svm.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * AMD SVM support
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. *
  8. * Authors:
  9. * Yaniv Kamay <yaniv@qumranet.com>
  10. * Avi Kivity <avi@qumranet.com>
  11. *
  12. * This work is licensed under the terms of the GNU GPL, version 2. See
  13. * the COPYING file in the top-level directory.
  14. *
  15. */
  16. #include <linux/module.h>
  17. #include <linux/vmalloc.h>
  18. #include <linux/highmem.h>
  19. #include <asm/desc.h>
  20. #include "kvm_svm.h"
  21. #include "x86_emulate.h"
  22. MODULE_AUTHOR("Qumranet");
  23. MODULE_LICENSE("GPL");
  24. #define IOPM_ALLOC_ORDER 2
  25. #define MSRPM_ALLOC_ORDER 1
  26. #define DB_VECTOR 1
  27. #define UD_VECTOR 6
  28. #define GP_VECTOR 13
  29. #define DR7_GD_MASK (1 << 13)
  30. #define DR6_BD_MASK (1 << 13)
  31. #define CR4_DE_MASK (1UL << 3)
  32. #define SEG_TYPE_LDT 2
  33. #define SEG_TYPE_BUSY_TSS16 3
  34. #define KVM_EFER_LMA (1 << 10)
  35. #define KVM_EFER_LME (1 << 8)
  36. unsigned long iopm_base;
  37. unsigned long msrpm_base;
  38. struct kvm_ldttss_desc {
  39. u16 limit0;
  40. u16 base0;
  41. unsigned base1 : 8, type : 5, dpl : 2, p : 1;
  42. unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
  43. u32 base3;
  44. u32 zero1;
  45. } __attribute__((packed));
  46. struct svm_cpu_data {
  47. int cpu;
  48. uint64_t asid_generation;
  49. uint32_t max_asid;
  50. uint32_t next_asid;
  51. struct kvm_ldttss_desc *tss_desc;
  52. struct page *save_area;
  53. };
  54. static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
  55. struct svm_init_data {
  56. int cpu;
  57. int r;
  58. };
  59. static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
  60. #define NUM_MSR_MAPS (sizeof(msrpm_ranges) / sizeof(*msrpm_ranges))
  61. #define MSRS_RANGE_SIZE 2048
  62. #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
  63. #define MAX_INST_SIZE 15
  64. static unsigned get_addr_size(struct kvm_vcpu *vcpu)
  65. {
  66. struct vmcb_save_area *sa = &vcpu->svm->vmcb->save;
  67. u16 cs_attrib;
  68. if (!(sa->cr0 & CR0_PE_MASK) || (sa->rflags & X86_EFLAGS_VM))
  69. return 2;
  70. cs_attrib = sa->cs.attrib;
  71. return (cs_attrib & SVM_SELECTOR_L_MASK) ? 8 :
  72. (cs_attrib & SVM_SELECTOR_DB_MASK) ? 4 : 2;
  73. }
  74. static inline u8 pop_irq(struct kvm_vcpu *vcpu)
  75. {
  76. int word_index = __ffs(vcpu->irq_summary);
  77. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  78. int irq = word_index * BITS_PER_LONG + bit_index;
  79. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  80. if (!vcpu->irq_pending[word_index])
  81. clear_bit(word_index, &vcpu->irq_summary);
  82. return irq;
  83. }
  84. static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
  85. {
  86. set_bit(irq, vcpu->irq_pending);
  87. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  88. }
  89. static inline void clgi(void)
  90. {
  91. asm volatile (SVM_CLGI);
  92. }
  93. static inline void stgi(void)
  94. {
  95. asm volatile (SVM_STGI);
  96. }
  97. static inline void invlpga(unsigned long addr, u32 asid)
  98. {
  99. asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
  100. }
  101. static inline unsigned long kvm_read_cr2(void)
  102. {
  103. unsigned long cr2;
  104. asm volatile ("mov %%cr2, %0" : "=r" (cr2));
  105. return cr2;
  106. }
  107. static inline void kvm_write_cr2(unsigned long val)
  108. {
  109. asm volatile ("mov %0, %%cr2" :: "r" (val));
  110. }
  111. static inline unsigned long read_dr6(void)
  112. {
  113. unsigned long dr6;
  114. asm volatile ("mov %%dr6, %0" : "=r" (dr6));
  115. return dr6;
  116. }
  117. static inline void write_dr6(unsigned long val)
  118. {
  119. asm volatile ("mov %0, %%dr6" :: "r" (val));
  120. }
  121. static inline unsigned long read_dr7(void)
  122. {
  123. unsigned long dr7;
  124. asm volatile ("mov %%dr7, %0" : "=r" (dr7));
  125. return dr7;
  126. }
  127. static inline void write_dr7(unsigned long val)
  128. {
  129. asm volatile ("mov %0, %%dr7" :: "r" (val));
  130. }
  131. static inline int svm_is_long_mode(struct kvm_vcpu *vcpu)
  132. {
  133. return vcpu->svm->vmcb->save.efer & KVM_EFER_LMA;
  134. }
  135. static inline void force_new_asid(struct kvm_vcpu *vcpu)
  136. {
  137. vcpu->svm->asid_generation--;
  138. }
  139. static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
  140. {
  141. force_new_asid(vcpu);
  142. }
  143. static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  144. {
  145. if (!(efer & KVM_EFER_LMA))
  146. efer &= ~KVM_EFER_LME;
  147. vcpu->svm->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
  148. vcpu->shadow_efer = efer;
  149. }
  150. static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  151. {
  152. vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  153. SVM_EVTINJ_VALID_ERR |
  154. SVM_EVTINJ_TYPE_EXEPT |
  155. GP_VECTOR;
  156. vcpu->svm->vmcb->control.event_inj_err = error_code;
  157. }
  158. static void inject_ud(struct kvm_vcpu *vcpu)
  159. {
  160. vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  161. SVM_EVTINJ_TYPE_EXEPT |
  162. UD_VECTOR;
  163. }
  164. static void inject_db(struct kvm_vcpu *vcpu)
  165. {
  166. vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  167. SVM_EVTINJ_TYPE_EXEPT |
  168. DB_VECTOR;
  169. }
  170. static int is_page_fault(uint32_t info)
  171. {
  172. info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
  173. return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT);
  174. }
  175. static int is_external_interrupt(u32 info)
  176. {
  177. info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
  178. return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
  179. }
  180. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  181. {
  182. if (!vcpu->svm->next_rip) {
  183. printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
  184. return;
  185. }
  186. if (vcpu->svm->next_rip - vcpu->svm->vmcb->save.rip > 15) {
  187. printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
  188. __FUNCTION__,
  189. vcpu->svm->vmcb->save.rip,
  190. vcpu->svm->next_rip);
  191. }
  192. vcpu->rip = vcpu->svm->vmcb->save.rip = vcpu->svm->next_rip;
  193. vcpu->svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
  194. }
  195. static int has_svm(void)
  196. {
  197. uint32_t eax, ebx, ecx, edx;
  198. if (current_cpu_data.x86_vendor != X86_VENDOR_AMD) {
  199. printk(KERN_INFO "has_svm: not amd\n");
  200. return 0;
  201. }
  202. cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
  203. if (eax < SVM_CPUID_FUNC) {
