. }
  1429. EXPORT_SYMBOL(__alloc_pages);
  1430. /*
  1431. * Common helper functions.
  1432. */
  1433. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1434. {
  1435. struct page * page;
  1436. page = alloc_pages(gfp_mask, order);
  1437. if (!page)
  1438. return 0;
  1439. return (unsigned long) page_address(page);
  1440. }
  1441. EXPORT_SYMBOL(__get_free_pages);
  1442. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1443. {
  1444. struct page * page;
  1445. /*
  1446. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1447. * a highmem page
  1448. */
  1449. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1450. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1451. if (page)
  1452. return (unsigned long) page_address(page);
  1453. return 0;
  1454. }
  1455. EXPORT_SYMBOL(get_zeroed_page);
  1456. void __pagevec_free(struct pagevec *pvec)
  1457. {
  1458. int i = pagevec_count(pvec);
  1459. while (--i >= 0)
  1460. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1461. }
  1462. void __free_pages(struct page *page, unsigned int order)
  1463. {
  1464. if (put_page_testzero(page)) {
  1465. if (order == 0)
  1466. free_hot_page(page);
  1467. else
  1468. __free_pages_ok(page, order);
  1469. }
  1470. }
  1471. EXPORT_SYMBOL(__free_pages);
  1472. void free_pages(unsigned long addr, unsigned int order)
  1473. {
  1474. if (addr != 0) {
  1475. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1476. __free_pages(virt_to_page((void *)addr), order);
  1477. }
  1478. }
  1479. EXPORT_SYMBOL(free_pages);
  1480. static unsigned int nr_free_zone_pages(int offset)
  1481. {
  1482. /* Just pick one node, since fallback list is circular */
  1483. unsigned int sum = 0;
  1484. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  1485. struct zone **zonep = zonelist->zones;
  1486. struct zone *zone;
  1487. for (zone = *zonep++; zone; zone = *zonep++) {
  1488. unsigned long size = zone->present_pages;
  1489. unsigned long high = zone->pages_high;
  1490. if (size > high)
  1491. sum += size - high;
  1492. }
  1493. return sum;
  1494. }
  1495. /*
  1496. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1497. */
  1498. unsigned int nr_free_buffer_pages(void)
  1499. {
  1500. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1501. }
  1502. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1503. /*
  1504. * Amount of free RAM allocatable within all zones
  1505. */
  1506. unsigned int nr_free_pagecache_pages(void)
  1507. {
  1508. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1509. }
  1510. static inline void show_node(struct zone *zone)
  1511. {
  1512. if (NUMA_BUILD)
  1513. printk("Node %d ", zone_to_nid(zone));
  1514. }
  1515. void si_meminfo(struct sysinfo *val)
  1516. {
  1517. val->totalram = totalram_pages;
  1518. val->sharedram = 0;
  1519. val->freeram = global_page_state(NR_FREE_PAGES);
  1520. val->bufferram = nr_blockdev_pages();
  1521. val->totalhigh = totalhigh_pages;
  1522. val->freehigh = nr_free_highpages();
  1523. val->mem_unit = PAGE_SIZE;
  1524. }
  1525. EXPORT_SYMBOL(si_meminfo);
  1526. #ifdef CONFIG_NUMA
  1527. void si_meminfo_node(struct sysinfo *val, int nid)
  1528. {
  1529. pg_data_t *pgdat = NODE_DATA(nid);
  1530. val->totalram = pgdat->node_present_pages;
  1531. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1532. #ifdef CONFIG_HIGHMEM
  1533. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1534. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1535. NR_FREE_PAGES);
  1536. #else
  1537. val->totalhigh = 0;
  1538. val->freehigh = 0;
  1539. #endif
  1540. val->mem_unit = PAGE_SIZE;
  1541. }
  1542. #endif
  1543. #define K(x) ((x) << (PAGE_SHIFT-10))
  1544. /*
  1545. * Show free area list (used inside shift_scroll-lock stuff)
  1546. * We also calculate the percentage fragmentation. We do this by counting the
  1547. * memory on each free list with the exception of the first item on the list.
  1548. */
  1549. void show_free_areas(void)
  1550. {
  1551. int cpu;
  1552. struct zone *zone;
  1553. for_each_zone(zone) {
  1554. if (!populated_zone(zone))
  1555. continue;
  1556. show_node(zone);
  1557. printk("%s per-cpu:\n", zone->name);
  1558. for_each_online_cpu(cpu) {
  1559. struct per_cpu_pageset *pageset;
  1560. pageset = zone_pcp(zone, cpu);
  1561. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  1562. cpu, pageset->pcp.high,
  1563. pageset->pcp.batch, pageset->pcp.count);
  1564. }
  1565. }
  1566. printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  1567. " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
  1568. global_page_state(NR_ACTIVE),
  1569. global_page_state(NR_INACTIVE),
  1570. global_page_state(NR_FILE_DIRTY),
  1571. global_page_state(NR_WRITEBACK),
  1572. global_page_state(NR_UNSTABLE_NFS),
  1573. global_page_state(NR_FREE_PAGES),
  1574. global_page_state(NR_SLAB_RECLAIMABLE) +
  1575. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1576. global_page_state(NR_FILE_MAPPED),
  1577. global_page_state(NR_PAGETABLE),
  1578. global_page_state(NR_BOUNCE));
  1579. for_each_zone(zone) {
  1580. int i;
  1581. if (!populated_zone(zone))
  1582. continue;
  1583. show_node(zone);
  1584. printk("%s"
  1585. " free:%lukB"
  1586. " min:%lukB"
  1587. " low:%lukB"
  1588. " high:%lukB"
  1589. " active:%lukB"
  1590. " inactive:%lukB"
  1591. " present:%lukB"
  1592. " pages_scanned:%lu"
  1593. " all_unreclaimable? %s"
  1594. "\n",
  1595. zone->name,
  1596. K(zone_page_state(zone, NR_FREE_PAGES)),
  1597. K(zone->pages_min),
  1598. K(zone->pages_low),
  1599. K(zone->pages_high),
  1600. K(zone_page_state(zone, NR_ACTIVE)),
  1601. K(zone_page_state(zone, NR_INACTIVE)),
  1602. K(zone->present_pages),
  1603. zone->pages_scanned,
  1604. (zone_is_all_unreclaimable(zone) ? "yes" : "no")
  1605. );
  1606. printk("lowmem_reserve[]:");
  1607. for (i = 0; i < MAX_NR_ZONES; i++)
  1608. printk(" %lu", zone->lowmem_reserve[i]);
  1609. printk("\n");
  1610. }
  1611. for_each_zone(zone) {
  1612. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1613. if (!populated_zone(zone))
  1614. continue;
  1615. show_node(zone);
  1616. printk("%s: ", zone->name);
  1617. spin_lock_irqsave(&zone->lock, flags);
  1618. for (order = 0; order < MAX_ORDER; order++) {
  1619. nr[order] = zone->free_area[order].nr_free;
  1620. total += nr[order] << order;
  1621. }
  1622. spin_unlock_irqrestore(&zone->lock, flags);
  1623. for (order = 0; order < MAX_ORDER; order++)
  1624. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1625. printk("= %lukB\n", K(total));
  1626. }
  1627. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  1628. show_swap_cache_info();
  1629. }
  1630. /*
  1631. * Builds allocation fallback zone lists.
  1632. *
  1633. * Add all populated zones of a node to the zonelist.
  1634. */
  1635. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1636. int nr_zones, enum zone_type zone_type)
  1637. {
  1638. struct zone *zone;
  1639. BUG_ON(zone_type >= MAX_NR_ZONES);
  1640. zone_type++;
  1641. do {
  1642. zone_type--;
  1643. zone = pgdat->node_zones + zone_type;
  1644. if (populated_zone(zone)) {
  1645. zonelist->zones[nr_zones++] = zone;
  1646. check_highest_zone(zone_type);
  1647. }
  1648. } while (zone_type);
  1649. return nr_zones;
  1650. }
  1651. /*
  1652. * zonelist_order:
  1653. * 0 = automatic detection of better ordering.
  1654. * 1 = order by ([node] distance, -zonetype)
  1655. * 2 = order by (-zonetype, [node] distance)
  1656. *
  1657. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1658. * the same zonelist. So only NUMA can configure this param.
  1659. */
  1660. #define ZONELIST_ORDER_DEFAULT 0
  1661. #define ZONELIST_ORDER_NODE 1
  1662. #define ZONELIST_ORDER_ZONE 2
  1663. /* zonelist order in the kernel.
  1664. * set_zonelist_order() will set this to NODE or ZONE.
  1665. */
  1666. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1667. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1668. #ifdef CONFIG_NUMA
  1669. /* The value user specified ....changed by config */
  1670. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1671. /* string for sysctl */
  1672. #define NUMA_ZONELIST_ORDER_LEN 16
  1673. char numa_zonelist_order[16] = "default";
  1674. /*
  1675. * interface for configure zonelist ordering.
  1676. * command line option "numa_zonelist_order"
  1677. * = "[dD]efault - default, automatic configuration.
  1678. * = "[nN]ode - order by node locality, then by zone within node
  1679. * = "[zZ]one - order by zone, then by locality within zone
  1680. */
  1681. static int __parse_numa_zonelist_order(char *s)
  1682. {
  1683. if (*s == 'd' || *s == 'D') {
  1684. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1685. } else if (*s == 'n' || *s == 'N') {
  1686. user_zonelist_order = ZONELIST_ORDER_NODE;
  1687. } else if (*s == 'z' || *s == 'Z') {
  1688. user_zonelist_order = ZONELIST_ORDER_ZONE;
  1689. } else {
  1690. printk(KERN_WARNING
  1691. "Ignoring invalid numa_zonelist_order value: "
  1692. "%s\n", s);
  1693. return -EINVAL;
  1694. }
  1695. return 0;
  1696. }
  1697. static __init int setup_numa_zonelist_order(char *s)
  1698. {
  1699. if (s)
  1700. return __parse_numa_zonelist_order(s);
  1701. return 0;
  1702. }
  1703. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  1704. /*
  1705. * sysctl handler for numa_zonelist_order
  1706. */
  1707. int numa_zonelist_order_handler(ctl_table *table, int write,
  1708. struct file *file, void __user *buffer, size_t *length,
  1709. loff_t *ppos)
  1710. {
  1711. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  1712. int ret;
  1713. if (write)
  1714. strncpy(saved_string, (char*)table->data,
  1715. NUMA_ZONELIST_ORDER_LEN);
  1716. ret = proc_dostring(table, write, file, buffer, length, ppos);
  1717. if (ret)
  1718. return ret;
  1719. if (write) {
  1720. int oldval = user_zonelist_order;
  1721. if (__parse_numa_zonelist_order((char*)table->data)) {
  1722. /*
  1723. * bogus value. restore saved string
  1724. */
  1725. strncpy((char*)table->data, saved_string,
  1726. NUMA_ZONELIST_ORDER_LEN);
  1727. user_zonelist_order = oldval;
  1728. } else if (oldval != user_zonelist_order)
  1729. build_all_zonelists();
  1730. }
  1731. return 0;
  1732. }
  1733. #define MAX_NODE_LOAD (num_online_nodes())
  1734. static int node_load[MAX_NUMNODES];
  1735. /**
  1736. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1737. * @node: node whose fallback list we're appending
  1738. * @used_node_mask: nodemask_t of already used nodes
  1739. *
  1740. * We use a number of factors to determine which is the next node that should
  1741. * appear on a given node's fallback list. The node should not have appeared
  1742. * already in @node's fallback list, and it should be the next closest node
  1743. * according to the distance array (which contains arbitrary distance values
  1744. * from each node to each node in the system), and should also prefer nodes
  1745. * with no CPUs, since presumably they'll have very little allocation pressure
  1746. * on them otherwise.
