smp.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711
  1. /*
  2. * linux/arch/arm/kernel/smp.c
  3. *
  4. * Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/delay.h>
  12. #include <linux/init.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/sched.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/cache.h>
  17. #include <linux/profile.h>
  18. #include <linux/errno.h>
  19. #include <linux/mm.h>
  20. #include <linux/err.h>
  21. #include <linux/cpu.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/irq.h>
  24. #include <linux/percpu.h>
  25. #include <linux/clockchips.h>
  26. #include <linux/completion.h>
  27. #include <linux/cpufreq.h>
  28. #include <linux/atomic.h>
  29. #include <asm/smp.h>
  30. #include <asm/cacheflush.h>
  31. #include <asm/cpu.h>
  32. #include <asm/cputype.h>
  33. #include <asm/exception.h>
  34. #include <asm/idmap.h>
  35. #include <asm/topology.h>
  36. #include <asm/mmu_context.h>
  37. #include <asm/pgtable.h>
  38. #include <asm/pgalloc.h>
  39. #include <asm/processor.h>
  40. #include <asm/sections.h>
  41. #include <asm/tlbflush.h>
  42. #include <asm/ptrace.h>
  43. #include <asm/localtimer.h>
  44. #include <asm/smp_plat.h>
  45. #include <asm/mach/arch.h>
  46. /*
  47. * as from 2.5, kernels no longer have an init_tasks structure
  48. * so we need some other way of telling a new secondary core
  49. * where to place its SVC stack
  50. */
  51. struct secondary_data secondary_data;
  52. /*
  53. * control for which core is the next to come out of the secondary
  54. * boot "holding pen"
  55. */
  56. volatile int __cpuinitdata pen_release = -1;
  57. enum ipi_msg_type {
  58. IPI_WAKEUP,
  59. IPI_TIMER,
  60. IPI_RESCHEDULE,
  61. IPI_CALL_FUNC,
  62. IPI_CALL_FUNC_SINGLE,
  63. IPI_CPU_STOP,
  64. };
  65. static DECLARE_COMPLETION(cpu_running);
  66. static struct smp_operations smp_ops;
  67. void __init smp_set_ops(struct smp_operations *ops)
  68. {
  69. if (ops)
  70. smp_ops = *ops;
  71. };
  72. int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
  73. {
  74. int ret;
  75. /*
  76. * We need to tell the secondary core where to find
  77. * its stack and the page tables.
  78. */
  79. secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
  80. secondary_data.pgdir = virt_to_phys(idmap_pgd);
  81. secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
  82. __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
  83. outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
  84. /*
  85. * Now bring the CPU into our world.
  86. */
  87. ret = boot_secondary(cpu, idle);
  88. if (ret == 0) {
  89. /*
  90. * CPU was successfully started, wait for it
  91. * to come online or time out.
  92. */
  93. wait_for_completion_timeout(&cpu_running,
  94. msecs_to_jiffies(1000));
  95. if (!cpu_online(cpu)) {
  96. pr_crit("CPU%u: failed to come online\n", cpu);
  97. ret = -EIO;
  98. }
  99. } else {
  100. pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
  101. }
  102. secondary_data.stack = NULL;
  103. secondary_data.pgdir = 0;
  104. return ret;
  105. }
  106. /* platform specific SMP operations */
  107. void __init smp_init_cpus(void)
  108. {
  109. if (smp_ops.smp_init_cpus)
  110. smp_ops.smp_init_cpus();
  111. }
  112. static void __init platform_smp_prepare_cpus(unsigned int max_cpus)
  113. {
  114. if (smp_ops.smp_prepare_cpus)
  115. smp_ops.smp_prepare_cpus(max_cpus);
  116. }
  117. static void __cpuinit platform_secondary_init(unsigned int cpu)
  118. {
  119. if (smp_ops.smp_secondary_init)
  120. smp_ops.smp_secondary_init(cpu);
  121. }
  122. int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
  123. {
  124. if (smp_ops.smp_boot_secondary)
  125. return smp_ops.smp_boot_secondary(cpu, idle);
  126. return -ENOSYS;
  127. }
  128. #ifdef CONFIG_HOTPLUG_CPU
  129. static void percpu_timer_stop(void);
  130. static int platform_cpu_kill(unsigned int cpu)
  131. {
  132. if (smp_ops.cpu_kill)
  133. return smp_ops.cpu_kill(cpu);
  134. return 1;
  135. }
  136. static void platform_cpu_die(unsigned int cpu)
  137. {
  138. if (smp_ops.cpu_die)
  139. smp_ops.cpu_die(cpu);
  140. }
  141. static int platform_cpu_disable(unsigned int cpu)
  142. {
  143. if (smp_ops.cpu_disable)
  144. return smp_ops.cpu_disable(cpu);
  145. /*
  146. * By default, allow disabling all CPUs except the first one,
  147. * since this is special on a lot of platforms, e.g. because
  148. * of clock tick interrupts.
  149. */
  150. return cpu == 0 ? -EPERM : 0;
  151. }
  152. /*
  153. * __cpu_disable runs on the processor to be shutdown.