  204. printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
  205. return 0;
  206. }
  207. cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
  208. if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
  209. printk(KERN_DEBUG "has_svm: svm not available\n");
  210. return 0;
  211. }
  212. return 1;
  213. }
  214. static void svm_hardware_disable(void *garbage)
  215. {
  216. struct svm_cpu_data *svm_data
  217. = per_cpu(svm_data, raw_smp_processor_id());
  218. if (svm_data) {
  219. uint64_t efer;
  220. wrmsrl(MSR_VM_HSAVE_PA, 0);
  221. rdmsrl(MSR_EFER, efer);
  222. wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
  223. per_cpu(svm_data, raw_smp_processor_id()) = 0;
  224. __free_page(svm_data->save_area);
  225. kfree(svm_data);
  226. }
  227. }
  228. static void svm_hardware_enable(void *garbage)
  229. {
  230. struct svm_cpu_data *svm_data;
  231. uint64_t efer;
  232. #ifdef CONFIG_X86_64
  233. struct desc_ptr gdt_descr;
  234. #else
  235. struct Xgt_desc_struct gdt_descr;
  236. #endif
  237. struct desc_struct *gdt;
  238. int me = raw_smp_processor_id();
  239. if (!has_svm()) {
  240. printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
  241. return;
  242. }
  243. svm_data = per_cpu(svm_data, me);
  244. if (!svm_data) {
  245. printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
  246. me);
  247. return;
  248. }
  249. svm_data->asid_generation = 1;
  250. svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
  251. svm_data->next_asid = svm_data->max_asid + 1;
  252. asm volatile ( "sgdt %0" : "=m"(gdt_descr) );
  253. gdt = (struct desc_struct *)gdt_descr.address;
  254. svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
  255. rdmsrl(MSR_EFER, efer);
  256. wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
  257. wrmsrl(MSR_VM_HSAVE_PA,
  258. page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
  259. }
  260. static int svm_cpu_init(int cpu)
  261. {
  262. struct svm_cpu_data *svm_data;
  263. int r;
  264. svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
  265. if (!svm_data)
  266. return -ENOMEM;
  267. svm_data->cpu = cpu;
  268. svm_data->save_area = alloc_page(GFP_KERNEL);
  269. r = -ENOMEM;
  270. if (!svm_data->save_area)
  271. goto err_1;
  272. per_cpu(svm_data, cpu) = svm_data;
  273. return 0;
  274. err_1:
  275. kfree(svm_data);
  276. return r;
  277. }
  278. static int set_msr_interception(u32 *msrpm, unsigned msr,
  279. int read, int write)
  280. {
  281. int i;
  282. for (i = 0; i < NUM_MSR_MAPS; i++) {
  283. if (msr >= msrpm_ranges[i] &&
  284. msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
  285. u32 msr_offset = (i * MSRS_IN_RANGE + msr -
  286. msrpm_ranges[i]) * 2;
  287. u32 *base = msrpm + (msr_offset / 32);
  288. u32 msr_shift = msr_offset % 32;
  289. u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
  290. *base = (*base & ~(0x3 << msr_shift)) |
  291. (mask << msr_shift);
  292. return 1;
  293. }
  294. }
  295. printk(KERN_DEBUG "%s: not found 0x%x\n", __FUNCTION__, msr);
  296. return 0;
  297. }
  298. static __init int svm_hardware_setup(void)
  299. {
  300. int cpu;
  301. struct page *iopm_pages;
  302. struct page *msrpm_pages;
  303. void *msrpm_va;
  304. int r;
  305. kvm_emulator_want_group7_invlpg();
  306. iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
  307. if (!iopm_pages)
  308. return -ENOMEM;
  309. memset(page_address(iopm_pages), 0xff,
  310. PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
  311. iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
  312. msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
  313. r = -ENOMEM;
  314. if (!msrpm_pages)
  315. goto err_1;
  316. msrpm_va = page_address(msrpm_pages);
  317. memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
  318. msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
  319. #ifdef CONFIG_X86_64
  320. set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
  321. set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
  322. set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
  323. set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
  324. set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
  325. set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
  326. #endif
  327. set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
  328. set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
  329. set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
  330. set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
  331. for_each_online_cpu(cpu) {
  332. r = svm_cpu_init(cpu);
  333. if (r)
  334. goto err_2;
  335. }
  336. return 0;
  337. err_2:
  338. __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
  339. msrpm_base = 0;
  340. err_1:
  341. __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
  342. iopm_base = 0;
  343. return r;
  344. }
  345. static __exit void svm_hardware_unsetup(void)
  346. {
  347. __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
  348. __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
  349. iopm_base = msrpm_base = 0;
  350. }
  351. static void init_seg(struct vmcb_seg *seg)
  352. {
  353. seg->selector = 0;
  354. seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
  355. SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
  356. seg->limit = 0xffff;
  357. seg->base = 0;
  358. }
  359. static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
  360. {
  361. seg->selector = 0;
  362. seg->attrib = SVM_SELECTOR_P_MASK | type;
  363. seg->limit = 0xffff;
  364. seg->base = 0;
  365. }
  366. static int svm_vcpu_setup(struct kvm_vcpu *vcpu)
  367. {
  368. return 0;
  369. }
  370. static void init_vmcb(struct vmcb *vmcb)
  371. {
  372. struct vmcb_control_area *control = &vmcb->control;
  373. struct vmcb_save_area *save = &vmcb->save;
  374. u64 tsc;
  375. control->intercept_cr_read = INTERCEPT_CR0_MASK |
  376. INTERCEPT_CR3_MASK |
  377. INTERCEPT_CR4_MASK;
  378. control->intercept_cr_write = INTERCEPT_CR0_MASK |
  379. INTERCEPT_CR3_MASK |
  380. INTERCEPT_CR4_MASK;
  381. control->intercept_dr_read = INTERCEPT_DR0_MASK |
  382. INTERCEPT_DR1_MASK |
  383. INTERCEPT_DR2_MASK |
  384. INTERCEPT_DR3_MASK;
  385. control->intercept_dr_write = INTERCEPT_DR0_MASK |
  386. INTERCEPT_DR1_MASK |
  387. INTERCEPT_DR2_MASK |
  388. INTERCEPT_DR3_MASK |
  389. INTERCEPT_DR5_MASK |
  390. INTERCEPT_DR7_MASK;
  391. control->intercept_exceptions = 1 << PF_VECTOR;
  392. control->intercept = (1ULL << INTERCEPT_INTR) |
  393. (1ULL << INTERCEPT_NMI) |
  394. /*
  395. * selective cr0 intercept bug?
