xhci-mem.c 70 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322
  1. /*
  2. * xHCI host controller driver
  3. *
  4. * Copyright (C) 2008 Intel Corp.
  5. *
  6. * Author: Sarah Sharp
  7. * Some code borrowed from the Linux EHCI driver.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15. * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  16. * for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software Foundation,
  20. * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #include <linux/usb.h>
  23. #include <linux/pci.h>
  24. #include <linux/slab.h>
  25. #include <linux/dmapool.h>
  26. #include "xhci.h"
  27. /*
  28. * Allocates a generic ring segment from the ring pool, sets the dma address,
  29. * initializes the segment to zero, and sets the private next pointer to NULL.
  30. *
  31. * Section 4.11.1.1:
  32. * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  33. */
  34. static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
  35. {
  36. struct xhci_segment *seg;
  37. dma_addr_t dma;
  38. seg = kzalloc(sizeof *seg, flags);
  39. if (!seg)
  40. return NULL;
  41. xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
  42. seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
  43. if (!seg->trbs) {
  44. kfree(seg);
  45. return NULL;
  46. }
  47. xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
  48. seg->trbs, (unsigned long long)dma);
  49. memset(seg->trbs, 0, SEGMENT_SIZE);
  50. seg->dma = dma;
  51. seg->next = NULL;
  52. return seg;
  53. }
  54. static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  55. {
  56. if (!seg)
  57. return;
  58. if (seg->trbs) {
  59. xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
  60. seg->trbs, (unsigned long long)seg->dma);
  61. dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  62. seg->trbs = NULL;
  63. }
  64. xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
  65. kfree(seg);
  66. }
  67. /*
  68. * Make the prev segment point to the next segment.
  69. *
  70. * Change the last TRB in the prev segment to be a Link TRB which points to the
  71. * DMA address of the next segment. The caller needs to set any Link TRB
  72. * related flags, such as End TRB, Toggle Cycle, and no snoop.
  73. */
  74. static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
  75. struct xhci_segment *next, bool link_trbs)
  76. {
  77. u32 val;
  78. if (!prev || !next)
  79. return;
  80. prev->next = next;
  81. if (link_trbs) {
  82. prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
  83. cpu_to_le64(next->dma);
  84. /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
  85. val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
  86. val &= ~TRB_TYPE_BITMASK;
  87. val |= TRB_TYPE(TRB_LINK);
  88. /* Always set the chain bit with 0.95 hardware */
  89. if (xhci_link_trb_quirk(xhci))
  90. val |= TRB_CHAIN;
  91. prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
  92. }
  93. xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
  94. (unsigned long long)prev->dma,
  95. (unsigned long long)next->dma);
  96. }
  97. /* XXX: Do we need the hcd structure in all these functions? */
  98. void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
  99. {
  100. struct xhci_segment *seg;
  101. struct xhci_segment *first_seg;
  102. if (!ring)
  103. return;
  104. if (ring->first_seg) {
  105. first_seg = ring->first_seg;
  106. seg = first_seg->next;
  107. xhci_dbg(xhci, "Freeing ring at %p\n", ring);
  108. while (seg != first_seg) {
  109. struct xhci_segment *next = seg->next;
  110. xhci_segment_free(xhci, seg);
  111. seg = next;
  112. }
  113. xhci_segment_free(xhci, first_seg);
  114. ring->first_seg = NULL;
  115. }
  116. kfree(ring);
  117. }
  118. static void xhci_initialize_ring_info(struct xhci_ring *ring)
  119. {
  120. /* The ring is empty, so the enqueue pointer == dequeue pointer */
  121. ring->enqueue = ring->first_seg->trbs;
  122. ring->enq_seg = ring->first_seg;
  123. ring->dequeue = ring->enqueue;
  124. ring->deq_seg = ring->first_seg;
  125. /* The ring is initialized to 0. The producer must write 1 to the cycle
  126. * bit to handover ownership of the TRB, so PCS = 1. The consumer must
  127. * compare CCS to the cycle bit to check ownership, so CCS = 1.
  128. */
  129. ring->cycle_state = 1;
  130. /* Not necessary for new rings, but needed for re-initialized rings */
  131. ring->enq_updates = 0;
  132. ring->deq_updates = 0;
  133. }
  134. /**
  135. * Create a new ring with zero or more segments.
  136. *
  137. * Link each segment together into a ring.
  138. * Set the end flag and the cycle toggle bit on the last segment.
  139. * See section 4.9.1 and figures 15 and 16.
  140. */
  141. static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
  142. unsigned int num_segs, bool link_trbs, gfp_t flags)
  143. {
  144. struct xhci_ring *ring;
  145. struct xhci_segment *prev;
  146. ring = kzalloc(sizeof *(ring), flags);
  147. xhci_dbg(xhci, "Allocating ring at %p\n", ring);
  148. if (!ring)
  149. return NULL;
  150. INIT_LIST_HEAD(&ring->td_list);
  151. if (num_segs == 0)
  152. return ring;
  153. ring->first_seg = xhci_segment_alloc(xhci, flags);
  154. if (!ring->first_seg)
  155. goto fail;
  156. num_segs--;
  157. prev = ring->first_seg;
  158. while (num_segs > 0) {
  159. struct xhci_segment *next;
  160. next = xhci_segment_alloc(xhci, flags);
  161. if (!next)
  162. goto fail;
  163. xhci_link_segments(xhci, prev, next, link_trbs);
  164. prev = next;
  165. num_segs--;
  166. }
  167. xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
  168. if (link_trbs) {
  169. /* See section 4.9.2.1 and 6.4.4.1 */
  170. prev->trbs[TRBS_PER_SEGMENT-1].link.control |=
  171. cpu_to_le32(LINK_TOGGLE);
  172. xhci_dbg(xhci, "Wrote link toggle flag to"
  173. " segment %p (virtual), 0x%llx (DMA)\n",
  174. prev, (unsigned long long)prev->dma);
  175. }
  176. xhci_initialize_ring_info(ring);
  177. return ring;
  178. fail:
  179. xhci_ring_free(xhci, ring);
  180. return NULL;
  181. }
  182. void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
  183. struct xhci_virt_device *virt_dev,
  184. unsigned int ep_index)
  185. {
  186. int rings_cached;
  187. rings_cached = virt_dev->num_rings_cached;
  188. if (rings_cached < XHCI_MAX_RINGS_CACHED) {
  189. virt_dev->ring_cache[rings_cached] =
  190. virt_dev->eps[ep_index].ring;
  191. virt_dev->num_rings_cached++;
  192. xhci_dbg(xhci, "Cached old ring, "
  193. "%d ring%s cached\n",
  194. virt_dev->num_rings_cached,
  195. (virt_dev->num_rings_cached > 1) ? "s" : "");
  196. } else {
  197. xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
  198. xhci_dbg(xhci, "Ring cache full (%d rings), "
  199. "freeing ring\n",
  200. virt_dev->num_rings_cached);
  201. }
  202. virt_dev->eps[ep_index].ring = NULL;
  203. }
  204. /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
  205. * pointers to the beginning of the ring.
  206. */
  207. static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
  208. struct xhci_ring *ring)
  209. {
  210. struct xhci_segment *seg = ring->first_seg;
  211. do {
  212. memset(seg->trbs, 0,
  213. sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
  214. /* All endpoint rings have link TRBs */
  215. xhci_link_segments(xhci, seg, seg->next, 1);
  216. seg = seg->next;
  217. } while (seg != ring->first_seg);
  218. xhci_initialize_ring_info(ring);
  219. /* td list should be empty since all URBs have been cancelled,
  220. * but just in case...
  221. */
  222. INIT_LIST_HEAD(&ring->td_list);
  223. }
  224. #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
  225. static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
  226. int type, gfp_t flags)
  227. {
  228. struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
  229. if (!ctx)
  230. return NULL;
  231. BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
  232. ctx->type = type;
  233. ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
  234. if (type == XHCI_CTX_TYPE_INPUT)
  235. ctx->size += CTX_SIZE(xhci->hcc_params);
  236. ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
  237. memset(ctx->bytes, 0, ctx->size);
  238. return ctx;
  239. }
  240. static void xhci_free_container_ctx(struct xhci_hcd *xhci,
  241. struct xhci_container_ctx *ctx)
  242. {
  243. if (!ctx)
  244. return;
  245. dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
  246. kfree(ctx);
  247. }
  248. struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
  249. struct xhci_container_ctx *ctx)
  250. {
  251. BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
  252. return (struct xhci_input_control_ctx *)ctx->bytes;
  253. }
  254. struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
  255. struct xhci_container_ctx *ctx)
  256. {
  257. if (ctx->type == XHCI_CTX_TYPE_DEVICE)
  258. return (struct xhci_slot_ctx *)ctx->bytes;
  259. return (struct xhci_slot_ctx *)
  260. (ctx->bytes + CTX_SIZE(xhci->hcc_params));
  261. }
  262. struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
  263. struct xhci_container_ctx *ctx,
  264. unsigned int ep_index)
  265. {
  266. /* increment ep index by offset of start of ep ctx array */
  267. ep_index++;
  268. if (ctx->type == XHCI_CTX_TYPE_INPUT)
  269. ep_index++;
  270. return (struct xhci_ep_ctx *)
  271. (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
  272. }
  273. /***************** Streams structures manipulation *************************/
  274. static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
  275. unsigned int num_stream_ctxs,
  276. struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
  277. {
  278. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  279. if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
  280. pci_free_consistent(pdev,
  281. sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
  282. stream_ctx, dma);
  283. else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
  284. return dma_pool_free(xhci->small_streams_pool,
  285. stream_ctx, dma);
  286. else
  287. return dma_pool_free(xhci->medium_streams_pool,
  288. stream_ctx, dma);
  289. }
  290. /*
  291. * The stream context array for each endpoint with bulk streams enabled can
  292. * vary in size, based on:
  293. * - how many streams the endpoint supports,
  294. * - the maximum primary stream array size the host controller supports,
  295. * - and how many streams the device driver asks for.
  296. *
  297. * The stream context array must be a power of 2, and can be as small as
  298. * 64 bytes or as large as 1MB.
