vmx.c 107 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include <linux/ftrace_event.h>
  27. #include "kvm_cache_regs.h"
  28. #include "x86.h"
  29. #include <asm/io.h>
  30. #include <asm/desc.h>
  31. #include <asm/vmx.h>
  32. #include <asm/virtext.h>
  33. #include <asm/mce.h>
  34. #include "trace.h"
  35. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  36. MODULE_AUTHOR("Qumranet");
  37. MODULE_LICENSE("GPL");
  38. static int __read_mostly bypass_guest_pf = 1;
  39. module_param(bypass_guest_pf, bool, S_IRUGO);
  40. static int __read_mostly enable_vpid = 1;
  41. module_param_named(vpid, enable_vpid, bool, 0444);
  42. static int __read_mostly flexpriority_enabled = 1;
  43. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  44. static int __read_mostly enable_ept = 1;
  45. module_param_named(ept, enable_ept, bool, S_IRUGO);
  46. static int __read_mostly enable_unrestricted_guest = 1;
  47. module_param_named(unrestricted_guest,
  48. enable_unrestricted_guest, bool, S_IRUGO);
  49. static int __read_mostly emulate_invalid_guest_state = 0;
  50. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  51. #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
  52. (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
  53. #define KVM_GUEST_CR0_MASK \
  54. (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  55. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
  56. (X86_CR0_WP | X86_CR0_NE | X86_CR0_TS | X86_CR0_MP)
  57. #define KVM_VM_CR0_ALWAYS_ON \
  58. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  59. #define KVM_CR4_GUEST_OWNED_BITS \
  60. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  61. | X86_CR4_OSXMMEXCPT)
  62. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  63. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  64. /*
  65. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  66. * ple_gap: upper bound on the amount of time between two successive
  67. * executions of PAUSE in a loop. Also indicate if ple enabled.
  68. * According to test, this time is usually small than 41 cycles.
  69. * ple_window: upper bound on the amount of time a guest is allowed to execute
  70. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  71. * less than 2^12 cycles
  72. * Time is measured based on a counter that runs at the same rate as the TSC,
  73. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  74. */
  75. #define KVM_VMX_DEFAULT_PLE_GAP 41
  76. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  77. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  78. module_param(ple_gap, int, S_IRUGO);
  79. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  80. module_param(ple_window, int, S_IRUGO);
  81. struct vmcs {
  82. u32 revision_id;
  83. u32 abort;
  84. char data[0];
  85. };
  86. struct shared_msr_entry {
  87. unsigned index;
  88. u64 data;
  89. u64 mask;
  90. };
  91. struct vcpu_vmx {
  92. struct kvm_vcpu vcpu;
  93. struct list_head local_vcpus_link;
  94. unsigned long host_rsp;
  95. int launched;
  96. u8 fail;
  97. u32 idt_vectoring_info;
  98. struct shared_msr_entry *guest_msrs;
  99. int nmsrs;
  100. int save_nmsrs;
  101. #ifdef CONFIG_X86_64
  102. u64 msr_host_kernel_gs_base;
  103. u64 msr_guest_kernel_gs_base;
  104. #endif
  105. struct vmcs *vmcs;
  106. struct {
  107. int loaded;
  108. u16 fs_sel, gs_sel, ldt_sel;
  109. int gs_ldt_reload_needed;
  110. int fs_reload_needed;
  111. } host_state;
  112. struct {
  113. int vm86_active;
  114. u8 save_iopl;
  115. struct kvm_save_segment {
  116. u16 selector;
  117. unsigned long base;
  118. u32 limit;
  119. u32 ar;
  120. } tr, es, ds, fs, gs;
  121. struct {
  122. bool pending;
  123. u8 vector;
  124. unsigned rip;
  125. } irq;
  126. } rmode;
  127. int vpid;
  128. bool emulation_required;
  129. /* Support for vnmi-less CPUs */
  130. int soft_vnmi_blocked;
  131. ktime_t entry_time;
  132. s64 vnmi_blocked_time;
  133. u32 exit_reason;
  134. };
  135. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  136. {
  137. return container_of(vcpu, struct vcpu_vmx, vcpu);
  138. }
  139. static int init_rmode(struct kvm *kvm);
  140. static u64 construct_eptp(unsigned long root_hpa);
  141. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  142. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  143. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  144. static unsigned long *vmx_io_bitmap_a;
  145. static unsigned long *vmx_io_bitmap_b;
  146. static unsigned long *vmx_msr_bitmap_legacy;
  147. static unsigned long *vmx_msr_bitmap_longmode;
  148. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  149. static DEFINE_SPINLOCK(vmx_vpid_lock);
  150. static struct vmcs_config {
  151. int size;
  152. int order;
  153. u32 revision_id;
  154. u32 pin_based_exec_ctrl;
  155. u32 cpu_based_exec_ctrl;
  156. u32 cpu_based_2nd_exec_ctrl;
  157. u32 vmexit_ctrl;
  158. u32 vmentry_ctrl;
  159. } vmcs_config;
  160. static struct vmx_capability {
  161. u32 ept;
  162. u32 vpid;
  163. } vmx_capability;
  164. #define VMX_SEGMENT_FIELD(seg) \
  165. [VCPU_SREG_##seg] = { \
  166. .selector = GUEST_##seg##_SELECTOR, \
  167. .base = GUEST_##seg##_BASE, \
  168. .limit = GUEST_##seg##_LIMIT, \
  169. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  170. }
  171. static struct kvm_vmx_segment_field {
  172. unsigned selector;
  173. unsigned base;
  174. unsigned limit;
  175. unsigned ar_bytes;
  176. } kvm_vmx_segment_fields[] = {
  177. VMX_SEGMENT_FIELD(CS),
  178. VMX_SEGMENT_FIELD(DS),
  179. VMX_SEGMENT_FIELD(ES),
  180. VMX_SEGMENT_FIELD(FS),
  181. VMX_SEGMENT_FIELD(GS),
  182. VMX_SEGMENT_FIELD(SS),
  183. VMX_SEGMENT_FIELD(TR),
  184. VMX_SEGMENT_FIELD(LDTR),
  185. };
  186. static u64 host_efer;
  187. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  188. /*
  189. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  190. * away by decrementing the array size.
  191. */
  192. static const u32 vmx_msr_index[] = {
  193. #ifdef CONFIG_X86_64
  194. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  195. #endif
  196. MSR_EFER, MSR_K6_STAR,
  197. };
  198. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  199. static inline int is_page_fault(u32 intr_info)
  200. {
  201. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  202. INTR_INFO_VALID_MASK)) ==
  203. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  204. }
  205. static inline int is_no_device(u32 intr_info)
  206. {
  207. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  208. INTR_INFO_VALID_MASK)) ==
  209. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  210. }
  211. static inline int is_invalid_opcode(u32 intr_info)
  212. {
  213. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  214. INTR_INFO_VALID_MASK)) ==
  215. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  216. }
  217. static inline int is_external_interrupt(u32 intr_info)
  218. {
  219. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  220. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  221. }
  222. static inline int is_machine_check(u32 intr_info)
  223. {
  224. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  225. INTR_INFO_VALID_MASK)) ==
  226. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  227. }
  228. static inline int cpu_has_vmx_msr_bitmap(void)
  229. {
  230. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  231. }
  232. static inline int cpu_has_vmx_tpr_shadow(void)
  233. {
  234. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  235. }
  236. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  237. {
  238. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  239. }
  240. static inline int cpu_has_secondary_exec_ctrls(void)
  241. {
  242. return vmcs_config.cpu_based_exec_ctrl &
  243. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  244. }
  245. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  246. {
  247. return vmcs_config.cpu_based_2nd_exec_ctrl &
  248. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  249. }
  250. static inline bool cpu_has_vmx_flexpriority(void)
  251. {
  252. return cpu_has_vmx_tpr_shadow() &&
  253. cpu_has_vmx_virtualize_apic_accesses();
  254. }
  255. static inline bool cpu_has_vmx_ept_execute_only(void)
  256. {
  257. return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT);
  258. }
  259. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  260. {
  261. return !!(vmx_capability.ept & VMX_EPTP_UC_BIT);
  262. }
  263. static inline bool cpu_has_vmx_eptp_writeback(void)
  264. {
  265. return !!(vmx_capability.ept & VMX_EPTP_WB_BIT);
  266. }
  267. static inline bool cpu_has_vmx_ept_2m_page(void)
  268. {
  269. return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT);
  270. }
  271. static inline int cpu_has_vmx_invept_individual_addr(void)
  272. {
  273. return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
  274. }
  275. static inline int cpu_has_vmx_invept_context(void)
  276. {
  277. return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
  278. }
  279. static inline int cpu_has_vmx_invept_global(void)
  280. {
  281. return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
  282. }
  283. static inline int cpu_has_vmx_ept(void)
  284. {
  285. return vmcs_config.cpu_based_2nd_exec_ctrl &
  286. SECONDARY_EXEC_ENABLE_EPT;
  287. }
  288. static inline int cpu_has_vmx_unrestricted_guest(void)
  289. {
  290. return vmcs_config.cpu_based_2nd_exec_ctrl &
  291. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  292. }
  293. static inline int cpu_has_vmx_ple(void)
  294. {
  295. return vmcs_config.cpu_based_2nd_exec_ctrl &
  296. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  297. }
  298. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  299. {
  300. return flexpriority_enabled &&
  301. (cpu_has_vmx_virtualize_apic_accesses()) &&
  302. (irqchip_in_kernel(kvm));
  303. }
  304. static inline int cpu_has_vmx_vpid(void)
  305. {
  306. return vmcs_config.cpu_based_2nd_exec_ctrl &
  307. SECONDARY_EXEC_ENABLE_VPID;
  308. }
  309. static inline int cpu_has_virtual_nmis(void)
  310. {
  311. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  312. }
  313. static inline bool report_flexpriority(void)
  314. {
  315. return flexpriority_enabled;
  316. }
  317. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  318. {
  319. int i;
  320. for (i = 0; i < vmx->nmsrs; ++i)
  321. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  322. return i;
  323. return -1;
  324. }
  325. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  326. {
  327. struct {
  328. u64 vpid : 16;
  329. u64 rsvd : 48;
  330. u64 gva;
  331. } operand = { vpid, 0, gva };
  332. asm volatile (__ex(ASM_VMX_INVVPID)
  333. /* CF==1 or ZF==1 --> rc = -1 */
  334. "; ja 1f ; ud2 ; 1:"
  335. : : "a"(&operand), "c"(ext) : "cc", "memory");
  336. }
  337. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  338. {
  339. struct {
  340. u64 eptp, gpa;
  341. } operand = {eptp, gpa};
  342. asm volatile (__ex(ASM_VMX_INVEPT)
  343. /* CF==1 or ZF==1 --> rc = -1 */
  344. "; ja 1f ; ud2 ; 1:\n"
  345. : : "a" (&operand), "c" (ext) : "cc", "memory");
  346. }
  347. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  348. {
  349. int i;
  350. i = __find_msr_index(vmx, msr);
  351. if (i >= 0)
  352. return &vmx->guest_msrs[i];
  353. return NULL;
  354. }
  355. static void vmcs_clear(struct vmcs *vmcs)
  356. {
  357. u64 phys_addr = __pa(vmcs);
  358. u8 error;
  359. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  360. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  361. : "cc", "memory");
  362. if (error)
  363. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  364. vmcs, phys_addr);
  365. }
  366. static void __vcpu_clear(void *arg)
  367. {
  368. struct vcpu_vmx *vmx = arg;
  369. int cpu = raw_smp_processor_id();
  370. if (vmx->vcpu.cpu == cpu)
  371. vmcs_clear(vmx->vmcs);
  372. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  373. per_cpu(current_vmcs, cpu) = NULL;
  374. rdtscll(vmx->vcpu.arch.host_tsc);
  375. list_del(&vmx->local_vcpus_link);
  376. vmx->vcpu.cpu = -1;
  377. vmx->launched = 0;
  378. }
  379. static void vcpu_clear(struct vcpu_vmx *vmx)
  380. {
  381. if (vmx->vcpu.cpu == -1)
  382. return;
  383. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  384. }
  385. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  386. {
  387. if (vmx->vpid == 0)
  388. return;
  389. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  390. }
  391. static inline void ept_sync_global(void)
  392. {
  393. if (cpu_has_vmx_invept_global())
  394. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  395. }
  396. static inline void ept_sync_context(u64 eptp)
  397. {
  398. if (enable_ept) {
  399. if (cpu_has_vmx_invept_context())
  400. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  401. else
  402. ept_sync_global();
  403. }
  404. }
  405. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  406. {
  407. if (enable_ept) {
  408. if (cpu_has_vmx_invept_individual_addr())
  409. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  410. eptp, gpa);
  411. else
  412. ept_sync_context(eptp);
  413. }
  414. }
  415. static unsigned long vmcs_readl(unsigned long field)
  416. {
  417. unsigned long value;
  418. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  419. : "=a"(value) : "d"(field) : "cc");
  420. return value;
  421. }
  422. static u16 vmcs_read16(unsigned long field)
  423. {
  424. return vmcs_readl(field);
  425. }
  426. static u32 vmcs_read32(unsigned long field)
  427. {
  428. return vmcs_readl(field);
  429. }
  430. static u64 vmcs_read64(unsigned long field)
  431. {
  432. #ifdef CONFIG_X86_64
  433. return vmcs_readl(field);
  434. #else
  435. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  436. #endif
  437. }
  438. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  439. {
  440. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  441. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  442. dump_stack();
  443. }
  444. static void vmcs_writel(unsigned long field, unsigned long value)
  445. {
  446. u8 error;
  447. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  448. : "=q"(error) : "a"(value), "d"(field) : "cc");
  449. if (unlikely(error))
  450. vmwrite_error(field, value);
  451. }
  452. static void vmcs_write16(unsigned long field, u16 value)
  453. {
  454. vmcs_writel(field, value);
  455. }
  456. static void vmcs_write32(unsigned long field, u32 value)
  457. {
  458. vmcs_writel(field, value);
  459. }
  460. static void vmcs_write64(unsigned long field, u64 value)
  461. {
  462. vmcs_writel(field, value);
  463. #ifndef CONFIG_X86_64
  464. asm volatile ("");
  465. vmcs_writel(field+1, value >> 32);
  466. #endif
  467. }
  468. static void vmcs_clear_bits(unsigned long field, u32 mask)
  469. {
  470. vmcs_writel(field, vmcs_readl(field) & ~mask);
  471. }
  472. static void vmcs_set_bits(unsigned long field, u32 mask)
  473. {
  474. vmcs_writel(field, vmcs_readl(field) | mask);
  475. }
  476. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  477. {
  478. u32 eb;
  479. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR);
  480. if (!vcpu->fpu_active)
  481. eb |= 1u << NM_VECTOR;
  482. /*
  483. * Unconditionally intercept #DB so we can maintain dr6 without
  484. * reading it every exit.