  396. * 0: 0f 22 d8 mov %eax,%cr3
  397. * 3: 0f 20 c0 mov %cr0,%eax
  398. * 6: 0d 00 00 00 80 or $0x80000000,%eax
  399. * b: 0f 22 c0 mov %eax,%cr0
  400. * set cr3 ->interception
  401. * get cr0 ->interception
  402. * set cr0 -> no interception
  403. */
  404. /* (1ULL << INTERCEPT_SELECTIVE_CR0) | */
  405. (1ULL << INTERCEPT_CPUID) |
  406. (1ULL << INTERCEPT_HLT) |
  407. (1ULL << INTERCEPT_INVLPG) |
  408. (1ULL << INTERCEPT_INVLPGA) |
  409. (1ULL << INTERCEPT_IOIO_PROT) |
  410. (1ULL << INTERCEPT_MSR_PROT) |
  411. (1ULL << INTERCEPT_TASK_SWITCH) |
  412. (1ULL << INTERCEPT_VMRUN) |
  413. (1ULL << INTERCEPT_VMMCALL) |
  414. (1ULL << INTERCEPT_VMLOAD) |
  415. (1ULL << INTERCEPT_VMSAVE) |
  416. (1ULL << INTERCEPT_STGI) |
  417. (1ULL << INTERCEPT_CLGI) |
  418. (1ULL << INTERCEPT_SKINIT);
  419. control->iopm_base_pa = iopm_base;
  420. control->msrpm_base_pa = msrpm_base;
  421. rdtscll(tsc);
  422. control->tsc_offset = -tsc;
  423. control->int_ctl = V_INTR_MASKING_MASK;
  424. init_seg(&save->es);
  425. init_seg(&save->ss);
  426. init_seg(&save->ds);
  427. init_seg(&save->fs);
  428. init_seg(&save->gs);
  429. save->cs.selector = 0xf000;
  430. /* Executable/Readable Code Segment */
  431. save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
  432. SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
  433. save->cs.limit = 0xffff;
  434. save->cs.base = 0xffff0000;
  435. save->gdtr.limit = 0xffff;
  436. save->idtr.limit = 0xffff;
  437. init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
  438. init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
  439. save->efer = MSR_EFER_SVME_MASK;
  440. save->dr6 = 0xffff0ff0;
  441. save->dr7 = 0x400;
  442. save->rflags = 2;
  443. save->rip = 0x0000fff0;
  444. /*
  445. * cr0 val on cpu init should be 0x60000010, we enable cpu
  446. * cache by default. the orderly way is to enable cache in bios.
  447. */
  448. save->cr0 = 0x00000010 | CR0_PG_MASK;
  449. save->cr4 = CR4_PAE_MASK;
  450. /* rdx = ?? */
  451. }
  452. static int svm_create_vcpu(struct kvm_vcpu *vcpu)
  453. {
  454. struct page *page;
  455. int r;
  456. r = -ENOMEM;
  457. vcpu->svm = kzalloc(sizeof *vcpu->svm, GFP_KERNEL);
  458. if (!vcpu->svm)
  459. goto out1;
  460. page = alloc_page(GFP_KERNEL);
  461. if (!page)
  462. goto out2;
  463. vcpu->svm->vmcb = page_address(page);
  464. memset(vcpu->svm->vmcb, 0, PAGE_SIZE);
  465. vcpu->svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
  466. vcpu->svm->cr0 = 0x00000010;
  467. vcpu->svm->asid_generation = 0;
  468. memset(vcpu->svm->db_regs, 0, sizeof(vcpu->svm->db_regs));
  469. init_vmcb(vcpu->svm->vmcb);
  470. return 0;
  471. out2:
  472. kfree(vcpu->svm);
  473. out1:
  474. return r;
  475. }
  476. static void svm_free_vcpu(struct kvm_vcpu *vcpu)
  477. {
  478. if (!vcpu->svm)
  479. return;
  480. if (vcpu->svm->vmcb)
  481. __free_page(pfn_to_page(vcpu->svm->vmcb_pa >> PAGE_SHIFT));
  482. kfree(vcpu->svm);
  483. }
  484. static struct kvm_vcpu *svm_vcpu_load(struct kvm_vcpu *vcpu)
  485. {
  486. get_cpu();
  487. return vcpu;
  488. }
  489. static void svm_vcpu_put(struct kvm_vcpu *vcpu)
  490. {
  491. put_cpu();
  492. }
  493. static void svm_cache_regs(struct kvm_vcpu *vcpu)
  494. {
  495. vcpu->regs[VCPU_REGS_RAX] = vcpu->svm->vmcb->save.rax;
  496. vcpu->regs[VCPU_REGS_RSP] = vcpu->svm->vmcb->save.rsp;
  497. vcpu->rip = vcpu->svm->vmcb->save.rip;
  498. }
  499. static void svm_decache_regs(struct kvm_vcpu *vcpu)
  500. {
  501. vcpu->svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
  502. vcpu->svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
  503. vcpu->svm->vmcb->save.rip = vcpu->rip;
  504. }
  505. static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
  506. {
  507. return vcpu->svm->vmcb->save.rflags;
  508. }
  509. static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  510. {
  511. vcpu->svm->vmcb->save.rflags = rflags;
  512. }
  513. static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
  514. {
  515. struct vmcb_save_area *save = &vcpu->svm->vmcb->save;
  516. switch (seg) {
  517. case VCPU_SREG_CS: return &save->cs;
  518. case VCPU_SREG_DS: return &save->ds;
  519. case VCPU_SREG_ES: return &save->es;
  520. case VCPU_SREG_FS: return &save->fs;
  521. case VCPU_SREG_GS: return &save->gs;
  522. case VCPU_SREG_SS: return &save->ss;
  523. case VCPU_SREG_TR: return &save->tr;
  524. case VCPU_SREG_LDTR: return &save->ldtr;
  525. }
  526. BUG();
  527. return 0;
  528. }
  529. static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  530. {
  531. struct vmcb_seg *s = svm_seg(vcpu, seg);
  532. return s->base;
  533. }
  534. static void svm_get_segment(struct kvm_vcpu *vcpu,
  535. struct kvm_segment *var, int seg)
  536. {
  537. struct vmcb_seg *s = svm_seg(vcpu, seg);
  538. var->base = s->base;
  539. var->limit = s->limit;
  540. var->selector = s->selector;
  541. var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
  542. var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
  543. var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
  544. var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
  545. var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
  546. var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
  547. var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
  548. var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
  549. var->unusable = !var->present;
  550. }
  551. static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  552. {
  553. struct vmcb_seg *s = svm_seg(vcpu, VCPU_SREG_CS);
  554. *db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
  555. *l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
  556. }
  557. static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  558. {
  559. dt->limit = vcpu->svm->vmcb->save.ldtr.limit;
  560. dt->base = vcpu->svm->vmcb->save.ldtr.base;