  1747. * It returns -1 if no node is found.
  1748. */
  1749. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  1750. {
  1751. int n, val;
  1752. int min_val = INT_MAX;
  1753. int best_node = -1;
  1754. node_to_cpumask_ptr(tmp, 0);
  1755. /* Use the local node if we haven't already */
  1756. if (!node_isset(node, *used_node_mask)) {
  1757. node_set(node, *used_node_mask);
  1758. return node;
  1759. }
  1760. for_each_node_state(n, N_HIGH_MEMORY) {
  1761. /* Don't want a node to appear more than once */
  1762. if (node_isset(n, *used_node_mask))
  1763. continue;
  1764. /* Use the distance array to find the distance */
  1765. val = node_distance(node, n);
  1766. /* Penalize nodes under us ("prefer the next node") */
  1767. val += (n < node);
  1768. /* Give preference to headless and unused nodes */
  1769. node_to_cpumask_ptr_next(tmp, n);
  1770. if (!cpus_empty(*tmp))
  1771. val += PENALTY_FOR_NODE_WITH_CPUS;
  1772. /* Slight preference for less loaded node */
  1773. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1774. val += node_load[n];
  1775. if (val < min_val) {
  1776. min_val = val;
  1777. best_node = n;
  1778. }
  1779. }
  1780. if (best_node >= 0)
  1781. node_set(best_node, *used_node_mask);
  1782. return best_node;
  1783. }
  1784. /*
  1785. * Build zonelists ordered by node and zones within node.
  1786. * This results in maximum locality--normal zone overflows into local
  1787. * DMA zone, if any--but risks exhausting DMA zone.
  1788. */
  1789. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  1790. {
  1791. enum zone_type i;
  1792. int j;
  1793. struct zonelist *zonelist;
  1794. for (i = 0; i < MAX_NR_ZONES; i++) {
  1795. zonelist = pgdat->node_zonelists + i;
  1796. for (j = 0; zonelist->zones[j] != NULL; j++)
  1797. ;
  1798. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1799. zonelist->zones[j] = NULL;
  1800. }
  1801. }
  1802. /*
  1803. * Build gfp_thisnode zonelists
  1804. */
  1805. static void build_thisnode_zonelists(pg_data_t *pgdat)
  1806. {
  1807. enum zone_type i;
  1808. int j;
  1809. struct zonelist *zonelist;
  1810. for (i = 0; i < MAX_NR_ZONES; i++) {
  1811. zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
  1812. j = build_zonelists_node(pgdat, zonelist, 0, i);
  1813. zonelist->zones[j] = NULL;
  1814. }
  1815. }
  1816. /*
  1817. * Build zonelists ordered by zone and nodes within zones.
  1818. * This results in conserving DMA zone[s] until all Normal memory is
  1819. * exhausted, but results in overflowing to remote node while memory
  1820. * may still exist in local DMA zone.
  1821. */
  1822. static int node_order[MAX_NUMNODES];
  1823. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  1824. {
  1825. enum zone_type i;
  1826. int pos, j, node;
  1827. int zone_type; /* needs to be signed */
  1828. struct zone *z;
  1829. struct zonelist *zonelist;
  1830. for (i = 0; i < MAX_NR_ZONES; i++) {
  1831. zonelist = pgdat->node_zonelists + i;
  1832. pos = 0;
  1833. for (zone_type = i; zone_type >= 0; zone_type--) {
  1834. for (j = 0; j < nr_nodes; j++) {
  1835. node = node_order[j];
  1836. z = &NODE_DATA(node)->node_zones[zone_type];
  1837. if (populated_zone(z)) {
  1838. zonelist->zones[pos++] = z;
  1839. check_highest_zone(zone_type);
  1840. }
  1841. }
  1842. }
  1843. zonelist->zones[pos] = NULL;
  1844. }
  1845. }
  1846. static int default_zonelist_order(void)
  1847. {
  1848. int nid, zone_type;
  1849. unsigned long low_kmem_size,total_size;
  1850. struct zone *z;
  1851. int average_size;
  1852. /*
  1853. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  1854. * If they are really small and used heavily, the system can fall
  1855. * into OOM very easily.
  1856. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  1857. */
  1858. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  1859. low_kmem_size = 0;
  1860. total_size = 0;
  1861. for_each_online_node(nid) {
  1862. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1863. z = &NODE_DATA(nid)->node_zones[zone_type];
  1864. if (populated_zone(z)) {
  1865. if (zone_type < ZONE_NORMAL)
  1866. low_kmem_size += z->present_pages;
  1867. total_size += z->present_pages;
  1868. }
  1869. }
  1870. }
  1871. if (!low_kmem_size || /* there are no DMA area. */
  1872. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  1873. return ZONELIST_ORDER_NODE;
  1874. /*
  1875. * look into each node's config.
  1876. * If there is a node whose DMA/DMA32 memory is very big area on
  1877. * local memory, NODE_ORDER may be suitable.
  1878. */
  1879. average_size = total_size /
  1880. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  1881. for_each_online_node(nid) {
  1882. low_kmem_size = 0;
  1883. total_size = 0;
  1884. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1885. z = &NODE_DATA(nid)->node_zones[zone_type];
  1886. if (populated_zone(z)) {
  1887. if (zone_type < ZONE_NORMAL)
  1888. low_kmem_size += z->present_pages;
  1889. total_size += z->present_pages;
  1890. }
  1891. }
  1892. if (low_kmem_size &&
  1893. total_size > average_size && /* ignore small node */
  1894. low_kmem_size > total_size * 70/100)
  1895. return ZONELIST_ORDER_NODE;
  1896. }
  1897. return ZONELIST_ORDER_ZONE;
  1898. }
  1899. static void set_zonelist_order(void)
  1900. {
  1901. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  1902. current_zonelist_order = default_zonelist_order();
  1903. else
  1904. current_zonelist_order = user_zonelist_order;
  1905. }
  1906. static void build_zonelists(pg_data_t *pgdat)
  1907. {
  1908. int j, node, load;
  1909. enum zone_type i;
  1910. nodemask_t used_mask;
  1911. int local_node, prev_node;
  1912. struct zonelist *zonelist;
  1913. int order = current_zonelist_order;
  1914. /* initialize zonelists */
  1915. for (i = 0; i < MAX_ZONELISTS; i++) {
  1916. zonelist = pgdat->node_zonelists + i;
  1917. zonelist->zones[0] = NULL;
  1918. }
  1919. /* NUMA-aware ordering of nodes */
  1920. local_node = pgdat->node_id;
  1921. load = num_online_nodes();
  1922. prev_node = local_node;
  1923. nodes_clear(used_mask);
  1924. memset(node_load, 0, sizeof(node_load));
  1925. memset(node_order, 0, sizeof(node_order));
  1926. j = 0;
  1927. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  1928. int distance = node_distance(local_node, node);
  1929. /*
  1930. * If another node is sufficiently far away then it is better
  1931. * to reclaim pages in a zone before going off node.
  1932. */
  1933. if (distance > RECLAIM_DISTANCE)
  1934. zone_reclaim_mode = 1;
  1935. /*
  1936. * We don't want to pressure a particular node.
  1937. * So adding penalty to the first node in same
  1938. * distance group to make it round-robin.
  1939. */
  1940. if (distance != node_distance(local_node, prev_node))
  1941. node_load[node] = load;
  1942. prev_node = node;
  1943. load--;
  1944. if (order == ZONELIST_ORDER_NODE)
  1945. build_zonelists_in_node_order(pgdat, node);
  1946. else
  1947. node_order[j++] = node; /* remember order */
  1948. }
  1949. if (order == ZONELIST_ORDER_ZONE) {
  1950. /* calculate node order -- i.e., DMA last! */
  1951. build_zonelists_in_zone_order(pgdat, j);
  1952. }
  1953. build_thisnode_zonelists(pgdat);
  1954. }
  1955. /* Construct the zonelist performance cache - see further mmzone.h */
  1956. static void build_zonelist_cache(pg_data_t *pgdat)
  1957. {
  1958. int i;
  1959. for (i = 0; i < MAX_NR_ZONES; i++) {
  1960. struct zonelist *zonelist;
  1961. struct zonelist_cache *zlc;
  1962. struct zone **z;
  1963. zonelist = pgdat->node_zonelists + i;
  1964. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  1965. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1966. for (z = zonelist->zones; *z; z++)
  1967. zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
  1968. }
  1969. }
  1970. #else /* CONFIG_NUMA */
  1971. static void set_zonelist_order(void)
  1972. {
  1973. current_zonelist_order = ZONELIST_ORDER_ZONE;
  1974. }
  1975. static void build_zonelists(pg_data_t *pgdat)
  1976. {
  1977. int node, local_node;
  1978. enum zone_type i,j;
  1979. local_node = pgdat->node_id;
  1980. for (i = 0; i < MAX_NR_ZONES; i++) {
  1981. struct zonelist *zonelist;
  1982. zonelist = pgdat->node_zonelists + i;
  1983. j = build_zonelists_node(pgdat, zonelist, 0, i);
  1984. /*
  1985. * Now we build the zonelist so that it contains the zones
  1986. * of all the other nodes.
  1987. * We don't want to pressure a particular node, so when
  1988. * building the zones for node N, we make sure that the
  1989. * zones coming right after the local ones are those from
  1990. * node N+1 (modulo N)
  1991. */
  1992. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  1993. if (!node_online(node))
  1994. continue;
  1995. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1996. }
  1997. for (node = 0; node < local_node; node++) {
  1998. if (!node_online(node))
  1999. continue;
  2000. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  2001. }
  2002. zonelist->zones[j] = NULL;
  2003. }
  2004. }
  2005. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2006. static void build_zonelist_cache(pg_data_t *pgdat)
  2007. {
  2008. int i;
  2009. for (i = 0; i < MAX_NR_ZONES; i++)
  2010. pgdat->node_zonelists[i].zlcache_ptr = NULL;
  2011. }
  2012. #endif /* CONFIG_NUMA */
  2013. /* return values int ....just for stop_machine_run() */
  2014. static int __build_all_zonelists(void *dummy)
  2015. {
  2016. int nid;
  2017. for_each_online_node(nid) {
  2018. pg_data_t *pgdat = NODE_DATA(nid);
  2019. build_zonelists(pgdat);
  2020. build_zonelist_cache(pgdat);
  2021. }
  2022. return 0;
  2023. }
  2024. void build_all_zonelists(void)
  2025. {
  2026. set_zonelist_order();
  2027. if (system_state == SYSTEM_BOOTING) {
  2028. __build_all_zonelists(NULL);
  2029. cpuset_init_current_mems_allowed();
  2030. } else {
  2031. /* we have to stop all cpus to guarantee there is no user
  2032. of zonelist */
  2033. stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
  2034. /* cpuset refresh routine should be here */
  2035. }
  2036. vm_total_pages = nr_free_pagecache_pages();
  2037. /*
  2038. * Disable grouping by mobility if the number of pages in the
  2039. * system is too low to allow the mechanism to work. It would be
  2040. * more accurate, but expensive to check per-zone. This check is
  2041. * made on memory-hotadd so a system can start with mobility
  2042. * disabled and enable it later
  2043. */
  2044. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2045. page_group_by_mobility_disabled = 1;
  2046. else
  2047. page_group_by_mobility_disabled = 0;
  2048. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2049. "Total pages: %ld\n",
  2050. num_online_nodes(),
  2051. zonelist_order_name[current_zonelist_order],
  2052. page_group_by_mobility_disabled ? "off" : "on",
  2053. vm_total_pages);
  2054. #ifdef CONFIG_NUMA
  2055. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2056. #endif
  2057. }
  2058. /*
  2059. * Helper functions to size the waitqueue hash table.