  485. */
  486. eb |= 1u << DB_VECTOR;
  487. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  488. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  489. eb |= 1u << BP_VECTOR;
  490. }
  491. if (to_vmx(vcpu)->rmode.vm86_active)
  492. eb = ~0;
  493. if (enable_ept)
  494. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  495. vmcs_write32(EXCEPTION_BITMAP, eb);
  496. }
  497. static void reload_tss(void)
  498. {
  499. /*
  500. * VT restores TR but not its size. Useless.
  501. */
  502. struct descriptor_table gdt;
  503. struct desc_struct *descs;
  504. kvm_get_gdt(&gdt);
  505. descs = (void *)gdt.base;
  506. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  507. load_TR_desc();
  508. }
  509. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  510. {
  511. u64 guest_efer;
  512. u64 ignore_bits;
  513. guest_efer = vmx->vcpu.arch.shadow_efer;
  514. /*
  515. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  516. * outside long mode
  517. */
  518. ignore_bits = EFER_NX | EFER_SCE;
  519. #ifdef CONFIG_X86_64
  520. ignore_bits |= EFER_LMA | EFER_LME;
  521. /* SCE is meaningful only in long mode on Intel */
  522. if (guest_efer & EFER_LMA)
  523. ignore_bits &= ~(u64)EFER_SCE;
  524. #endif
  525. guest_efer &= ~ignore_bits;
  526. guest_efer |= host_efer & ignore_bits;
  527. vmx->guest_msrs[efer_offset].data = guest_efer;
  528. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  529. return true;
  530. }
  531. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  532. {
  533. struct vcpu_vmx *vmx = to_vmx(vcpu);
  534. int i;
  535. if (vmx->host_state.loaded)
  536. return;
  537. vmx->host_state.loaded = 1;
  538. /*
  539. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  540. * allow segment selectors with cpl > 0 or ti == 1.
  541. */
  542. vmx->host_state.ldt_sel = kvm_read_ldt();
  543. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  544. vmx->host_state.fs_sel = kvm_read_fs();
  545. if (!(vmx->host_state.fs_sel & 7)) {
  546. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  547. vmx->host_state.fs_reload_needed = 0;
  548. } else {
  549. vmcs_write16(HOST_FS_SELECTOR, 0);
  550. vmx->host_state.fs_reload_needed = 1;
  551. }
  552. vmx->host_state.gs_sel = kvm_read_gs();
  553. if (!(vmx->host_state.gs_sel & 7))
  554. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  555. else {
  556. vmcs_write16(HOST_GS_SELECTOR, 0);
  557. vmx->host_state.gs_ldt_reload_needed = 1;
  558. }
  559. #ifdef CONFIG_X86_64
  560. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  561. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  562. #else
  563. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  564. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  565. #endif
  566. #ifdef CONFIG_X86_64
  567. if (is_long_mode(&vmx->vcpu)) {
  568. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  569. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  570. }
  571. #endif
  572. for (i = 0; i < vmx->save_nmsrs; ++i)
  573. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  574. vmx->guest_msrs[i].data,
  575. vmx->guest_msrs[i].mask);
  576. }
  577. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  578. {
  579. unsigned long flags;
  580. if (!vmx->host_state.loaded)
  581. return;
  582. ++vmx->vcpu.stat.host_state_reload;
  583. vmx->host_state.loaded = 0;
  584. if (vmx->host_state.fs_reload_needed)
  585. kvm_load_fs(vmx->host_state.fs_sel);
  586. if (vmx->host_state.gs_ldt_reload_needed) {
  587. kvm_load_ldt(vmx->host_state.ldt_sel);
  588. /*
  589. * If we have to reload gs, we must take care to
  590. * preserve our gs base.
  591. */
  592. local_irq_save(flags);
  593. kvm_load_gs(vmx->host_state.gs_sel);
  594. #ifdef CONFIG_X86_64
  595. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  596. #endif
  597. local_irq_restore(flags);
  598. }
  599. reload_tss();
  600. #ifdef CONFIG_X86_64
  601. if (is_long_mode(&vmx->vcpu)) {
  602. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  603. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  604. }
  605. #endif
  606. }
  607. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  608. {
  609. preempt_disable();
  610. __vmx_load_host_state(vmx);
  611. preempt_enable();
  612. }
  613. /*
  614. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  615. * vcpu mutex is already taken.
  616. */
  617. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  618. {
  619. struct vcpu_vmx *vmx = to_vmx(vcpu);
  620. u64 phys_addr = __pa(vmx->vmcs);
  621. u64 tsc_this, delta, new_offset;
  622. if (vcpu->cpu != cpu) {
  623. vcpu_clear(vmx);
  624. kvm_migrate_timers(vcpu);
  625. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  626. local_irq_disable();
  627. list_add(&vmx->local_vcpus_link,
  628. &per_cpu(vcpus_on_cpu, cpu));
  629. local_irq_enable();
  630. }
  631. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  632. u8 error;
  633. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  634. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  635. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  636. : "cc");
  637. if (error)
  638. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  639. vmx->vmcs, phys_addr);
  640. }
  641. if (vcpu->cpu != cpu) {
  642. struct descriptor_table dt;
  643. unsigned long sysenter_esp;
  644. vcpu->cpu = cpu;
  645. /*
  646. * Linux uses per-cpu TSS and GDT, so set these when switching
  647. * processors.
  648. */
  649. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  650. kvm_get_gdt(&dt);
  651. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  652. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  653. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  654. /*
  655. * Make sure the time stamp counter is monotonous.
  656. */
  657. rdtscll(tsc_this);
  658. if (tsc_this < vcpu->arch.host_tsc) {
  659. delta = vcpu->arch.host_tsc - tsc_this;
  660. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  661. vmcs_write64(TSC_OFFSET, new_offset);
  662. }
  663. }
  664. }
  665. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  666. {
  667. __vmx_load_host_state(to_vmx(vcpu));
  668. }
  669. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  670. {
  671. if (vcpu->fpu_active)
  672. return;
  673. vcpu->fpu_active = 1;
  674. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  675. if (vcpu->arch.cr0 & X86_CR0_TS)
  676. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  677. update_exception_bitmap(vcpu);
  678. }
  679. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  680. {
  681. if (!vcpu->fpu_active)
  682. return;
  683. vcpu->fpu_active = 0;
  684. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  685. update_exception_bitmap(vcpu);
  686. }
  687. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  688. {
  689. unsigned long rflags;
  690. rflags = vmcs_readl(GUEST_RFLAGS);
  691. if (to_vmx(vcpu)->rmode.vm86_active)
  692. rflags &= ~(unsigned long)(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  693. return rflags;
  694. }
  695. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  696. {
  697. if (to_vmx(vcpu)->rmode.vm86_active)
  698. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  699. vmcs_writel(GUEST_RFLAGS, rflags);
  700. }
  701. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  702. {
  703. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  704. int ret = 0;
  705. if (interruptibility & GUEST_INTR_STATE_STI)
  706. ret |= X86_SHADOW_INT_STI;
  707. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  708. ret |= X86_SHADOW_INT_MOV_SS;
  709. return ret & mask;
  710. }
  711. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  712. {
  713. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  714. u32 interruptibility = interruptibility_old;
  715. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  716. if (mask & X86_SHADOW_INT_MOV_SS)
  717. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  718. if (mask & X86_SHADOW_INT_STI)
  719. interruptibility |= GUEST_INTR_STATE_STI;
  720. if ((interruptibility != interruptibility_old))
  721. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  722. }
  723. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  724. {
  725. unsigned long rip;
  726. rip = kvm_rip_read(vcpu);
  727. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  728. kvm_rip_write(vcpu, rip);
  729. /* skipping an emulated instruction also counts */
  730. vmx_set_interrupt_shadow(vcpu, 0);
  731. }
  732. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  733. bool has_error_code, u32 error_code)
  734. {
  735. struct vcpu_vmx *vmx = to_vmx(vcpu);
  736. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  737. if (has_error_code) {
  738. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  739. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  740. }
  741. if (vmx->rmode.vm86_active) {
  742. vmx->rmode.irq.pending = true;
  743. vmx->rmode.irq.vector = nr;
  744. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  745. if (kvm_exception_is_soft(nr))
  746. vmx->rmode.irq.rip +=
  747. vmx->vcpu.arch.event_exit_inst_len;
  748. intr_info |= INTR_TYPE_SOFT_INTR;
  749. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  750. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  751. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  752. return;
  753. }
  754. if (kvm_exception_is_soft(nr)) {
  755. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  756. vmx->vcpu.arch.event_exit_inst_len);
  757. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  758. } else
  759. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  760. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  761. }
  762. /*
  763. * Swap MSR entry in host/guest MSR entry array.
  764. */
  765. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  766. {
  767. struct shared_msr_entry tmp;
  768. tmp = vmx->guest_msrs[to];
  769. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  770. vmx->guest_msrs[from] = tmp;
  771. }
  772. /*
  773. * Set up the vmcs to automatically save and restore system
  774. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  775. * mode, as fiddling with msrs is very expensive.
  776. */
  777. static void setup_msrs(struct vcpu_vmx *vmx)
  778. {
  779. int save_nmsrs, index;
  780. unsigned long *msr_bitmap;
  781. vmx_load_host_state(vmx);
  782. save_nmsrs = 0;
  783. #ifdef CONFIG_X86_64
  784. if (is_long_mode(&vmx->vcpu)) {
  785. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  786. if (index >= 0)
  787. move_msr_up(vmx, index, save_nmsrs++);
  788. index = __find_msr_index(vmx, MSR_LSTAR);
  789. if (index >= 0)
  790. move_msr_up(vmx, index, save_nmsrs++);
  791. index = __find_msr_index(vmx, MSR_CSTAR);
  792. if (index >= 0)
  793. move_msr_up(vmx, index, save_nmsrs++);
  794. /*
  795. * MSR_K6_STAR is only needed on long mode guests, and only
  796. * if efer.sce is enabled.
  797. */
  798. index = __find_msr_index(vmx, MSR_K6_STAR);
  799. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  800. move_msr_up(vmx, index, save_nmsrs++);
  801. }
  802. #endif
  803. index = __find_msr_index(vmx, MSR_EFER);
  804. if (index >= 0 && update_transition_efer(vmx, index))
  805. move_msr_up(vmx, index, save_nmsrs++);
  806. vmx->save_nmsrs = save_nmsrs;
  807. if (cpu_has_vmx_msr_bitmap()) {
  808. if (is_long_mode(&vmx->vcpu))
  809. msr_bitmap = vmx_msr_bitmap_longmode;
  810. else
  811. msr_bitmap = vmx_msr_bitmap_legacy;
  812. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  813. }
  814. }
  815. /*
  816. * reads and returns guest's timestamp counter "register"
  817. * guest_tsc = host_tsc + tsc_offset -- 21.3
  818. */
  819. static u64 guest_read_tsc(void)
  820. {
  821. u64 host_tsc, tsc_offset;
  822. rdtscll(host_tsc);
  823. tsc_offset = vmcs_read64(TSC_OFFSET);
  824. return host_tsc + tsc_offset;
  825. }
  826. /*
  827. * writes 'guest_tsc' into guest's timestamp counter "register"
  828. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  829. */
  830. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  831. {
  832. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  833. }
  834. /*
  835. * Reads an msr value (of 'msr_index') into 'pdata'.
  836. * Returns 0 on success, non-0 otherwise.
  837. * Assumes vcpu_load() was already called.
  838. */
  839. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  840. {
  841. u64 data;
  842. struct shared_msr_entry *msr;
  843. if (!pdata) {
  844. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  845. return -EINVAL;
  846. }
  847. switch (msr_index) {
  848. #ifdef CONFIG_X86_64
  849. case MSR_FS_BASE:
  850. data = vmcs_readl(GUEST_FS_BASE);
  851. break;
  852. case MSR_GS_BASE:
  853. data = vmcs_readl(GUEST_GS_BASE);
  854. break;
  855. case MSR_KERNEL_GS_BASE:
  856. vmx_load_host_state(to_vmx(vcpu));
  857. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  858. break;
  859. #endif
  860. case MSR_EFER:
  861. return kvm_get_msr_common(vcpu, msr_index, pdata);
  862. case MSR_IA32_TSC:
  863. data = guest_read_tsc();
  864. break;
  865. case MSR_IA32_SYSENTER_CS:
  866. data = vmcs_read32(GUEST_SYSENTER_CS);
  867. break;
  868. case MSR_IA32_SYSENTER_EIP:
  869. data = vmcs_readl(GUEST_SYSENTER_EIP);
  870. break;
  871. case MSR_IA32_SYSENTER_ESP:
  872. data = vmcs_readl(GUEST_SYSENTER_ESP);
  873. break;
  874. default:
  875. vmx_load_host_state(to_vmx(vcpu));
  876. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  877. if (msr) {
  878. vmx_load_host_state(to_vmx(vcpu));
  879. data = msr->data;
  880. break;
  881. }
  882. return kvm_get_msr_common(vcpu, msr_index, pdata);
  883. }
  884. *pdata = data;
  885. return 0;
  886. }
  887. /*
  888. * Writes msr value into into the appropriate "register".
  889. * Returns 0 on success, non-0 otherwise.
  890. * Assumes vcpu_load() was already called.