  561. }
  562. static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  563. {
  564. vcpu->svm->vmcb->save.ldtr.limit = dt->limit;
  565. vcpu->svm->vmcb->save.ldtr.base = dt->base ;
  566. }
  567. static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  568. {
  569. dt->limit = vcpu->svm->vmcb->save.gdtr.limit;
  570. dt->base = vcpu->svm->vmcb->save.gdtr.base;
  571. }
  572. static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  573. {
  574. vcpu->svm->vmcb->save.gdtr.limit = dt->limit;
  575. vcpu->svm->vmcb->save.gdtr.base = dt->base ;
  576. }
  577. static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  578. {
  579. #ifdef CONFIG_X86_64
  580. if (vcpu->shadow_efer & KVM_EFER_LME) {
  581. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
  582. vcpu->shadow_efer |= KVM_EFER_LMA;
  583. vcpu->svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME;
  584. }
  585. if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK) ) {
  586. vcpu->shadow_efer &= ~KVM_EFER_LMA;
  587. vcpu->svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME);
  588. }
  589. }
  590. #endif
  591. vcpu->svm->cr0 = cr0;
  592. vcpu->svm->vmcb->save.cr0 = cr0 | CR0_PG_MASK;
  593. vcpu->cr0 = cr0;
  594. }
  595. static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  596. {
  597. vcpu->cr4 = cr4;
  598. vcpu->svm->vmcb->save.cr4 = cr4 | CR4_PAE_MASK;
  599. }
  600. static void svm_set_segment(struct kvm_vcpu *vcpu,
  601. struct kvm_segment *var, int seg)
  602. {
  603. struct vmcb_seg *s = svm_seg(vcpu, seg);
  604. s->base = var->base;
  605. s->limit = var->limit;
  606. s->selector = var->selector;
  607. if (var->unusable)
  608. s->attrib = 0;
  609. else {
  610. s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
  611. s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
  612. s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
  613. s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
  614. s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
  615. s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
  616. s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
  617. s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
  618. }
  619. if (seg == VCPU_SREG_CS)
  620. vcpu->svm->vmcb->save.cpl
  621. = (vcpu->svm->vmcb->save.cs.attrib
  622. >> SVM_SELECTOR_DPL_SHIFT) & 3;
  623. }
  624. /* FIXME:
  625. vcpu->svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
  626. vcpu->svm->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
  627. */
  628. static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  629. {
  630. return -EOPNOTSUPP;
  631. }
  632. static void load_host_msrs(struct kvm_vcpu *vcpu)
  633. {
  634. int i;
  635. for ( i = 0; i < NR_HOST_SAVE_MSRS; i++)
  636. wrmsrl(host_save_msrs[i], vcpu->svm->host_msrs[i]);
  637. }
  638. static void save_host_msrs(struct kvm_vcpu *vcpu)
  639. {
  640. int i;
  641. for ( i = 0; i < NR_HOST_SAVE_MSRS; i++)
  642. rdmsrl(host_save_msrs[i], vcpu->svm->host_msrs[i]);
  643. }
  644. static void new_asid(struct kvm_vcpu *vcpu, struct svm_cpu_data *svm_data)
  645. {
  646. if (svm_data->next_asid > svm_data->max_asid) {
  647. ++svm_data->asid_generation;
  648. svm_data->next_asid = 1;
  649. vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
  650. }
  651. vcpu->cpu = svm_data->cpu;
  652. vcpu->svm->asid_generation = svm_data->asid_generation;
  653. vcpu->svm->vmcb->control.asid = svm_data->next_asid++;
  654. }
  655. static void svm_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  656. {
  657. invlpga(address, vcpu->svm->vmcb->control.asid); // is needed?
  658. }
  659. static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
  660. {
  661. return vcpu->svm->db_regs[dr];
  662. }
  663. static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
  664. int *exception)
  665. {
  666. *exception = 0;
  667. if (vcpu->svm->vmcb->save.dr7 & DR7_GD_MASK) {
  668. vcpu->svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
  669. vcpu->svm->vmcb->save.dr6 |= DR6_BD_MASK;
  670. *exception = DB_VECTOR;
  671. return;
  672. }
  673. switch (dr) {
  674. case 0 ... 3:
  675. vcpu->svm->db_regs[dr] = value;
  676. return;
  677. case 4 ... 5:
  678. if (vcpu->cr4 & CR4_DE_MASK) {
  679. *exception = UD_VECTOR;
  680. return;
  681. }
  682. case 7: {
  683. if (value & ~((1ULL << 32) - 1)) {
  684. *exception = GP_VECTOR;
  685. return;
  686. }
  687. vcpu->svm->vmcb->save.dr7 = value;
  688. return;
  689. }
  690. default:
  691. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  692. __FUNCTION__, dr);
  693. *exception = UD_VECTOR;
  694. return;
  695. }
  696. }
  697. static int pf_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  698. {
  699. u32 exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
  700. u64 fault_address;
  701. u32 error_code;
  702. enum emulation_result er;
  703. if (is_external_interrupt(exit_int_info))
  704. push_irq(vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
  705. spin_lock(&vcpu->kvm->lock);
  706. fault_address = vcpu->svm->vmcb->control.exit_info_2;
  707. error_code = vcpu->svm->vmcb->control.exit_info_1;
  708. if (!vcpu->mmu.page_fault(vcpu, fault_address, error_code)) {
  709. spin_unlock(&vcpu->kvm->lock);
  710. return 1;
  711. }
  712. er = emulate_instruction(vcpu, kvm_run, fault_address, error_code);
  713. spin_unlock(&vcpu->kvm->lock);
  714. switch (er) {
  715. case EMULATE_DONE:
  716. return 1;
  717. case EMULATE_DO_MMIO:
  718. ++kvm_stat.mmio_exits;
  719. kvm_run->exit_reason = KVM_EXIT_MMIO;
  720. return 0;
  721. case EMULATE_FAIL:
  722. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  723. break;
  724. default:
  725. BUG();
  726. }
  727. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  728. return 0;
  729. }
  730. static int io_get_override(struct kvm_vcpu *vcpu,
  731. struct vmcb_seg **seg,
  732. int *addr_override)