  2060. * Essentially these want to choose hash table sizes sufficiently
  2061. * large so that collisions trying to wait on pages are rare.
  2062. * But in fact, the number of active page waitqueues on typical
  2063. * systems is ridiculously low, less than 200. So this is even
  2064. * conservative, even though it seems large.
  2065. *
  2066. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2067. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2068. */
  2069. #define PAGES_PER_WAITQUEUE 256
  2070. #ifndef CONFIG_MEMORY_HOTPLUG
  2071. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2072. {
  2073. unsigned long size = 1;
  2074. pages /= PAGES_PER_WAITQUEUE;
  2075. while (size < pages)
  2076. size <<= 1;
  2077. /*
  2078. * Once we have dozens or even hundreds of threads sleeping
  2079. * on IO we've got bigger problems than wait queue collision.
  2080. * Limit the size of the wait table to a reasonable size.
  2081. */
  2082. size = min(size, 4096UL);
  2083. return max(size, 4UL);
  2084. }
  2085. #else
  2086. /*
  2087. * A zone's size might be changed by hot-add, so it is not possible to determine
  2088. * a suitable size for its wait_table. So we use the maximum size now.
  2089. *
  2090. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2091. *
  2092. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2093. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2094. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2095. *
  2096. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2097. * or more by the traditional way. (See above). It equals:
  2098. *
  2099. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2100. * ia64(16K page size) : = ( 8G + 4M)byte.
  2101. * powerpc (64K page size) : = (32G +16M)byte.
  2102. */
  2103. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2104. {
  2105. return 4096UL;
  2106. }
  2107. #endif
  2108. /*
  2109. * This is an integer logarithm so that shifts can be used later
  2110. * to extract the more random high bits from the multiplicative
  2111. * hash function before the remainder is taken.
  2112. */
  2113. static inline unsigned long wait_table_bits(unsigned long size)
  2114. {
  2115. return ffz(~size);
  2116. }
  2117. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2118. /*
  2119. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2120. * of blocks reserved is based on zone->pages_min. The memory within the
  2121. * reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2122. * higher will lead to a bigger reserve which will get freed as contiguous
  2123. * blocks as reclaim kicks in
  2124. */
  2125. static void setup_zone_migrate_reserve(struct zone *zone)
  2126. {
  2127. unsigned long start_pfn, pfn, end_pfn;
  2128. struct page *page;
  2129. unsigned long reserve, block_migratetype;
  2130. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2131. start_pfn = zone->zone_start_pfn;
  2132. end_pfn = start_pfn + zone->spanned_pages;
  2133. reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
  2134. pageblock_order;
  2135. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2136. if (!pfn_valid(pfn))
  2137. continue;
  2138. page = pfn_to_page(pfn);
  2139. /* Blocks with reserved pages will never free, skip them. */
  2140. if (PageReserved(page))
  2141. continue;
  2142. block_migratetype = get_pageblock_migratetype(page);
  2143. /* If this block is reserved, account for it */
  2144. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2145. reserve--;
  2146. continue;
  2147. }
  2148. /* Suitable for reserving if this block is movable */
  2149. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2150. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2151. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2152. reserve--;
  2153. continue;
  2154. }
  2155. /*
  2156. * If the reserve is met and this is a previous reserved block,
  2157. * take it back
  2158. */
  2159. if (block_migratetype == MIGRATE_RESERVE) {
  2160. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2161. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2162. }
  2163. }
  2164. }
  2165. /*
  2166. * Initially all pages are reserved - free ones are freed
  2167. * up by free_all_bootmem() once the early boot process is
  2168. * done. Non-atomic initialization, single-pass.
  2169. */
  2170. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2171. unsigned long start_pfn, enum memmap_context context)
  2172. {
  2173. struct page *page;
  2174. unsigned long end_pfn = start_pfn + size;
  2175. unsigned long pfn;
  2176. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2177. /*
  2178. * There can be holes in boot-time mem_map[]s
  2179. * handed to this function. They do not
  2180. * exist on hotplugged memory.
  2181. */
  2182. if (context == MEMMAP_EARLY) {
  2183. if (!early_pfn_valid(pfn))
  2184. continue;
  2185. if (!early_pfn_in_nid(pfn, nid))
  2186. continue;
  2187. }
  2188. page = pfn_to_page(pfn);
  2189. set_page_links(page, zone, nid, pfn);
  2190. init_page_count(page);
  2191. reset_page_mapcount(page);
  2192. SetPageReserved(page);
  2193. /*
  2194. * Mark the block movable so that blocks are reserved for
  2195. * movable at startup. This will force kernel allocations
  2196. * to reserve their blocks rather than leaking throughout
  2197. * the address space during boot when many long-lived
  2198. * kernel allocations are made. Later some blocks near
  2199. * the start are marked MIGRATE_RESERVE by
  2200. * setup_zone_migrate_reserve()
  2201. */
  2202. if ((pfn & (pageblock_nr_pages-1)))
  2203. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2204. INIT_LIST_HEAD(&page->lru);
  2205. #ifdef WANT_PAGE_VIRTUAL
  2206. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2207. if (!is_highmem_idx(zone))
  2208. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2209. #endif
  2210. }
  2211. }
  2212. static void __meminit zone_init_free_lists(struct zone *zone)
  2213. {
  2214. int order, t;
  2215. for_each_migratetype_order(order, t) {
  2216. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2217. zone->free_area[order].nr_free = 0;
  2218. }
  2219. }
  2220. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2221. #define memmap_init(size, nid, zone, start_pfn) \
  2222. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2223. #endif
  2224. static int zone_batchsize(struct zone *zone)
  2225. {
  2226. int batch;
  2227. /*
  2228. * The per-cpu-pages pools are set to around 1000th of the
  2229. * size of the zone. But no more than 1/2 of a meg.
  2230. *
  2231. * OK, so we don't know how big the cache is. So guess.
  2232. */
  2233. batch = zone->present_pages / 1024;
  2234. if (batch * PAGE_SIZE > 512 * 1024)
  2235. batch = (512 * 1024) / PAGE_SIZE;
  2236. batch /= 4; /* We effectively *= 4 below */
  2237. if (batch < 1)
  2238. batch = 1;
  2239. /*
  2240. * Clamp the batch to a 2^n - 1 value. Having a power
  2241. * of 2 value was found to be more likely to have
  2242. * suboptimal cache aliasing properties in some cases.
  2243. *
  2244. * For example if 2 tasks are alternately allocating
  2245. * batches of pages, one task can end up with a lot
  2246. * of pages of one half of the possible page colors
  2247. * and the other with pages of the other colors.
  2248. */
  2249. batch = (1 << (fls(batch + batch/2)-1)) - 1;
  2250. return batch;
  2251. }
  2252. inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2253. {
  2254. struct per_cpu_pages *pcp;
  2255. memset(p, 0, sizeof(*p));
  2256. pcp = &p->pcp;
  2257. pcp->count = 0;
  2258. pcp->high = 6 * batch;
  2259. pcp->batch = max(1UL, 1 * batch);
  2260. INIT_LIST_HEAD(&pcp->list);
  2261. }
  2262. /*
  2263. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2264. * to the value high for the pageset p.
  2265. */
  2266. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2267. unsigned long high)
  2268. {
  2269. struct per_cpu_pages *pcp;
  2270. pcp = &p->pcp;
  2271. pcp->high = high;
  2272. pcp->batch = max(1UL, high/4);
  2273. if ((high/4) > (PAGE_SHIFT * 8))
  2274. pcp->batch = PAGE_SHIFT * 8;
  2275. }
  2276. #ifdef CONFIG_NUMA
  2277. /*
  2278. * Boot pageset table. One per cpu which is going to be used for all
  2279. * zones and all nodes. The parameters will be set in such a way
  2280. * that an item put on a list will immediately be handed over to
  2281. * the buddy list. This is safe since pageset manipulation is done
  2282. * with interrupts disabled.
  2283. *
  2284. * Some NUMA counter updates may also be caught by the boot pagesets.
  2285. *
  2286. * The boot_pagesets must be kept even after bootup is complete for
  2287. * unused processors and/or zones. They do play a role for bootstrapping
  2288. * hotplugged processors.
  2289. *
  2290. * zoneinfo_show() and maybe other functions do
  2291. * not check if the processor is online before following the pageset pointer.
  2292. * Other parts of the kernel may not check if the zone is available.
  2293. */
  2294. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2295. /*
  2296. * Dynamically allocate memory for the
  2297. * per cpu pageset array in struct zone.
  2298. */
  2299. static int __cpuinit process_zones(int cpu)
  2300. {
  2301. struct zone *zone, *dzone;
  2302. int node = cpu_to_node(cpu);
  2303. node_set_state(node, N_CPU); /* this node has a cpu */
  2304. for_each_zone(zone) {
  2305. if (!populated_zone(zone))
  2306. continue;
  2307. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2308. GFP_KERNEL, node);
  2309. if (!zone_pcp(zone, cpu))
  2310. goto bad;
  2311. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2312. if (percpu_pagelist_fraction)
  2313. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2314. (zone->present_pages / percpu_pagelist_fraction));
  2315. }
  2316. return 0;
  2317. bad:
  2318. for_each_zone(dzone) {
  2319. if (!populated_zone(dzone))
  2320. continue;
  2321. if (dzone == zone)
  2322. break;
  2323. kfree(zone_pcp(dzone, cpu));
  2324. zone_pcp(dzone, cpu) = NULL;
  2325. }
  2326. return -ENOMEM;
  2327. }
  2328. static inline void free_zone_pagesets(int cpu)
  2329. {
  2330. struct zone *zone;
  2331. for_each_zone(zone) {
  2332. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2333. /* Free per_cpu_pageset if it is slab allocated */
  2334. if (pset != &boot_pageset[cpu])
  2335. kfree(pset);
  2336. zone_pcp(zone, cpu) = NULL;
  2337. }
  2338. }
  2339. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2340. unsigned long action,
  2341. void *hcpu)
  2342. {
  2343. int cpu = (long)hcpu;
  2344. int ret = NOTIFY_OK;
  2345. switch (action) {
  2346. case CPU_UP_PREPARE:
  2347. case CPU_UP_PREPARE_FROZEN:
  2348. if (process_zones(cpu))
  2349. ret = NOTIFY_BAD;
  2350. break;
  2351. case CPU_UP_CANCELED:
  2352. case CPU_UP_CANCELED_FROZEN:
  2353. case CPU_DEAD:
  2354. case CPU_DEAD_FROZEN:
  2355. free_zone_pagesets(cpu);
  2356. break;
  2357. default:
  2358. break;
  2359. }
  2360. return ret;
  2361. }
  2362. static struct notifier_block __cpuinitdata pageset_notifier =
  2363. { &pageset_cpuup_callback, NULL, 0 };
  2364. void __init setup_per_cpu_pageset(void)
  2365. {
  2366. int err;
  2367. /* Initialize per_cpu_pageset for cpu 0.
  2368. * A cpuup callback will do this for every cpu
  2369. * as it comes online
  2370. */
  2371. err = process_zones(smp_processor_id());
  2372. BUG_ON(err);
  2373. register_cpu_notifier(&pageset_notifier);
  2374. }
  2375. #endif
  2376. static noinline __init_refok
  2377. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2378. {
  2379. int i;
  2380. struct pglist_data *pgdat = zone->zone_pgdat;
  2381. size_t alloc_size;
  2382. /*
  2383. * The per-page waitqueue mechanism uses hashed waitqueues
  2384. * per zone.