  891. */
  892. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  893. {
  894. struct vcpu_vmx *vmx = to_vmx(vcpu);
  895. struct shared_msr_entry *msr;
  896. u64 host_tsc;
  897. int ret = 0;
  898. switch (msr_index) {
  899. case MSR_EFER:
  900. vmx_load_host_state(vmx);
  901. ret = kvm_set_msr_common(vcpu, msr_index, data);
  902. break;
  903. #ifdef CONFIG_X86_64
  904. case MSR_FS_BASE:
  905. vmcs_writel(GUEST_FS_BASE, data);
  906. break;
  907. case MSR_GS_BASE:
  908. vmcs_writel(GUEST_GS_BASE, data);
  909. break;
  910. case MSR_KERNEL_GS_BASE:
  911. vmx_load_host_state(vmx);
  912. vmx->msr_guest_kernel_gs_base = data;
  913. break;
  914. #endif
  915. case MSR_IA32_SYSENTER_CS:
  916. vmcs_write32(GUEST_SYSENTER_CS, data);
  917. break;
  918. case MSR_IA32_SYSENTER_EIP:
  919. vmcs_writel(GUEST_SYSENTER_EIP, data);
  920. break;
  921. case MSR_IA32_SYSENTER_ESP:
  922. vmcs_writel(GUEST_SYSENTER_ESP, data);
  923. break;
  924. case MSR_IA32_TSC:
  925. rdtscll(host_tsc);
  926. guest_write_tsc(data, host_tsc);
  927. break;
  928. case MSR_IA32_CR_PAT:
  929. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  930. vmcs_write64(GUEST_IA32_PAT, data);
  931. vcpu->arch.pat = data;
  932. break;
  933. }
  934. /* Otherwise falls through to kvm_set_msr_common */
  935. default:
  936. msr = find_msr_entry(vmx, msr_index);
  937. if (msr) {
  938. vmx_load_host_state(vmx);
  939. msr->data = data;
  940. break;
  941. }
  942. ret = kvm_set_msr_common(vcpu, msr_index, data);
  943. }
  944. return ret;
  945. }
  946. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  947. {
  948. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  949. switch (reg) {
  950. case VCPU_REGS_RSP:
  951. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  952. break;
  953. case VCPU_REGS_RIP:
  954. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  955. break;
  956. case VCPU_EXREG_PDPTR:
  957. if (enable_ept)
  958. ept_save_pdptrs(vcpu);
  959. break;
  960. default:
  961. break;
  962. }
  963. }
  964. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  965. {
  966. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  967. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  968. else
  969. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  970. update_exception_bitmap(vcpu);
  971. }
  972. static __init int cpu_has_kvm_support(void)
  973. {
  974. return cpu_has_vmx();
  975. }
  976. static __init int vmx_disabled_by_bios(void)
  977. {
  978. u64 msr;
  979. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  980. return (msr & (FEATURE_CONTROL_LOCKED |
  981. FEATURE_CONTROL_VMXON_ENABLED))
  982. == FEATURE_CONTROL_LOCKED;
  983. /* locked but not enabled */
  984. }
  985. static int hardware_enable(void *garbage)
  986. {
  987. int cpu = raw_smp_processor_id();
  988. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  989. u64 old;
  990. if (read_cr4() & X86_CR4_VMXE)
  991. return -EBUSY;
  992. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  993. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  994. if ((old & (FEATURE_CONTROL_LOCKED |
  995. FEATURE_CONTROL_VMXON_ENABLED))
  996. != (FEATURE_CONTROL_LOCKED |
  997. FEATURE_CONTROL_VMXON_ENABLED))
  998. /* enable and lock */
  999. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  1000. FEATURE_CONTROL_LOCKED |
  1001. FEATURE_CONTROL_VMXON_ENABLED);
  1002. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  1003. asm volatile (ASM_VMX_VMXON_RAX
  1004. : : "a"(&phys_addr), "m"(phys_addr)
  1005. : "memory", "cc");
  1006. ept_sync_global();
  1007. return 0;
  1008. }
  1009. static void vmclear_local_vcpus(void)
  1010. {
  1011. int cpu = raw_smp_processor_id();
  1012. struct vcpu_vmx *vmx, *n;
  1013. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  1014. local_vcpus_link)
  1015. __vcpu_clear(vmx);
  1016. }
  1017. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  1018. * tricks.
  1019. */
  1020. static void kvm_cpu_vmxoff(void)
  1021. {
  1022. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  1023. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  1024. }
  1025. static void hardware_disable(void *garbage)
  1026. {
  1027. vmclear_local_vcpus();
  1028. kvm_cpu_vmxoff();
  1029. }
  1030. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  1031. u32 msr, u32 *result)
  1032. {
  1033. u32 vmx_msr_low, vmx_msr_high;
  1034. u32 ctl = ctl_min | ctl_opt;
  1035. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1036. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  1037. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  1038. /* Ensure minimum (required) set of control bits are supported. */
  1039. if (ctl_min & ~ctl)
  1040. return -EIO;
  1041. *result = ctl;
  1042. return 0;
  1043. }
  1044. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  1045. {
  1046. u32 vmx_msr_low, vmx_msr_high;
  1047. u32 min, opt, min2, opt2;
  1048. u32 _pin_based_exec_control = 0;
  1049. u32 _cpu_based_exec_control = 0;
  1050. u32 _cpu_based_2nd_exec_control = 0;
  1051. u32 _vmexit_control = 0;
  1052. u32 _vmentry_control = 0;
  1053. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  1054. opt = PIN_BASED_VIRTUAL_NMIS;
  1055. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1056. &_pin_based_exec_control) < 0)
  1057. return -EIO;
  1058. min = CPU_BASED_HLT_EXITING |
  1059. #ifdef CONFIG_X86_64
  1060. CPU_BASED_CR8_LOAD_EXITING |
  1061. CPU_BASED_CR8_STORE_EXITING |
  1062. #endif
  1063. CPU_BASED_CR3_LOAD_EXITING |
  1064. CPU_BASED_CR3_STORE_EXITING |
  1065. CPU_BASED_USE_IO_BITMAPS |
  1066. CPU_BASED_MOV_DR_EXITING |
  1067. CPU_BASED_USE_TSC_OFFSETING |
  1068. CPU_BASED_MWAIT_EXITING |
  1069. CPU_BASED_MONITOR_EXITING |
  1070. CPU_BASED_INVLPG_EXITING;
  1071. opt = CPU_BASED_TPR_SHADOW |
  1072. CPU_BASED_USE_MSR_BITMAPS |
  1073. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1074. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1075. &_cpu_based_exec_control) < 0)
  1076. return -EIO;
  1077. #ifdef CONFIG_X86_64
  1078. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1079. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1080. ~CPU_BASED_CR8_STORE_EXITING;
  1081. #endif
  1082. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1083. min2 = 0;
  1084. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1085. SECONDARY_EXEC_WBINVD_EXITING |
  1086. SECONDARY_EXEC_ENABLE_VPID |
  1087. SECONDARY_EXEC_ENABLE_EPT |
  1088. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  1089. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  1090. if (adjust_vmx_controls(min2, opt2,
  1091. MSR_IA32_VMX_PROCBASED_CTLS2,
  1092. &_cpu_based_2nd_exec_control) < 0)
  1093. return -EIO;
  1094. }
  1095. #ifndef CONFIG_X86_64
  1096. if (!(_cpu_based_2nd_exec_control &
  1097. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1098. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1099. #endif
  1100. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1101. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1102. enabled */
  1103. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1104. CPU_BASED_CR3_STORE_EXITING |
  1105. CPU_BASED_INVLPG_EXITING);
  1106. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1107. vmx_capability.ept, vmx_capability.vpid);
  1108. }
  1109. min = 0;
  1110. #ifdef CONFIG_X86_64
  1111. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1112. #endif
  1113. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1114. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1115. &_vmexit_control) < 0)
  1116. return -EIO;
  1117. min = 0;
  1118. opt = VM_ENTRY_LOAD_IA32_PAT;
  1119. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1120. &_vmentry_control) < 0)
  1121. return -EIO;
  1122. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1123. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1124. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1125. return -EIO;
  1126. #ifdef CONFIG_X86_64
  1127. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1128. if (vmx_msr_high & (1u<<16))
  1129. return -EIO;
  1130. #endif
  1131. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1132. if (((vmx_msr_high >> 18) & 15) != 6)
  1133. return -EIO;
  1134. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1135. vmcs_conf->order = get_order(vmcs_config.size);
  1136. vmcs_conf->revision_id = vmx_msr_low;
  1137. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1138. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1139. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1140. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1141. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1142. return 0;
  1143. }
  1144. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1145. {
  1146. int node = cpu_to_node(cpu);
  1147. struct page *pages;
  1148. struct vmcs *vmcs;
  1149. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  1150. if (!pages)
  1151. return NULL;
  1152. vmcs = page_address(pages);
  1153. memset(vmcs, 0, vmcs_config.size);
  1154. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1155. return vmcs;
  1156. }
  1157. static struct vmcs *alloc_vmcs(void)
  1158. {
  1159. return alloc_vmcs_cpu(raw_smp_processor_id());
  1160. }
  1161. static void free_vmcs(struct vmcs *vmcs)
  1162. {
  1163. free_pages((unsigned long)vmcs, vmcs_config.order);
  1164. }
  1165. static void free_kvm_area(void)
  1166. {
  1167. int cpu;
  1168. for_each_possible_cpu(cpu) {
  1169. free_vmcs(per_cpu(vmxarea, cpu));
  1170. per_cpu(vmxarea, cpu) = NULL;
  1171. }
  1172. }
  1173. static __init int alloc_kvm_area(void)
  1174. {
  1175. int cpu;
  1176. for_each_possible_cpu(cpu) {
  1177. struct vmcs *vmcs;
  1178. vmcs = alloc_vmcs_cpu(cpu);
  1179. if (!vmcs) {
  1180. free_kvm_area();
  1181. return -ENOMEM;
  1182. }
  1183. per_cpu(vmxarea, cpu) = vmcs;
  1184. }
  1185. return 0;
  1186. }
  1187. static __init int hardware_setup(void)
  1188. {
  1189. if (setup_vmcs_config(&vmcs_config) < 0)
  1190. return -EIO;
  1191. if (boot_cpu_has(X86_FEATURE_NX))
  1192. kvm_enable_efer_bits(EFER_NX);
  1193. if (!cpu_has_vmx_vpid())
  1194. enable_vpid = 0;
  1195. if (!cpu_has_vmx_ept()) {
  1196. enable_ept = 0;
  1197. enable_unrestricted_guest = 0;
  1198. }
  1199. if (!cpu_has_vmx_unrestricted_guest())
  1200. enable_unrestricted_guest = 0;
  1201. if (!cpu_has_vmx_flexpriority())
  1202. flexpriority_enabled = 0;
  1203. if (!cpu_has_vmx_tpr_shadow())
  1204. kvm_x86_ops->update_cr8_intercept = NULL;
  1205. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  1206. kvm_disable_largepages();
  1207. if (!cpu_has_vmx_ple())
  1208. ple_gap = 0;
  1209. return alloc_kvm_area();
  1210. }
  1211. static __exit void hardware_unsetup(void)
  1212. {
  1213. free_kvm_area();
  1214. }
  1215. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1216. {
  1217. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1218. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1219. vmcs_write16(sf->selector, save->selector);
  1220. vmcs_writel(sf->base, save->base);
  1221. vmcs_write32(sf->limit, save->limit);
  1222. vmcs_write32(sf->ar_bytes, save->ar);
  1223. } else {
  1224. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1225. << AR_DPL_SHIFT;
  1226. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1227. }
  1228. }
  1229. static void enter_pmode(struct kvm_vcpu *vcpu)
  1230. {
  1231. unsigned long flags;
  1232. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1233. vmx->emulation_required = 1;
  1234. vmx->rmode.vm86_active = 0;
  1235. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  1236. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  1237. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  1238. flags = vmcs_readl(GUEST_RFLAGS);
  1239. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1240. flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
  1241. vmcs_writel(GUEST_RFLAGS, flags);
  1242. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1243. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1244. update_exception_bitmap(vcpu);
  1245. if (emulate_invalid_guest_state)
  1246. return;
  1247. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  1248. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  1249. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  1250. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  1251. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1252. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1253. vmcs_write16(GUEST_CS_SELECTOR,
  1254. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1255. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1256. }
  1257. static gva_t rmode_tss_base(struct kvm *kvm)
  1258. {
  1259. if (!kvm->arch.tss_addr) {
  1260. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1261. kvm->memslots[0].npages - 3;
  1262. return base_gfn << PAGE_SHIFT;
  1263. }
  1264. return kvm->arch.tss_addr;
  1265. }
  1266. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1267. {
  1268. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1269. save->selector = vmcs_read16(sf->selector);
  1270. save->base = vmcs_readl(sf->base);
  1271. save->limit = vmcs_read32(sf->limit);
  1272. save->ar = vmcs_read32(sf->ar_bytes);
  1273. vmcs_write16(sf->selector, save->base >> 4);
  1274. vmcs_write32(sf->base, save->base & 0xfffff);
  1275. vmcs_write32(sf->limit, 0xffff);
  1276. vmcs_write32(sf->ar_bytes, 0xf3);
  1277. }
  1278. static void enter_rmode(struct kvm_vcpu *vcpu)
  1279. {
  1280. unsigned long flags;
  1281. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1282. if (enable_unrestricted_guest)
  1283. return;
  1284. vmx->emulation_required = 1;
  1285. vmx->rmode.vm86_active = 1;
  1286. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1287. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1288. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1289. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1290. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1291. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1292. flags = vmcs_readl(GUEST_RFLAGS);
  1293. vmx->rmode.save_iopl
  1294. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1295. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1296. vmcs_writel(GUEST_RFLAGS, flags);
  1297. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1298. update_exception_bitmap(vcpu);
  1299. if (emulate_invalid_guest_state)
  1300. goto continue_rmode;
  1301. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1302. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1303. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1304. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1305. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1306. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1307. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1308. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1309. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  1310. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  1311. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  1312. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  1313. continue_rmode:
  1314. kvm_mmu_reset_context(vcpu);
  1315. init_rmode(vcpu->kvm);
  1316. }
  1317. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1318. {
  1319. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1320. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1321. if (!msr)
  1322. return;
  1323. /*
  1324. * Force kernel_gs_base reloading before EFER changes, as control
  1325. * of this msr depends on is_long_mode().