  733. {
  734. u8 inst[MAX_INST_SIZE];
  735. unsigned ins_length;
  736. gva_t rip;
  737. int i;
  738. rip = vcpu->svm->vmcb->save.rip;
  739. ins_length = vcpu->svm->next_rip - rip;
  740. rip += vcpu->svm->vmcb->save.cs.base;
  741. if (ins_length > MAX_INST_SIZE)
  742. printk(KERN_DEBUG
  743. "%s: inst length err, cs base 0x%llx rip 0x%llx "
  744. "next rip 0x%llx ins_length %u\n",
  745. __FUNCTION__,
  746. vcpu->svm->vmcb->save.cs.base,
  747. vcpu->svm->vmcb->save.rip,
  748. vcpu->svm->vmcb->control.exit_info_2,
  749. ins_length);
  750. if (kvm_read_guest(vcpu, rip, ins_length, inst) != ins_length)
  751. /* #PF */
  752. return 0;
  753. *addr_override = 0;
  754. *seg = 0;
  755. for (i = 0; i < ins_length; i++)
  756. switch (inst[i]) {
  757. case 0xf0:
  758. case 0xf2:
  759. case 0xf3:
  760. case 0x66:
  761. continue;
  762. case 0x67:
  763. *addr_override = 1;
  764. continue;
  765. case 0x2e:
  766. *seg = &vcpu->svm->vmcb->save.cs;
  767. continue;
  768. case 0x36:
  769. *seg = &vcpu->svm->vmcb->save.ss;
  770. continue;
  771. case 0x3e:
  772. *seg = &vcpu->svm->vmcb->save.ds;
  773. continue;
  774. case 0x26:
  775. *seg = &vcpu->svm->vmcb->save.es;
  776. continue;
  777. case 0x64:
  778. *seg = &vcpu->svm->vmcb->save.fs;
  779. continue;
  780. case 0x65:
  781. *seg = &vcpu->svm->vmcb->save.gs;
  782. continue;
  783. default:
  784. return 1;
  785. }
  786. printk(KERN_DEBUG "%s: unexpected\n", __FUNCTION__);
  787. return 0;
  788. }
  789. static unsigned long io_adress(struct kvm_vcpu *vcpu, int ins, u64 *address)
  790. {
  791. unsigned long addr_mask;
  792. unsigned long *reg;
  793. struct vmcb_seg *seg;
  794. int addr_override;
  795. struct vmcb_save_area *save_area = &vcpu->svm->vmcb->save;
  796. u16 cs_attrib = save_area->cs.attrib;
  797. unsigned addr_size = get_addr_size(vcpu);
  798. if (!io_get_override(vcpu, &seg, &addr_override))
  799. return 0;
  800. if (addr_override)
  801. addr_size = (addr_size == 2) ? 4: (addr_size >> 1);
  802. if (ins) {
  803. reg = &vcpu->regs[VCPU_REGS_RDI];
  804. seg = &vcpu->svm->vmcb->save.es;
  805. } else {
  806. reg = &vcpu->regs[VCPU_REGS_RSI];
  807. seg = (seg) ? seg : &vcpu->svm->vmcb->save.ds;
  808. }
  809. addr_mask = ~0ULL >> (64 - (addr_size * 8));
  810. if ((cs_attrib & SVM_SELECTOR_L_MASK) &&
  811. !(vcpu->svm->vmcb->save.rflags & X86_EFLAGS_VM)) {
  812. *address = (*reg & addr_mask);
  813. return addr_mask;
  814. }
  815. if (!(seg->attrib & SVM_SELECTOR_P_SHIFT)) {
  816. svm_inject_gp(vcpu, 0);
  817. return 0;
  818. }
  819. *address = (*reg & addr_mask) + seg->base;
  820. return addr_mask;
  821. }
  822. static int io_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  823. {
  824. u32 io_info = vcpu->svm->vmcb->control.exit_info_1; //address size bug?
  825. int _in = io_info & SVM_IOIO_TYPE_MASK;
  826. ++kvm_stat.io_exits;
  827. vcpu->svm->next_rip = vcpu->svm->vmcb->control.exit_info_2;
  828. kvm_run->exit_reason = KVM_EXIT_IO;
  829. kvm_run->io.port = io_info >> 16;
  830. kvm_run->io.direction = (_in) ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  831. kvm_run->io.size = ((io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT);
  832. kvm_run->io.string = (io_info & SVM_IOIO_STR_MASK) != 0;
  833. kvm_run->io.rep = (io_info & SVM_IOIO_REP_MASK) != 0;
  834. if (kvm_run->io.string) {
  835. unsigned addr_mask;
  836. addr_mask = io_adress(vcpu, _in, &kvm_run->io.address);
  837. if (!addr_mask) {
  838. printk(KERN_DEBUG "%s: get io address failed\n", __FUNCTION__);
  839. return 1;
  840. }
  841. if (kvm_run->io.rep) {
  842. kvm_run->io.count = vcpu->regs[VCPU_REGS_RCX] & addr_mask;
  843. kvm_run->io.string_down = (vcpu->svm->vmcb->save.rflags
  844. & X86_EFLAGS_DF) != 0;
  845. }
  846. } else {
  847. kvm_run->io.value = vcpu->svm->vmcb->save.rax;
  848. }
  849. return 0;
  850. }
  851. static int nop_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  852. {
  853. return 1;
  854. }
  855. static int halt_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  856. {
  857. vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 1;
  858. skip_emulated_instruction(vcpu);
  859. if (vcpu->irq_summary && (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF))
  860. return 1;
  861. kvm_run->exit_reason = KVM_EXIT_HLT;
  862. return 0;
  863. }
  864. static int invalid_op_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  865. {
  866. inject_ud(vcpu);
  867. return 1;
  868. }
  869. static int task_switch_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  870. {
  871. printk(KERN_DEBUG "%s: task swiche is unsupported\n", __FUNCTION__);
  872. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  873. return 0;
  874. }
  875. static int cpuid_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  876. {
  877. vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
  878. kvm_run->exit_reason = KVM_EXIT_CPUID;
  879. return 0;
  880. }
  881. static int emulate_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  882. {
  883. if (emulate_instruction(vcpu, 0, 0, 0) != EMULATE_DONE)
  884. printk(KERN_ERR "%s: failed\n", __FUNCTION__);
  885. return 1;
  886. }
  887. static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
  888. {
  889. switch (ecx) {
  890. case MSR_IA32_MC0_CTL:
  891. case MSR_IA32_MCG_STATUS:
  892. case MSR_IA32_MCG_CAP:
  893. case MSR_IA32_MC0_MISC:
  894. case MSR_IA32_MC0_MISC+4:
  895. case MSR_IA32_MC0_MISC+8:
  896. case MSR_IA32_MC0_MISC+12:
  897. case MSR_IA32_MC0_MISC+16:
  898. case MSR_IA32_UCODE_REV:
  899. /* MTRR registers */
  900. case 0xfe:
  901. case 0x200 ... 0x2ff:
  902. *data = 0;
  903. break;
  904. case MSR_IA32_TIME_STAMP_COUNTER: {
  905. u64 tsc;
  906. rdtscll(tsc);
  907. *data = vcpu->svm->vmcb->control.tsc_offset + tsc;
  908. break;
  909. }
  910. case MSR_EFER:
  911. *data = vcpu->shadow_efer;