  154. */
  155. int __cpuinit __cpu_disable(void)
  156. {
  157. unsigned int cpu = smp_processor_id();
  158. int ret;
  159. ret = platform_cpu_disable(cpu);
  160. if (ret)
  161. return ret;
  162. /*
  163. * Take this CPU offline. Once we clear this, we can't return,
  164. * and we must not schedule until we're ready to give up the cpu.
  165. */
  166. set_cpu_online(cpu, false);
  167. /*
  168. * OK - migrate IRQs away from this CPU
  169. */
  170. migrate_irqs();
  171. /*
  172. * Stop the local timer for this CPU.
  173. */
  174. percpu_timer_stop();
  175. /*
  176. * Flush user cache and TLB mappings, and then remove this CPU
  177. * from the vm mask set of all processes.
  178. */
  179. flush_cache_all();
  180. local_flush_tlb_all();
  181. clear_tasks_mm_cpumask(cpu);
  182. return 0;
  183. }
  184. static DECLARE_COMPLETION(cpu_died);
  185. /*
  186. * called on the thread which is asking for a CPU to be shutdown -
  187. * waits until shutdown has completed, or it is timed out.
  188. */
  189. void __cpuinit __cpu_die(unsigned int cpu)
  190. {
  191. if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
  192. pr_err("CPU%u: cpu didn't die\n", cpu);
  193. return;
  194. }
  195. printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
  196. if (!platform_cpu_kill(cpu))
  197. printk("CPU%u: unable to kill\n", cpu);
  198. }
  199. /*
  200. * Called from the idle thread for the CPU which has been shutdown.
  201. *
  202. * Note that we disable IRQs here, but do not re-enable them
  203. * before returning to the caller. This is also the behaviour
  204. * of the other hotplug-cpu capable cores, so presumably coming
  205. * out of idle fixes this.
  206. */
  207. void __ref cpu_die(void)
  208. {
  209. unsigned int cpu = smp_processor_id();
  210. idle_task_exit();
  211. local_irq_disable();
  212. mb();
  213. /* Tell __cpu_die() that this CPU is now safe to dispose of */
  214. RCU_NONIDLE(complete(&cpu_died));
  215. /*
  216. * actual CPU shutdown procedure is at least platform (if not
  217. * CPU) specific.
  218. */
  219. platform_cpu_die(cpu);
  220. /*
  221. * Do not return to the idle loop - jump back to the secondary
  222. * cpu initialisation. There's some initialisation which needs
  223. * to be repeated to undo the effects of taking the CPU offline.
  224. */
  225. __asm__("mov sp, %0\n"
  226. " mov fp, #0\n"
  227. " b secondary_start_kernel"
  228. :
  229. : "r" (task_stack_page(current) + THREAD_SIZE - 8));
  230. }
  231. #endif /* CONFIG_HOTPLUG_CPU */
  232. /*
  233. * Called by both boot and secondaries to move global data into
  234. * per-processor storage.
  235. */
  236. static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
  237. {
  238. struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
  239. cpu_info->loops_per_jiffy = loops_per_jiffy;
  240. store_cpu_topology(cpuid);
  241. }
  242. static void percpu_timer_setup(void);
  243. /*
  244. * This is the secondary CPU boot entry. We're using this CPUs
  245. * idle thread stack, but a set of temporary page tables.
  246. */
  247. asmlinkage void __cpuinit secondary_start_kernel(void)
  248. {
  249. struct mm_struct *mm = &init_mm;
  250. unsigned int cpu = smp_processor_id();
  251. /*
  252. * All kernel threads share the same mm context; grab a
  253. * reference and switch to it.
  254. */
  255. atomic_inc(&mm->mm_count);
  256. current->active_mm = mm;
  257. cpumask_set_cpu(cpu, mm_cpumask(mm));
  258. cpu_switch_mm(mm->pgd, mm);
  259. enter_lazy_tlb(mm, current);
  260. local_flush_tlb_all();
  261. printk("CPU%u: Booted secondary processor\n", cpu);
  262. cpu_init();
  263. preempt_disable();
  264. trace_hardirqs_off();
  265. /*
  266. * Give the platform a chance to do its own initialisation.
  267. */
  268. platform_secondary_init(cpu);
  269. notify_cpu_starting(cpu);
  270. calibrate_delay();
  271. smp_store_cpu_info(cpu);
  272. /*
  273. * OK, now it's safe to let the boot CPU continue. Wait for
  274. * the CPU migration code to notice that the CPU is online
  275. * before we continue - which happens after __cpu_up returns.
  276. */
  277. set_cpu_online(cpu, true);
  278. complete(&cpu_running);
  279. /*
  280. * Setup the percpu timer for this CPU.