  1326. */
  1327. vmx_load_host_state(to_vmx(vcpu));
  1328. vcpu->arch.shadow_efer = efer;
  1329. if (!msr)
  1330. return;
  1331. if (efer & EFER_LMA) {
  1332. vmcs_write32(VM_ENTRY_CONTROLS,
  1333. vmcs_read32(VM_ENTRY_CONTROLS) |
  1334. VM_ENTRY_IA32E_MODE);
  1335. msr->data = efer;
  1336. } else {
  1337. vmcs_write32(VM_ENTRY_CONTROLS,
  1338. vmcs_read32(VM_ENTRY_CONTROLS) &
  1339. ~VM_ENTRY_IA32E_MODE);
  1340. msr->data = efer & ~EFER_LME;
  1341. }
  1342. setup_msrs(vmx);
  1343. }
  1344. #ifdef CONFIG_X86_64
  1345. static void enter_lmode(struct kvm_vcpu *vcpu)
  1346. {
  1347. u32 guest_tr_ar;
  1348. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1349. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1350. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1351. __func__);
  1352. vmcs_write32(GUEST_TR_AR_BYTES,
  1353. (guest_tr_ar & ~AR_TYPE_MASK)
  1354. | AR_TYPE_BUSY_64_TSS);
  1355. }
  1356. vcpu->arch.shadow_efer |= EFER_LMA;
  1357. vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
  1358. }
  1359. static void exit_lmode(struct kvm_vcpu *vcpu)
  1360. {
  1361. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1362. vmcs_write32(VM_ENTRY_CONTROLS,
  1363. vmcs_read32(VM_ENTRY_CONTROLS)
  1364. & ~VM_ENTRY_IA32E_MODE);
  1365. }
  1366. #endif
  1367. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1368. {
  1369. vpid_sync_vcpu_all(to_vmx(vcpu));
  1370. if (enable_ept)
  1371. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1372. }
  1373. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1374. {
  1375. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  1376. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  1377. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  1378. }
  1379. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1380. {
  1381. if (!test_bit(VCPU_EXREG_PDPTR,
  1382. (unsigned long *)&vcpu->arch.regs_dirty))
  1383. return;
  1384. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1385. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1386. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1387. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1388. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1389. }
  1390. }
  1391. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  1392. {
  1393. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1394. vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  1395. vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  1396. vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  1397. vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  1398. }
  1399. __set_bit(VCPU_EXREG_PDPTR,
  1400. (unsigned long *)&vcpu->arch.regs_avail);
  1401. __set_bit(VCPU_EXREG_PDPTR,
  1402. (unsigned long *)&vcpu->arch.regs_dirty);
  1403. }
  1404. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1405. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1406. unsigned long cr0,
  1407. struct kvm_vcpu *vcpu)
  1408. {
  1409. if (!(cr0 & X86_CR0_PG)) {
  1410. /* From paging/starting to nonpaging */
  1411. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1412. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1413. (CPU_BASED_CR3_LOAD_EXITING |
  1414. CPU_BASED_CR3_STORE_EXITING));
  1415. vcpu->arch.cr0 = cr0;
  1416. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1417. } else if (!is_paging(vcpu)) {
  1418. /* From nonpaging to paging */
  1419. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1420. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1421. ~(CPU_BASED_CR3_LOAD_EXITING |
  1422. CPU_BASED_CR3_STORE_EXITING));
  1423. vcpu->arch.cr0 = cr0;
  1424. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1425. }
  1426. if (!(cr0 & X86_CR0_WP))
  1427. *hw_cr0 &= ~X86_CR0_WP;
  1428. }
  1429. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1430. {
  1431. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1432. unsigned long hw_cr0;
  1433. if (enable_unrestricted_guest)
  1434. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  1435. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  1436. else
  1437. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  1438. vmx_fpu_deactivate(vcpu);
  1439. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  1440. enter_pmode(vcpu);
  1441. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  1442. enter_rmode(vcpu);
  1443. #ifdef CONFIG_X86_64
  1444. if (vcpu->arch.shadow_efer & EFER_LME) {
  1445. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1446. enter_lmode(vcpu);
  1447. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1448. exit_lmode(vcpu);
  1449. }
  1450. #endif
  1451. if (enable_ept)
  1452. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1453. vmcs_writel(CR0_READ_SHADOW, cr0);
  1454. vmcs_writel(GUEST_CR0, hw_cr0);
  1455. vcpu->arch.cr0 = cr0;
  1456. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1457. vmx_fpu_activate(vcpu);
  1458. }
  1459. static u64 construct_eptp(unsigned long root_hpa)
  1460. {
  1461. u64 eptp;
  1462. /* TODO write the value reading from MSR */
  1463. eptp = VMX_EPT_DEFAULT_MT |
  1464. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1465. eptp |= (root_hpa & PAGE_MASK);
  1466. return eptp;
  1467. }
  1468. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1469. {
  1470. unsigned long guest_cr3;
  1471. u64 eptp;
  1472. guest_cr3 = cr3;
  1473. if (enable_ept) {
  1474. eptp = construct_eptp(cr3);
  1475. vmcs_write64(EPT_POINTER, eptp);
  1476. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1477. vcpu->kvm->arch.ept_identity_map_addr;
  1478. ept_load_pdptrs(vcpu);
  1479. }
  1480. vmx_flush_tlb(vcpu);
  1481. vmcs_writel(GUEST_CR3, guest_cr3);
  1482. if (vcpu->arch.cr0 & X86_CR0_PE)
  1483. vmx_fpu_deactivate(vcpu);
  1484. }
  1485. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1486. {
  1487. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  1488. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1489. vcpu->arch.cr4 = cr4;
  1490. if (enable_ept) {
  1491. if (!is_paging(vcpu)) {
  1492. hw_cr4 &= ~X86_CR4_PAE;
  1493. hw_cr4 |= X86_CR4_PSE;
  1494. } else if (!(cr4 & X86_CR4_PAE)) {
  1495. hw_cr4 &= ~X86_CR4_PAE;
  1496. }
  1497. }
  1498. vmcs_writel(CR4_READ_SHADOW, cr4);
  1499. vmcs_writel(GUEST_CR4, hw_cr4);
  1500. }
  1501. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1502. {
  1503. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1504. return vmcs_readl(sf->base);
  1505. }
  1506. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1507. struct kvm_segment *var, int seg)
  1508. {
  1509. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1510. u32 ar;
  1511. var->base = vmcs_readl(sf->base);
  1512. var->limit = vmcs_read32(sf->limit);
  1513. var->selector = vmcs_read16(sf->selector);
  1514. ar = vmcs_read32(sf->ar_bytes);
  1515. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1516. ar = 0;
  1517. var->type = ar & 15;
  1518. var->s = (ar >> 4) & 1;
  1519. var->dpl = (ar >> 5) & 3;
  1520. var->present = (ar >> 7) & 1;
  1521. var->avl = (ar >> 12) & 1;
  1522. var->l = (ar >> 13) & 1;
  1523. var->db = (ar >> 14) & 1;
  1524. var->g = (ar >> 15) & 1;
  1525. var->unusable = (ar >> 16) & 1;
  1526. }
  1527. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1528. {
  1529. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1530. return 0;
  1531. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1532. return 3;
  1533. return vmcs_read16(GUEST_CS_SELECTOR) & 3;
  1534. }
  1535. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1536. {
  1537. u32 ar;
  1538. if (var->unusable)
  1539. ar = 1 << 16;
  1540. else {
  1541. ar = var->type & 15;
  1542. ar |= (var->s & 1) << 4;
  1543. ar |= (var->dpl & 3) << 5;
  1544. ar |= (var->present & 1) << 7;
  1545. ar |= (var->avl & 1) << 12;
  1546. ar |= (var->l & 1) << 13;
  1547. ar |= (var->db & 1) << 14;
  1548. ar |= (var->g & 1) << 15;
  1549. }
  1550. if (ar == 0) /* a 0 value means unusable */
  1551. ar = AR_UNUSABLE_MASK;
  1552. return ar;
  1553. }
  1554. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1555. struct kvm_segment *var, int seg)
  1556. {
  1557. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1558. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1559. u32 ar;
  1560. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  1561. vmx->rmode.tr.selector = var->selector;
  1562. vmx->rmode.tr.base = var->base;
  1563. vmx->rmode.tr.limit = var->limit;
  1564. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  1565. return;
  1566. }
  1567. vmcs_writel(sf->base, var->base);
  1568. vmcs_write32(sf->limit, var->limit);
  1569. vmcs_write16(sf->selector, var->selector);
  1570. if (vmx->rmode.vm86_active && var->s) {
  1571. /*
  1572. * Hack real-mode segments into vm86 compatibility.
  1573. */
  1574. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1575. vmcs_writel(sf->base, 0xf0000);
  1576. ar = 0xf3;
  1577. } else
  1578. ar = vmx_segment_access_rights(var);
  1579. /*
  1580. * Fix the "Accessed" bit in AR field of segment registers for older
  1581. * qemu binaries.
  1582. * IA32 arch specifies that at the time of processor reset the
  1583. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  1584. * is setting it to 0 in the usedland code. This causes invalid guest
  1585. * state vmexit when "unrestricted guest" mode is turned on.
  1586. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  1587. * tree. Newer qemu binaries with that qemu fix would not need this
  1588. * kvm hack.
  1589. */
  1590. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  1591. ar |= 0x1; /* Accessed */
  1592. vmcs_write32(sf->ar_bytes, ar);
  1593. }
  1594. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1595. {
  1596. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1597. *db = (ar >> 14) & 1;
  1598. *l = (ar >> 13) & 1;
  1599. }
  1600. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1601. {
  1602. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1603. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1604. }
  1605. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1606. {
  1607. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1608. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1609. }
  1610. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1611. {
  1612. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1613. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1614. }
  1615. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1616. {
  1617. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1618. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1619. }
  1620. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1621. {
  1622. struct kvm_segment var;
  1623. u32 ar;
  1624. vmx_get_segment(vcpu, &var, seg);
  1625. ar = vmx_segment_access_rights(&var);
  1626. if (var.base != (var.selector << 4))
  1627. return false;
  1628. if (var.limit != 0xffff)
  1629. return false;
  1630. if (ar != 0xf3)
  1631. return false;
  1632. return true;
  1633. }
  1634. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1635. {
  1636. struct kvm_segment cs;
  1637. unsigned int cs_rpl;
  1638. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1639. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1640. if (cs.unusable)
  1641. return false;
  1642. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1643. return false;
  1644. if (!cs.s)
  1645. return false;
  1646. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1647. if (cs.dpl > cs_rpl)
  1648. return false;
  1649. } else {
  1650. if (cs.dpl != cs_rpl)
  1651. return false;
  1652. }
  1653. if (!cs.present)
  1654. return false;
  1655. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1656. return true;
  1657. }
  1658. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1659. {
  1660. struct kvm_segment ss;
  1661. unsigned int ss_rpl;
  1662. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1663. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1664. if (ss.unusable)
  1665. return true;
  1666. if (ss.type != 3 && ss.type != 7)
  1667. return false;
  1668. if (!ss.s)
  1669. return false;
  1670. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1671. return false;
  1672. if (!ss.present)
  1673. return false;
  1674. return true;
  1675. }
  1676. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1677. {
  1678. struct kvm_segment var;
  1679. unsigned int rpl;
  1680. vmx_get_segment(vcpu, &var, seg);
  1681. rpl = var.selector & SELECTOR_RPL_MASK;
  1682. if (var.unusable)
  1683. return true;
  1684. if (!var.s)
  1685. return false;
  1686. if (!var.present)
  1687. return false;
  1688. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1689. if (var.dpl < rpl) /* DPL < RPL */
  1690. return false;
  1691. }
  1692. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1693. * rights flags
  1694. */
  1695. return true;
  1696. }
  1697. static bool tr_valid(struct kvm_vcpu *vcpu)
  1698. {
  1699. struct kvm_segment tr;
  1700. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1701. if (tr.unusable)
  1702. return false;
  1703. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1704. return false;
  1705. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1706. return false;
  1707. if (!tr.present)
  1708. return false;
  1709. return true;
  1710. }
  1711. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1712. {
  1713. struct kvm_segment ldtr;
  1714. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1715. if (ldtr.unusable)
  1716. return true;
  1717. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1718. return false;
  1719. if (ldtr.type != 2)
  1720. return false;
  1721. if (!ldtr.present)
  1722. return false;
  1723. return true;
  1724. }
  1725. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1726. {
  1727. struct kvm_segment cs, ss;
  1728. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1729. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1730. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1731. (ss.selector & SELECTOR_RPL_MASK));
  1732. }
  1733. /*
  1734. * Check if guest state is valid. Returns true if valid, false if
  1735. * not.
  1736. * We assume that registers are always usable
  1737. */
  1738. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1739. {
  1740. /* real mode guest state checks */
  1741. if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
  1742. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1743. return false;
  1744. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1745. return false;
  1746. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1747. return false;
  1748. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1749. return false;
  1750. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1751. return false;
  1752. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1753. return false;
  1754. } else {
  1755. /* protected mode guest state checks */
  1756. if (!cs_ss_rpl_check(vcpu))
  1757. return false;
  1758. if (!code_segment_valid(vcpu))
  1759. return false;
  1760. if (!stack_segment_valid(vcpu))
  1761. return false;
  1762. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1763. return false;
  1764. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1765. return false;
  1766. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1767. return false;
  1768. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1769. return false;
  1770. if (!tr_valid(vcpu))
  1771. return false;
  1772. if (!ldtr_valid(vcpu))
  1773. return false;
  1774. }
  1775. /* TODO:
  1776. * - Add checks on RIP
  1777. * - Add checks on RFLAGS
  1778. */
  1779. return true;
  1780. }
  1781. static int init_rmode_tss(struct kvm *kvm)
  1782. {
  1783. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1784. u16 data = 0;
  1785. int ret = 0;
  1786. int r;
  1787. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1788. if (r < 0)
  1789. goto out;
  1790. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1791. r = kvm_write_guest_page(kvm, fn++, &data,
  1792. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1793. if (r < 0)
  1794. goto out;
  1795. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1796. if (r < 0)
  1797. goto out;
  1798. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1799. if (r < 0)
  1800. goto out;
  1801. data = ~0;
  1802. r = kvm_write_guest_page(kvm, fn, &data,
  1803. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1804. sizeof(u8));
  1805. if (r < 0)
  1806. goto out;
  1807. ret = 1;
  1808. out:
  1809. return ret;
  1810. }
  1811. static int init_rmode_identity_map(struct kvm *kvm)
  1812. {
  1813. int i, r, ret;
  1814. pfn_t identity_map_pfn;
  1815. u32 tmp;
  1816. if (!enable_ept)
  1817. return 1;
  1818. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1819. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1820. "haven't been allocated!\n");
  1821. return 0;
  1822. }
  1823. if (likely(kvm->arch.ept_identity_pagetable_done))
  1824. return 1;
  1825. ret = 0;
  1826. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  1827. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1828. if (r < 0)
  1829. goto out;
  1830. /* Set up identity-mapping pagetable for EPT in real mode */
  1831. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1832. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1833. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1834. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1835. &tmp, i * sizeof(tmp), sizeof(tmp));
  1836. if (r < 0)
  1837. goto out;
  1838. }
  1839. kvm->arch.ept_identity_pagetable_done = true;
  1840. ret = 1;
  1841. out:
  1842. return ret;
  1843. }
  1844. static void seg_setup(int seg)
  1845. {
  1846. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1847. unsigned int ar;
  1848. vmcs_write16(sf->selector, 0);
  1849. vmcs_writel(sf->base, 0);
  1850. vmcs_write32(sf->limit, 0xffff);
  1851. if (enable_unrestricted_guest) {
  1852. ar = 0x93;
  1853. if (seg == VCPU_SREG_CS)
  1854. ar |= 0x08; /* code segment */
  1855. } else
  1856. ar = 0xf3;
  1857. vmcs_write32(sf->ar_bytes, ar);
  1858. }
  1859. static int alloc_apic_access_page(struct kvm *kvm)
  1860. {
  1861. struct kvm_userspace_memory_region kvm_userspace_mem;
  1862. int r = 0;
  1863. down_write(&kvm->slots_lock);
  1864. if (kvm->arch.apic_access_page)
  1865. goto out;
  1866. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1867. kvm_userspace_mem.flags = 0;
  1868. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1869. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1870. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1871. if (r)
  1872. goto out;
  1873. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1874. out:
  1875. up_write(&kvm->slots_lock);
  1876. return r;
  1877. }
  1878. static int alloc_identity_pagetable(struct kvm *kvm)
  1879. {
  1880. struct kvm_userspace_memory_region kvm_userspace_mem;
  1881. int r = 0;
  1882. down_write(&kvm->slots_lock);
  1883. if (kvm->arch.ept_identity_pagetable)
  1884. goto out;
  1885. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1886. kvm_userspace_mem.flags = 0;
  1887. kvm_userspace_mem.guest_phys_addr =
  1888. kvm->arch.ept_identity_map_addr;
  1889. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1890. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1891. if (r)
  1892. goto out;
  1893. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1894. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  1895. out:
  1896. up_write(&kvm->slots_lock);
  1897. return r;
  1898. }
  1899. static void allocate_vpid(struct vcpu_vmx *vmx)
  1900. {
  1901. int vpid;
  1902. vmx->vpid = 0;
  1903. if (!enable_vpid)
  1904. return;
  1905. spin_lock(&vmx_vpid_lock);
  1906. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1907. if (vpid < VMX_NR_VPIDS) {
  1908. vmx->vpid = vpid;
  1909. __set_bit(vpid, vmx_vpid_bitmap);
  1910. }
  1911. spin_unlock(&vmx_vpid_lock);
  1912. }
  1913. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  1914. {
  1915. int f = sizeof(unsigned long);
  1916. if (!cpu_has_vmx_msr_bitmap())
  1917. return;
  1918. /*
  1919. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1920. * have the write-low and read-high bitmap offsets the wrong way round.