  912. break;
  913. case MSR_IA32_APICBASE:
  914. *data = vcpu->apic_base;
  915. break;
  916. case MSR_K6_STAR:
  917. *data = vcpu->svm->vmcb->save.star;
  918. break;
  919. #ifdef CONFIG_X86_64
  920. case MSR_LSTAR:
  921. *data = vcpu->svm->vmcb->save.lstar;
  922. break;
  923. case MSR_CSTAR:
  924. *data = vcpu->svm->vmcb->save.cstar;
  925. break;
  926. case MSR_KERNEL_GS_BASE:
  927. *data = vcpu->svm->vmcb->save.kernel_gs_base;
  928. break;
  929. case MSR_SYSCALL_MASK:
  930. *data = vcpu->svm->vmcb->save.sfmask;
  931. break;
  932. #endif
  933. case MSR_IA32_SYSENTER_CS:
  934. *data = vcpu->svm->vmcb->save.sysenter_cs;
  935. break;
  936. case MSR_IA32_SYSENTER_EIP:
  937. *data = vcpu->svm->vmcb->save.sysenter_eip;
  938. break;
  939. case MSR_IA32_SYSENTER_ESP:
  940. *data = vcpu->svm->vmcb->save.sysenter_esp;
  941. break;
  942. default:
  943. printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", ecx);
  944. return 1;
  945. }
  946. return 0;
  947. }
  948. static int rdmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  949. {
  950. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  951. u64 data;
  952. if (svm_get_msr(vcpu, ecx, &data))
  953. svm_inject_gp(vcpu, 0);
  954. else {
  955. vcpu->svm->vmcb->save.rax = data & 0xffffffff;
  956. vcpu->regs[VCPU_REGS_RDX] = data >> 32;
  957. vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
  958. skip_emulated_instruction(vcpu);
  959. }
  960. return 1;
  961. }
  962. static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
  963. {
  964. switch (ecx) {
  965. #ifdef CONFIG_X86_64
  966. case MSR_EFER:
  967. set_efer(vcpu, data);
  968. break;
  969. #endif
  970. case MSR_IA32_MC0_STATUS:
  971. printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n"
  972. , __FUNCTION__, data);
  973. break;
  974. case MSR_IA32_TIME_STAMP_COUNTER: {
  975. u64 tsc;
  976. rdtscll(tsc);
  977. vcpu->svm->vmcb->control.tsc_offset = data - tsc;
  978. break;
  979. }
  980. case MSR_IA32_UCODE_REV:
  981. case MSR_IA32_UCODE_WRITE:
  982. case 0x200 ... 0x2ff: /* MTRRs */
  983. break;
  984. case MSR_IA32_APICBASE:
  985. vcpu->apic_base = data;
  986. break;
  987. case MSR_K6_STAR:
  988. vcpu->svm->vmcb->save.star = data;
  989. break;
  990. #ifdef CONFIG_X86_64_
  991. case MSR_LSTAR:
  992. vcpu->svm->vmcb->save.lstar = data;
  993. break;
  994. case MSR_CSTAR:
  995. vcpu->svm->vmcb->save.cstar = data;
  996. break;
  997. case MSR_KERNEL_GS_BASE:
  998. vcpu->svm->vmcb->save.kernel_gs_base = data;
  999. break;
  1000. case MSR_SYSCALL_MASK:
  1001. vcpu->svm->vmcb->save.sfmask = data;
  1002. break;
  1003. #endif
  1004. case MSR_IA32_SYSENTER_CS:
  1005. vcpu->svm->vmcb->save.sysenter_cs = data;
  1006. break;
  1007. case MSR_IA32_SYSENTER_EIP:
  1008. vcpu->svm->vmcb->save.sysenter_eip = data;
  1009. break;
  1010. case MSR_IA32_SYSENTER_ESP:
  1011. vcpu->svm->vmcb->save.sysenter_esp = data;
  1012. break;
  1013. default:
  1014. printk(KERN_ERR "kvm: unhandled wrmsr: %x\n", ecx);
  1015. return 1;
  1016. }
  1017. return 0;
  1018. }
  1019. static int wrmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1020. {
  1021. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1022. u64 data = (vcpu->svm->vmcb->save.rax & -1u)
  1023. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1024. vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
  1025. if (svm_set_msr(vcpu, ecx, data))
  1026. svm_inject_gp(vcpu, 0);
  1027. else
  1028. skip_emulated_instruction(vcpu);
  1029. return 1;
  1030. }
  1031. static int msr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1032. {
  1033. if (vcpu->svm->vmcb->control.exit_info_1)
  1034. return wrmsr_interception(vcpu, kvm_run);
  1035. else
  1036. return rdmsr_interception(vcpu, kvm_run);
  1037. }
  1038. static int (*svm_exit_handlers[])(struct kvm_vcpu *vcpu,
  1039. struct kvm_run *kvm_run) = {
  1040. [SVM_EXIT_READ_CR0] = emulate_on_interception,
  1041. [SVM_EXIT_READ_CR3] = emulate_on_interception,
  1042. [SVM_EXIT_READ_CR4] = emulate_on_interception,
  1043. /* for now: */
  1044. [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
  1045. [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
  1046. [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
  1047. [SVM_EXIT_READ_DR0] = emulate_on_interception,
  1048. [SVM_EXIT_READ_DR1] = emulate_on_interception,
  1049. [SVM_EXIT_READ_DR2] = emulate_on_interception,
  1050. [SVM_EXIT_READ_DR3] = emulate_on_interception,
  1051. [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
  1052. [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
  1053. [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
  1054. [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
  1055. [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
  1056. [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
  1057. [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
  1058. [SVM_EXIT_INTR] = nop_on_interception,
  1059. [SVM_EXIT_NMI] = nop_on_interception,
  1060. [SVM_EXIT_SMI] = nop_on_interception,
  1061. [SVM_EXIT_INIT] = nop_on_interception,
  1062. /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
  1063. [SVM_EXIT_CPUID] = cpuid_interception,
  1064. [SVM_EXIT_HLT] = halt_interception,
  1065. [SVM_EXIT_INVLPG] = emulate_on_interception,
  1066. [SVM_EXIT_INVLPGA] = invalid_op_interception,
  1067. [SVM_EXIT_IOIO] = io_interception,
  1068. [SVM_EXIT_MSR] = msr_interception,
  1069. [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
  1070. [SVM_EXIT_VMRUN] = invalid_op_interception,
  1071. [SVM_EXIT_VMMCALL] = invalid_op_interception,
  1072. [SVM_EXIT_VMLOAD] = invalid_op_interception,
  1073. [SVM_EXIT_VMSAVE] = invalid_op_interception,
  1074. [SVM_EXIT_STGI] = invalid_op_interception,
  1075. [SVM_EXIT_CLGI] = invalid_op_interception,
  1076. [SVM_EXIT_SKINIT] = invalid_op_interception,
  1077. };