  2385. */
  2386. zone->wait_table_hash_nr_entries =
  2387. wait_table_hash_nr_entries(zone_size_pages);
  2388. zone->wait_table_bits =
  2389. wait_table_bits(zone->wait_table_hash_nr_entries);
  2390. alloc_size = zone->wait_table_hash_nr_entries
  2391. * sizeof(wait_queue_head_t);
  2392. if (system_state == SYSTEM_BOOTING) {
  2393. zone->wait_table = (wait_queue_head_t *)
  2394. alloc_bootmem_node(pgdat, alloc_size);
  2395. } else {
  2396. /*
  2397. * This case means that a zone whose size was 0 gets new memory
  2398. * via memory hot-add.
  2399. * But it may be the case that a new node was hot-added. In
  2400. * this case vmalloc() will not be able to use this new node's
  2401. * memory - this wait_table must be initialized to use this new
  2402. * node itself as well.
  2403. * To use this new node's memory, further consideration will be
  2404. * necessary.
  2405. */
  2406. zone->wait_table = vmalloc(alloc_size);
  2407. }
  2408. if (!zone->wait_table)
  2409. return -ENOMEM;
  2410. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2411. init_waitqueue_head(zone->wait_table + i);
  2412. return 0;
  2413. }
  2414. static __meminit void zone_pcp_init(struct zone *zone)
  2415. {
  2416. int cpu;
  2417. unsigned long batch = zone_batchsize(zone);
  2418. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2419. #ifdef CONFIG_NUMA
  2420. /* Early boot. Slab allocator not functional yet */
  2421. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2422. setup_pageset(&boot_pageset[cpu],0);
  2423. #else
  2424. setup_pageset(zone_pcp(zone,cpu), batch);
  2425. #endif
  2426. }
  2427. if (zone->present_pages)
  2428. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2429. zone->name, zone->present_pages, batch);
  2430. }
  2431. __meminit int init_currently_empty_zone(struct zone *zone,
  2432. unsigned long zone_start_pfn,
  2433. unsigned long size,
  2434. enum memmap_context context)
  2435. {
  2436. struct pglist_data *pgdat = zone->zone_pgdat;
  2437. int ret;
  2438. ret = zone_wait_table_init(zone, size);
  2439. if (ret)
  2440. return ret;
  2441. pgdat->nr_zones = zone_idx(zone) + 1;
  2442. zone->zone_start_pfn = zone_start_pfn;
  2443. memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
  2444. zone_init_free_lists(zone);
  2445. return 0;
  2446. }
  2447. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2448. /*
  2449. * Basic iterator support. Return the first range of PFNs for a node
  2450. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2451. */
  2452. static int __meminit first_active_region_index_in_nid(int nid)
  2453. {
  2454. int i;
  2455. for (i = 0; i < nr_nodemap_entries; i++)
  2456. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2457. return i;
  2458. return -1;
  2459. }
  2460. /*
  2461. * Basic iterator support. Return the next active range of PFNs for a node
  2462. * Note: nid == MAX_NUMNODES returns next region regardless of node
  2463. */
  2464. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2465. {
  2466. for (index = index + 1; index < nr_nodemap_entries; index++)
  2467. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2468. return index;
  2469. return -1;
  2470. }
  2471. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2472. /*
  2473. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2474. * Architectures may implement their own version but if add_active_range()
  2475. * was used and there are no special requirements, this is a convenient
  2476. * alternative
  2477. */
  2478. int __meminit early_pfn_to_nid(unsigned long pfn)
  2479. {
  2480. int i;
  2481. for (i = 0; i < nr_nodemap_entries; i++) {
  2482. unsigned long start_pfn = early_node_map[i].start_pfn;
  2483. unsigned long end_pfn = early_node_map[i].end_pfn;
  2484. if (start_pfn <= pfn && pfn < end_pfn)
  2485. return early_node_map[i].nid;
  2486. }
  2487. return 0;
  2488. }
  2489. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2490. /* Basic iterator support to walk early_node_map[] */
  2491. #define for_each_active_range_index_in_nid(i, nid) \
  2492. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2493. i = next_active_region_index_in_nid(i, nid))
  2494. /**
  2495. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2496. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2497. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2498. *
  2499. * If an architecture guarantees that all ranges registered with
  2500. * add_active_ranges() contain no holes and may be freed, this
  2501. * this function may be used instead of calling free_bootmem() manually.
  2502. */
  2503. void __init free_bootmem_with_active_regions(int nid,
  2504. unsigned long max_low_pfn)
  2505. {
  2506. int i;
  2507. for_each_active_range_index_in_nid(i, nid) {
  2508. unsigned long size_pages = 0;
  2509. unsigned long end_pfn = early_node_map[i].end_pfn;
  2510. if (early_node_map[i].start_pfn >= max_low_pfn)
  2511. continue;
  2512. if (end_pfn > max_low_pfn)
  2513. end_pfn = max_low_pfn;
  2514. size_pages = end_pfn - early_node_map[i].start_pfn;
  2515. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2516. PFN_PHYS(early_node_map[i].start_pfn),
  2517. size_pages << PAGE_SHIFT);
  2518. }
  2519. }
  2520. /**
  2521. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2522. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2523. *
  2524. * If an architecture guarantees that all ranges registered with
  2525. * add_active_ranges() contain no holes and may be freed, this
  2526. * function may be used instead of calling memory_present() manually.
  2527. */
  2528. void __init sparse_memory_present_with_active_regions(int nid)
  2529. {
  2530. int i;
  2531. for_each_active_range_index_in_nid(i, nid)
  2532. memory_present(early_node_map[i].nid,
  2533. early_node_map[i].start_pfn,
  2534. early_node_map[i].end_pfn);
  2535. }
  2536. /**
  2537. * push_node_boundaries - Push node boundaries to at least the requested boundary
  2538. * @nid: The nid of the node to push the boundary for
  2539. * @start_pfn: The start pfn of the node
  2540. * @end_pfn: The end pfn of the node
  2541. *
  2542. * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
  2543. * time. Specifically, on x86_64, SRAT will report ranges that can potentially
  2544. * be hotplugged even though no physical memory exists. This function allows
  2545. * an arch to push out the node boundaries so mem_map is allocated that can
  2546. * be used later.
  2547. */
  2548. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  2549. void __init push_node_boundaries(unsigned int nid,
  2550. unsigned long start_pfn, unsigned long end_pfn)
  2551. {
  2552. printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
  2553. nid, start_pfn, end_pfn);
  2554. /* Initialise the boundary for this node if necessary */
  2555. if (node_boundary_end_pfn[nid] == 0)
  2556. node_boundary_start_pfn[nid] = -1UL;
  2557. /* Update the boundaries */
  2558. if (node_boundary_start_pfn[nid] > start_pfn)
  2559. node_boundary_start_pfn[nid] = start_pfn;
  2560. if (node_boundary_end_pfn[nid] < end_pfn)
  2561. node_boundary_end_pfn[nid] = end_pfn;
  2562. }
  2563. /* If necessary, push the node boundary out for reserve hotadd */
  2564. static void __meminit account_node_boundary(unsigned int nid,
  2565. unsigned long *start_pfn, unsigned long *end_pfn)
  2566. {
  2567. printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
  2568. nid, *start_pfn, *end_pfn);
  2569. /* Return if boundary information has not been provided */
  2570. if (node_boundary_end_pfn[nid] == 0)
  2571. return;
  2572. /* Check the boundaries and update if necessary */
  2573. if (node_boundary_start_pfn[nid] < *start_pfn)
  2574. *start_pfn = node_boundary_start_pfn[nid];
  2575. if (node_boundary_end_pfn[nid] > *end_pfn)
  2576. *end_pfn = node_boundary_end_pfn[nid];
  2577. }
  2578. #else
  2579. void __init push_node_boundaries(unsigned int nid,
  2580. unsigned long start_pfn, unsigned long end_pfn) {}
  2581. static void __meminit account_node_boundary(unsigned int nid,
  2582. unsigned long *start_pfn, unsigned long *end_pfn) {}
  2583. #endif
  2584. /**
  2585. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2586. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2587. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2588. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2589. *
  2590. * It returns the start and end page frame of a node based on information
  2591. * provided by an arch calling add_active_range(). If called for a node
  2592. * with no available memory, a warning is printed and the start and end
  2593. * PFNs will be 0.
  2594. */
  2595. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2596. unsigned long *start_pfn, unsigned long *end_pfn)
  2597. {
  2598. int i;
  2599. *start_pfn = -1UL;
  2600. *end_pfn = 0;
  2601. for_each_active_range_index_in_nid(i, nid) {
  2602. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2603. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2604. }
  2605. if (*start_pfn == -1UL)
  2606. *start_pfn = 0;
  2607. /* Push the node boundaries out if requested */
  2608. account_node_boundary(nid, start_pfn, end_pfn);
  2609. }
  2610. /*
  2611. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2612. * assumption is made that zones within a node are ordered in monotonic
  2613. * increasing memory addresses so that the "highest" populated zone is used
  2614. */
  2615. void __init find_usable_zone_for_movable(void)
  2616. {
  2617. int zone_index;
  2618. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2619. if (zone_index == ZONE_MOVABLE)
  2620. continue;
  2621. if (arch_zone_highest_possible_pfn[zone_index] >
  2622. arch_zone_lowest_possible_pfn[zone_index])
  2623. break;
  2624. }
  2625. VM_BUG_ON(zone_index == -1);
  2626. movable_zone = zone_index;
  2627. }
  2628. /*
  2629. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2630. * because it is sized independant of architecture. Unlike the other zones,
  2631. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2632. * in each node depending on the size of each node and how evenly kernelcore
  2633. * is distributed. This helper function adjusts the zone ranges
  2634. * provided by the architecture for a given node by using the end of the
  2635. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  2636. * zones within a node are in order of monotonic increases memory addresses
  2637. */
  2638. void __meminit adjust_zone_range_for_zone_movable(int nid,
  2639. unsigned long zone_type,
  2640. unsigned long node_start_pfn,
  2641. unsigned long node_end_pfn,
  2642. unsigned long *zone_start_pfn,
  2643. unsigned long *zone_end_pfn)
  2644. {
  2645. /* Only adjust if ZONE_MOVABLE is on this node */
  2646. if (zone_movable_pfn[nid]) {
  2647. /* Size ZONE_MOVABLE */
  2648. if (zone_type == ZONE_MOVABLE) {
  2649. *zone_start_pfn = zone_movable_pfn[nid];
  2650. *zone_end_pfn = min(node_end_pfn,
  2651. arch_zone_highest_possible_pfn[movable_zone]);
  2652. /* Adjust for ZONE_MOVABLE starting within this range */
  2653. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  2654. *zone_end_pfn > zone_movable_pfn[nid]) {
  2655. *zone_end_pfn = zone_movable_pfn[nid];
  2656. /* Check if this whole range is within ZONE_MOVABLE */
  2657. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  2658. *zone_start_pfn = *zone_end_pfn;
  2659. }
  2660. }
  2661. /*
  2662. * Return the number of pages a zone spans in a node, including holes
  2663. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2664. */
  2665. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2666. unsigned long zone_type,
  2667. unsigned long *ignored)
  2668. {
  2669. unsigned long node_start_pfn, node_end_pfn;
  2670. unsigned long zone_start_pfn, zone_end_pfn;
  2671. /* Get the start and end of the node and zone */
  2672. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2673. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2674. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2675. adjust_zone_range_for_zone_movable(nid, zone_type,
  2676. node_start_pfn, node_end_pfn,
  2677. &zone_start_pfn, &zone_end_pfn);
  2678. /* Check that this node has pages within the zone's required range */
  2679. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2680. return 0;
  2681. /* Move the zone boundaries inside the node if necessary */
  2682. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2683. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2684. /* Return the spanned pages */
  2685. return zone_end_pfn - zone_start_pfn;
  2686. }
  2687. /*
  2688. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2689. * then all holes in the requested range will be accounted for.