  1921. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1922. */
  1923. if (msr <= 0x1fff) {
  1924. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  1925. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  1926. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1927. msr &= 0x1fff;
  1928. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  1929. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  1930. }
  1931. }
  1932. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  1933. {
  1934. if (!longmode_only)
  1935. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  1936. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  1937. }
  1938. /*
  1939. * Sets up the vmcs for emulated real mode.
  1940. */
  1941. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1942. {
  1943. u32 host_sysenter_cs, msr_low, msr_high;
  1944. u32 junk;
  1945. u64 host_pat, tsc_this, tsc_base;
  1946. unsigned long a;
  1947. struct descriptor_table dt;
  1948. int i;
  1949. unsigned long kvm_vmx_return;
  1950. u32 exec_control;
  1951. /* I/O */
  1952. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  1953. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  1954. if (cpu_has_vmx_msr_bitmap())
  1955. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  1956. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1957. /* Control */
  1958. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1959. vmcs_config.pin_based_exec_ctrl);
  1960. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1961. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1962. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1963. #ifdef CONFIG_X86_64
  1964. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1965. CPU_BASED_CR8_LOAD_EXITING;
  1966. #endif
  1967. }
  1968. if (!enable_ept)
  1969. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1970. CPU_BASED_CR3_LOAD_EXITING |
  1971. CPU_BASED_INVLPG_EXITING;
  1972. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1973. if (cpu_has_secondary_exec_ctrls()) {
  1974. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1975. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1976. exec_control &=
  1977. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1978. if (vmx->vpid == 0)
  1979. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1980. if (!enable_ept) {
  1981. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1982. enable_unrestricted_guest = 0;
  1983. }
  1984. if (!enable_unrestricted_guest)
  1985. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  1986. if (!ple_gap)
  1987. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  1988. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1989. }
  1990. if (ple_gap) {
  1991. vmcs_write32(PLE_GAP, ple_gap);
  1992. vmcs_write32(PLE_WINDOW, ple_window);
  1993. }
  1994. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1995. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1996. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1997. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1998. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1999. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  2000. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  2001. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2002. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2003. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  2004. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  2005. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2006. #ifdef CONFIG_X86_64
  2007. rdmsrl(MSR_FS_BASE, a);
  2008. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  2009. rdmsrl(MSR_GS_BASE, a);
  2010. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  2011. #else
  2012. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  2013. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  2014. #endif
  2015. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  2016. kvm_get_idt(&dt);
  2017. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  2018. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  2019. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  2020. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  2021. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  2022. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  2023. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  2024. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  2025. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  2026. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  2027. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  2028. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  2029. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  2030. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2031. host_pat = msr_low | ((u64) msr_high << 32);
  2032. vmcs_write64(HOST_IA32_PAT, host_pat);
  2033. }
  2034. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2035. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2036. host_pat = msr_low | ((u64) msr_high << 32);
  2037. /* Write the default value follow host pat */
  2038. vmcs_write64(GUEST_IA32_PAT, host_pat);
  2039. /* Keep arch.pat sync with GUEST_IA32_PAT */
  2040. vmx->vcpu.arch.pat = host_pat;
  2041. }
  2042. for (i = 0; i < NR_VMX_MSR; ++i) {
  2043. u32 index = vmx_msr_index[i];
  2044. u32 data_low, data_high;
  2045. int j = vmx->nmsrs;
  2046. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  2047. continue;
  2048. if (wrmsr_safe(index, data_low, data_high) < 0)
  2049. continue;
  2050. vmx->guest_msrs[j].index = i;
  2051. vmx->guest_msrs[j].data = 0;
  2052. vmx->guest_msrs[j].mask = -1ull;
  2053. ++vmx->nmsrs;
  2054. }
  2055. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  2056. /* 22.2.1, 20.8.1 */
  2057. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  2058. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  2059. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  2060. if (enable_ept)
  2061. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  2062. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  2063. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  2064. rdtscll(tsc_this);
  2065. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  2066. tsc_base = tsc_this;
  2067. guest_write_tsc(0, tsc_base);
  2068. return 0;
  2069. }
  2070. static int init_rmode(struct kvm *kvm)
  2071. {
  2072. if (!init_rmode_tss(kvm))
  2073. return 0;
  2074. if (!init_rmode_identity_map(kvm))
  2075. return 0;
  2076. return 1;
  2077. }
  2078. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  2079. {
  2080. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2081. u64 msr;
  2082. int ret;
  2083. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2084. down_read(&vcpu->kvm->slots_lock);
  2085. if (!init_rmode(vmx->vcpu.kvm)) {
  2086. ret = -ENOMEM;
  2087. goto out;
  2088. }
  2089. vmx->rmode.vm86_active = 0;
  2090. vmx->soft_vnmi_blocked = 0;
  2091. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  2092. kvm_set_cr8(&vmx->vcpu, 0);
  2093. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  2094. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2095. msr |= MSR_IA32_APICBASE_BSP;
  2096. kvm_set_apic_base(&vmx->vcpu, msr);
  2097. fx_init(&vmx->vcpu);
  2098. seg_setup(VCPU_SREG_CS);
  2099. /*
  2100. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  2101. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  2102. */
  2103. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  2104. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  2105. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  2106. } else {
  2107. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  2108. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  2109. }
  2110. seg_setup(VCPU_SREG_DS);
  2111. seg_setup(VCPU_SREG_ES);
  2112. seg_setup(VCPU_SREG_FS);
  2113. seg_setup(VCPU_SREG_GS);
  2114. seg_setup(VCPU_SREG_SS);
  2115. vmcs_write16(GUEST_TR_SELECTOR, 0);
  2116. vmcs_writel(GUEST_TR_BASE, 0);
  2117. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  2118. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2119. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  2120. vmcs_writel(GUEST_LDTR_BASE, 0);
  2121. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  2122. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  2123. vmcs_write32(GUEST_SYSENTER_CS, 0);
  2124. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  2125. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  2126. vmcs_writel(GUEST_RFLAGS, 0x02);
  2127. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2128. kvm_rip_write(vcpu, 0xfff0);
  2129. else
  2130. kvm_rip_write(vcpu, 0);
  2131. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2132. vmcs_writel(GUEST_DR7, 0x400);
  2133. vmcs_writel(GUEST_GDTR_BASE, 0);
  2134. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2135. vmcs_writel(GUEST_IDTR_BASE, 0);
  2136. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2137. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  2138. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2139. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2140. /* Special registers */
  2141. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2142. setup_msrs(vmx);
  2143. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2144. if (cpu_has_vmx_tpr_shadow()) {
  2145. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2146. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2147. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2148. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2149. vmcs_write32(TPR_THRESHOLD, 0);
  2150. }
  2151. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2152. vmcs_write64(APIC_ACCESS_ADDR,
  2153. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2154. if (vmx->vpid != 0)
  2155. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2156. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  2157. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  2158. vmx_set_cr4(&vmx->vcpu, 0);
  2159. vmx_set_efer(&vmx->vcpu, 0);
  2160. vmx_fpu_activate(&vmx->vcpu);
  2161. update_exception_bitmap(&vmx->vcpu);
  2162. vpid_sync_vcpu_all(vmx);
  2163. ret = 0;
  2164. /* HACK: Don't enable emulation on guest boot/reset */
  2165. vmx->emulation_required = 0;
  2166. out:
  2167. up_read(&vcpu->kvm->slots_lock);
  2168. return ret;
  2169. }
  2170. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2171. {
  2172. u32 cpu_based_vm_exec_control;
  2173. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2174. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2175. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2176. }
  2177. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2178. {
  2179. u32 cpu_based_vm_exec_control;
  2180. if (!cpu_has_virtual_nmis()) {
  2181. enable_irq_window(vcpu);
  2182. return;
  2183. }
  2184. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2185. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2186. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2187. }
  2188. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  2189. {
  2190. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2191. uint32_t intr;
  2192. int irq = vcpu->arch.interrupt.nr;
  2193. trace_kvm_inj_virq(irq);
  2194. ++vcpu->stat.irq_injections;
  2195. if (vmx->rmode.vm86_active) {
  2196. vmx->rmode.irq.pending = true;
  2197. vmx->rmode.irq.vector = irq;
  2198. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2199. if (vcpu->arch.interrupt.soft)
  2200. vmx->rmode.irq.rip +=
  2201. vmx->vcpu.arch.event_exit_inst_len;
  2202. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2203. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2204. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2205. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2206. return;
  2207. }
  2208. intr = irq | INTR_INFO_VALID_MASK;
  2209. if (vcpu->arch.interrupt.soft) {
  2210. intr |= INTR_TYPE_SOFT_INTR;
  2211. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2212. vmx->vcpu.arch.event_exit_inst_len);
  2213. } else
  2214. intr |= INTR_TYPE_EXT_INTR;
  2215. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  2216. }
  2217. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2218. {
  2219. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2220. if (!cpu_has_virtual_nmis()) {
  2221. /*
  2222. * Tracking the NMI-blocked state in software is built upon
  2223. * finding the next open IRQ window. This, in turn, depends on
  2224. * well-behaving guests: They have to keep IRQs disabled at
  2225. * least as long as the NMI handler runs. Otherwise we may
  2226. * cause NMI nesting, maybe breaking the guest. But as this is
  2227. * highly unlikely, we can live with the residual risk.
  2228. */
  2229. vmx->soft_vnmi_blocked = 1;
  2230. vmx->vnmi_blocked_time = 0;
  2231. }
  2232. ++vcpu->stat.nmi_injections;
  2233. if (vmx->rmode.vm86_active) {
  2234. vmx->rmode.irq.pending = true;
  2235. vmx->rmode.irq.vector = NMI_VECTOR;
  2236. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2237. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2238. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2239. INTR_INFO_VALID_MASK);
  2240. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2241. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2242. return;
  2243. }
  2244. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2245. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2246. }
  2247. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2248. {
  2249. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2250. return 0;
  2251. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2252. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
  2253. GUEST_INTR_STATE_NMI));
  2254. }
  2255. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  2256. {
  2257. if (!cpu_has_virtual_nmis())
  2258. return to_vmx(vcpu)->soft_vnmi_blocked;
  2259. else
  2260. return !!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2261. GUEST_INTR_STATE_NMI);
  2262. }
  2263. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  2264. {
  2265. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2266. if (!cpu_has_virtual_nmis()) {
  2267. if (vmx->soft_vnmi_blocked != masked) {
  2268. vmx->soft_vnmi_blocked = masked;
  2269. vmx->vnmi_blocked_time = 0;
  2270. }
  2271. } else {
  2272. if (masked)
  2273. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2274. GUEST_INTR_STATE_NMI);
  2275. else
  2276. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2277. GUEST_INTR_STATE_NMI);
  2278. }
  2279. }
  2280. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2281. {
  2282. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2283. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2284. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2285. }
  2286. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2287. {
  2288. int ret;
  2289. struct kvm_userspace_memory_region tss_mem = {
  2290. .slot = TSS_PRIVATE_MEMSLOT,
  2291. .guest_phys_addr = addr,
  2292. .memory_size = PAGE_SIZE * 3,
  2293. .flags = 0,
  2294. };
  2295. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2296. if (ret)
  2297. return ret;
  2298. kvm->arch.tss_addr = addr;
  2299. return 0;
  2300. }
  2301. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2302. int vec, u32 err_code)
  2303. {
  2304. /*
  2305. * Instruction with address size override prefix opcode 0x67
  2306. * Cause the #SS fault with 0 error code in VM86 mode.
  2307. */
  2308. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2309. if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
  2310. return 1;
  2311. /*
  2312. * Forward all other exceptions that are valid in real mode.
  2313. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2314. * the required debugging infrastructure rework.