  299. */
  300. static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
  301. unsigned int num_stream_ctxs, dma_addr_t *dma,
  302. gfp_t mem_flags)
  303. {
  304. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  305. if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
  306. return pci_alloc_consistent(pdev,
  307. sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
  308. dma);
  309. else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
  310. return dma_pool_alloc(xhci->small_streams_pool,
  311. mem_flags, dma);
  312. else
  313. return dma_pool_alloc(xhci->medium_streams_pool,
  314. mem_flags, dma);
  315. }
  316. struct xhci_ring *xhci_dma_to_transfer_ring(
  317. struct xhci_virt_ep *ep,
  318. u64 address)
  319. {
  320. if (ep->ep_state & EP_HAS_STREAMS)
  321. return radix_tree_lookup(&ep->stream_info->trb_address_map,
  322. address >> SEGMENT_SHIFT);
  323. return ep->ring;
  324. }
  325. /* Only use this when you know stream_info is valid */
  326. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  327. static struct xhci_ring *dma_to_stream_ring(
  328. struct xhci_stream_info *stream_info,
  329. u64 address)
  330. {
  331. return radix_tree_lookup(&stream_info->trb_address_map,
  332. address >> SEGMENT_SHIFT);
  333. }
  334. #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
  335. struct xhci_ring *xhci_stream_id_to_ring(
  336. struct xhci_virt_device *dev,
  337. unsigned int ep_index,
  338. unsigned int stream_id)
  339. {
  340. struct xhci_virt_ep *ep = &dev->eps[ep_index];
  341. if (stream_id == 0)
  342. return ep->ring;
  343. if (!ep->stream_info)
  344. return NULL;
  345. if (stream_id > ep->stream_info->num_streams)
  346. return NULL;
  347. return ep->stream_info->stream_rings[stream_id];
  348. }
  349. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  350. static int xhci_test_radix_tree(struct xhci_hcd *xhci,
  351. unsigned int num_streams,
  352. struct xhci_stream_info *stream_info)
  353. {
  354. u32 cur_stream;
  355. struct xhci_ring *cur_ring;
  356. u64 addr;
  357. for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
  358. struct xhci_ring *mapped_ring;
  359. int trb_size = sizeof(union xhci_trb);
  360. cur_ring = stream_info->stream_rings[cur_stream];
  361. for (addr = cur_ring->first_seg->dma;
  362. addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
  363. addr += trb_size) {
  364. mapped_ring = dma_to_stream_ring(stream_info, addr);
  365. if (cur_ring != mapped_ring) {
  366. xhci_warn(xhci, "WARN: DMA address 0x%08llx "
  367. "didn't map to stream ID %u; "
  368. "mapped to ring %p\n",
  369. (unsigned long long) addr,
  370. cur_stream,
  371. mapped_ring);
  372. return -EINVAL;
  373. }
  374. }
  375. /* One TRB after the end of the ring segment shouldn't return a
  376. * pointer to the current ring (although it may be a part of a
  377. * different ring).
  378. */
  379. mapped_ring = dma_to_stream_ring(stream_info, addr);
  380. if (mapped_ring != cur_ring) {
  381. /* One TRB before should also fail */
  382. addr = cur_ring->first_seg->dma - trb_size;
  383. mapped_ring = dma_to_stream_ring(stream_info, addr);
  384. }
  385. if (mapped_ring == cur_ring) {
  386. xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
  387. "mapped to valid stream ID %u; "
  388. "mapped ring = %p\n",
  389. (unsigned long long) addr,
  390. cur_stream,
  391. mapped_ring);
  392. return -EINVAL;
  393. }
  394. }
  395. return 0;
  396. }
  397. #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
  398. /*
  399. * Change an endpoint's internal structure so it supports stream IDs. The
  400. * number of requested streams includes stream 0, which cannot be used by device
  401. * drivers.
  402. *
  403. * The number of stream contexts in the stream context array may be bigger than
  404. * the number of streams the driver wants to use. This is because the number of
  405. * stream context array entries must be a power of two.
  406. *
  407. * We need a radix tree for mapping physical addresses of TRBs to which stream
  408. * ID they belong to. We need to do this because the host controller won't tell
  409. * us which stream ring the TRB came from. We could store the stream ID in an
  410. * event data TRB, but that doesn't help us for the cancellation case, since the
  411. * endpoint may stop before it reaches that event data TRB.
  412. *
  413. * The radix tree maps the upper portion of the TRB DMA address to a ring
  414. * segment that has the same upper portion of DMA addresses. For example, say I
  415. * have segments of size 1KB, that are always 64-byte aligned. A segment may
  416. * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
  417. * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
  418. * pass the radix tree a key to get the right stream ID:
  419. *
  420. * 0x10c90fff >> 10 = 0x43243
  421. * 0x10c912c0 >> 10 = 0x43244
  422. * 0x10c91400 >> 10 = 0x43245
  423. *
  424. * Obviously, only those TRBs with DMA addresses that are within the segment
  425. * will make the radix tree return the stream ID for that ring.
  426. *
  427. * Caveats for the radix tree:
  428. *
  429. * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
  430. * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
  431. * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
  432. * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
  433. * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
  434. * extended systems (where the DMA address can be bigger than 32-bits),
  435. * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
  436. */
  437. struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
  438. unsigned int num_stream_ctxs,
  439. unsigned int num_streams, gfp_t mem_flags)
  440. {
  441. struct xhci_stream_info *stream_info;
  442. u32 cur_stream;
  443. struct xhci_ring *cur_ring;
  444. unsigned long key;
  445. u64 addr;
  446. int ret;
  447. xhci_dbg(xhci, "Allocating %u streams and %u "
  448. "stream context array entries.\n",
  449. num_streams, num_stream_ctxs);
  450. if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
  451. xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
  452. return NULL;
  453. }
  454. xhci->cmd_ring_reserved_trbs++;
  455. stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
  456. if (!stream_info)
  457. goto cleanup_trbs;
  458. stream_info->num_streams = num_streams;
  459. stream_info->num_stream_ctxs = num_stream_ctxs;
  460. /* Initialize the array of virtual pointers to stream rings. */
  461. stream_info->stream_rings = kzalloc(
  462. sizeof(struct xhci_ring *)*num_streams,
  463. mem_flags);
  464. if (!stream_info->stream_rings)
  465. goto cleanup_info;
  466. /* Initialize the array of DMA addresses for stream rings for the HW. */
  467. stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
  468. num_stream_ctxs, &stream_info->ctx_array_dma,
  469. mem_flags);
  470. if (!stream_info->stream_ctx_array)
  471. goto cleanup_ctx;
  472. memset(stream_info->stream_ctx_array, 0,
  473. sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
  474. /* Allocate everything needed to free the stream rings later */
  475. stream_info->free_streams_command =
  476. xhci_alloc_command(xhci, true, true, mem_flags);
  477. if (!stream_info->free_streams_command)
  478. goto cleanup_ctx;
  479. INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
  480. /* Allocate rings for all the streams that the driver will use,
  481. * and add their segment DMA addresses to the radix tree.
  482. * Stream 0 is reserved.
  483. */
  484. for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
  485. stream_info->stream_rings[cur_stream] =
  486. xhci_ring_alloc(xhci, 1, true, mem_flags);
  487. cur_ring = stream_info->stream_rings[cur_stream];
  488. if (!cur_ring)
  489. goto cleanup_rings;
  490. cur_ring->stream_id = cur_stream;
  491. /* Set deq ptr, cycle bit, and stream context type */
  492. addr = cur_ring->first_seg->dma |
  493. SCT_FOR_CTX(SCT_PRI_TR) |
  494. cur_ring->cycle_state;
  495. stream_info->stream_ctx_array[cur_stream].stream_ring =
  496. cpu_to_le64(addr);
  497. xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
  498. cur_stream, (unsigned long long) addr);
  499. key = (unsigned long)
  500. (cur_ring->first_seg->dma >> SEGMENT_SHIFT);
  501. ret = radix_tree_insert(&stream_info->trb_address_map,
  502. key, cur_ring);
  503. if (ret) {
  504. xhci_ring_free(xhci, cur_ring);
  505. stream_info->stream_rings[cur_stream] = NULL;
  506. goto cleanup_rings;
  507. }
  508. }
  509. /* Leave the other unused stream ring pointers in the stream context
  510. * array initialized to zero. This will cause the xHC to give us an
  511. * error if the device asks for a stream ID we don't have setup (if it
  512. * was any other way, the host controller would assume the ring is
  513. * "empty" and wait forever for data to be queued to that stream ID).
  514. */
  515. #if XHCI_DEBUG
  516. /* Do a little test on the radix tree to make sure it returns the
  517. * correct values.
  518. */
  519. if (xhci_test_radix_tree(xhci, num_streams, stream_info))
  520. goto cleanup_rings;
  521. #endif
  522. return stream_info;
  523. cleanup_rings:
  524. for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
  525. cur_ring = stream_info->stream_rings[cur_stream];
  526. if (cur_ring) {
  527. addr = cur_ring->first_seg->dma;
  528. radix_tree_delete(&stream_info->trb_address_map,
  529. addr >> SEGMENT_SHIFT);
  530. xhci_ring_free(xhci, cur_ring);
  531. stream_info->stream_rings[cur_stream] = NULL;
  532. }
  533. }
  534. xhci_free_command(xhci, stream_info->free_streams_command);
  535. cleanup_ctx:
  536. kfree(stream_info->stream_rings);
  537. cleanup_info:
  538. kfree(stream_info);
  539. cleanup_trbs:
  540. xhci->cmd_ring_reserved_trbs--;
  541. return NULL;
  542. }
  543. /*
  544. * Sets the MaxPStreams field and the Linear Stream Array field.
  545. * Sets the dequeue pointer to the stream context array.
  546. */
  547. void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
  548. struct xhci_ep_ctx *ep_ctx,
  549. struct xhci_stream_info *stream_info)
  550. {
  551. u32 max_primary_streams;
  552. /* MaxPStreams is the number of stream context array entries, not the
  553. * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
  554. * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
  555. */
  556. max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
  557. xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
  558. 1 << (max_primary_streams + 1));
  559. ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
  560. ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
  561. | EP_HAS_LSA);
  562. ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
  563. }
  564. /*
  565. * Sets the MaxPStreams field and the Linear Stream Array field to 0.