  2690. */
  2691. unsigned long __meminit __absent_pages_in_range(int nid,
  2692. unsigned long range_start_pfn,
  2693. unsigned long range_end_pfn)
  2694. {
  2695. int i = 0;
  2696. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2697. unsigned long start_pfn;
  2698. /* Find the end_pfn of the first active range of pfns in the node */
  2699. i = first_active_region_index_in_nid(nid);
  2700. if (i == -1)
  2701. return 0;
  2702. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2703. /* Account for ranges before physical memory on this node */
  2704. if (early_node_map[i].start_pfn > range_start_pfn)
  2705. hole_pages = prev_end_pfn - range_start_pfn;
  2706. /* Find all holes for the zone within the node */
  2707. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2708. /* No need to continue if prev_end_pfn is outside the zone */
  2709. if (prev_end_pfn >= range_end_pfn)
  2710. break;
  2711. /* Make sure the end of the zone is not within the hole */
  2712. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2713. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2714. /* Update the hole size cound and move on */
  2715. if (start_pfn > range_start_pfn) {
  2716. BUG_ON(prev_end_pfn > start_pfn);
  2717. hole_pages += start_pfn - prev_end_pfn;
  2718. }
  2719. prev_end_pfn = early_node_map[i].end_pfn;
  2720. }
  2721. /* Account for ranges past physical memory on this node */
  2722. if (range_end_pfn > prev_end_pfn)
  2723. hole_pages += range_end_pfn -
  2724. max(range_start_pfn, prev_end_pfn);
  2725. return hole_pages;
  2726. }
  2727. /**
  2728. * absent_pages_in_range - Return number of page frames in holes within a range
  2729. * @start_pfn: The start PFN to start searching for holes
  2730. * @end_pfn: The end PFN to stop searching for holes
  2731. *
  2732. * It returns the number of pages frames in memory holes within a range.
  2733. */
  2734. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  2735. unsigned long end_pfn)
  2736. {
  2737. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  2738. }
  2739. /* Return the number of page frames in holes in a zone on a node */
  2740. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  2741. unsigned long zone_type,
  2742. unsigned long *ignored)
  2743. {
  2744. unsigned long node_start_pfn, node_end_pfn;
  2745. unsigned long zone_start_pfn, zone_end_pfn;
  2746. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2747. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  2748. node_start_pfn);
  2749. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  2750. node_end_pfn);
  2751. adjust_zone_range_for_zone_movable(nid, zone_type,
  2752. node_start_pfn, node_end_pfn,
  2753. &zone_start_pfn, &zone_end_pfn);
  2754. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  2755. }
  2756. #else
  2757. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2758. unsigned long zone_type,
  2759. unsigned long *zones_size)
  2760. {
  2761. return zones_size[zone_type];
  2762. }
  2763. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  2764. unsigned long zone_type,
  2765. unsigned long *zholes_size)
  2766. {
  2767. if (!zholes_size)
  2768. return 0;
  2769. return zholes_size[zone_type];
  2770. }
  2771. #endif
  2772. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  2773. unsigned long *zones_size, unsigned long *zholes_size)
  2774. {
  2775. unsigned long realtotalpages, totalpages = 0;
  2776. enum zone_type i;
  2777. for (i = 0; i < MAX_NR_ZONES; i++)
  2778. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  2779. zones_size);
  2780. pgdat->node_spanned_pages = totalpages;
  2781. realtotalpages = totalpages;
  2782. for (i = 0; i < MAX_NR_ZONES; i++)
  2783. realtotalpages -=
  2784. zone_absent_pages_in_node(pgdat->node_id, i,
  2785. zholes_size);
  2786. pgdat->node_present_pages = realtotalpages;
  2787. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  2788. realtotalpages);
  2789. }
  2790. #ifndef CONFIG_SPARSEMEM
  2791. /*
  2792. * Calculate the size of the zone->blockflags rounded to an unsigned long
  2793. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  2794. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  2795. * round what is now in bits to nearest long in bits, then return it in
  2796. * bytes.
  2797. */
  2798. static unsigned long __init usemap_size(unsigned long zonesize)
  2799. {
  2800. unsigned long usemapsize;
  2801. usemapsize = roundup(zonesize, pageblock_nr_pages);
  2802. usemapsize = usemapsize >> pageblock_order;
  2803. usemapsize *= NR_PAGEBLOCK_BITS;
  2804. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  2805. return usemapsize / 8;
  2806. }
  2807. static void __init setup_usemap(struct pglist_data *pgdat,
  2808. struct zone *zone, unsigned long zonesize)
  2809. {
  2810. unsigned long usemapsize = usemap_size(zonesize);
  2811. zone->pageblock_flags = NULL;
  2812. if (usemapsize) {
  2813. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  2814. memset(zone->pageblock_flags, 0, usemapsize);
  2815. }
  2816. }
  2817. #else
  2818. static void inline setup_usemap(struct pglist_data *pgdat,
  2819. struct zone *zone, unsigned long zonesize) {}
  2820. #endif /* CONFIG_SPARSEMEM */
  2821. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  2822. /* Return a sensible default order for the pageblock size. */
  2823. static inline int pageblock_default_order(void)
  2824. {
  2825. if (HPAGE_SHIFT > PAGE_SHIFT)
  2826. return HUGETLB_PAGE_ORDER;
  2827. return MAX_ORDER-1;
  2828. }
  2829. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  2830. static inline void __init set_pageblock_order(unsigned int order)
  2831. {
  2832. /* Check that pageblock_nr_pages has not already been setup */
  2833. if (pageblock_order)
  2834. return;
  2835. /*
  2836. * Assume the largest contiguous order of interest is a huge page.
  2837. * This value may be variable depending on boot parameters on IA64
  2838. */
  2839. pageblock_order = order;
  2840. }
  2841. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2842. /*
  2843. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  2844. * and pageblock_default_order() are unused as pageblock_order is set
  2845. * at compile-time. See include/linux/pageblock-flags.h for the values of
  2846. * pageblock_order based on the kernel config
  2847. */
  2848. static inline int pageblock_default_order(unsigned int order)
  2849. {
  2850. return MAX_ORDER-1;
  2851. }
  2852. #define set_pageblock_order(x) do {} while (0)
  2853. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2854. /*
  2855. * Set up the zone data structures:
  2856. * - mark all pages reserved
  2857. * - mark all memory queues empty
  2858. * - clear the memory bitmaps
  2859. */
  2860. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  2861. unsigned long *zones_size, unsigned long *zholes_size)
  2862. {
  2863. enum zone_type j;
  2864. int nid = pgdat->node_id;
  2865. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  2866. int ret;
  2867. pgdat_resize_init(pgdat);
  2868. pgdat->nr_zones = 0;
  2869. init_waitqueue_head(&pgdat->kswapd_wait);
  2870. pgdat->kswapd_max_order = 0;
  2871. for (j = 0; j < MAX_NR_ZONES; j++) {
  2872. struct zone *zone = pgdat->node_zones + j;
  2873. unsigned long size, realsize, memmap_pages;
  2874. size = zone_spanned_pages_in_node(nid, j, zones_size);
  2875. realsize = size - zone_absent_pages_in_node(nid, j,
  2876. zholes_size);
  2877. /*
  2878. * Adjust realsize so that it accounts for how much memory
  2879. * is used by this zone for memmap. This affects the watermark
  2880. * and per-cpu initialisations
  2881. */
  2882. memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
  2883. if (realsize >= memmap_pages) {
  2884. realsize -= memmap_pages;
  2885. printk(KERN_DEBUG
  2886. " %s zone: %lu pages used for memmap\n",
  2887. zone_names[j], memmap_pages);
  2888. } else
  2889. printk(KERN_WARNING
  2890. " %s zone: %lu pages exceeds realsize %lu\n",
  2891. zone_names[j], memmap_pages, realsize);
  2892. /* Account for reserved pages */
  2893. if (j == 0 && realsize > dma_reserve) {
  2894. realsize -= dma_reserve;
  2895. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  2896. zone_names[0], dma_reserve);
  2897. }
  2898. if (!is_highmem_idx(j))
  2899. nr_kernel_pages += realsize;
  2900. nr_all_pages += realsize;
  2901. zone->spanned_pages = size;
  2902. zone->present_pages = realsize;
  2903. #ifdef CONFIG_NUMA
  2904. zone->node = nid;
  2905. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  2906. / 100;
  2907. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  2908. #endif
  2909. zone->name = zone_names[j];
  2910. spin_lock_init(&zone->lock);
  2911. spin_lock_init(&zone->lru_lock);
  2912. zone_seqlock_init(zone);
  2913. zone->zone_pgdat = pgdat;
  2914. zone->prev_priority = DEF_PRIORITY;
  2915. zone_pcp_init(zone);
  2916. INIT_LIST_HEAD(&zone->active_list);
  2917. INIT_LIST_HEAD(&zone->inactive_list);
  2918. zone->nr_scan_active = 0;
  2919. zone->nr_scan_inactive = 0;
  2920. zap_zone_vm_stats(zone);
  2921. zone->flags = 0;
  2922. if (!size)
  2923. continue;
  2924. set_pageblock_order(pageblock_default_order());
  2925. setup_usemap(pgdat, zone, size);
  2926. ret = init_currently_empty_zone(zone, zone_start_pfn,
  2927. size, MEMMAP_EARLY);
  2928. BUG_ON(ret);
  2929. zone_start_pfn += size;
  2930. }
  2931. }
  2932. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  2933. {
  2934. /* Skip empty nodes */
  2935. if (!pgdat->node_spanned_pages)
  2936. return;
  2937. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  2938. /* ia64 gets its own node_mem_map, before this, without bootmem */
  2939. if (!pgdat->node_mem_map) {
  2940. unsigned long size, start, end;
  2941. struct page *map;
  2942. /*
  2943. * The zone's endpoints aren't required to be MAX_ORDER
  2944. * aligned but the node_mem_map endpoints must be in order
  2945. * for the buddy allocator to function correctly.
  2946. */
  2947. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  2948. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  2949. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  2950. size = (end - start) * sizeof(struct page);
  2951. map = alloc_remap(pgdat->node_id, size);
  2952. if (!map)
  2953. map = alloc_bootmem_node(pgdat, size);
  2954. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  2955. }
  2956. #ifndef CONFIG_NEED_MULTIPLE_NODES
  2957. /*
  2958. * With no DISCONTIG, the global mem_map is just set as node 0's
  2959. */
  2960. if (pgdat == NODE_DATA(0)) {
  2961. mem_map = NODE_DATA(0)->node_mem_map;
  2962. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2963. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  2964. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  2965. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  2966. }
  2967. #endif
  2968. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  2969. }
  2970. void __paginginit free_area_init_node(int nid, struct pglist_data *pgdat,
  2971. unsigned long *zones_size, unsigned long node_start_pfn,
  2972. unsigned long *zholes_size)
  2973. {
  2974. pgdat->node_id = nid;
  2975. pgdat->node_start_pfn = node_start_pfn;
  2976. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  2977. alloc_node_mem_map(pgdat);
  2978. free_area_init_core(pgdat, zones_size, zholes_size);
  2979. }
  2980. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2981. #if MAX_NUMNODES > 1
  2982. /*
  2983. * Figure out the number of possible node ids.