  2315. */
  2316. switch (vec) {
  2317. case DB_VECTOR:
  2318. if (vcpu->guest_debug &
  2319. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2320. return 0;
  2321. kvm_queue_exception(vcpu, vec);
  2322. return 1;
  2323. case BP_VECTOR:
  2324. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2325. return 0;
  2326. /* fall through */
  2327. case DE_VECTOR:
  2328. case OF_VECTOR:
  2329. case BR_VECTOR:
  2330. case UD_VECTOR:
  2331. case DF_VECTOR:
  2332. case SS_VECTOR:
  2333. case GP_VECTOR:
  2334. case MF_VECTOR:
  2335. kvm_queue_exception(vcpu, vec);
  2336. return 1;
  2337. }
  2338. return 0;
  2339. }
  2340. /*
  2341. * Trigger machine check on the host. We assume all the MSRs are already set up
  2342. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  2343. * We pass a fake environment to the machine check handler because we want
  2344. * the guest to be always treated like user space, no matter what context
  2345. * it used internally.
  2346. */
  2347. static void kvm_machine_check(void)
  2348. {
  2349. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  2350. struct pt_regs regs = {
  2351. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  2352. .flags = X86_EFLAGS_IF,
  2353. };
  2354. do_machine_check(&regs, 0);
  2355. #endif
  2356. }
  2357. static int handle_machine_check(struct kvm_vcpu *vcpu)
  2358. {
  2359. /* already handled by vcpu_run */
  2360. return 1;
  2361. }
  2362. static int handle_exception(struct kvm_vcpu *vcpu)
  2363. {
  2364. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2365. struct kvm_run *kvm_run = vcpu->run;
  2366. u32 intr_info, ex_no, error_code;
  2367. unsigned long cr2, rip, dr6;
  2368. u32 vect_info;
  2369. enum emulation_result er;
  2370. vect_info = vmx->idt_vectoring_info;
  2371. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2372. if (is_machine_check(intr_info))
  2373. return handle_machine_check(vcpu);
  2374. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2375. !is_page_fault(intr_info)) {
  2376. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2377. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  2378. vcpu->run->internal.ndata = 2;
  2379. vcpu->run->internal.data[0] = vect_info;
  2380. vcpu->run->internal.data[1] = intr_info;
  2381. return 0;
  2382. }
  2383. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2384. return 1; /* already handled by vmx_vcpu_run() */
  2385. if (is_no_device(intr_info)) {
  2386. vmx_fpu_activate(vcpu);
  2387. return 1;
  2388. }
  2389. if (is_invalid_opcode(intr_info)) {
  2390. er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
  2391. if (er != EMULATE_DONE)
  2392. kvm_queue_exception(vcpu, UD_VECTOR);
  2393. return 1;
  2394. }
  2395. error_code = 0;
  2396. rip = kvm_rip_read(vcpu);
  2397. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2398. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2399. if (is_page_fault(intr_info)) {
  2400. /* EPT won't cause page fault directly */
  2401. if (enable_ept)
  2402. BUG();
  2403. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2404. trace_kvm_page_fault(cr2, error_code);
  2405. if (kvm_event_needs_reinjection(vcpu))
  2406. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2407. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2408. }
  2409. if (vmx->rmode.vm86_active &&
  2410. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2411. error_code)) {
  2412. if (vcpu->arch.halt_request) {
  2413. vcpu->arch.halt_request = 0;
  2414. return kvm_emulate_halt(vcpu);
  2415. }
  2416. return 1;
  2417. }
  2418. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2419. switch (ex_no) {
  2420. case DB_VECTOR:
  2421. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2422. if (!(vcpu->guest_debug &
  2423. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2424. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2425. kvm_queue_exception(vcpu, DB_VECTOR);
  2426. return 1;
  2427. }
  2428. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2429. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2430. /* fall through */
  2431. case BP_VECTOR:
  2432. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2433. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2434. kvm_run->debug.arch.exception = ex_no;
  2435. break;
  2436. default:
  2437. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2438. kvm_run->ex.exception = ex_no;
  2439. kvm_run->ex.error_code = error_code;
  2440. break;
  2441. }
  2442. return 0;
  2443. }
  2444. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  2445. {
  2446. ++vcpu->stat.irq_exits;
  2447. return 1;
  2448. }
  2449. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  2450. {
  2451. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  2452. return 0;
  2453. }
  2454. static int handle_io(struct kvm_vcpu *vcpu)
  2455. {
  2456. unsigned long exit_qualification;
  2457. int size, in, string;
  2458. unsigned port;
  2459. ++vcpu->stat.io_exits;
  2460. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2461. string = (exit_qualification & 16) != 0;
  2462. if (string) {
  2463. if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DO_MMIO)
  2464. return 0;
  2465. return 1;
  2466. }
  2467. size = (exit_qualification & 7) + 1;
  2468. in = (exit_qualification & 8) != 0;
  2469. port = exit_qualification >> 16;
  2470. skip_emulated_instruction(vcpu);
  2471. return kvm_emulate_pio(vcpu, in, size, port);
  2472. }
  2473. static void
  2474. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2475. {
  2476. /*
  2477. * Patch in the VMCALL instruction:
  2478. */
  2479. hypercall[0] = 0x0f;
  2480. hypercall[1] = 0x01;
  2481. hypercall[2] = 0xc1;
  2482. }
  2483. static int handle_cr(struct kvm_vcpu *vcpu)
  2484. {
  2485. unsigned long exit_qualification, val;
  2486. int cr;
  2487. int reg;
  2488. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2489. cr = exit_qualification & 15;
  2490. reg = (exit_qualification >> 8) & 15;
  2491. switch ((exit_qualification >> 4) & 3) {
  2492. case 0: /* mov to cr */
  2493. val = kvm_register_read(vcpu, reg);
  2494. trace_kvm_cr_write(cr, val);
  2495. switch (cr) {
  2496. case 0:
  2497. kvm_set_cr0(vcpu, val);
  2498. skip_emulated_instruction(vcpu);
  2499. return 1;
  2500. case 3:
  2501. kvm_set_cr3(vcpu, val);
  2502. skip_emulated_instruction(vcpu);
  2503. return 1;
  2504. case 4:
  2505. kvm_set_cr4(vcpu, val);
  2506. skip_emulated_instruction(vcpu);
  2507. return 1;
  2508. case 8: {
  2509. u8 cr8_prev = kvm_get_cr8(vcpu);
  2510. u8 cr8 = kvm_register_read(vcpu, reg);
  2511. kvm_set_cr8(vcpu, cr8);
  2512. skip_emulated_instruction(vcpu);
  2513. if (irqchip_in_kernel(vcpu->kvm))
  2514. return 1;
  2515. if (cr8_prev <= cr8)
  2516. return 1;
  2517. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  2518. return 0;
  2519. }
  2520. };
  2521. break;
  2522. case 2: /* clts */
  2523. vmx_fpu_deactivate(vcpu);
  2524. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2525. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2526. vmx_fpu_activate(vcpu);
  2527. skip_emulated_instruction(vcpu);
  2528. return 1;
  2529. case 1: /*mov from cr*/
  2530. switch (cr) {
  2531. case 3:
  2532. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2533. trace_kvm_cr_read(cr, vcpu->arch.cr3);
  2534. skip_emulated_instruction(vcpu);
  2535. return 1;
  2536. case 8:
  2537. val = kvm_get_cr8(vcpu);
  2538. kvm_register_write(vcpu, reg, val);
  2539. trace_kvm_cr_read(cr, val);
  2540. skip_emulated_instruction(vcpu);
  2541. return 1;
  2542. }
  2543. break;
  2544. case 3: /* lmsw */
  2545. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2546. skip_emulated_instruction(vcpu);
  2547. return 1;
  2548. default:
  2549. break;
  2550. }
  2551. vcpu->run->exit_reason = 0;
  2552. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2553. (int)(exit_qualification >> 4) & 3, cr);
  2554. return 0;
  2555. }
  2556. static int handle_dr(struct kvm_vcpu *vcpu)
  2557. {
  2558. unsigned long exit_qualification;
  2559. unsigned long val;
  2560. int dr, reg;
  2561. if (!kvm_require_cpl(vcpu, 0))
  2562. return 1;
  2563. dr = vmcs_readl(GUEST_DR7);
  2564. if (dr & DR7_GD) {
  2565. /*
  2566. * As the vm-exit takes precedence over the debug trap, we
  2567. * need to emulate the latter, either for the host or the
  2568. * guest debugging itself.
  2569. */
  2570. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2571. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  2572. vcpu->run->debug.arch.dr7 = dr;
  2573. vcpu->run->debug.arch.pc =
  2574. vmcs_readl(GUEST_CS_BASE) +
  2575. vmcs_readl(GUEST_RIP);
  2576. vcpu->run->debug.arch.exception = DB_VECTOR;
  2577. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  2578. return 0;
  2579. } else {
  2580. vcpu->arch.dr7 &= ~DR7_GD;
  2581. vcpu->arch.dr6 |= DR6_BD;
  2582. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2583. kvm_queue_exception(vcpu, DB_VECTOR);
  2584. return 1;
  2585. }
  2586. }
  2587. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2588. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2589. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2590. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2591. switch (dr) {
  2592. case 0 ... 3:
  2593. val = vcpu->arch.db[dr];
  2594. break;
  2595. case 6:
  2596. val = vcpu->arch.dr6;
  2597. break;
  2598. case 7:
  2599. val = vcpu->arch.dr7;
  2600. break;
  2601. default:
  2602. val = 0;
  2603. }
  2604. kvm_register_write(vcpu, reg, val);
  2605. } else {
  2606. val = vcpu->arch.regs[reg];
  2607. switch (dr) {
  2608. case 0 ... 3:
  2609. vcpu->arch.db[dr] = val;
  2610. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  2611. vcpu->arch.eff_db[dr] = val;
  2612. break;
  2613. case 4 ... 5:
  2614. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  2615. kvm_queue_exception(vcpu, UD_VECTOR);
  2616. break;
  2617. case 6:
  2618. if (val & 0xffffffff00000000ULL) {
  2619. kvm_queue_exception(vcpu, GP_VECTOR);
  2620. break;
  2621. }
  2622. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  2623. break;
  2624. case 7:
  2625. if (val & 0xffffffff00000000ULL) {
  2626. kvm_queue_exception(vcpu, GP_VECTOR);
  2627. break;
  2628. }
  2629. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  2630. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  2631. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2632. vcpu->arch.switch_db_regs =
  2633. (val & DR7_BP_EN_MASK);
  2634. }
  2635. break;
  2636. }
  2637. }
  2638. skip_emulated_instruction(vcpu);
  2639. return 1;
  2640. }
  2641. static int handle_cpuid(struct kvm_vcpu *vcpu)
  2642. {
  2643. kvm_emulate_cpuid(vcpu);
  2644. return 1;
  2645. }
  2646. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  2647. {
  2648. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2649. u64 data;
  2650. if (vmx_get_msr(vcpu, ecx, &data)) {
  2651. kvm_inject_gp(vcpu, 0);
  2652. return 1;
  2653. }
  2654. trace_kvm_msr_read(ecx, data);
  2655. /* FIXME: handling of bits 32:63 of rax, rdx */
  2656. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2657. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2658. skip_emulated_instruction(vcpu);
  2659. return 1;
  2660. }
  2661. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  2662. {
  2663. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2664. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2665. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2666. trace_kvm_msr_write(ecx, data);
  2667. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2668. kvm_inject_gp(vcpu, 0);
  2669. return 1;
  2670. }
  2671. skip_emulated_instruction(vcpu);
  2672. return 1;
  2673. }
  2674. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  2675. {
  2676. return 1;
  2677. }
  2678. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  2679. {
  2680. u32 cpu_based_vm_exec_control;
  2681. /* clear pending irq */
  2682. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2683. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2684. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2685. ++vcpu->stat.irq_window_exits;
  2686. /*
  2687. * If the user space waits to inject interrupts, exit as soon as
  2688. * possible
  2689. */
  2690. if (!irqchip_in_kernel(vcpu->kvm) &&
  2691. vcpu->run->request_interrupt_window &&
  2692. !kvm_cpu_has_interrupt(vcpu)) {
  2693. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2694. return 0;
  2695. }
  2696. return 1;
  2697. }
  2698. static int handle_halt(struct kvm_vcpu *vcpu)
  2699. {
  2700. skip_emulated_instruction(vcpu);
  2701. return kvm_emulate_halt(vcpu);
  2702. }
  2703. static int handle_vmcall(struct kvm_vcpu *vcpu)
  2704. {
  2705. skip_emulated_instruction(vcpu);
  2706. kvm_emulate_hypercall(vcpu);
  2707. return 1;
  2708. }
  2709. static int handle_vmx_insn(struct kvm_vcpu *vcpu)
  2710. {
  2711. kvm_queue_exception(vcpu, UD_VECTOR);
  2712. return 1;
  2713. }
  2714. static int handle_invlpg(struct kvm_vcpu *vcpu)
  2715. {
  2716. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2717. kvm_mmu_invlpg(vcpu, exit_qualification);
  2718. skip_emulated_instruction(vcpu);
  2719. return 1;
  2720. }
  2721. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  2722. {
  2723. skip_emulated_instruction(vcpu);
  2724. /* TODO: Add support for VT-d/pass-through device */
  2725. return 1;
  2726. }
  2727. static int handle_apic_access(struct kvm_vcpu *vcpu)
  2728. {
  2729. unsigned long exit_qualification;
  2730. enum emulation_result er;
  2731. unsigned long offset;
  2732. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2733. offset = exit_qualification & 0xffful;
  2734. er = emulate_instruction(vcpu, 0, 0, 0);
  2735. if (er != EMULATE_DONE) {
  2736. printk(KERN_ERR
  2737. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2738. offset);
  2739. return -ENOEXEC;
  2740. }
  2741. return 1;
  2742. }
  2743. static int handle_task_switch(struct kvm_vcpu *vcpu)
  2744. {
  2745. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2746. unsigned long exit_qualification;
  2747. u16 tss_selector;
  2748. int reason, type, idt_v;
  2749. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  2750. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  2751. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2752. reason = (u32)exit_qualification >> 30;
  2753. if (reason == TASK_SWITCH_GATE && idt_v) {
  2754. switch (type) {
  2755. case INTR_TYPE_NMI_INTR:
  2756. vcpu->arch.nmi_injected = false;
  2757. if (cpu_has_virtual_nmis())
  2758. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2759. GUEST_INTR_STATE_NMI);
  2760. break;
  2761. case INTR_TYPE_EXT_INTR:
  2762. case INTR_TYPE_SOFT_INTR:
  2763. kvm_clear_interrupt_queue(vcpu);
  2764. break;
  2765. case INTR_TYPE_HARD_EXCEPTION:
  2766. case INTR_TYPE_SOFT_EXCEPTION:
  2767. kvm_clear_exception_queue(vcpu);
  2768. break;
  2769. default:
  2770. break;
  2771. }
  2772. }
  2773. tss_selector = exit_qualification;
  2774. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  2775. type != INTR_TYPE_EXT_INTR &&
  2776. type != INTR_TYPE_NMI_INTR))
  2777. skip_emulated_instruction(vcpu);
  2778. if (!kvm_task_switch(vcpu, tss_selector, reason))
  2779. return 0;
  2780. /* clear all local breakpoint enable flags */
  2781. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2782. /*
  2783. * TODO: What about debug traps on tss switch?