  566. * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
  567. * not at the beginning of the ring).
  568. */
  569. void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
  570. struct xhci_ep_ctx *ep_ctx,
  571. struct xhci_virt_ep *ep)
  572. {
  573. dma_addr_t addr;
  574. ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
  575. addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
  576. ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
  577. }
  578. /* Frees all stream contexts associated with the endpoint,
  579. *
  580. * Caller should fix the endpoint context streams fields.
  581. */
  582. void xhci_free_stream_info(struct xhci_hcd *xhci,
  583. struct xhci_stream_info *stream_info)
  584. {
  585. int cur_stream;
  586. struct xhci_ring *cur_ring;
  587. dma_addr_t addr;
  588. if (!stream_info)
  589. return;
  590. for (cur_stream = 1; cur_stream < stream_info->num_streams;
  591. cur_stream++) {
  592. cur_ring = stream_info->stream_rings[cur_stream];
  593. if (cur_ring) {
  594. addr = cur_ring->first_seg->dma;
  595. radix_tree_delete(&stream_info->trb_address_map,
  596. addr >> SEGMENT_SHIFT);
  597. xhci_ring_free(xhci, cur_ring);
  598. stream_info->stream_rings[cur_stream] = NULL;
  599. }
  600. }
  601. xhci_free_command(xhci, stream_info->free_streams_command);
  602. xhci->cmd_ring_reserved_trbs--;
  603. if (stream_info->stream_ctx_array)
  604. xhci_free_stream_ctx(xhci,
  605. stream_info->num_stream_ctxs,
  606. stream_info->stream_ctx_array,
  607. stream_info->ctx_array_dma);
  608. if (stream_info)
  609. kfree(stream_info->stream_rings);
  610. kfree(stream_info);
  611. }
  612. /***************** Device context manipulation *************************/
  613. static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
  614. struct xhci_virt_ep *ep)
  615. {
  616. init_timer(&ep->stop_cmd_timer);
  617. ep->stop_cmd_timer.data = (unsigned long) ep;
  618. ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
  619. ep->xhci = xhci;
  620. }
  621. static void xhci_free_tt_info(struct xhci_hcd *xhci,
  622. struct xhci_virt_device *virt_dev,
  623. int slot_id)
  624. {
  625. struct list_head *tt;
  626. struct list_head *tt_list_head;
  627. struct list_head *tt_next;
  628. struct xhci_tt_bw_info *tt_info;
  629. /* If the device never made it past the Set Address stage,
  630. * it may not have the real_port set correctly.
  631. */
  632. if (virt_dev->real_port == 0 ||
  633. virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
  634. xhci_dbg(xhci, "Bad real port.\n");
  635. return;
  636. }
  637. tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
  638. if (list_empty(tt_list_head))
  639. return;
  640. list_for_each(tt, tt_list_head) {
  641. tt_info = list_entry(tt, struct xhci_tt_bw_info, tt_list);
  642. if (tt_info->slot_id == slot_id)
  643. break;
  644. }
  645. /* Cautionary measure in case the hub was disconnected before we
  646. * stored the TT information.
  647. */
  648. if (tt_info->slot_id != slot_id)
  649. return;
  650. tt_next = tt->next;
  651. tt_info = list_entry(tt, struct xhci_tt_bw_info,
  652. tt_list);
  653. /* Multi-TT hubs will have more than one entry */
  654. do {
  655. list_del(tt);
  656. kfree(tt_info);
  657. tt = tt_next;
  658. if (list_empty(tt_list_head))
  659. break;
  660. tt_next = tt->next;
  661. tt_info = list_entry(tt, struct xhci_tt_bw_info,
  662. tt_list);
  663. } while (tt_info->slot_id == slot_id);
  664. }
  665. int xhci_alloc_tt_info(struct xhci_hcd *xhci,
  666. struct xhci_virt_device *virt_dev,
  667. struct usb_device *hdev,
  668. struct usb_tt *tt, gfp_t mem_flags)
  669. {
  670. struct xhci_tt_bw_info *tt_info;
  671. unsigned int num_ports;
  672. int i, j;
  673. if (!tt->multi)
  674. num_ports = 1;
  675. else
  676. num_ports = hdev->maxchild;
  677. for (i = 0; i < num_ports; i++, tt_info++) {
  678. struct xhci_interval_bw_table *bw_table;
  679. tt_info = kzalloc(sizeof(*tt_info), mem_flags);
  680. if (!tt_info)
  681. goto free_tts;
  682. INIT_LIST_HEAD(&tt_info->tt_list);
  683. list_add(&tt_info->tt_list,
  684. &xhci->rh_bw[virt_dev->real_port - 1].tts);
  685. tt_info->slot_id = virt_dev->udev->slot_id;
  686. if (tt->multi)
  687. tt_info->ttport = i+1;
  688. bw_table = &tt_info->bw_table;
  689. for (j = 0; j < XHCI_MAX_INTERVAL; j++)
  690. INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
  691. }
  692. return 0;
  693. free_tts:
  694. xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
  695. return -ENOMEM;
  696. }
  697. /* All the xhci_tds in the ring's TD list should be freed at this point.
  698. * Should be called with xhci->lock held if there is any chance the TT lists
  699. * will be manipulated by the configure endpoint, allocate device, or update
  700. * hub functions while this function is removing the TT entries from the list.
  701. */
  702. void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
  703. {
  704. struct xhci_virt_device *dev;
  705. int i;
  706. int old_active_eps = 0;
  707. /* Slot ID 0 is reserved */
  708. if (slot_id == 0 || !xhci->devs[slot_id])
  709. return;
  710. dev = xhci->devs[slot_id];
  711. xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
  712. if (!dev)
  713. return;
  714. if (dev->tt_info)
  715. old_active_eps = dev->tt_info->active_eps;
  716. for (i = 0; i < 31; ++i) {
  717. if (dev->eps[i].ring)
  718. xhci_ring_free(xhci, dev->eps[i].ring);
  719. if (dev->eps[i].stream_info)
  720. xhci_free_stream_info(xhci,
  721. dev->eps[i].stream_info);
  722. /* Endpoints on the TT/root port lists should have been removed
  723. * when usb_disable_device() was called for the device.
  724. * We can't drop them anyway, because the udev might have gone
  725. * away by this point, and we can't tell what speed it was.
  726. */
  727. if (!list_empty(&dev->eps[i].bw_endpoint_list))
  728. xhci_warn(xhci, "Slot %u endpoint %u "
  729. "not removed from BW list!\n",
  730. slot_id, i);
  731. }
  732. /* If this is a hub, free the TT(s) from the TT list */
  733. xhci_free_tt_info(xhci, dev, slot_id);
  734. /* If necessary, update the number of active TTs on this root port */
  735. xhci_update_tt_active_eps(xhci, dev, old_active_eps);
  736. if (dev->ring_cache) {
  737. for (i = 0; i < dev->num_rings_cached; i++)
  738. xhci_ring_free(xhci, dev->ring_cache[i]);
  739. kfree(dev->ring_cache);
  740. }
  741. if (dev->in_ctx)
  742. xhci_free_container_ctx(xhci, dev->in_ctx);
  743. if (dev->out_ctx)
  744. xhci_free_container_ctx(xhci, dev->out_ctx);
  745. kfree(xhci->devs[slot_id]);
  746. xhci->devs[slot_id] = NULL;
  747. }
  748. int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
  749. struct usb_device *udev, gfp_t flags)
  750. {
  751. struct xhci_virt_device *dev;
  752. int i;
  753. /* Slot ID 0 is reserved */
  754. if (slot_id == 0 || xhci->devs[slot_id]) {
  755. xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
  756. return 0;
  757. }
  758. xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
  759. if (!xhci->devs[slot_id])
  760. return 0;
  761. dev = xhci->devs[slot_id];
  762. /* Allocate the (output) device context that will be used in the HC. */
  763. dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
  764. if (!dev->out_ctx)
  765. goto fail;
  766. xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
  767. (unsigned long long)dev->out_ctx->dma);
  768. /* Allocate the (input) device context for address device command */
  769. dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
  770. if (!dev->in_ctx)
  771. goto fail;
  772. xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
  773. (unsigned long long)dev->in_ctx->dma);
  774. /* Initialize the cancellation list and watchdog timers for each ep */
  775. for (i = 0; i < 31; i++) {
  776. xhci_init_endpoint_timer(xhci, &dev->eps[i]);
  777. INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
  778. INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
  779. }
  780. /* Allocate endpoint 0 ring */
  781. dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
  782. if (!dev->eps[0].ring)
  783. goto fail;
  784. /* Allocate pointers to the ring cache */
  785. dev->ring_cache = kzalloc(
  786. sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
  787. flags);
  788. if (!dev->ring_cache)
  789. goto fail;
  790. dev->num_rings_cached = 0;
  791. init_completion(&dev->cmd_completion);
  792. INIT_LIST_HEAD(&dev->cmd_list);
  793. dev->udev = udev;
  794. /* Point to output device context in dcbaa. */
  795. xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
  796. xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
  797. slot_id,
  798. &xhci->dcbaa->dev_context_ptrs[slot_id],
  799. le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
  800. return 1;
  801. fail:
  802. xhci_free_virt_device(xhci, slot_id);
  803. return 0;
  804. }
  805. void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
  806. struct usb_device *udev)
  807. {
  808. struct xhci_virt_device *virt_dev;
  809. struct xhci_ep_ctx *ep0_ctx;
  810. struct xhci_ring *ep_ring;
  811. virt_dev = xhci->devs[udev->slot_id];
  812. ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
  813. ep_ring = virt_dev->eps[0].ring;
  814. /*
  815. * FIXME we don't keep track of the dequeue pointer very well after a
  816. * Set TR dequeue pointer, so we're setting the dequeue pointer of the
  817. * host to our enqueue pointer. This should only be called after a
  818. * configured device has reset, so all control transfers should have
  819. * been completed or cancelled before the reset.