  2984. */
  2985. static void __init setup_nr_node_ids(void)
  2986. {
  2987. unsigned int node;
  2988. unsigned int highest = 0;
  2989. for_each_node_mask(node, node_possible_map)
  2990. highest = node;
  2991. nr_node_ids = highest + 1;
  2992. }
  2993. #else
  2994. static inline void setup_nr_node_ids(void)
  2995. {
  2996. }
  2997. #endif
  2998. /**
  2999. * add_active_range - Register a range of PFNs backed by physical memory
  3000. * @nid: The node ID the range resides on
  3001. * @start_pfn: The start PFN of the available physical memory
  3002. * @end_pfn: The end PFN of the available physical memory
  3003. *
  3004. * These ranges are stored in an early_node_map[] and later used by
  3005. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3006. * range spans a memory hole, it is up to the architecture to ensure
  3007. * the memory is not freed by the bootmem allocator. If possible
  3008. * the range being registered will be merged with existing ranges.
  3009. */
  3010. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3011. unsigned long end_pfn)
  3012. {
  3013. int i;
  3014. printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
  3015. "%d entries of %d used\n",
  3016. nid, start_pfn, end_pfn,
  3017. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3018. /* Merge with existing active regions if possible */
  3019. for (i = 0; i < nr_nodemap_entries; i++) {
  3020. if (early_node_map[i].nid != nid)
  3021. continue;
  3022. /* Skip if an existing region covers this new one */
  3023. if (start_pfn >= early_node_map[i].start_pfn &&
  3024. end_pfn <= early_node_map[i].end_pfn)
  3025. return;
  3026. /* Merge forward if suitable */
  3027. if (start_pfn <= early_node_map[i].end_pfn &&
  3028. end_pfn > early_node_map[i].end_pfn) {
  3029. early_node_map[i].end_pfn = end_pfn;
  3030. return;
  3031. }
  3032. /* Merge backward if suitable */
  3033. if (start_pfn < early_node_map[i].end_pfn &&
  3034. end_pfn >= early_node_map[i].start_pfn) {
  3035. early_node_map[i].start_pfn = start_pfn;
  3036. return;
  3037. }
  3038. }
  3039. /* Check that early_node_map is large enough */
  3040. if (i >= MAX_ACTIVE_REGIONS) {
  3041. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3042. MAX_ACTIVE_REGIONS);
  3043. return;
  3044. }
  3045. early_node_map[i].nid = nid;
  3046. early_node_map[i].start_pfn = start_pfn;
  3047. early_node_map[i].end_pfn = end_pfn;
  3048. nr_nodemap_entries = i + 1;
  3049. }
  3050. /**
  3051. * shrink_active_range - Shrink an existing registered range of PFNs
  3052. * @nid: The node id the range is on that should be shrunk
  3053. * @old_end_pfn: The old end PFN of the range
  3054. * @new_end_pfn: The new PFN of the range
  3055. *
  3056. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3057. * The map is kept at the end physical page range that has already been
  3058. * registered with add_active_range(). This function allows an arch to shrink
  3059. * an existing registered range.
  3060. */
  3061. void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
  3062. unsigned long new_end_pfn)
  3063. {
  3064. int i;
  3065. /* Find the old active region end and shrink */
  3066. for_each_active_range_index_in_nid(i, nid)
  3067. if (early_node_map[i].end_pfn == old_end_pfn) {
  3068. early_node_map[i].end_pfn = new_end_pfn;
  3069. break;
  3070. }
  3071. }
  3072. /**
  3073. * remove_all_active_ranges - Remove all currently registered regions
  3074. *
  3075. * During discovery, it may be found that a table like SRAT is invalid
  3076. * and an alternative discovery method must be used. This function removes
  3077. * all currently registered regions.
  3078. */
  3079. void __init remove_all_active_ranges(void)
  3080. {
  3081. memset(early_node_map, 0, sizeof(early_node_map));
  3082. nr_nodemap_entries = 0;
  3083. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  3084. memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
  3085. memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
  3086. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  3087. }
  3088. /* Compare two active node_active_regions */
  3089. static int __init cmp_node_active_region(const void *a, const void *b)
  3090. {
  3091. struct node_active_region *arange = (struct node_active_region *)a;
  3092. struct node_active_region *brange = (struct node_active_region *)b;
  3093. /* Done this way to avoid overflows */
  3094. if (arange->start_pfn > brange->start_pfn)
  3095. return 1;
  3096. if (arange->start_pfn < brange->start_pfn)
  3097. return -1;
  3098. return 0;
  3099. }
  3100. /* sort the node_map by start_pfn */
  3101. static void __init sort_node_map(void)
  3102. {
  3103. sort(early_node_map, (size_t)nr_nodemap_entries,
  3104. sizeof(struct node_active_region),
  3105. cmp_node_active_region, NULL);
  3106. }
  3107. /* Find the lowest pfn for a node */
  3108. unsigned long __init find_min_pfn_for_node(unsigned long nid)
  3109. {
  3110. int i;
  3111. unsigned long min_pfn = ULONG_MAX;
  3112. /* Assuming a sorted map, the first range found has the starting pfn */
  3113. for_each_active_range_index_in_nid(i, nid)
  3114. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3115. if (min_pfn == ULONG_MAX) {
  3116. printk(KERN_WARNING
  3117. "Could not find start_pfn for node %lu\n", nid);
  3118. return 0;
  3119. }
  3120. return min_pfn;
  3121. }
  3122. /**
  3123. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3124. *
  3125. * It returns the minimum PFN based on information provided via
  3126. * add_active_range().
  3127. */
  3128. unsigned long __init find_min_pfn_with_active_regions(void)
  3129. {
  3130. return find_min_pfn_for_node(MAX_NUMNODES);
  3131. }
  3132. /**
  3133. * find_max_pfn_with_active_regions - Find the maximum PFN registered
  3134. *
  3135. * It returns the maximum PFN based on information provided via
  3136. * add_active_range().
  3137. */
  3138. unsigned long __init find_max_pfn_with_active_regions(void)
  3139. {
  3140. int i;
  3141. unsigned long max_pfn = 0;
  3142. for (i = 0; i < nr_nodemap_entries; i++)
  3143. max_pfn = max(max_pfn, early_node_map[i].end_pfn);
  3144. return max_pfn;
  3145. }
  3146. /*
  3147. * early_calculate_totalpages()
  3148. * Sum pages in active regions for movable zone.
  3149. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3150. */
  3151. static unsigned long __init early_calculate_totalpages(void)
  3152. {
  3153. int i;
  3154. unsigned long totalpages = 0;
  3155. for (i = 0; i < nr_nodemap_entries; i++) {
  3156. unsigned long pages = early_node_map[i].end_pfn -
  3157. early_node_map[i].start_pfn;
  3158. totalpages += pages;
  3159. if (pages)
  3160. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3161. }
  3162. return totalpages;
  3163. }
  3164. /*
  3165. * Find the PFN the Movable zone begins in each node. Kernel memory
  3166. * is spread evenly between nodes as long as the nodes have enough
  3167. * memory. When they don't, some nodes will have more kernelcore than
  3168. * others
  3169. */
  3170. void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3171. {
  3172. int i, nid;
  3173. unsigned long usable_startpfn;
  3174. unsigned long kernelcore_node, kernelcore_remaining;
  3175. unsigned long totalpages = early_calculate_totalpages();
  3176. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3177. /*
  3178. * If movablecore was specified, calculate what size of
  3179. * kernelcore that corresponds so that memory usable for
  3180. * any allocation type is evenly spread. If both kernelcore
  3181. * and movablecore are specified, then the value of kernelcore
  3182. * will be used for required_kernelcore if it's greater than
  3183. * what movablecore would have allowed.
  3184. */
  3185. if (required_movablecore) {
  3186. unsigned long corepages;
  3187. /*
  3188. * Round-up so that ZONE_MOVABLE is at least as large as what
  3189. * was requested by the user
  3190. */
  3191. required_movablecore =
  3192. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3193. corepages = totalpages - required_movablecore;
  3194. required_kernelcore = max(required_kernelcore, corepages);
  3195. }
  3196. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3197. if (!required_kernelcore)
  3198. return;
  3199. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3200. find_usable_zone_for_movable();
  3201. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3202. restart:
  3203. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3204. kernelcore_node = required_kernelcore / usable_nodes;
  3205. for_each_node_state(nid, N_HIGH_MEMORY) {
  3206. /*
  3207. * Recalculate kernelcore_node if the division per node
  3208. * now exceeds what is necessary to satisfy the requested
  3209. * amount of memory for the kernel
  3210. */
  3211. if (required_kernelcore < kernelcore_node)
  3212. kernelcore_node = required_kernelcore / usable_nodes;
  3213. /*
  3214. * As the map is walked, we track how much memory is usable
  3215. * by the kernel using kernelcore_remaining. When it is
  3216. * 0, the rest of the node is usable by ZONE_MOVABLE
  3217. */
  3218. kernelcore_remaining = kernelcore_node;
  3219. /* Go through each range of PFNs within this node */
  3220. for_each_active_range_index_in_nid(i, nid) {
  3221. unsigned long start_pfn, end_pfn;
  3222. unsigned long size_pages;
  3223. start_pfn = max(early_node_map[i].start_pfn,
  3224. zone_movable_pfn[nid]);
  3225. end_pfn = early_node_map[i].end_pfn;
  3226. if (start_pfn >= end_pfn)
  3227. continue;
  3228. /* Account for what is only usable for kernelcore */
  3229. if (start_pfn < usable_startpfn) {
  3230. unsigned long kernel_pages;
  3231. kernel_pages = min(end_pfn, usable_startpfn)
  3232. - start_pfn;
  3233. kernelcore_remaining -= min(kernel_pages,
  3234. kernelcore_remaining);
  3235. required_kernelcore -= min(kernel_pages,
  3236. required_kernelcore);
  3237. /* Continue if range is now fully accounted */
  3238. if (end_pfn <= usable_startpfn) {
  3239. /*
  3240. * Push zone_movable_pfn to the end so
  3241. * that if we have to rebalance
  3242. * kernelcore across nodes, we will
  3243. * not double account here
  3244. */
  3245. zone_movable_pfn[nid] = end_pfn;
  3246. continue;
  3247. }
  3248. start_pfn = usable_startpfn;
  3249. }
  3250. /*
  3251. * The usable PFN range for ZONE_MOVABLE is from
  3252. * start_pfn->end_pfn. Calculate size_pages as the
  3253. * number of pages used as kernelcore
  3254. */
  3255. size_pages = end_pfn - start_pfn;
  3256. if (size_pages > kernelcore_remaining)
  3257. size_pages = kernelcore_remaining;
  3258. zone_movable_pfn[nid] = start_pfn + size_pages;
  3259. /*
  3260. * Some kernelcore has been met, update counts and
  3261. * break if the kernelcore for this node has been
  3262. * satisified
  3263. */
  3264. required_kernelcore -= min(required_kernelcore,
  3265. size_pages);
  3266. kernelcore_remaining -= size_pages;
  3267. if (!kernelcore_remaining)
  3268. break;
  3269. }
  3270. }
  3271. /*
  3272. * If there is still required_kernelcore, we do another pass with one
  3273. * less node in the count. This will push zone_movable_pfn[nid] further
  3274. * along on the nodes that still have memory until kernelcore is
  3275. * satisified
  3276. */
  3277. usable_nodes--;
  3278. if (usable_nodes && required_kernelcore > usable_nodes)
  3279. goto restart;
  3280. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3281. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3282. zone_movable_pfn[nid] =
  3283. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3284. }
  3285. /* Any regular memory on that node ? */
  3286. static void check_for_regular_memory(pg_data_t *pgdat)
  3287. {
  3288. #ifdef CONFIG_HIGHMEM
  3289. enum zone_type zone_type;
  3290. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3291. struct zone *zone = &pgdat->node_zones[zone_type];
  3292. if (zone->present_pages)
  3293. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3294. }
  3295. #endif
  3296. }
  3297. /**
  3298. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3299. * @max_zone_pfn: an array of max PFNs for each zone
  3300. *
  3301. * This will call free_area_init_node() for each active node in the system.