  1078. static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1079. {
  1080. u32 exit_code = vcpu->svm->vmcb->control.exit_code;
  1081. kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;
  1082. if (is_external_interrupt(vcpu->svm->vmcb->control.exit_int_info) &&
  1083. exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
  1084. printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
  1085. "exit_code 0x%x\n",
  1086. __FUNCTION__, vcpu->svm->vmcb->control.exit_int_info,
  1087. exit_code);
  1088. if (exit_code >= sizeof(svm_exit_handlers) / sizeof(*svm_exit_handlers)
  1089. || svm_exit_handlers[exit_code] == 0) {
  1090. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1091. printk(KERN_ERR "%s: 0x%x @ 0x%llx cr0 0x%lx rflags 0x%llx\n",
  1092. __FUNCTION__,
  1093. exit_code,
  1094. vcpu->svm->vmcb->save.rip,
  1095. vcpu->cr0,
  1096. vcpu->svm->vmcb->save.rflags);
  1097. return 0;
  1098. }
  1099. return svm_exit_handlers[exit_code](vcpu, kvm_run);
  1100. }
  1101. static void reload_tss(struct kvm_vcpu *vcpu)
  1102. {
  1103. int cpu = raw_smp_processor_id();
  1104. struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
  1105. svm_data->tss_desc->type = 9; //available 32/64-bit TSS
  1106. load_TR_desc();
  1107. }
  1108. static void pre_svm_run(struct kvm_vcpu *vcpu)
  1109. {
  1110. int cpu = raw_smp_processor_id();
  1111. struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
  1112. vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
  1113. if (vcpu->cpu != cpu ||
  1114. vcpu->svm->asid_generation != svm_data->asid_generation)
  1115. new_asid(vcpu, svm_data);
  1116. }
  1117. static inline void kvm_try_inject_irq(struct kvm_vcpu *vcpu)
  1118. {
  1119. struct vmcb_control_area *control;
  1120. if (!vcpu->irq_summary)
  1121. return;
  1122. control = &vcpu->svm->vmcb->control;
  1123. control->int_vector = pop_irq(vcpu);
  1124. control->int_ctl &= ~V_INTR_PRIO_MASK;
  1125. control->int_ctl |= V_IRQ_MASK |
  1126. ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
  1127. }
  1128. static void kvm_reput_irq(struct kvm_vcpu *vcpu)
  1129. {
  1130. struct vmcb_control_area *control = &vcpu->svm->vmcb->control;
  1131. if (control->int_ctl & V_IRQ_MASK) {
  1132. control->int_ctl &= ~V_IRQ_MASK;
  1133. push_irq(vcpu, control->int_vector);
  1134. }
  1135. }
  1136. static void save_db_regs(unsigned long *db_regs)
  1137. {
  1138. asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
  1139. asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
  1140. asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
  1141. asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
  1142. }
  1143. static void load_db_regs(unsigned long *db_regs)
  1144. {
  1145. asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
  1146. asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
  1147. asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
  1148. asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
  1149. }
  1150. static int svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1151. {
  1152. u16 fs_selector;
  1153. u16 gs_selector;
  1154. u16 ldt_selector;
  1155. again:
  1156. kvm_try_inject_irq(vcpu);
  1157. clgi();
  1158. pre_svm_run(vcpu);
  1159. save_host_msrs(vcpu);
  1160. fs_selector = read_fs();
  1161. gs_selector = read_gs();
  1162. ldt_selector = read_ldt();
  1163. vcpu->svm->host_cr2 = kvm_read_cr2();
  1164. vcpu->svm->host_dr6 = read_dr6();
  1165. vcpu->svm->host_dr7 = read_dr7();
  1166. vcpu->svm->vmcb->save.cr2 = vcpu->cr2;
  1167. if (vcpu->svm->vmcb->save.dr7 & 0xff) {
  1168. write_dr7(0);
  1169. save_db_regs(vcpu->svm->host_db_regs);
  1170. load_db_regs(vcpu->svm->db_regs);
  1171. }
  1172. asm volatile (
  1173. #ifdef CONFIG_X86_64
  1174. "push %%rbx; push %%rcx; push %%rdx;"
  1175. "push %%rsi; push %%rdi; push %%rbp;"
  1176. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1177. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1178. #else
  1179. "push %%ebx; push %%ecx; push %%edx;"
  1180. "push %%esi; push %%edi; push %%ebp;"
  1181. #endif
  1182. #ifdef CONFIG_X86_64
  1183. "mov %c[rbx](%[vcpu]), %%rbx \n\t"
  1184. "mov %c[rcx](%[vcpu]), %%rcx \n\t"
  1185. "mov %c[rdx](%[vcpu]), %%rdx \n\t"
  1186. "mov %c[rsi](%[vcpu]), %%rsi \n\t"
  1187. "mov %c[rdi](%[vcpu]), %%rdi \n\t"
  1188. "mov %c[rbp](%[vcpu]), %%rbp \n\t"
  1189. "mov %c[r8](%[vcpu]), %%r8 \n\t"
  1190. "mov %c[r9](%[vcpu]), %%r9 \n\t"
  1191. "mov %c[r10](%[vcpu]), %%r10 \n\t"
  1192. "mov %c[r11](%[vcpu]), %%r11 \n\t"
  1193. "mov %c[r12](%[vcpu]), %%r12 \n\t"
  1194. "mov %c[r13](%[vcpu]), %%r13 \n\t"
  1195. "mov %c[r14](%[vcpu]), %%r14 \n\t"
  1196. "mov %c[r15](%[vcpu]), %%r15 \n\t"
  1197. #else
  1198. "mov %c[rbx](%[vcpu]), %%ebx \n\t"
  1199. "mov %c[rcx](%[vcpu]), %%ecx \n\t"
  1200. "mov %c[rdx](%[vcpu]), %%edx \n\t"
  1201. "mov %c[rsi](%[vcpu]), %%esi \n\t"
  1202. "mov %c[rdi](%[vcpu]), %%edi \n\t"
  1203. "mov %c[rbp](%[vcpu]), %%ebp \n\t"
  1204. #endif
  1205. #ifdef CONFIG_X86_64
  1206. /* Enter guest mode */
  1207. "push %%rax \n\t"
  1208. "mov %c[svm](%[vcpu]), %%rax \n\t"
  1209. "mov %c[vmcb](%%rax), %%rax \n\t"
  1210. SVM_VMLOAD "\n\t"
  1211. SVM_VMRUN "\n\t"
  1212. SVM_VMSAVE "\n\t"
  1213. "pop %%rax \n\t"
  1214. #else
  1215. /* Enter guest mode */
  1216. "push %%eax \n\t"
  1217. "mov %c[svm](%[vcpu]), %%eax \n\t"
  1218. "mov %c[vmcb](%%eax), %%eax \n\t"
  1219. SVM_VMLOAD "\n\t"
  1220. SVM_VMRUN "\n\t"
  1221. SVM_VMSAVE "\n\t"
  1222. "pop %%eax \n\t"
  1223. #endif
  1224. /* Save guest registers, load host registers */
  1225. #ifdef CONFIG_X86_64
  1226. "mov %%rbx, %c[rbx](%[vcpu]) \n\t"
  1227. "mov %%rcx, %c[rcx](%[vcpu]) \n\t"
  1228. "mov %%rdx, %c[rdx](%[vcpu]) \n\t"
  1229. "mov %%rsi, %c[rsi](%[vcpu]) \n\t"
  1230. "mov %%rdi, %c[rdi](%[vcpu]) \n\t"
  1231. "mov %%rbp, %c[rbp](%[vcpu]) \n\t"
  1232. "mov %%r8, %c[r8](%[vcpu]) \n\t"