  820. */
  821. ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
  822. ep_ring->enqueue)
  823. | ep_ring->cycle_state);
  824. }
  825. /*
  826. * The xHCI roothub may have ports of differing speeds in any order in the port
  827. * status registers. xhci->port_array provides an array of the port speed for
  828. * each offset into the port status registers.
  829. *
  830. * The xHCI hardware wants to know the roothub port number that the USB device
  831. * is attached to (or the roothub port its ancestor hub is attached to). All we
  832. * know is the index of that port under either the USB 2.0 or the USB 3.0
  833. * roothub, but that doesn't give us the real index into the HW port status
  834. * registers. Scan through the xHCI roothub port array, looking for the Nth
  835. * entry of the correct port speed. Return the port number of that entry.
  836. */
  837. static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
  838. struct usb_device *udev)
  839. {
  840. struct usb_device *top_dev;
  841. unsigned int num_similar_speed_ports;
  842. unsigned int faked_port_num;
  843. int i;
  844. for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
  845. top_dev = top_dev->parent)
  846. /* Found device below root hub */;
  847. faked_port_num = top_dev->portnum;
  848. for (i = 0, num_similar_speed_ports = 0;
  849. i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
  850. u8 port_speed = xhci->port_array[i];
  851. /*
  852. * Skip ports that don't have known speeds, or have duplicate
  853. * Extended Capabilities port speed entries.
  854. */
  855. if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
  856. continue;
  857. /*
  858. * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
  859. * 1.1 ports are under the USB 2.0 hub. If the port speed
  860. * matches the device speed, it's a similar speed port.
  861. */
  862. if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
  863. num_similar_speed_ports++;
  864. if (num_similar_speed_ports == faked_port_num)
  865. /* Roothub ports are numbered from 1 to N */
  866. return i+1;
  867. }
  868. return 0;
  869. }
  870. /* Setup an xHCI virtual device for a Set Address command */
  871. int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
  872. {
  873. struct xhci_virt_device *dev;
  874. struct xhci_ep_ctx *ep0_ctx;
  875. struct xhci_slot_ctx *slot_ctx;
  876. struct xhci_input_control_ctx *ctrl_ctx;
  877. u32 port_num;
  878. struct usb_device *top_dev;
  879. dev = xhci->devs[udev->slot_id];
  880. /* Slot ID 0 is reserved */
  881. if (udev->slot_id == 0 || !dev) {
  882. xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
  883. udev->slot_id);
  884. return -EINVAL;
  885. }
  886. ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
  887. ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
  888. slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
  889. /* 2) New slot context and endpoint 0 context are valid*/
  890. ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
  891. /* 3) Only the control endpoint is valid - one endpoint context */
  892. slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
  893. switch (udev->speed) {
  894. case USB_SPEED_SUPER:
  895. slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
  896. break;
  897. case USB_SPEED_HIGH:
  898. slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
  899. break;
  900. case USB_SPEED_FULL:
  901. slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
  902. break;
  903. case USB_SPEED_LOW:
  904. slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
  905. break;
  906. case USB_SPEED_WIRELESS:
  907. xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
  908. return -EINVAL;
  909. break;
  910. default:
  911. /* Speed was set earlier, this shouldn't happen. */
  912. BUG();
  913. }
  914. /* Find the root hub port this device is under */
  915. port_num = xhci_find_real_port_number(xhci, udev);
  916. if (!port_num)
  917. return -EINVAL;
  918. slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
  919. /* Set the port number in the virtual_device to the faked port number */
  920. for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
  921. top_dev = top_dev->parent)
  922. /* Found device below root hub */;
  923. dev->fake_port = top_dev->portnum;
  924. dev->real_port = port_num;
  925. xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
  926. xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
  927. /* Find the right bandwidth table that this device will be a part of.
  928. * If this is a full speed device attached directly to a root port (or a
  929. * decendent of one), it counts as a primary bandwidth domain, not a
  930. * secondary bandwidth domain under a TT. An xhci_tt_info structure
  931. * will never be created for the HS root hub.
  932. */
  933. if (!udev->tt || !udev->tt->hub->parent) {
  934. dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
  935. } else {
  936. struct xhci_root_port_bw_info *rh_bw;
  937. struct xhci_tt_bw_info *tt_bw;
  938. rh_bw = &xhci->rh_bw[port_num - 1];
  939. /* Find the right TT. */
  940. list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
  941. if (tt_bw->slot_id != udev->tt->hub->slot_id)
  942. continue;
  943. if (!dev->udev->tt->multi ||
  944. (udev->tt->multi &&
  945. tt_bw->ttport == dev->udev->ttport)) {
  946. dev->bw_table = &tt_bw->bw_table;
  947. dev->tt_info = tt_bw;
  948. break;
  949. }
  950. }
  951. if (!dev->tt_info)
  952. xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
  953. }
  954. /* Is this a LS/FS device under an external HS hub? */
  955. if (udev->tt && udev->tt->hub->parent) {
  956. slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
  957. (udev->ttport << 8));
  958. if (udev->tt->multi)
  959. slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
  960. }
  961. xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
  962. xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
  963. /* Step 4 - ring already allocated */
  964. /* Step 5 */
  965. ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
  966. /*
  967. * XXX: Not sure about wireless USB devices.
  968. */
  969. switch (udev->speed) {
  970. case USB_SPEED_SUPER:
  971. ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
  972. break;
  973. case USB_SPEED_HIGH:
  974. /* USB core guesses at a 64-byte max packet first for FS devices */
  975. case USB_SPEED_FULL:
  976. ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
  977. break;
  978. case USB_SPEED_LOW:
  979. ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
  980. break;
  981. case USB_SPEED_WIRELESS:
  982. xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
  983. return -EINVAL;
  984. break;
  985. default:
  986. /* New speed? */
  987. BUG();
  988. }
  989. /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
  990. ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
  991. ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
  992. dev->eps[0].ring->cycle_state);
  993. /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
  994. return 0;
  995. }
  996. /*
  997. * Convert interval expressed as 2^(bInterval - 1) == interval into
  998. * straight exponent value 2^n == interval.
  999. *
  1000. */
  1001. static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
  1002. struct usb_host_endpoint *ep)
  1003. {
  1004. unsigned int interval;
  1005. interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
  1006. if (interval != ep->desc.bInterval - 1)
  1007. dev_warn(&udev->dev,
  1008. "ep %#x - rounding interval to %d %sframes\n",
  1009. ep->desc.bEndpointAddress,
  1010. 1 << interval,
  1011. udev->speed == USB_SPEED_FULL ? "" : "micro");
  1012. if (udev->speed == USB_SPEED_FULL) {
  1013. /*
  1014. * Full speed isoc endpoints specify interval in frames,
  1015. * not microframes. We are using microframes everywhere,
  1016. * so adjust accordingly.
  1017. */
  1018. interval += 3; /* 1 frame = 2^3 uframes */
  1019. }
  1020. return interval;
  1021. }
  1022. /*
  1023. * Convert bInterval expressed in frames (in 1-255 range) to exponent of
  1024. * microframes, rounded down to nearest power of 2.
  1025. */
  1026. static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
  1027. struct usb_host_endpoint *ep)
  1028. {
  1029. unsigned int interval;
  1030. interval = fls(8 * ep->desc.bInterval) - 1;
  1031. interval = clamp_val(interval, 3, 10);
  1032. if ((1 << interval) != 8 * ep->desc.bInterval)
  1033. dev_warn(&udev->dev,
  1034. "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
  1035. ep->desc.bEndpointAddress,
  1036. 1 << interval,
  1037. 8 * ep->desc.bInterval);
  1038. return interval;
  1039. }
  1040. /* Return the polling or NAK interval.
  1041. *
  1042. * The polling interval is expressed in "microframes". If xHCI's Interval field
  1043. * is set to N, it will service the endpoint every 2^(Interval)*125us.
  1044. *
  1045. * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
  1046. * is set to 0.
  1047. */
  1048. static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
  1049. struct usb_host_endpoint *ep)
  1050. {
  1051. unsigned int interval = 0;
  1052. switch (udev->speed) {
  1053. case USB_SPEED_HIGH:
  1054. /* Max NAK rate */
  1055. if (usb_endpoint_xfer_control(&ep->desc) ||
  1056. usb_endpoint_xfer_bulk(&ep->desc)) {
  1057. interval = ep->desc.bInterval;
  1058. break;
  1059. }
  1060. /* Fall through - SS and HS isoc/int have same decoding */
  1061. case USB_SPEED_SUPER:
  1062. if (usb_endpoint_xfer_int(&ep->desc) ||
  1063. usb_endpoint_xfer_isoc(&ep->desc)) {
  1064. interval = xhci_parse_exponent_interval(udev, ep);
  1065. }
  1066. break;
  1067. case USB_SPEED_FULL:
  1068. if (usb_endpoint_xfer_isoc(&ep->desc)) {
  1069. interval = xhci_parse_exponent_interval(udev, ep);
  1070. break;
  1071. }
  1072. /*
  1073. * Fall through for interrupt endpoint interval decoding
  1074. * since it uses the same rules as low speed interrupt
  1075. * endpoints.
  1076. */
  1077. case USB_SPEED_LOW:
  1078. if (usb_endpoint_xfer_int(&ep->desc) ||
  1079. usb_endpoint_xfer_isoc(&ep->desc)) {
  1080. interval = xhci_parse_frame_interval(udev, ep);
  1081. }
  1082. break;
  1083. default:
  1084. BUG();
  1085. }
  1086. return EP_INTERVAL(interval);
  1087. }
  1088. /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
  1089. * High speed endpoint descriptors can define "the number of additional
  1090. * transaction opportunities per microframe", but that goes in the Max Burst
  1091. * endpoint context field.