  3302. * Using the page ranges provided by add_active_range(), the size of each
  3303. * zone in each node and their holes is calculated. If the maximum PFN
  3304. * between two adjacent zones match, it is assumed that the zone is empty.
  3305. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3306. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3307. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3308. * at arch_max_dma_pfn.
  3309. */
  3310. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3311. {
  3312. unsigned long nid;
  3313. enum zone_type i;
  3314. /* Sort early_node_map as initialisation assumes it is sorted */
  3315. sort_node_map();
  3316. /* Record where the zone boundaries are */
  3317. memset(arch_zone_lowest_possible_pfn, 0,
  3318. sizeof(arch_zone_lowest_possible_pfn));
  3319. memset(arch_zone_highest_possible_pfn, 0,
  3320. sizeof(arch_zone_highest_possible_pfn));
  3321. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3322. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3323. for (i = 1; i < MAX_NR_ZONES; i++) {
  3324. if (i == ZONE_MOVABLE)
  3325. continue;
  3326. arch_zone_lowest_possible_pfn[i] =
  3327. arch_zone_highest_possible_pfn[i-1];
  3328. arch_zone_highest_possible_pfn[i] =
  3329. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3330. }
  3331. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3332. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3333. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3334. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3335. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3336. /* Print out the zone ranges */
  3337. printk("Zone PFN ranges:\n");
  3338. for (i = 0; i < MAX_NR_ZONES; i++) {
  3339. if (i == ZONE_MOVABLE)
  3340. continue;
  3341. printk(" %-8s %8lu -> %8lu\n",
  3342. zone_names[i],
  3343. arch_zone_lowest_possible_pfn[i],
  3344. arch_zone_highest_possible_pfn[i]);
  3345. }
  3346. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3347. printk("Movable zone start PFN for each node\n");
  3348. for (i = 0; i < MAX_NUMNODES; i++) {
  3349. if (zone_movable_pfn[i])
  3350. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3351. }
  3352. /* Print out the early_node_map[] */
  3353. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3354. for (i = 0; i < nr_nodemap_entries; i++)
  3355. printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
  3356. early_node_map[i].start_pfn,
  3357. early_node_map[i].end_pfn);
  3358. /* Initialise every node */
  3359. setup_nr_node_ids();
  3360. for_each_online_node(nid) {
  3361. pg_data_t *pgdat = NODE_DATA(nid);
  3362. free_area_init_node(nid, pgdat, NULL,
  3363. find_min_pfn_for_node(nid), NULL);
  3364. /* Any memory on that node */
  3365. if (pgdat->node_present_pages)
  3366. node_set_state(nid, N_HIGH_MEMORY);
  3367. check_for_regular_memory(pgdat);
  3368. }
  3369. }
  3370. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3371. {
  3372. unsigned long long coremem;
  3373. if (!p)
  3374. return -EINVAL;
  3375. coremem = memparse(p, &p);
  3376. *core = coremem >> PAGE_SHIFT;
  3377. /* Paranoid check that UL is enough for the coremem value */
  3378. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3379. return 0;
  3380. }
  3381. /*
  3382. * kernelcore=size sets the amount of memory for use for allocations that
  3383. * cannot be reclaimed or migrated.
  3384. */
  3385. static int __init cmdline_parse_kernelcore(char *p)
  3386. {
  3387. return cmdline_parse_core(p, &required_kernelcore);
  3388. }
  3389. /*
  3390. * movablecore=size sets the amount of memory for use for allocations that
  3391. * can be reclaimed or migrated.
  3392. */
  3393. static int __init cmdline_parse_movablecore(char *p)
  3394. {
  3395. return cmdline_parse_core(p, &required_movablecore);
  3396. }
  3397. early_param("kernelcore", cmdline_parse_kernelcore);
  3398. early_param("movablecore", cmdline_parse_movablecore);
  3399. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3400. /**
  3401. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3402. * @new_dma_reserve: The number of pages to mark reserved
  3403. *
  3404. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3405. * In the DMA zone, a significant percentage may be consumed by kernel image
  3406. * and other unfreeable allocations which can skew the watermarks badly. This
  3407. * function may optionally be used to account for unfreeable pages in the
  3408. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3409. * smaller per-cpu batchsize.
  3410. */
  3411. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3412. {
  3413. dma_reserve = new_dma_reserve;
  3414. }
  3415. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3416. static bootmem_data_t contig_bootmem_data;
  3417. struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
  3418. EXPORT_SYMBOL(contig_page_data);
  3419. #endif
  3420. void __init free_area_init(unsigned long *zones_size)
  3421. {
  3422. free_area_init_node(0, NODE_DATA(0), zones_size,
  3423. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3424. }
  3425. static int page_alloc_cpu_notify(struct notifier_block *self,
  3426. unsigned long action, void *hcpu)
  3427. {
  3428. int cpu = (unsigned long)hcpu;
  3429. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3430. drain_pages(cpu);
  3431. /*
  3432. * Spill the event counters of the dead processor
  3433. * into the current processors event counters.
  3434. * This artificially elevates the count of the current
  3435. * processor.
  3436. */
  3437. vm_events_fold_cpu(cpu);
  3438. /*
  3439. * Zero the differential counters of the dead processor
  3440. * so that the vm statistics are consistent.
  3441. *
  3442. * This is only okay since the processor is dead and cannot
  3443. * race with what we are doing.
  3444. */
  3445. refresh_cpu_vm_stats(cpu);
  3446. }
  3447. return NOTIFY_OK;
  3448. }
  3449. void __init page_alloc_init(void)
  3450. {
  3451. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3452. }
  3453. /*
  3454. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3455. * or min_free_kbytes changes.
  3456. */
  3457. static void calculate_totalreserve_pages(void)
  3458. {
  3459. struct pglist_data *pgdat;
  3460. unsigned long reserve_pages = 0;
  3461. enum zone_type i, j;
  3462. for_each_online_pgdat(pgdat) {
  3463. for (i = 0; i < MAX_NR_ZONES; i++) {
  3464. struct zone *zone = pgdat->node_zones + i;
  3465. unsigned long max = 0;
  3466. /* Find valid and maximum lowmem_reserve in the zone */
  3467. for (j = i; j < MAX_NR_ZONES; j++) {
  3468. if (zone->lowmem_reserve[j] > max)
  3469. max = zone->lowmem_reserve[j];
  3470. }
  3471. /* we treat pages_high as reserved pages. */
  3472. max += zone->pages_high;
  3473. if (max > zone->present_pages)
  3474. max = zone->present_pages;
  3475. reserve_pages += max;
  3476. }
  3477. }
  3478. totalreserve_pages = reserve_pages;
  3479. }
  3480. /*
  3481. * setup_per_zone_lowmem_reserve - called whenever
  3482. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3483. * has a correct pages reserved value, so an adequate number of
  3484. * pages are left in the zone after a successful __alloc_pages().
  3485. */
  3486. static void setup_per_zone_lowmem_reserve(void)
  3487. {
  3488. struct pglist_data *pgdat;
  3489. enum zone_type j, idx;
  3490. for_each_online_pgdat(pgdat) {
  3491. for (j = 0; j < MAX_NR_ZONES; j++) {
  3492. struct zone *zone = pgdat->node_zones + j;
  3493. unsigned long present_pages = zone->present_pages;
  3494. zone->lowmem_reserve[j] = 0;
  3495. idx = j;
  3496. while (idx) {
  3497. struct zone *lower_zone;
  3498. idx--;
  3499. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3500. sysctl_lowmem_reserve_ratio[idx] = 1;
  3501. lower_zone = pgdat->node_zones + idx;
  3502. lower_zone->lowmem_reserve[j] = present_pages /
  3503. sysctl_lowmem_reserve_ratio[idx];
  3504. present_pages += lower_zone->present_pages;
  3505. }
  3506. }
  3507. }
  3508. /* update totalreserve_pages */
  3509. calculate_totalreserve_pages();
  3510. }
  3511. /**
  3512. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  3513. *
  3514. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  3515. * with respect to min_free_kbytes.
  3516. */
  3517. void setup_per_zone_pages_min(void)
  3518. {
  3519. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3520. unsigned long lowmem_pages = 0;
  3521. struct zone *zone;
  3522. unsigned long flags;
  3523. /* Calculate total number of !ZONE_HIGHMEM pages */
  3524. for_each_zone(zone) {
  3525. if (!is_highmem(zone))
  3526. lowmem_pages += zone->present_pages;
  3527. }
  3528. for_each_zone(zone) {
  3529. u64 tmp;
  3530. spin_lock_irqsave(&zone->lru_lock, flags);
  3531. tmp = (u64)pages_min * zone->present_pages;
  3532. do_div(tmp, lowmem_pages);
  3533. if (is_highmem(zone)) {
  3534. /*
  3535. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3536. * need highmem pages, so cap pages_min to a small
  3537. * value here.
  3538. *
  3539. * The (pages_high-pages_low) and (pages_low-pages_min)
  3540. * deltas controls asynch page reclaim, and so should
  3541. * not be capped for highmem.
  3542. */
  3543. int min_pages;
  3544. min_pages = zone->present_pages / 1024;
  3545. if (min_pages < SWAP_CLUSTER_MAX)
  3546. min_pages = SWAP_CLUSTER_MAX;
  3547. if (min_pages > 128)
  3548. min_pages = 128;
  3549. zone->pages_min = min_pages;
  3550. } else {
  3551. /*
  3552. * If it's a lowmem zone, reserve a number of pages
  3553. * proportionate to the zone's size.
  3554. */
  3555. zone->pages_min = tmp;
  3556. }
  3557. zone->pages_low = zone->pages_min + (tmp >> 2);
  3558. zone->pages_high = zone->pages_min + (tmp >> 1);
  3559. setup_zone_migrate_reserve(zone);
  3560. spin_unlock_irqrestore(&zone->lru_lock, flags);
  3561. }
  3562. /* update totalreserve_pages */
  3563. calculate_totalreserve_pages();
  3564. }
  3565. /*
  3566. * Initialise min_free_kbytes.
  3567. *
  3568. * For small machines we want it small (128k min). For large machines
  3569. * we want it large (64MB max). But it is not linear, because network
  3570. * bandwidth does not increase linearly with machine size. We use
  3571. *
  3572. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  3573. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  3574. *
  3575. * which yields
  3576. *
  3577. * 16MB: 512k
  3578. * 32MB: 724k
  3579. * 64MB: 1024k
  3580. * 128MB: 1448k
  3581. * 256MB: 2048k
  3582. * 512MB: 2896k
  3583. * 1024MB: 4096k
  3584. * 2048MB: 5792k
  3585. * 4096MB: 8192k
  3586. * 8192MB: 11584k
  3587. * 16384MB: 16384k
  3588. */
  3589. static int __init init_per_zone_pages_min(void)
  3590. {
  3591. unsigned long lowmem_kbytes;
  3592. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  3593. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  3594. if (min_free_kbytes < 128)
  3595. min_free_kbytes = 128;
  3596. if (min_free_kbytes > 65536)
  3597. min_free_kbytes = 65536;
  3598. setup_per_zone_pages_min();
  3599. setup_per_zone_lowmem_reserve();
  3600. return 0;
  3601. }
  3602. module_init(init_per_zone_pages_min)
  3603. /*
  3604. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  3605. * that we can call two helper functions whenever min_free_kbytes
  3606. * changes.