  2784. * Are we supposed to inject them and update dr6?
  2785. */
  2786. return 1;
  2787. }
  2788. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  2789. {
  2790. unsigned long exit_qualification;
  2791. gpa_t gpa;
  2792. int gla_validity;
  2793. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2794. if (exit_qualification & (1 << 6)) {
  2795. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2796. return -EINVAL;
  2797. }
  2798. gla_validity = (exit_qualification >> 7) & 0x3;
  2799. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2800. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2801. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2802. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2803. vmcs_readl(GUEST_LINEAR_ADDRESS));
  2804. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2805. (long unsigned int)exit_qualification);
  2806. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2807. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  2808. return 0;
  2809. }
  2810. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2811. trace_kvm_page_fault(gpa, exit_qualification);
  2812. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2813. }
  2814. static u64 ept_rsvd_mask(u64 spte, int level)
  2815. {
  2816. int i;
  2817. u64 mask = 0;
  2818. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  2819. mask |= (1ULL << i);
  2820. if (level > 2)
  2821. /* bits 7:3 reserved */
  2822. mask |= 0xf8;
  2823. else if (level == 2) {
  2824. if (spte & (1ULL << 7))
  2825. /* 2MB ref, bits 20:12 reserved */
  2826. mask |= 0x1ff000;
  2827. else
  2828. /* bits 6:3 reserved */
  2829. mask |= 0x78;
  2830. }
  2831. return mask;
  2832. }
  2833. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  2834. int level)
  2835. {
  2836. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  2837. /* 010b (write-only) */
  2838. WARN_ON((spte & 0x7) == 0x2);
  2839. /* 110b (write/execute) */
  2840. WARN_ON((spte & 0x7) == 0x6);
  2841. /* 100b (execute-only) and value not supported by logical processor */
  2842. if (!cpu_has_vmx_ept_execute_only())
  2843. WARN_ON((spte & 0x7) == 0x4);
  2844. /* not 000b */
  2845. if ((spte & 0x7)) {
  2846. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  2847. if (rsvd_bits != 0) {
  2848. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  2849. __func__, rsvd_bits);
  2850. WARN_ON(1);
  2851. }
  2852. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  2853. u64 ept_mem_type = (spte & 0x38) >> 3;
  2854. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  2855. ept_mem_type == 7) {
  2856. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  2857. __func__, ept_mem_type);
  2858. WARN_ON(1);
  2859. }
  2860. }
  2861. }
  2862. }
  2863. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  2864. {
  2865. u64 sptes[4];
  2866. int nr_sptes, i;
  2867. gpa_t gpa;
  2868. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2869. printk(KERN_ERR "EPT: Misconfiguration.\n");
  2870. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  2871. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  2872. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  2873. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  2874. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2875. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  2876. return 0;
  2877. }
  2878. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  2879. {
  2880. u32 cpu_based_vm_exec_control;
  2881. /* clear pending NMI */
  2882. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2883. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2884. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2885. ++vcpu->stat.nmi_window_exits;
  2886. return 1;
  2887. }
  2888. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  2889. {
  2890. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2891. enum emulation_result err = EMULATE_DONE;
  2892. int ret = 1;
  2893. while (!guest_state_valid(vcpu)) {
  2894. err = emulate_instruction(vcpu, 0, 0, 0);
  2895. if (err == EMULATE_DO_MMIO) {
  2896. ret = 0;
  2897. goto out;
  2898. }
  2899. if (err != EMULATE_DONE) {
  2900. kvm_report_emulation_failure(vcpu, "emulation failure");
  2901. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2902. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2903. vcpu->run->internal.ndata = 0;
  2904. ret = 0;
  2905. goto out;
  2906. }
  2907. if (signal_pending(current))
  2908. goto out;
  2909. if (need_resched())
  2910. schedule();
  2911. }
  2912. vmx->emulation_required = 0;
  2913. out:
  2914. return ret;
  2915. }
  2916. /*
  2917. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  2918. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  2919. */
  2920. static int handle_pause(struct kvm_vcpu *vcpu)
  2921. {
  2922. skip_emulated_instruction(vcpu);
  2923. kvm_vcpu_on_spin(vcpu);
  2924. return 1;
  2925. }
  2926. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  2927. {
  2928. kvm_queue_exception(vcpu, UD_VECTOR);
  2929. return 1;
  2930. }
  2931. /*
  2932. * The exit handlers return 1 if the exit was handled fully and guest execution
  2933. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2934. * to be done to userspace and return 0.
  2935. */
  2936. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  2937. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2938. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2939. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2940. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2941. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2942. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2943. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2944. [EXIT_REASON_CPUID] = handle_cpuid,
  2945. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2946. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2947. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2948. [EXIT_REASON_HLT] = handle_halt,
  2949. [EXIT_REASON_INVLPG] = handle_invlpg,
  2950. [EXIT_REASON_VMCALL] = handle_vmcall,
  2951. [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
  2952. [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
  2953. [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
  2954. [EXIT_REASON_VMPTRST] = handle_vmx_insn,
  2955. [EXIT_REASON_VMREAD] = handle_vmx_insn,
  2956. [EXIT_REASON_VMRESUME] = handle_vmx_insn,
  2957. [EXIT_REASON_VMWRITE] = handle_vmx_insn,
  2958. [EXIT_REASON_VMOFF] = handle_vmx_insn,
  2959. [EXIT_REASON_VMON] = handle_vmx_insn,
  2960. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2961. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2962. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2963. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2964. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  2965. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2966. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  2967. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  2968. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  2969. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  2970. };
  2971. static const int kvm_vmx_max_exit_handlers =
  2972. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2973. /*
  2974. * The guest has exited. See if we can fix it or if we need userspace
  2975. * assistance.
  2976. */
  2977. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  2978. {
  2979. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2980. u32 exit_reason = vmx->exit_reason;
  2981. u32 vectoring_info = vmx->idt_vectoring_info;
  2982. trace_kvm_exit(exit_reason, kvm_rip_read(vcpu));
  2983. /* If guest state is invalid, start emulating */
  2984. if (vmx->emulation_required && emulate_invalid_guest_state)
  2985. return handle_invalid_guest_state(vcpu);
  2986. /* Access CR3 don't cause VMExit in paging mode, so we need
  2987. * to sync with guest real CR3. */
  2988. if (enable_ept && is_paging(vcpu))
  2989. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2990. if (unlikely(vmx->fail)) {
  2991. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2992. vcpu->run->fail_entry.hardware_entry_failure_reason
  2993. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2994. return 0;
  2995. }
  2996. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2997. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2998. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  2999. exit_reason != EXIT_REASON_TASK_SWITCH))
  3000. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  3001. "(0x%x) and exit reason is 0x%x\n",
  3002. __func__, vectoring_info, exit_reason);
  3003. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  3004. if (vmx_interrupt_allowed(vcpu)) {
  3005. vmx->soft_vnmi_blocked = 0;
  3006. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  3007. vcpu->arch.nmi_pending) {
  3008. /*
  3009. * This CPU don't support us in finding the end of an
  3010. * NMI-blocked window if the guest runs with IRQs
  3011. * disabled. So we pull the trigger after 1 s of
  3012. * futile waiting, but inform the user about this.
  3013. */
  3014. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  3015. "state on VCPU %d after 1 s timeout\n",
  3016. __func__, vcpu->vcpu_id);
  3017. vmx->soft_vnmi_blocked = 0;
  3018. }
  3019. }
  3020. if (exit_reason < kvm_vmx_max_exit_handlers
  3021. && kvm_vmx_exit_handlers[exit_reason])
  3022. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  3023. else {
  3024. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3025. vcpu->run->hw.hardware_exit_reason = exit_reason;
  3026. }
  3027. return 0;
  3028. }
  3029. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  3030. {
  3031. if (irr == -1 || tpr < irr) {
  3032. vmcs_write32(TPR_THRESHOLD, 0);
  3033. return;
  3034. }
  3035. vmcs_write32(TPR_THRESHOLD, irr);
  3036. }
  3037. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  3038. {
  3039. u32 exit_intr_info;
  3040. u32 idt_vectoring_info = vmx->idt_vectoring_info;
  3041. bool unblock_nmi;
  3042. u8 vector;
  3043. int type;
  3044. bool idtv_info_valid;
  3045. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  3046. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  3047. /* Handle machine checks before interrupts are enabled */
  3048. if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
  3049. || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
  3050. && is_machine_check(exit_intr_info)))
  3051. kvm_machine_check();
  3052. /* We need to handle NMIs before interrupts are enabled */
  3053. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  3054. (exit_intr_info & INTR_INFO_VALID_MASK))
  3055. asm("int $2");
  3056. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  3057. if (cpu_has_virtual_nmis()) {
  3058. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  3059. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  3060. /*
  3061. * SDM 3: 27.7.1.2 (September 2008)
  3062. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  3063. * a guest IRET fault.
  3064. * SDM 3: 23.2.2 (September 2008)
  3065. * Bit 12 is undefined in any of the following cases:
  3066. * If the VM exit sets the valid bit in the IDT-vectoring
  3067. * information field.
  3068. * If the VM exit is due to a double fault.
  3069. */
  3070. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  3071. vector != DF_VECTOR && !idtv_info_valid)
  3072. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3073. GUEST_INTR_STATE_NMI);
  3074. } else if (unlikely(vmx->soft_vnmi_blocked))
  3075. vmx->vnmi_blocked_time +=
  3076. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  3077. vmx->vcpu.arch.nmi_injected = false;
  3078. kvm_clear_exception_queue(&vmx->vcpu);
  3079. kvm_clear_interrupt_queue(&vmx->vcpu);
  3080. if (!idtv_info_valid)
  3081. return;
  3082. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  3083. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  3084. switch (type) {
  3085. case INTR_TYPE_NMI_INTR:
  3086. vmx->vcpu.arch.nmi_injected = true;
  3087. /*
  3088. * SDM 3: 27.7.1.2 (September 2008)
  3089. * Clear bit "block by NMI" before VM entry if a NMI
  3090. * delivery faulted.
  3091. */
  3092. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3093. GUEST_INTR_STATE_NMI);
  3094. break;
  3095. case INTR_TYPE_SOFT_EXCEPTION:
  3096. vmx->vcpu.arch.event_exit_inst_len =
  3097. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3098. /* fall through */
  3099. case INTR_TYPE_HARD_EXCEPTION:
  3100. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  3101. u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  3102. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  3103. } else
  3104. kvm_queue_exception(&vmx->vcpu, vector);
  3105. break;
  3106. case INTR_TYPE_SOFT_INTR:
  3107. vmx->vcpu.arch.event_exit_inst_len =
  3108. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3109. /* fall through */
  3110. case INTR_TYPE_EXT_INTR:
  3111. kvm_queue_interrupt(&vmx->vcpu, vector,
  3112. type == INTR_TYPE_SOFT_INTR);
  3113. break;
  3114. default:
  3115. break;
  3116. }
  3117. }
  3118. /*
  3119. * Failure to inject an interrupt should give us the information
  3120. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  3121. * when fetching the interrupt redirection bitmap in the real-mode
  3122. * tss, this doesn't happen. So we do it ourselves.