  1092. */
  1093. static u32 xhci_get_endpoint_mult(struct usb_device *udev,
  1094. struct usb_host_endpoint *ep)
  1095. {
  1096. if (udev->speed != USB_SPEED_SUPER ||
  1097. !usb_endpoint_xfer_isoc(&ep->desc))
  1098. return 0;
  1099. return ep->ss_ep_comp.bmAttributes;
  1100. }
  1101. static u32 xhci_get_endpoint_type(struct usb_device *udev,
  1102. struct usb_host_endpoint *ep)
  1103. {
  1104. int in;
  1105. u32 type;
  1106. in = usb_endpoint_dir_in(&ep->desc);
  1107. if (usb_endpoint_xfer_control(&ep->desc)) {
  1108. type = EP_TYPE(CTRL_EP);
  1109. } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
  1110. if (in)
  1111. type = EP_TYPE(BULK_IN_EP);
  1112. else
  1113. type = EP_TYPE(BULK_OUT_EP);
  1114. } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
  1115. if (in)
  1116. type = EP_TYPE(ISOC_IN_EP);
  1117. else
  1118. type = EP_TYPE(ISOC_OUT_EP);
  1119. } else if (usb_endpoint_xfer_int(&ep->desc)) {
  1120. if (in)
  1121. type = EP_TYPE(INT_IN_EP);
  1122. else
  1123. type = EP_TYPE(INT_OUT_EP);
  1124. } else {
  1125. BUG();
  1126. }
  1127. return type;
  1128. }
  1129. /* Return the maximum endpoint service interval time (ESIT) payload.
  1130. * Basically, this is the maxpacket size, multiplied by the burst size
  1131. * and mult size.
  1132. */
  1133. static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
  1134. struct usb_device *udev,
  1135. struct usb_host_endpoint *ep)
  1136. {
  1137. int max_burst;
  1138. int max_packet;
  1139. /* Only applies for interrupt or isochronous endpoints */
  1140. if (usb_endpoint_xfer_control(&ep->desc) ||
  1141. usb_endpoint_xfer_bulk(&ep->desc))
  1142. return 0;
  1143. if (udev->speed == USB_SPEED_SUPER)
  1144. return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
  1145. max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
  1146. max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
  1147. /* A 0 in max burst means 1 transfer per ESIT */
  1148. return max_packet * (max_burst + 1);
  1149. }
  1150. /* Set up an endpoint with one ring segment. Do not allocate stream rings.
  1151. * Drivers will have to call usb_alloc_streams() to do that.
  1152. */
  1153. int xhci_endpoint_init(struct xhci_hcd *xhci,
  1154. struct xhci_virt_device *virt_dev,
  1155. struct usb_device *udev,
  1156. struct usb_host_endpoint *ep,
  1157. gfp_t mem_flags)
  1158. {
  1159. unsigned int ep_index;
  1160. struct xhci_ep_ctx *ep_ctx;
  1161. struct xhci_ring *ep_ring;
  1162. unsigned int max_packet;
  1163. unsigned int max_burst;
  1164. u32 max_esit_payload;
  1165. ep_index = xhci_get_endpoint_index(&ep->desc);
  1166. ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
  1167. /* Set up the endpoint ring */
  1168. /*
  1169. * Isochronous endpoint ring needs bigger size because one isoc URB
  1170. * carries multiple packets and it will insert multiple tds to the
  1171. * ring.
  1172. * This should be replaced with dynamic ring resizing in the future.
  1173. */
  1174. if (usb_endpoint_xfer_isoc(&ep->desc))
  1175. virt_dev->eps[ep_index].new_ring =
  1176. xhci_ring_alloc(xhci, 8, true, mem_flags);
  1177. else
  1178. virt_dev->eps[ep_index].new_ring =
  1179. xhci_ring_alloc(xhci, 1, true, mem_flags);
  1180. if (!virt_dev->eps[ep_index].new_ring) {
  1181. /* Attempt to use the ring cache */
  1182. if (virt_dev->num_rings_cached == 0)
  1183. return -ENOMEM;
  1184. virt_dev->eps[ep_index].new_ring =
  1185. virt_dev->ring_cache[virt_dev->num_rings_cached];
  1186. virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
  1187. virt_dev->num_rings_cached--;
  1188. xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
  1189. }
  1190. virt_dev->eps[ep_index].skip = false;
  1191. ep_ring = virt_dev->eps[ep_index].new_ring;
  1192. ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
  1193. ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
  1194. | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
  1195. /* FIXME dig Mult and streams info out of ep companion desc */
  1196. /* Allow 3 retries for everything but isoc;
  1197. * CErr shall be set to 0 for Isoch endpoints.
  1198. */
  1199. if (!usb_endpoint_xfer_isoc(&ep->desc))
  1200. ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
  1201. else
  1202. ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
  1203. ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
  1204. /* Set the max packet size and max burst */
  1205. switch (udev->speed) {
  1206. case USB_SPEED_SUPER:
  1207. max_packet = usb_endpoint_maxp(&ep->desc);
  1208. ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
  1209. /* dig out max burst from ep companion desc */
  1210. max_packet = ep->ss_ep_comp.bMaxBurst;
  1211. ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
  1212. break;
  1213. case USB_SPEED_HIGH:
  1214. /* bits 11:12 specify the number of additional transaction
  1215. * opportunities per microframe (USB 2.0, section 9.6.6)
  1216. */
  1217. if (usb_endpoint_xfer_isoc(&ep->desc) ||
  1218. usb_endpoint_xfer_int(&ep->desc)) {
  1219. max_burst = (usb_endpoint_maxp(&ep->desc)
  1220. & 0x1800) >> 11;
  1221. ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
  1222. }
  1223. /* Fall through */
  1224. case USB_SPEED_FULL:
  1225. case USB_SPEED_LOW:
  1226. max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
  1227. ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
  1228. break;
  1229. default:
  1230. BUG();
  1231. }
  1232. max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
  1233. ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
  1234. /*
  1235. * XXX no idea how to calculate the average TRB buffer length for bulk
  1236. * endpoints, as the driver gives us no clue how big each scatter gather
  1237. * list entry (or buffer) is going to be.
  1238. *
  1239. * For isochronous and interrupt endpoints, we set it to the max
  1240. * available, until we have new API in the USB core to allow drivers to
  1241. * declare how much bandwidth they actually need.
  1242. *
  1243. * Normally, it would be calculated by taking the total of the buffer
  1244. * lengths in the TD and then dividing by the number of TRBs in a TD,
  1245. * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
  1246. * use Event Data TRBs, and we don't chain in a link TRB on short
  1247. * transfers, we're basically dividing by 1.
  1248. *
  1249. * xHCI 1.0 specification indicates that the Average TRB Length should
  1250. * be set to 8 for control endpoints.
  1251. */
  1252. if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
  1253. ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
  1254. else
  1255. ep_ctx->tx_info |=
  1256. cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
  1257. /* FIXME Debug endpoint context */
  1258. return 0;
  1259. }
  1260. void xhci_endpoint_zero(struct xhci_hcd *xhci,
  1261. struct xhci_virt_device *virt_dev,
  1262. struct usb_host_endpoint *ep)
  1263. {
  1264. unsigned int ep_index;
  1265. struct xhci_ep_ctx *ep_ctx;
  1266. ep_index = xhci_get_endpoint_index(&ep->desc);
  1267. ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
  1268. ep_ctx->ep_info = 0;
  1269. ep_ctx->ep_info2 = 0;
  1270. ep_ctx->deq = 0;
  1271. ep_ctx->tx_info = 0;
  1272. /* Don't free the endpoint ring until the set interface or configuration
  1273. * request succeeds.
  1274. */
  1275. }
  1276. void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
  1277. {
  1278. bw_info->ep_interval = 0;
  1279. bw_info->mult = 0;
  1280. bw_info->num_packets = 0;
  1281. bw_info->max_packet_size = 0;
  1282. bw_info->type = 0;
  1283. bw_info->max_esit_payload = 0;
  1284. }
  1285. void xhci_update_bw_info(struct xhci_hcd *xhci,
  1286. struct xhci_container_ctx *in_ctx,
  1287. struct xhci_input_control_ctx *ctrl_ctx,
  1288. struct xhci_virt_device *virt_dev)
  1289. {
  1290. struct xhci_bw_info *bw_info;
  1291. struct xhci_ep_ctx *ep_ctx;
  1292. unsigned int ep_type;
  1293. int i;
  1294. for (i = 1; i < 31; ++i) {
  1295. bw_info = &virt_dev->eps[i].bw_info;
  1296. /* We can't tell what endpoint type is being dropped, but
  1297. * unconditionally clearing the bandwidth info for non-periodic
  1298. * endpoints should be harmless because the info will never be
  1299. * set in the first place.
  1300. */
  1301. if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
  1302. /* Dropped endpoint */
  1303. xhci_clear_endpoint_bw_info(bw_info);
  1304. continue;
  1305. }
  1306. if (EP_IS_ADDED(ctrl_ctx, i)) {
  1307. ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
  1308. ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
  1309. /* Ignore non-periodic endpoints */
  1310. if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
  1311. ep_type != ISOC_IN_EP &&
  1312. ep_type != INT_IN_EP)
  1313. continue;
  1314. /* Added or changed endpoint */
  1315. bw_info->ep_interval = CTX_TO_EP_INTERVAL(
  1316. le32_to_cpu(ep_ctx->ep_info));
  1317. /* Number of packets and mult are zero-based in the
  1318. * input context, but we want one-based for the
  1319. * interval table.
  1320. */
  1321. bw_info->mult = CTX_TO_EP_MULT(
  1322. le32_to_cpu(ep_ctx->ep_info)) + 1;
  1323. bw_info->num_packets = CTX_TO_MAX_BURST(
  1324. le32_to_cpu(ep_ctx->ep_info2)) + 1;
  1325. bw_info->max_packet_size = MAX_PACKET_DECODED(
  1326. le32_to_cpu(ep_ctx->ep_info2));
  1327. bw_info->type = ep_type;
  1328. bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
  1329. le32_to_cpu(ep_ctx->tx_info));
  1330. }
  1331. }
  1332. }
  1333. /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
  1334. * Useful when you want to change one particular aspect of the endpoint and then
  1335. * issue a configure endpoint command.