  3607. */
  3608. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  3609. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3610. {
  3611. proc_dointvec(table, write, file, buffer, length, ppos);
  3612. if (write)
  3613. setup_per_zone_pages_min();
  3614. return 0;
  3615. }
  3616. #ifdef CONFIG_NUMA
  3617. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  3618. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3619. {
  3620. struct zone *zone;
  3621. int rc;
  3622. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3623. if (rc)
  3624. return rc;
  3625. for_each_zone(zone)
  3626. zone->min_unmapped_pages = (zone->present_pages *
  3627. sysctl_min_unmapped_ratio) / 100;
  3628. return 0;
  3629. }
  3630. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  3631. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3632. {
  3633. struct zone *zone;
  3634. int rc;
  3635. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3636. if (rc)
  3637. return rc;
  3638. for_each_zone(zone)
  3639. zone->min_slab_pages = (zone->present_pages *
  3640. sysctl_min_slab_ratio) / 100;
  3641. return 0;
  3642. }
  3643. #endif
  3644. /*
  3645. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  3646. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  3647. * whenever sysctl_lowmem_reserve_ratio changes.
  3648. *
  3649. * The reserve ratio obviously has absolutely no relation with the
  3650. * pages_min watermarks. The lowmem reserve ratio can only make sense
  3651. * if in function of the boot time zone sizes.
  3652. */
  3653. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  3654. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3655. {
  3656. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3657. setup_per_zone_lowmem_reserve();
  3658. return 0;
  3659. }
  3660. /*
  3661. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  3662. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  3663. * can have before it gets flushed back to buddy allocator.
  3664. */
  3665. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  3666. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3667. {
  3668. struct zone *zone;
  3669. unsigned int cpu;
  3670. int ret;
  3671. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3672. if (!write || (ret == -EINVAL))
  3673. return ret;
  3674. for_each_zone(zone) {
  3675. for_each_online_cpu(cpu) {
  3676. unsigned long high;
  3677. high = zone->present_pages / percpu_pagelist_fraction;
  3678. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  3679. }
  3680. }
  3681. return 0;
  3682. }
  3683. int hashdist = HASHDIST_DEFAULT;
  3684. #ifdef CONFIG_NUMA
  3685. static int __init set_hashdist(char *str)
  3686. {
  3687. if (!str)
  3688. return 0;
  3689. hashdist = simple_strtoul(str, &str, 0);
  3690. return 1;
  3691. }
  3692. __setup("hashdist=", set_hashdist);
  3693. #endif
  3694. /*
  3695. * allocate a large system hash table from bootmem
  3696. * - it is assumed that the hash table must contain an exact power-of-2
  3697. * quantity of entries
  3698. * - limit is the number of hash buckets, not the total allocation size
  3699. */
  3700. void *__init alloc_large_system_hash(const char *tablename,
  3701. unsigned long bucketsize,
  3702. unsigned long numentries,
  3703. int scale,
  3704. int flags,
  3705. unsigned int *_hash_shift,
  3706. unsigned int *_hash_mask,
  3707. unsigned long limit)
  3708. {
  3709. unsigned long long max = limit;
  3710. unsigned long log2qty, size;
  3711. void *table = NULL;
  3712. /* allow the kernel cmdline to have a say */
  3713. if (!numentries) {
  3714. /* round applicable memory size up to nearest megabyte */
  3715. numentries = nr_kernel_pages;
  3716. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  3717. numentries >>= 20 - PAGE_SHIFT;
  3718. numentries <<= 20 - PAGE_SHIFT;
  3719. /* limit to 1 bucket per 2^scale bytes of low memory */
  3720. if (scale > PAGE_SHIFT)
  3721. numentries >>= (scale - PAGE_SHIFT);
  3722. else
  3723. numentries <<= (PAGE_SHIFT - scale);
  3724. /* Make sure we've got at least a 0-order allocation.. */
  3725. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  3726. numentries = PAGE_SIZE / bucketsize;
  3727. }
  3728. numentries = roundup_pow_of_two(numentries);
  3729. /* limit allocation size to 1/16 total memory by default */
  3730. if (max == 0) {
  3731. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  3732. do_div(max, bucketsize);
  3733. }
  3734. if (numentries > max)
  3735. numentries = max;
  3736. log2qty = ilog2(numentries);
  3737. do {
  3738. size = bucketsize << log2qty;
  3739. if (flags & HASH_EARLY)
  3740. table = alloc_bootmem(size);
  3741. else if (hashdist)
  3742. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  3743. else {
  3744. unsigned long order;
  3745. for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
  3746. ;
  3747. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  3748. /*
  3749. * If bucketsize is not a power-of-two, we may free
  3750. * some pages at the end of hash table.
  3751. */
  3752. if (table) {
  3753. unsigned long alloc_end = (unsigned long)table +
  3754. (PAGE_SIZE << order);
  3755. unsigned long used = (unsigned long)table +
  3756. PAGE_ALIGN(size);
  3757. split_page(virt_to_page(table), order);
  3758. while (used < alloc_end) {
  3759. free_page(used);
  3760. used += PAGE_SIZE;
  3761. }
  3762. }
  3763. }
  3764. } while (!table && size > PAGE_SIZE && --log2qty);
  3765. if (!table)
  3766. panic("Failed to allocate %s hash table\n", tablename);
  3767. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  3768. tablename,
  3769. (1U << log2qty),
  3770. ilog2(size) - PAGE_SHIFT,
  3771. size);
  3772. if (_hash_shift)
  3773. *_hash_shift = log2qty;
  3774. if (_hash_mask)
  3775. *_hash_mask = (1 << log2qty) - 1;
  3776. return table;
  3777. }
  3778. #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
  3779. struct page *pfn_to_page(unsigned long pfn)
  3780. {
  3781. return __pfn_to_page(pfn);
  3782. }
  3783. unsigned long page_to_pfn(struct page *page)
  3784. {
  3785. return __page_to_pfn(page);
  3786. }
  3787. EXPORT_SYMBOL(pfn_to_page);
  3788. EXPORT_SYMBOL(page_to_pfn);
  3789. #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
  3790. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  3791. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  3792. unsigned long pfn)
  3793. {
  3794. #ifdef CONFIG_SPARSEMEM
  3795. return __pfn_to_section(pfn)->pageblock_flags;
  3796. #else
  3797. return zone->pageblock_flags;
  3798. #endif /* CONFIG_SPARSEMEM */
  3799. }
  3800. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  3801. {
  3802. #ifdef CONFIG_SPARSEMEM
  3803. pfn &= (PAGES_PER_SECTION-1);
  3804. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3805. #else
  3806. pfn = pfn - zone->zone_start_pfn;
  3807. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3808. #endif /* CONFIG_SPARSEMEM */
  3809. }
  3810. /**
  3811. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  3812. * @page: The page within the block of interest
  3813. * @start_bitidx: The first bit of interest to retrieve
  3814. * @end_bitidx: The last bit of interest
  3815. * returns pageblock_bits flags
  3816. */
  3817. unsigned long get_pageblock_flags_group(struct page *page,
  3818. int start_bitidx, int end_bitidx)
  3819. {
  3820. struct zone *zone;
  3821. unsigned long *bitmap;
  3822. unsigned long pfn, bitidx;
  3823. unsigned long flags = 0;
  3824. unsigned long value = 1;
  3825. zone = page_zone(page);
  3826. pfn = page_to_pfn(page);
  3827. bitmap = get_pageblock_bitmap(zone, pfn);
  3828. bitidx = pfn_to_bitidx(zone, pfn);
  3829. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  3830. if (test_bit(bitidx + start_bitidx, bitmap))
  3831. flags |= value;
  3832. return flags;
  3833. }
  3834. /**
  3835. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  3836. * @page: The page within the block of interest
  3837. * @start_bitidx: The first bit of interest
  3838. * @end_bitidx: The last bit of interest
  3839. * @flags: The flags to set
  3840. */
  3841. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  3842. int start_bitidx, int end_bitidx)
  3843. {
  3844. struct zone *zone;
  3845. unsigned long *bitmap;
  3846. unsigned long pfn, bitidx;
  3847. unsigned long value = 1;
  3848. zone = page_zone(page);
  3849. pfn = page_to_pfn(page);
  3850. bitmap = get_pageblock_bitmap(zone, pfn);
  3851. bitidx = pfn_to_bitidx(zone, pfn);
  3852. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  3853. if (flags & value)
  3854. __set_bit(bitidx + start_bitidx, bitmap);
  3855. else
  3856. __clear_bit(bitidx + start_bitidx, bitmap);
  3857. }
  3858. /*
  3859. * This is designed as sub function...plz see page_isolation.c also.
  3860. * set/clear page block's type to be ISOLATE.
  3861. * page allocater never alloc memory from ISOLATE block.
  3862. */
  3863. int set_migratetype_isolate(struct page *page)
  3864. {
  3865. struct zone *zone;
  3866. unsigned long flags;
  3867. int ret = -EBUSY;
  3868. zone = page_zone(page);
  3869. spin_lock_irqsave(&zone->lock, flags);
  3870. /*
  3871. * In future, more migrate types will be able to be isolation target.
  3872. */
  3873. if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
  3874. goto out;
  3875. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  3876. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  3877. ret = 0;
  3878. out:
  3879. spin_unlock_irqrestore(&zone->lock, flags);
  3880. if (!ret)
  3881. drain_all_pages();
  3882. return ret;
  3883. }
  3884. void unset_migratetype_isolate(struct page *page)
  3885. {
  3886. struct zone *zone;
  3887. unsigned long flags;
  3888. zone = page_zone(page);
  3889. spin_lock_irqsave(&zone->lock, flags);
  3890. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  3891. goto out;
  3892. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3893. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3894. out:
  3895. spin_unlock_irqrestore(&zone->lock, flags);
  3896. }
  3897. #ifdef CONFIG_MEMORY_HOTREMOVE
  3898. /*
  3899. * All pages in the range must be isolated before calling this.
  3900. */
  3901. void
  3902. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  3903. {
  3904. struct page *page;
  3905. struct zone *zone;
  3906. int order, i;
  3907. unsigned long pfn;
  3908. unsigned long flags;
  3909. /* find the first valid pfn */
  3910. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  3911. if (pfn_valid(pfn))
  3912. break;
  3913. if (pfn == end_pfn)
  3914. return;
  3915. zone = page_zone(pfn_to_page(pfn));
  3916. spin_lock_irqsave(&zone->lock, flags);
  3917. pfn = start_pfn;
  3918. while (pfn < end_pfn) {
  3919. if (!pfn_valid(pfn)) {
  3920. pfn++;
  3921. continue;
  3922. }
  3923. page = pfn_to_page(pfn);
  3924. BUG_ON(page_count(page));
  3925. BUG_ON(!PageBuddy(page));
  3926. order = page_order(page);
  3927. #ifdef CONFIG_DEBUG_VM
  3928. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  3929. pfn, 1 << order, end_pfn);
  3930. #endif
  3931. list_del(&page->lru);
  3932. rmv_page_order(page);
  3933. zone->free_area[order].nr_free--;
  3934. __mod_zone_page_state(zone, NR_FREE_PAGES,
  3935. - (1UL << order));
  3936. for (i = 0; i < (1 << order); i++)
  3937. SetPageReserved((page+i));
  3938. pfn += (1 << order);
  3939. }
  3940. spin_unlock_irqrestore(&zone->lock, flags);
  3941. }
  3942. #endif