  1233. "mov %%r9, %c[r9](%[vcpu]) \n\t"
  1234. "mov %%r10, %c[r10](%[vcpu]) \n\t"
  1235. "mov %%r11, %c[r11](%[vcpu]) \n\t"
  1236. "mov %%r12, %c[r12](%[vcpu]) \n\t"
  1237. "mov %%r13, %c[r13](%[vcpu]) \n\t"
  1238. "mov %%r14, %c[r14](%[vcpu]) \n\t"
  1239. "mov %%r15, %c[r15](%[vcpu]) \n\t"
  1240. "pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1241. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1242. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1243. "pop %%rdx; pop %%rcx; pop %%rbx; \n\t"
  1244. #else
  1245. "mov %%ebx, %c[rbx](%[vcpu]) \n\t"
  1246. "mov %%ecx, %c[rcx](%[vcpu]) \n\t"
  1247. "mov %%edx, %c[rdx](%[vcpu]) \n\t"
  1248. "mov %%esi, %c[rsi](%[vcpu]) \n\t"
  1249. "mov %%edi, %c[rdi](%[vcpu]) \n\t"
  1250. "mov %%ebp, %c[rbp](%[vcpu]) \n\t"
  1251. "pop %%ebp; pop %%edi; pop %%esi;"
  1252. "pop %%edx; pop %%ecx; pop %%ebx; \n\t"
  1253. #endif
  1254. :
  1255. : [vcpu]"a"(vcpu),
  1256. [svm]"i"(offsetof(struct kvm_vcpu, svm)),
  1257. [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
  1258. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  1259. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  1260. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  1261. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  1262. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  1263. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP]))
  1264. #ifdef CONFIG_X86_64
  1265. ,[r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  1266. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  1267. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  1268. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  1269. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  1270. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  1271. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  1272. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15]))
  1273. #endif
  1274. : "cc", "memory" );
  1275. if ((vcpu->svm->vmcb->save.dr7 & 0xff))
  1276. load_db_regs(vcpu->svm->host_db_regs);
  1277. vcpu->cr2 = vcpu->svm->vmcb->save.cr2;
  1278. write_dr6(vcpu->svm->host_dr6);
  1279. write_dr7(vcpu->svm->host_dr7);
  1280. kvm_write_cr2(vcpu->svm->host_cr2);
  1281. load_fs(fs_selector);
  1282. load_gs(gs_selector);
  1283. load_ldt(ldt_selector);
  1284. load_host_msrs(vcpu);
  1285. reload_tss(vcpu);
  1286. stgi();
  1287. kvm_reput_irq(vcpu);
  1288. vcpu->svm->next_rip = 0;
  1289. if (vcpu->svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
  1290. kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
  1291. kvm_run->exit_reason = vcpu->svm->vmcb->control.exit_code;
  1292. return 0;
  1293. }
  1294. if (handle_exit(vcpu, kvm_run)) {
  1295. if (signal_pending(current)) {
  1296. ++kvm_stat.signal_exits;
  1297. return -EINTR;
  1298. }
  1299. kvm_resched(vcpu);
  1300. goto again;
  1301. }
  1302. return 0;
  1303. }
  1304. static void svm_flush_tlb(struct kvm_vcpu *vcpu)
  1305. {
  1306. force_new_asid(vcpu);
  1307. }
  1308. static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
  1309. {
  1310. vcpu->svm->vmcb->save.cr3 = root;
  1311. force_new_asid(vcpu);
  1312. }
  1313. static void svm_inject_page_fault(struct kvm_vcpu *vcpu,
  1314. unsigned long addr,
  1315. uint32_t err_code)
  1316. {
  1317. uint32_t exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
  1318. ++kvm_stat.pf_guest;
  1319. if (is_page_fault(exit_int_info)) {
  1320. vcpu->svm->vmcb->control.event_inj_err = 0;
  1321. vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  1322. SVM_EVTINJ_VALID_ERR |
  1323. SVM_EVTINJ_TYPE_EXEPT |
  1324. DF_VECTOR;
  1325. return;
  1326. }
  1327. vcpu->cr2 = addr;
  1328. vcpu->svm->vmcb->save.cr2 = addr;
  1329. vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  1330. SVM_EVTINJ_VALID_ERR |
  1331. SVM_EVTINJ_TYPE_EXEPT |
  1332. PF_VECTOR;
  1333. vcpu->svm->vmcb->control.event_inj_err = err_code;
  1334. }
  1335. static int is_disabled(void)
  1336. {
  1337. return 0;
  1338. }
  1339. static struct kvm_arch_ops svm_arch_ops = {
  1340. .cpu_has_kvm_support = has_svm,
  1341. .disabled_by_bios = is_disabled,
  1342. .hardware_setup = svm_hardware_setup,
  1343. .hardware_unsetup = svm_hardware_unsetup,
  1344. .hardware_enable = svm_hardware_enable,
  1345. .hardware_disable = svm_hardware_disable,
  1346. .vcpu_create = svm_create_vcpu,
  1347. .vcpu_free = svm_free_vcpu,
  1348. .vcpu_load = svm_vcpu_load,
  1349. .vcpu_put = svm_vcpu_put,
  1350. .set_guest_debug = svm_guest_debug,
  1351. .get_msr = svm_get_msr,
  1352. .set_msr = svm_set_msr,
  1353. .get_segment_base = svm_get_segment_base,
  1354. .get_segment = svm_get_segment,
  1355. .set_segment = svm_set_segment,
  1356. .is_long_mode = svm_is_long_mode,
  1357. .get_cs_db_l_bits = svm_get_cs_db_l_bits,
  1358. .set_cr0 = svm_set_cr0,
  1359. .set_cr0_no_modeswitch = svm_set_cr0,
  1360. .set_cr3 = svm_set_cr3,
  1361. .set_cr4 = svm_set_cr4,
  1362. .set_efer = svm_set_efer,
  1363. .get_idt = svm_get_idt,
  1364. .set_idt = svm_set_idt,
  1365. .get_gdt = svm_get_gdt,
  1366. .set_gdt = svm_set_gdt,
  1367. .get_dr = svm_get_dr,
  1368. .set_dr = svm_set_dr,
  1369. .cache_regs = svm_cache_regs,
  1370. .decache_regs = svm_decache_regs,
  1371. .get_rflags = svm_get_rflags,
  1372. .set_rflags = svm_set_rflags,
  1373. .invlpg = svm_invlpg,
  1374. .tlb_flush = svm_flush_tlb,
  1375. .inject_page_fault = svm_inject_page_fault,
  1376. .inject_gp = svm_inject_gp,
  1377. .run = svm_vcpu_run,
  1378. .skip_emulated_instruction = skip_emulated_instruction,
  1379. .vcpu_setup = svm_vcpu_setup,
  1380. };
  1381. static int __init svm_init(void)
  1382. {
  1383. return kvm_init_arch(&svm_arch_ops, THIS_MODULE);
  1384. }
  1385. static void __exit svm_exit(void)
  1386. {
  1387. kvm_exit_arch();
  1388. }
  1389. module_init(svm_init)
  1390. module_exit(svm_exit)