  1336. */
  1337. void xhci_endpoint_copy(struct xhci_hcd *xhci,
  1338. struct xhci_container_ctx *in_ctx,
  1339. struct xhci_container_ctx *out_ctx,
  1340. unsigned int ep_index)
  1341. {
  1342. struct xhci_ep_ctx *out_ep_ctx;
  1343. struct xhci_ep_ctx *in_ep_ctx;
  1344. out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
  1345. in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
  1346. in_ep_ctx->ep_info = out_ep_ctx->ep_info;
  1347. in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
  1348. in_ep_ctx->deq = out_ep_ctx->deq;
  1349. in_ep_ctx->tx_info = out_ep_ctx->tx_info;
  1350. }
  1351. /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
  1352. * Useful when you want to change one particular aspect of the endpoint and then
  1353. * issue a configure endpoint command. Only the context entries field matters,
  1354. * but we'll copy the whole thing anyway.
  1355. */
  1356. void xhci_slot_copy(struct xhci_hcd *xhci,
  1357. struct xhci_container_ctx *in_ctx,
  1358. struct xhci_container_ctx *out_ctx)
  1359. {
  1360. struct xhci_slot_ctx *in_slot_ctx;
  1361. struct xhci_slot_ctx *out_slot_ctx;
  1362. in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
  1363. out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
  1364. in_slot_ctx->dev_info = out_slot_ctx->dev_info;
  1365. in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
  1366. in_slot_ctx->tt_info = out_slot_ctx->tt_info;
  1367. in_slot_ctx->dev_state = out_slot_ctx->dev_state;
  1368. }
  1369. /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
  1370. static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
  1371. {
  1372. int i;
  1373. struct device *dev = xhci_to_hcd(xhci)->self.controller;
  1374. int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
  1375. xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
  1376. if (!num_sp)
  1377. return 0;
  1378. xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
  1379. if (!xhci->scratchpad)
  1380. goto fail_sp;
  1381. xhci->scratchpad->sp_array =
  1382. pci_alloc_consistent(to_pci_dev(dev),
  1383. num_sp * sizeof(u64),
  1384. &xhci->scratchpad->sp_dma);
  1385. if (!xhci->scratchpad->sp_array)
  1386. goto fail_sp2;
  1387. xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
  1388. if (!xhci->scratchpad->sp_buffers)
  1389. goto fail_sp3;
  1390. xhci->scratchpad->sp_dma_buffers =
  1391. kzalloc(sizeof(dma_addr_t) * num_sp, flags);
  1392. if (!xhci->scratchpad->sp_dma_buffers)
  1393. goto fail_sp4;
  1394. xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
  1395. for (i = 0; i < num_sp; i++) {
  1396. dma_addr_t dma;
  1397. void *buf = pci_alloc_consistent(to_pci_dev(dev),
  1398. xhci->page_size, &dma);
  1399. if (!buf)
  1400. goto fail_sp5;
  1401. xhci->scratchpad->sp_array[i] = dma;
  1402. xhci->scratchpad->sp_buffers[i] = buf;
  1403. xhci->scratchpad->sp_dma_buffers[i] = dma;
  1404. }
  1405. return 0;
  1406. fail_sp5:
  1407. for (i = i - 1; i >= 0; i--) {
  1408. pci_free_consistent(to_pci_dev(dev), xhci->page_size,
  1409. xhci->scratchpad->sp_buffers[i],
  1410. xhci->scratchpad->sp_dma_buffers[i]);
  1411. }
  1412. kfree(xhci->scratchpad->sp_dma_buffers);
  1413. fail_sp4:
  1414. kfree(xhci->scratchpad->sp_buffers);
  1415. fail_sp3:
  1416. pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
  1417. xhci->scratchpad->sp_array,
  1418. xhci->scratchpad->sp_dma);
  1419. fail_sp2:
  1420. kfree(xhci->scratchpad);
  1421. xhci->scratchpad = NULL;
  1422. fail_sp:
  1423. return -ENOMEM;
  1424. }
  1425. static void scratchpad_free(struct xhci_hcd *xhci)
  1426. {
  1427. int num_sp;
  1428. int i;
  1429. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  1430. if (!xhci->scratchpad)
  1431. return;
  1432. num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
  1433. for (i = 0; i < num_sp; i++) {
  1434. pci_free_consistent(pdev, xhci->page_size,
  1435. xhci->scratchpad->sp_buffers[i],
  1436. xhci->scratchpad->sp_dma_buffers[i]);
  1437. }
  1438. kfree(xhci->scratchpad->sp_dma_buffers);
  1439. kfree(xhci->scratchpad->sp_buffers);
  1440. pci_free_consistent(pdev, num_sp * sizeof(u64),
  1441. xhci->scratchpad->sp_array,
  1442. xhci->scratchpad->sp_dma);
  1443. kfree(xhci->scratchpad);
  1444. xhci->scratchpad = NULL;
  1445. }
  1446. struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
  1447. bool allocate_in_ctx, bool allocate_completion,
  1448. gfp_t mem_flags)
  1449. {
  1450. struct xhci_command *command;
  1451. command = kzalloc(sizeof(*command), mem_flags);
  1452. if (!command)
  1453. return NULL;
  1454. if (allocate_in_ctx) {
  1455. command->in_ctx =
  1456. xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
  1457. mem_flags);
  1458. if (!command->in_ctx) {
  1459. kfree(command);
  1460. return NULL;
  1461. }
  1462. }
  1463. if (allocate_completion) {
  1464. command->completion =
  1465. kzalloc(sizeof(struct completion), mem_flags);
  1466. if (!command->completion) {
  1467. xhci_free_container_ctx(xhci, command->in_ctx);
  1468. kfree(command);
  1469. return NULL;
  1470. }
  1471. init_completion(command->completion);
  1472. }
  1473. command->status = 0;
  1474. INIT_LIST_HEAD(&command->cmd_list);
  1475. return command;
  1476. }
  1477. void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
  1478. {
  1479. if (urb_priv) {
  1480. kfree(urb_priv->td[0]);
  1481. kfree(urb_priv);
  1482. }
  1483. }
  1484. void xhci_free_command(struct xhci_hcd *xhci,
  1485. struct xhci_command *command)
  1486. {
  1487. xhci_free_container_ctx(xhci,
  1488. command->in_ctx);
  1489. kfree(command->completion);
  1490. kfree(command);
  1491. }
  1492. void xhci_mem_cleanup(struct xhci_hcd *xhci)
  1493. {
  1494. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  1495. int size;
  1496. int i;
  1497. /* Free the Event Ring Segment Table and the actual Event Ring */
  1498. if (xhci->ir_set) {
  1499. xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
  1500. xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
  1501. xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
  1502. }
  1503. size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
  1504. if (xhci->erst.entries)
  1505. pci_free_consistent(pdev, size,
  1506. xhci->erst.entries, xhci->erst.erst_dma_addr);
  1507. xhci->erst.entries = NULL;
  1508. xhci_dbg(xhci, "Freed ERST\n");
  1509. if (xhci->event_ring)
  1510. xhci_ring_free(xhci, xhci->event_ring);
  1511. xhci->event_ring = NULL;
  1512. xhci_dbg(xhci, "Freed event ring\n");
  1513. xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
  1514. if (xhci->cmd_ring)
  1515. xhci_ring_free(xhci, xhci->cmd_ring);
  1516. xhci->cmd_ring = NULL;
  1517. xhci_dbg(xhci, "Freed command ring\n");
  1518. for (i = 1; i < MAX_HC_SLOTS; ++i)
  1519. xhci_free_virt_device(xhci, i);
  1520. if (xhci->segment_pool)
  1521. dma_pool_destroy(xhci->segment_pool);
  1522. xhci->segment_pool = NULL;
  1523. xhci_dbg(xhci, "Freed segment pool\n");
  1524. if (xhci->device_pool)
  1525. dma_pool_destroy(xhci->device_pool);
  1526. xhci->device_pool = NULL;
  1527. xhci_dbg(xhci, "Freed device context pool\n");
  1528. if (xhci->small_streams_pool)
  1529. dma_pool_destroy(xhci->small_streams_pool);
  1530. xhci->small_streams_pool = NULL;
  1531. xhci_dbg(xhci, "Freed small stream array pool\n");
  1532. if (xhci->medium_streams_pool)
  1533. dma_pool_destroy(xhci->medium_streams_pool);
  1534. xhci->medium_streams_pool = NULL;
  1535. xhci_dbg(xhci, "Freed medium stream array pool\n");
  1536. xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
  1537. if (xhci->dcbaa)
  1538. pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
  1539. xhci->dcbaa, xhci->dcbaa->dma);
  1540. xhci->dcbaa = NULL;
  1541. scratchpad_free(xhci);
  1542. xhci->num_usb2_ports = 0;
  1543. xhci->num_usb3_ports = 0;
  1544. kfree(xhci->usb2_ports);
  1545. kfree(xhci->usb3_ports);
  1546. kfree(xhci->port_array);
  1547. kfree(xhci->rh_bw);
  1548. xhci->page_size = 0;
  1549. xhci->page_shift = 0;
  1550. xhci->bus_state[0].bus_suspended = 0;
  1551. xhci->bus_state[1].bus_suspended = 0;
  1552. }
  1553. static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
  1554. struct xhci_segment *input_seg,
  1555. union xhci_trb *start_trb,
  1556. union xhci_trb *end_trb,
  1557. dma_addr_t input_dma,
  1558. struct xhci_segment *result_seg,
  1559. char *test_name, int test_number)
  1560. {
  1561. unsigned long long start_dma;
  1562. unsigned long long end_dma;
  1563. struct xhci_segment *seg;
  1564. start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
  1565. end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
  1566. seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
  1567. if (seg != result_seg) {
  1568. xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
  1569. test_name, test_number);
  1570. xhci_warn(xhci, "Tested TRB math w/ seg %p and "
  1571. "input DMA 0x%llx\n",
  1572. input_seg,
  1573. (unsigned long long) input_dma);
  1574. xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
  1575. "ending TRB %p (0x%llx DMA)\n",
  1576. start_trb, start_dma,
  1577. end_trb, end_dma);
  1578. xhci_warn(xhci, "Expected seg %p, got seg %p\n",
  1579. result_seg, seg);
  1580. return -1;
  1581. }
  1582. return 0;
  1583. }
  1584. /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
  1585. static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
  1586. {
  1587. struct {