  3123. */
  3124. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  3125. {
  3126. vmx->rmode.irq.pending = 0;
  3127. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  3128. return;
  3129. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  3130. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  3131. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  3132. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  3133. return;
  3134. }
  3135. vmx->idt_vectoring_info =
  3136. VECTORING_INFO_VALID_MASK
  3137. | INTR_TYPE_EXT_INTR
  3138. | vmx->rmode.irq.vector;
  3139. }
  3140. #ifdef CONFIG_X86_64
  3141. #define R "r"
  3142. #define Q "q"
  3143. #else
  3144. #define R "e"
  3145. #define Q "l"
  3146. #endif
  3147. static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
  3148. {
  3149. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3150. /* Record the guest's net vcpu time for enforced NMI injections. */
  3151. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  3152. vmx->entry_time = ktime_get();
  3153. /* Don't enter VMX if guest state is invalid, let the exit handler
  3154. start emulation until we arrive back to a valid state */
  3155. if (vmx->emulation_required && emulate_invalid_guest_state)
  3156. return;
  3157. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  3158. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  3159. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  3160. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  3161. /* When single-stepping over STI and MOV SS, we must clear the
  3162. * corresponding interruptibility bits in the guest state. Otherwise
  3163. * vmentry fails as it then expects bit 14 (BS) in pending debug
  3164. * exceptions being set, but that's not correct for the guest debugging
  3165. * case. */
  3166. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3167. vmx_set_interrupt_shadow(vcpu, 0);
  3168. /*
  3169. * Loading guest fpu may have cleared host cr0.ts
  3170. */
  3171. vmcs_writel(HOST_CR0, read_cr0());
  3172. if (vcpu->arch.switch_db_regs)
  3173. set_debugreg(vcpu->arch.dr6, 6);
  3174. asm(
  3175. /* Store host registers */
  3176. "push %%"R"dx; push %%"R"bp;"
  3177. "push %%"R"cx \n\t"
  3178. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  3179. "je 1f \n\t"
  3180. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  3181. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  3182. "1: \n\t"
  3183. /* Reload cr2 if changed */
  3184. "mov %c[cr2](%0), %%"R"ax \n\t"
  3185. "mov %%cr2, %%"R"dx \n\t"
  3186. "cmp %%"R"ax, %%"R"dx \n\t"
  3187. "je 2f \n\t"
  3188. "mov %%"R"ax, %%cr2 \n\t"
  3189. "2: \n\t"
  3190. /* Check if vmlaunch of vmresume is needed */
  3191. "cmpl $0, %c[launched](%0) \n\t"
  3192. /* Load guest registers. Don't clobber flags. */
  3193. "mov %c[rax](%0), %%"R"ax \n\t"
  3194. "mov %c[rbx](%0), %%"R"bx \n\t"
  3195. "mov %c[rdx](%0), %%"R"dx \n\t"
  3196. "mov %c[rsi](%0), %%"R"si \n\t"
  3197. "mov %c[rdi](%0), %%"R"di \n\t"
  3198. "mov %c[rbp](%0), %%"R"bp \n\t"
  3199. #ifdef CONFIG_X86_64
  3200. "mov %c[r8](%0), %%r8 \n\t"
  3201. "mov %c[r9](%0), %%r9 \n\t"
  3202. "mov %c[r10](%0), %%r10 \n\t"
  3203. "mov %c[r11](%0), %%r11 \n\t"
  3204. "mov %c[r12](%0), %%r12 \n\t"
  3205. "mov %c[r13](%0), %%r13 \n\t"
  3206. "mov %c[r14](%0), %%r14 \n\t"
  3207. "mov %c[r15](%0), %%r15 \n\t"
  3208. #endif
  3209. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  3210. /* Enter guest mode */
  3211. "jne .Llaunched \n\t"
  3212. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  3213. "jmp .Lkvm_vmx_return \n\t"
  3214. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  3215. ".Lkvm_vmx_return: "
  3216. /* Save guest registers, load host registers, keep flags */
  3217. "xchg %0, (%%"R"sp) \n\t"
  3218. "mov %%"R"ax, %c[rax](%0) \n\t"
  3219. "mov %%"R"bx, %c[rbx](%0) \n\t"
  3220. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  3221. "mov %%"R"dx, %c[rdx](%0) \n\t"
  3222. "mov %%"R"si, %c[rsi](%0) \n\t"
  3223. "mov %%"R"di, %c[rdi](%0) \n\t"
  3224. "mov %%"R"bp, %c[rbp](%0) \n\t"
  3225. #ifdef CONFIG_X86_64
  3226. "mov %%r8, %c[r8](%0) \n\t"
  3227. "mov %%r9, %c[r9](%0) \n\t"
  3228. "mov %%r10, %c[r10](%0) \n\t"
  3229. "mov %%r11, %c[r11](%0) \n\t"
  3230. "mov %%r12, %c[r12](%0) \n\t"
  3231. "mov %%r13, %c[r13](%0) \n\t"
  3232. "mov %%r14, %c[r14](%0) \n\t"
  3233. "mov %%r15, %c[r15](%0) \n\t"
  3234. #endif
  3235. "mov %%cr2, %%"R"ax \n\t"
  3236. "mov %%"R"ax, %c[cr2](%0) \n\t"
  3237. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  3238. "setbe %c[fail](%0) \n\t"
  3239. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  3240. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  3241. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  3242. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  3243. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  3244. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  3245. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  3246. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  3247. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  3248. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3249. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3250. #ifdef CONFIG_X86_64
  3251. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3252. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3253. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3254. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3255. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3256. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3257. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3258. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3259. #endif
  3260. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  3261. : "cc", "memory"
  3262. , R"bx", R"di", R"si"
  3263. #ifdef CONFIG_X86_64
  3264. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3265. #endif
  3266. );
  3267. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  3268. | (1 << VCPU_EXREG_PDPTR));
  3269. vcpu->arch.regs_dirty = 0;
  3270. if (vcpu->arch.switch_db_regs)
  3271. get_debugreg(vcpu->arch.dr6, 6);
  3272. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3273. if (vmx->rmode.irq.pending)
  3274. fixup_rmode_irq(vmx);
  3275. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3276. vmx->launched = 1;
  3277. vmx_complete_interrupts(vmx);
  3278. }
  3279. #undef R
  3280. #undef Q
  3281. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3282. {
  3283. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3284. if (vmx->vmcs) {
  3285. vcpu_clear(vmx);
  3286. free_vmcs(vmx->vmcs);
  3287. vmx->vmcs = NULL;
  3288. }
  3289. }
  3290. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3291. {
  3292. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3293. spin_lock(&vmx_vpid_lock);
  3294. if (vmx->vpid != 0)
  3295. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3296. spin_unlock(&vmx_vpid_lock);
  3297. vmx_free_vmcs(vcpu);
  3298. kfree(vmx->guest_msrs);
  3299. kvm_vcpu_uninit(vcpu);
  3300. kmem_cache_free(kvm_vcpu_cache, vmx);
  3301. }
  3302. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3303. {
  3304. int err;
  3305. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3306. int cpu;
  3307. if (!vmx)
  3308. return ERR_PTR(-ENOMEM);
  3309. allocate_vpid(vmx);
  3310. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3311. if (err)
  3312. goto free_vcpu;
  3313. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3314. if (!vmx->guest_msrs) {
  3315. err = -ENOMEM;
  3316. goto uninit_vcpu;
  3317. }
  3318. vmx->vmcs = alloc_vmcs();
  3319. if (!vmx->vmcs)
  3320. goto free_msrs;
  3321. vmcs_clear(vmx->vmcs);
  3322. cpu = get_cpu();
  3323. vmx_vcpu_load(&vmx->vcpu, cpu);
  3324. err = vmx_vcpu_setup(vmx);
  3325. vmx_vcpu_put(&vmx->vcpu);
  3326. put_cpu();
  3327. if (err)
  3328. goto free_vmcs;
  3329. if (vm_need_virtualize_apic_accesses(kvm))
  3330. if (alloc_apic_access_page(kvm) != 0)
  3331. goto free_vmcs;
  3332. if (enable_ept) {
  3333. if (!kvm->arch.ept_identity_map_addr)
  3334. kvm->arch.ept_identity_map_addr =
  3335. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  3336. if (alloc_identity_pagetable(kvm) != 0)
  3337. goto free_vmcs;
  3338. }
  3339. return &vmx->vcpu;
  3340. free_vmcs:
  3341. free_vmcs(vmx->vmcs);
  3342. free_msrs:
  3343. kfree(vmx->guest_msrs);
  3344. uninit_vcpu:
  3345. kvm_vcpu_uninit(&vmx->vcpu);
  3346. free_vcpu:
  3347. kmem_cache_free(kvm_vcpu_cache, vmx);
  3348. return ERR_PTR(err);
  3349. }
  3350. static void __init vmx_check_processor_compat(void *rtn)
  3351. {
  3352. struct vmcs_config vmcs_conf;
  3353. *(int *)rtn = 0;
  3354. if (setup_vmcs_config(&vmcs_conf) < 0)
  3355. *(int *)rtn = -EIO;
  3356. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3357. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3358. smp_processor_id());
  3359. *(int *)rtn = -EIO;
  3360. }
  3361. }
  3362. static int get_ept_level(void)
  3363. {
  3364. return VMX_EPT_DEFAULT_GAW + 1;
  3365. }
  3366. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  3367. {
  3368. u64 ret;
  3369. /* For VT-d and EPT combination
  3370. * 1. MMIO: always map as UC
  3371. * 2. EPT with VT-d:
  3372. * a. VT-d without snooping control feature: can't guarantee the
  3373. * result, try to trust guest.
  3374. * b. VT-d with snooping control feature: snooping control feature of
  3375. * VT-d engine can guarantee the cache correctness. Just set it
  3376. * to WB to keep consistent with host. So the same as item 3.
  3377. * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
  3378. * consistent with host MTRR
  3379. */
  3380. if (is_mmio)
  3381. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  3382. else if (vcpu->kvm->arch.iommu_domain &&
  3383. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  3384. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  3385. VMX_EPT_MT_EPTE_SHIFT;
  3386. else
  3387. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  3388. | VMX_EPT_IGMT_BIT;
  3389. return ret;
  3390. }
  3391. static const struct trace_print_flags vmx_exit_reasons_str[] = {
  3392. { EXIT_REASON_EXCEPTION_NMI, "exception" },
  3393. { EXIT_REASON_EXTERNAL_INTERRUPT, "ext_irq" },
  3394. { EXIT_REASON_TRIPLE_FAULT, "triple_fault" },
  3395. { EXIT_REASON_NMI_WINDOW, "nmi_window" },
  3396. { EXIT_REASON_IO_INSTRUCTION, "io_instruction" },
  3397. { EXIT_REASON_CR_ACCESS, "cr_access" },
  3398. { EXIT_REASON_DR_ACCESS, "dr_access" },
  3399. { EXIT_REASON_CPUID, "cpuid" },
  3400. { EXIT_REASON_MSR_READ, "rdmsr" },
  3401. { EXIT_REASON_MSR_WRITE, "wrmsr" },
  3402. { EXIT_REASON_PENDING_INTERRUPT, "interrupt_window" },
  3403. { EXIT_REASON_HLT, "halt" },
  3404. { EXIT_REASON_INVLPG, "invlpg" },
  3405. { EXIT_REASON_VMCALL, "hypercall" },
  3406. { EXIT_REASON_TPR_BELOW_THRESHOLD, "tpr_below_thres" },
  3407. { EXIT_REASON_APIC_ACCESS, "apic_access" },
  3408. { EXIT_REASON_WBINVD, "wbinvd" },
  3409. { EXIT_REASON_TASK_SWITCH, "task_switch" },
  3410. { EXIT_REASON_EPT_VIOLATION, "ept_violation" },
  3411. { -1, NULL }
  3412. };
  3413. static bool vmx_gb_page_enable(void)
  3414. {
  3415. return false;
  3416. }
  3417. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  3418. {
  3419. }
  3420. static struct kvm_x86_ops vmx_x86_ops = {
  3421. .cpu_has_kvm_support = cpu_has_kvm_support,
  3422. .disabled_by_bios = vmx_disabled_by_bios,
  3423. .hardware_setup = hardware_setup,
  3424. .hardware_unsetup = hardware_unsetup,
  3425. .check_processor_compatibility = vmx_check_processor_compat,
  3426. .hardware_enable = hardware_enable,
  3427. .hardware_disable = hardware_disable,
  3428. .cpu_has_accelerated_tpr = report_flexpriority,
  3429. .vcpu_create = vmx_create_vcpu,
  3430. .vcpu_free = vmx_free_vcpu,
  3431. .vcpu_reset = vmx_vcpu_reset,
  3432. .prepare_guest_switch = vmx_save_host_state,
  3433. .vcpu_load = vmx_vcpu_load,
  3434. .vcpu_put = vmx_vcpu_put,
  3435. .set_guest_debug = set_guest_debug,
  3436. .get_msr = vmx_get_msr,
  3437. .set_msr = vmx_set_msr,
  3438. .get_segment_base = vmx_get_segment_base,
  3439. .get_segment = vmx_get_segment,
  3440. .set_segment = vmx_set_segment,
  3441. .get_cpl = vmx_get_cpl,
  3442. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3443. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3444. .set_cr0 = vmx_set_cr0,
  3445. .set_cr3 = vmx_set_cr3,
  3446. .set_cr4 = vmx_set_cr4,
  3447. .set_efer = vmx_set_efer,
  3448. .get_idt = vmx_get_idt,
  3449. .set_idt = vmx_set_idt,
  3450. .get_gdt = vmx_get_gdt,
  3451. .set_gdt = vmx_set_gdt,
  3452. .cache_reg = vmx_cache_reg,
  3453. .get_rflags = vmx_get_rflags,
  3454. .set_rflags = vmx_set_rflags,
  3455. .tlb_flush = vmx_flush_tlb,
  3456. .run = vmx_vcpu_run,
  3457. .handle_exit = vmx_handle_exit,
  3458. .skip_emulated_instruction = skip_emulated_instruction,
  3459. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  3460. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  3461. .patch_hypercall = vmx_patch_hypercall,
  3462. .set_irq = vmx_inject_irq,
  3463. .set_nmi = vmx_inject_nmi,
  3464. .queue_exception = vmx_queue_exception,
  3465. .interrupt_allowed = vmx_interrupt_allowed,
  3466. .nmi_allowed = vmx_nmi_allowed,
  3467. .get_nmi_mask = vmx_get_nmi_mask,
  3468. .set_nmi_mask = vmx_set_nmi_mask,
  3469. .enable_nmi_window = enable_nmi_window,
  3470. .enable_irq_window = enable_irq_window,
  3471. .update_cr8_intercept = update_cr8_intercept,
  3472. .set_tss_addr = vmx_set_tss_addr,
  3473. .get_tdp_level = get_ept_level,
  3474. .get_mt_mask = vmx_get_mt_mask,
  3475. .exit_reasons_str = vmx_exit_reasons_str,
  3476. .gb_page_enable = vmx_gb_page_enable,
  3477. .cpuid_update = vmx_cpuid_update,
  3478. };
  3479. static int __init vmx_init(void)
  3480. {
  3481. int r, i;
  3482. rdmsrl_safe(MSR_EFER, &host_efer);
  3483. for (i = 0; i < NR_VMX_MSR; ++i)
  3484. kvm_define_shared_msr(i, vmx_msr_index[i]);
  3485. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3486. if (!vmx_io_bitmap_a)
  3487. return -ENOMEM;
  3488. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3489. if (!vmx_io_bitmap_b) {
  3490. r = -ENOMEM;
  3491. goto out;
  3492. }
  3493. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3494. if (!vmx_msr_bitmap_legacy) {
  3495. r = -ENOMEM;
  3496. goto out1;
  3497. }
  3498. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3499. if (!vmx_msr_bitmap_longmode) {
  3500. r = -ENOMEM;
  3501. goto out2;
  3502. }
  3503. /*
  3504. * Allow direct access to the PC debug port (it is often used for I/O
  3505. * delays, but the vmexits simply slow things down).
  3506. */
  3507. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3508. clear_bit(0x80, vmx_io_bitmap_a);
  3509. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3510. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3511. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3512. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3513. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  3514. if (r)
  3515. goto out3;
  3516. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3517. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3518. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3519. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3520. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3521. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3522. if (enable_ept) {
  3523. bypass_guest_pf = 0;
  3524. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3525. VMX_EPT_WRITABLE_MASK);
  3526. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3527. VMX_EPT_EXECUTABLE_MASK);
  3528. kvm_enable_tdp();
  3529. } else
  3530. kvm_disable_tdp();
  3531. if (bypass_guest_pf)
  3532. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3533. return 0;
  3534. out3:
  3535. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3536. out2:
  3537. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3538. out1:
  3539. free_page((unsigned long)vmx_io_bitmap_b);
  3540. out:
  3541. free_page((unsigned long)vmx_io_bitmap_a);
  3542. return r;
  3543. }
  3544. static void __exit vmx_exit(void)
  3545. {
  3546. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3547. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3548. free_page((unsigned long)vmx_io_bitmap_b);
  3549. free_page((unsigned long)vmx_io_bitmap_a);
  3550. kvm_exit();
  3551. }
  3552. module_init(vmx_init)
  3553. module_exit(vmx_exit)