  1588. dma_addr_t input_dma;
  1589. struct xhci_segment *result_seg;
  1590. } simple_test_vector [] = {
  1591. /* A zeroed DMA field should fail */
  1592. { 0, NULL },
  1593. /* One TRB before the ring start should fail */
  1594. { xhci->event_ring->first_seg->dma - 16, NULL },
  1595. /* One byte before the ring start should fail */
  1596. { xhci->event_ring->first_seg->dma - 1, NULL },
  1597. /* Starting TRB should succeed */
  1598. { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
  1599. /* Ending TRB should succeed */
  1600. { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
  1601. xhci->event_ring->first_seg },
  1602. /* One byte after the ring end should fail */
  1603. { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
  1604. /* One TRB after the ring end should fail */
  1605. { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
  1606. /* An address of all ones should fail */
  1607. { (dma_addr_t) (~0), NULL },
  1608. };
  1609. struct {
  1610. struct xhci_segment *input_seg;
  1611. union xhci_trb *start_trb;
  1612. union xhci_trb *end_trb;
  1613. dma_addr_t input_dma;
  1614. struct xhci_segment *result_seg;
  1615. } complex_test_vector [] = {
  1616. /* Test feeding a valid DMA address from a different ring */
  1617. { .input_seg = xhci->event_ring->first_seg,
  1618. .start_trb = xhci->event_ring->first_seg->trbs,
  1619. .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
  1620. .input_dma = xhci->cmd_ring->first_seg->dma,
  1621. .result_seg = NULL,
  1622. },
  1623. /* Test feeding a valid end TRB from a different ring */
  1624. { .input_seg = xhci->event_ring->first_seg,
  1625. .start_trb = xhci->event_ring->first_seg->trbs,
  1626. .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
  1627. .input_dma = xhci->cmd_ring->first_seg->dma,
  1628. .result_seg = NULL,
  1629. },
  1630. /* Test feeding a valid start and end TRB from a different ring */
  1631. { .input_seg = xhci->event_ring->first_seg,
  1632. .start_trb = xhci->cmd_ring->first_seg->trbs,
  1633. .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
  1634. .input_dma = xhci->cmd_ring->first_seg->dma,
  1635. .result_seg = NULL,
  1636. },
  1637. /* TRB in this ring, but after this TD */
  1638. { .input_seg = xhci->event_ring->first_seg,
  1639. .start_trb = &xhci->event_ring->first_seg->trbs[0],
  1640. .end_trb = &xhci->event_ring->first_seg->trbs[3],
  1641. .input_dma = xhci->event_ring->first_seg->dma + 4*16,
  1642. .result_seg = NULL,
  1643. },
  1644. /* TRB in this ring, but before this TD */
  1645. { .input_seg = xhci->event_ring->first_seg,
  1646. .start_trb = &xhci->event_ring->first_seg->trbs[3],
  1647. .end_trb = &xhci->event_ring->first_seg->trbs[6],
  1648. .input_dma = xhci->event_ring->first_seg->dma + 2*16,
  1649. .result_seg = NULL,
  1650. },
  1651. /* TRB in this ring, but after this wrapped TD */
  1652. { .input_seg = xhci->event_ring->first_seg,
  1653. .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
  1654. .end_trb = &xhci->event_ring->first_seg->trbs[1],
  1655. .input_dma = xhci->event_ring->first_seg->dma + 2*16,
  1656. .result_seg = NULL,
  1657. },
  1658. /* TRB in this ring, but before this wrapped TD */
  1659. { .input_seg = xhci->event_ring->first_seg,
  1660. .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
  1661. .end_trb = &xhci->event_ring->first_seg->trbs[1],
  1662. .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
  1663. .result_seg = NULL,
  1664. },
  1665. /* TRB not in this ring, and we have a wrapped TD */
  1666. { .input_seg = xhci->event_ring->first_seg,
  1667. .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
  1668. .end_trb = &xhci->event_ring->first_seg->trbs[1],
  1669. .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
  1670. .result_seg = NULL,
  1671. },
  1672. };
  1673. unsigned int num_tests;
  1674. int i, ret;
  1675. num_tests = ARRAY_SIZE(simple_test_vector);
  1676. for (i = 0; i < num_tests; i++) {
  1677. ret = xhci_test_trb_in_td(xhci,
  1678. xhci->event_ring->first_seg,
  1679. xhci->event_ring->first_seg->trbs,
  1680. &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
  1681. simple_test_vector[i].input_dma,
  1682. simple_test_vector[i].result_seg,
  1683. "Simple", i);
  1684. if (ret < 0)
  1685. return ret;
  1686. }
  1687. num_tests = ARRAY_SIZE(complex_test_vector);
  1688. for (i = 0; i < num_tests; i++) {
  1689. ret = xhci_test_trb_in_td(xhci,
  1690. complex_test_vector[i].input_seg,
  1691. complex_test_vector[i].start_trb,
  1692. complex_test_vector[i].end_trb,
  1693. complex_test_vector[i].input_dma,
  1694. complex_test_vector[i].result_seg,
  1695. "Complex", i);
  1696. if (ret < 0)
  1697. return ret;
  1698. }
  1699. xhci_dbg(xhci, "TRB math tests passed.\n");
  1700. return 0;
  1701. }
  1702. static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
  1703. {
  1704. u64 temp;
  1705. dma_addr_t deq;
  1706. deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
  1707. xhci->event_ring->dequeue);
  1708. if (deq == 0 && !in_interrupt())
  1709. xhci_warn(xhci, "WARN something wrong with SW event ring "
  1710. "dequeue ptr.\n");
  1711. /* Update HC event ring dequeue pointer */
  1712. temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  1713. temp &= ERST_PTR_MASK;
  1714. /* Don't clear the EHB bit (which is RW1C) because
  1715. * there might be more events to service.
  1716. */
  1717. temp &= ~ERST_EHB;
  1718. xhci_dbg(xhci, "// Write event ring dequeue pointer, "
  1719. "preserving EHB bit\n");
  1720. xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
  1721. &xhci->ir_set->erst_dequeue);
  1722. }
  1723. static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
  1724. __le32 __iomem *addr, u8 major_revision)
  1725. {
  1726. u32 temp, port_offset, port_count;
  1727. int i;
  1728. if (major_revision > 0x03) {
  1729. xhci_warn(xhci, "Ignoring unknown port speed, "
  1730. "Ext Cap %p, revision = 0x%x\n",
  1731. addr, major_revision);
  1732. /* Ignoring port protocol we can't understand. FIXME */
  1733. return;
  1734. }
  1735. /* Port offset and count in the third dword, see section 7.2 */
  1736. temp = xhci_readl(xhci, addr + 2);
  1737. port_offset = XHCI_EXT_PORT_OFF(temp);
  1738. port_count = XHCI_EXT_PORT_COUNT(temp);
  1739. xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
  1740. "count = %u, revision = 0x%x\n",
  1741. addr, port_offset, port_count, major_revision);
  1742. /* Port count includes the current port offset */
  1743. if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
  1744. /* WTF? "Valid values are ‘1’ to MaxPorts" */
  1745. return;
  1746. port_offset--;
  1747. for (i = port_offset; i < (port_offset + port_count); i++) {
  1748. /* Duplicate entry. Ignore the port if the revisions differ. */
  1749. if (xhci->port_array[i] != 0) {
  1750. xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
  1751. " port %u\n", addr, i);
  1752. xhci_warn(xhci, "Port was marked as USB %u, "
  1753. "duplicated as USB %u\n",
  1754. xhci->port_array[i], major_revision);
  1755. /* Only adjust the roothub port counts if we haven't
  1756. * found a similar duplicate.
  1757. */
  1758. if (xhci->port_array[i] != major_revision &&
  1759. xhci->port_array[i] != DUPLICATE_ENTRY) {
  1760. if (xhci->port_array[i] == 0x03)
  1761. xhci->num_usb3_ports--;
  1762. else
  1763. xhci->num_usb2_ports--;
  1764. xhci->port_array[i] = DUPLICATE_ENTRY;
  1765. }
  1766. /* FIXME: Should we disable the port? */
  1767. continue;
  1768. }
  1769. xhci->port_array[i] = major_revision;
  1770. if (major_revision == 0x03)
  1771. xhci->num_usb3_ports++;
  1772. else
  1773. xhci->num_usb2_ports++;
  1774. }
  1775. /* FIXME: Should we disable ports not in the Extended Capabilities? */
  1776. }
  1777. /*
  1778. * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
  1779. * specify what speeds each port is supposed to be. We can't count on the port
  1780. * speed bits in the PORTSC register being correct until a device is connected,
  1781. * but we need to set up the two fake roothubs with the correct number of USB
  1782. * 3.0 and USB 2.0 ports at host controller initialization time.
  1783. */
  1784. static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
  1785. {
  1786. __le32 __iomem *addr;
  1787. u32 offset;
  1788. unsigned int num_ports;
  1789. int i, j, port_index;
  1790. addr = &xhci->cap_regs->hcc_params;
  1791. offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
  1792. if (offset == 0) {
  1793. xhci_err(xhci, "No Extended Capability registers, "
  1794. "unable to set up roothub.\n");
  1795. return -ENODEV;
  1796. }
  1797. num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
  1798. xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
  1799. if (!xhci->port_array)
  1800. return -ENOMEM;
  1801. xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
  1802. if (!xhci->rh_bw)
  1803. return -ENOMEM;
  1804. for (i = 0; i < num_ports; i++) {
  1805. struct xhci_interval_bw_table *bw_table;
  1806. INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
  1807. bw_table = &xhci->rh_bw[i].bw_table;
  1808. for (j = 0; j < XHCI_MAX_INTERVAL; j++)
  1809. INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
  1810. }
  1811. /*
  1812. * For whatever reason, the first capability offset is from the
  1813. * capability register base, not from the HCCPARAMS register.
  1814. * See section 5.3.6 for offset calculation.
  1815. */
  1816. addr = &xhci->cap_regs->hc_capbase + offset;
  1817. while (1) {
  1818. u32 cap_id;
  1819. cap_id = xhci_readl(xhci, addr);
  1820. if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
  1821. xhci_add_in_port(xhci, num_ports, addr,
  1822. (u8) XHCI_EXT_PORT_MAJOR(cap_id));
  1823. offset = XHCI_EXT_CAPS_NEXT(cap_id);
  1824. if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
  1825. == num_ports)
  1826. break;
  1827. /*
  1828. * Once you're into the Extended Capabilities, the offset is
  1829. * always relative to the register holding the offset.
  1830. */
  1831. addr += offset;
  1832. }
  1833. if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
  1834. xhci_warn(xhci, "No ports on the roothubs?\n");
  1835. return -ENODEV;
  1836. }
  1837. xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
  1838. xhci->num_usb2_ports, xhci->num_usb3_ports);
  1839. /* Place limits on the number of roothub ports so that the hub
  1840. * descriptors aren't longer than the USB core will allocate.
  1841. */
  1842. if (xhci->num_usb3_ports > 15) {
  1843. xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
  1844. xhci->num_usb3_ports = 15;
  1845. }
  1846. if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
  1847. xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
  1848. USB_MAXCHILDREN);
  1849. xhci->num_usb2_ports = USB_MAXCHILDREN;
  1850. }
  1851. /*
  1852. * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
  1853. * Not sure how the USB core will handle a hub with no ports...
  1854. */
  1855. if (xhci->num_usb2_ports) {
  1856. xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
  1857. xhci->num_usb2_ports, flags);
  1858. if (!xhci->usb2_ports)
  1859. return -ENOMEM;
  1860. port_index = 0;
  1861. for (i = 0; i < num_ports; i++) {
  1862. if (xhci->port_array[i] == 0x03 ||
  1863. xhci->port_array[i] == 0 ||
  1864. xhci->port_array[i] == DUPLICATE_ENTRY)
  1865. continue;
  1866. xhci->usb2_ports[port_index] =
  1867. &xhci->op_regs->port_status_base +
  1868. NUM_PORT_REGS*i;
  1869. xhci_dbg(xhci, "USB 2.0 port at index %u, "
  1870. "addr = %p\n", i,
  1871. xhci->usb2_ports[port_index]);
  1872. port_index++;
  1873. if (port_index == xhci->num_usb2_ports)
  1874. break;
  1875. }
  1876. }
  1877. if (xhci->num_usb3_ports) {
  1878. xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
  1879. xhci->num_usb3_ports, flags);
  1880. if (!xhci->usb3_ports)
  1881. return -ENOMEM;
  1882. port_index = 0;
  1883. for (i = 0; i < num_ports; i++)
  1884. if (xhci->port_array[i] == 0x03) {
  1885. xhci->usb3_ports[port_index] =
  1886. &xhci->op_regs->port_status_base +
  1887. NUM_PORT_REGS*i;
  1888. xhci_dbg(xhci, "USB 3.0 port at index %u, "
  1889. "addr = %p\n", i,
  1890. xhci->usb3_ports[port_index]);
  1891. port_index++;
  1892. if (port_index == xhci->num_usb3_ports)
  1893. break;
  1894. }
  1895. }
  1896. return 0;
  1897. }
  1898. int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
  1899. {
  1900. dma_addr_t dma;
  1901. struct device *dev = xhci_to_hcd(xhci)->self.controller;
  1902. unsigned int val, val2;
  1903. u64 val_64;
  1904. struct xhci_segment *seg;
  1905. u32 page_size;
  1906. int i;
  1907. page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
  1908. xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
  1909. for (i = 0; i < 16; i++) {
  1910. if ((0x1 & page_size) != 0)
  1911. break;
  1912. page_size = page_size >> 1;
  1913. }
  1914. if (i < 16)
  1915. xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
  1916. else
  1917. xhci_warn(xhci, "WARN: no supported page size\n");
  1918. /* Use 4K pages, since that's common and the minimum the HC supports */
  1919. xhci->page_shift = 12;
  1920. xhci->page_size = 1 << xhci->page_shift;
  1921. xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
  1922. /*
  1923. * Program the Number of Device Slots Enabled field in the CONFIG
  1924. * register with the max value of slots the HC can handle.
  1925. */
  1926. val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
  1927. xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
  1928. (unsigned int) val);
  1929. val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
  1930. val |= (val2 & ~HCS_SLOTS_MASK);
  1931. xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
  1932. (unsigned int) val);
  1933. xhci_writel(xhci, val, &xhci->op_regs->config_reg);
  1934. /*
  1935. * Section 5.4.8 - doorbell array must be
  1936. * "physically contiguous and 64-byte (cache line) aligned".
  1937. */
  1938. xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
  1939. sizeof(*xhci->dcbaa), &dma);
  1940. if (!xhci->dcbaa)
  1941. goto fail;
  1942. memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
  1943. xhci->dcbaa->dma = dma;
  1944. xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
  1945. (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
  1946. xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
  1947. /*
  1948. * Initialize the ring segment pool. The ring must be a contiguous
  1949. * structure comprised of TRBs. The TRBs must be 16 byte aligned,
  1950. * however, the command ring segment needs 64-byte aligned segments,
  1951. * so we pick the greater alignment need.
  1952. */
  1953. xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
  1954. SEGMENT_SIZE, 64, xhci->page_size);
  1955. /* See Table 46 and Note on Figure 55 */
  1956. xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
  1957. 2112, 64, xhci->page_size);
  1958. if (!xhci->segment_pool || !xhci->device_pool)
  1959. goto fail;
  1960. /* Linear stream context arrays don't have any boundary restrictions,
  1961. * and only need to be 16-byte aligned.
  1962. */
  1963. xhci->small_streams_pool =
  1964. dma_pool_create("xHCI 256 byte stream ctx arrays",
  1965. dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
  1966. xhci->medium_streams_pool =
  1967. dma_pool_create("xHCI 1KB stream ctx arrays",
  1968. dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
  1969. /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
  1970. * will be allocated with pci_alloc_consistent()
  1971. */
  1972. if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
  1973. goto fail;
  1974. /* Set up the command ring to have one segments for now. */
  1975. xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
  1976. if (!xhci->cmd_ring)
  1977. goto fail;
  1978. xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
  1979. xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
  1980. (unsigned long long)xhci->cmd_ring->first_seg->dma);
  1981. /* Set the address in the Command Ring Control register */
  1982. val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
  1983. val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
  1984. (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
  1985. xhci->cmd_ring->cycle_state;
  1986. xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
  1987. xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
  1988. xhci_dbg_cmd_ptrs(xhci);
  1989. val = xhci_readl(xhci, &xhci->cap_regs->db_off);
  1990. val &= DBOFF_MASK;
  1991. xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
  1992. " from cap regs base addr\n", val);
  1993. xhci->dba = (void __iomem *) xhci->cap_regs + val;
  1994. xhci_dbg_regs(xhci);
  1995. xhci_print_run_regs(xhci);
  1996. /* Set ir_set to interrupt register set 0 */
  1997. xhci->ir_set = &xhci->run_regs->ir_set[0];
  1998. /*
  1999. * Event ring setup: Allocate a normal ring, but also setup
  2000. * the event ring segment table (ERST). Section 4.9.3.
  2001. */
  2002. xhci_dbg(xhci, "// Allocating event ring\n");
  2003. xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
  2004. if (!xhci->event_ring)
  2005. goto fail;
  2006. if (xhci_check_trb_in_td_math(xhci, flags) < 0)
  2007. goto fail;
  2008. xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
  2009. sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
  2010. if (!xhci->erst.entries)
  2011. goto fail;
  2012. xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
  2013. (unsigned long long)dma);
  2014. memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
  2015. xhci->erst.num_entries = ERST_NUM_SEGS;
  2016. xhci->erst.erst_dma_addr = dma;
  2017. xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
  2018. xhci->erst.num_entries,
  2019. xhci->erst.entries,
  2020. (unsigned long long)xhci->erst.erst_dma_addr);
  2021. /* set ring base address and size for each segment table entry */
  2022. for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
  2023. struct xhci_erst_entry *entry = &xhci->erst.entries[val];
  2024. entry->seg_addr = cpu_to_le64(seg->dma);
  2025. entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
  2026. entry->rsvd = 0;
  2027. seg = seg->next;
  2028. }
  2029. /* set ERST count with the number of entries in the segment table */
  2030. val = xhci_readl(xhci, &xhci->ir_set->erst_size);
  2031. val &= ERST_SIZE_MASK;
  2032. val |= ERST_NUM_SEGS;
  2033. xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
  2034. val);
  2035. xhci_writel(xhci, val, &xhci->ir_set->erst_size);
  2036. xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
  2037. /* set the segment table base address */
  2038. xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
  2039. (unsigned long long)xhci->erst.erst_dma_addr);
  2040. val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
  2041. val_64 &= ERST_PTR_MASK;
  2042. val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
  2043. xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
  2044. /* Set the event ring dequeue address */
  2045. xhci_set_hc_event_deq(xhci);
  2046. xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
  2047. xhci_print_ir_set(xhci, 0);
  2048. /*
  2049. * XXX: Might need to set the Interrupter Moderation Register to
  2050. * something other than the default (~1ms minimum between interrupts).
  2051. * See section 5.5.1.2.
  2052. */
  2053. init_completion(&xhci->addr_dev);
  2054. for (i = 0; i < MAX_HC_SLOTS; ++i)
  2055. xhci->devs[i] = NULL;
  2056. for (i = 0; i < USB_MAXCHILDREN; ++i) {
  2057. xhci->bus_state[0].resume_done[i] = 0;
  2058. xhci->bus_state[1].resume_done[i] = 0;
  2059. }
  2060. if (scratchpad_alloc(xhci, flags))
  2061. goto fail;
  2062. if (xhci_setup_port_arrays(xhci, flags))
  2063. goto fail;
  2064. return 0;
  2065. fail:
  2066. xhci_warn(xhci, "Couldn't initialize memory\n");
  2067. xhci_mem_cleanup(xhci);
  2068. return -ENOMEM;
  2069. }