  281. */
  282. percpu_timer_setup();
  283. local_irq_enable();
  284. local_fiq_enable();
  285. /*
  286. * OK, it's off to the idle thread for us
  287. */
  288. cpu_idle();
  289. }
  290. void __init smp_cpus_done(unsigned int max_cpus)
  291. {
  292. int cpu;
  293. unsigned long bogosum = 0;
  294. for_each_online_cpu(cpu)
  295. bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
  296. printk(KERN_INFO "SMP: Total of %d processors activated "
  297. "(%lu.%02lu BogoMIPS).\n",
  298. num_online_cpus(),
  299. bogosum / (500000/HZ),
  300. (bogosum / (5000/HZ)) % 100);
  301. }
  302. void __init smp_prepare_boot_cpu(void)
  303. {
  304. }
  305. void __init smp_prepare_cpus(unsigned int max_cpus)
  306. {
  307. unsigned int ncores = num_possible_cpus();
  308. init_cpu_topology();
  309. smp_store_cpu_info(smp_processor_id());
  310. /*
  311. * are we trying to boot more cores than exist?
  312. */
  313. if (max_cpus > ncores)
  314. max_cpus = ncores;
  315. if (ncores > 1 && max_cpus) {
  316. /*
  317. * Enable the local timer or broadcast device for the
  318. * boot CPU, but only if we have more than one CPU.
  319. */
  320. percpu_timer_setup();
  321. /*
  322. * Initialise the present map, which describes the set of CPUs
  323. * actually populated at the present time. A platform should
  324. * re-initialize the map in platform_smp_prepare_cpus() if
  325. * present != possible (e.g. physical hotplug).
  326. */
  327. init_cpu_present(cpu_possible_mask);
  328. /*
  329. * Initialise the SCU if there are more than one CPU
  330. * and let them know where to start.
  331. */
  332. platform_smp_prepare_cpus(max_cpus);
  333. }
  334. }
  335. static void (*smp_cross_call)(const struct cpumask *, unsigned int);
  336. void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
  337. {
  338. smp_cross_call = fn;
  339. }
  340. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  341. {
  342. smp_cross_call(mask, IPI_CALL_FUNC);
  343. }
  344. void arch_send_call_function_single_ipi(int cpu)
  345. {
  346. smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
  347. }
  348. static const char *ipi_types[NR_IPI] = {
  349. #define S(x,s) [x] = s
  350. S(IPI_WAKEUP, "CPU wakeup interrupts"),
  351. S(IPI_TIMER, "Timer broadcast interrupts"),
  352. S(IPI_RESCHEDULE, "Rescheduling interrupts"),
  353. S(IPI_CALL_FUNC, "Function call interrupts"),
  354. S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
  355. S(IPI_CPU_STOP, "CPU stop interrupts"),
  356. };
  357. void show_ipi_list(struct seq_file *p, int prec)
  358. {
  359. unsigned int cpu, i;
  360. for (i = 0; i < NR_IPI; i++) {
  361. seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
  362. for_each_present_cpu(cpu)
  363. seq_printf(p, "%10u ",
  364. __get_irq_stat(cpu, ipi_irqs[i]));
  365. seq_printf(p, " %s\n", ipi_types[i]);
  366. }
  367. }
  368. u64 smp_irq_stat_cpu(unsigned int cpu)
  369. {
  370. u64 sum = 0;
  371. int i;
  372. for (i = 0; i < NR_IPI; i++)
  373. sum += __get_irq_stat(cpu, ipi_irqs[i]);
  374. return sum;
  375. }
  376. /*
  377. * Timer (local or broadcast) support
  378. */
  379. static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
  380. static void ipi_timer(void)
  381. {
  382. struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
  383. evt->event_handler(evt);
  384. }
  385. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  386. static void smp_timer_broadcast(const struct cpumask *mask)
  387. {
  388. smp_cross_call(mask, IPI_TIMER);
  389. }
  390. #else
  391. #define smp_timer_broadcast NULL
  392. #endif
  393. static void broadcast_timer_set_mode(enum clock_event_mode mode,
  394. struct clock_event_device *evt)
  395. {
  396. }
  397. static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
  398. {
  399. evt->name = "dummy_timer";
  400. evt->features = CLOCK_EVT_FEAT_ONESHOT |
  401. CLOCK_EVT_FEAT_PERIODIC |
  402. CLOCK_EVT_FEAT_DUMMY;
  403. evt->rating = 400;
  404. evt->mult = 1;
  405. evt->set_mode = broadcast_timer_set_mode;
  406. clockevents_register_device(evt);
  407. }
  408. static struct local_timer_ops *lt_ops;
  409. #ifdef CONFIG_LOCAL_TIMERS
  410. int local_timer_register(struct local_timer_ops *ops)
  411. {
  412. if (!is_smp() || !setup_max_cpus)
  413. return -ENXIO;
  414. if (lt_ops)
  415. return -EBUSY;
  416. lt_ops = ops;
  417. return 0;
  418. }
  419. #endif
  420. static void __cpuinit percpu_timer_setup(void)
  421. {
  422. unsigned int cpu = smp_processor_id();
  423. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  424. evt->cpumask = cpumask_of(cpu);
  425. evt->broadcast = smp_timer_broadcast;
  426. if (!lt_ops || lt_ops->setup(evt))
  427. broadcast_timer_setup(evt);
  428. }
  429. #ifdef CONFIG_HOTPLUG_CPU
  430. /*
  431. * The generic clock events code purposely does not stop the local timer
  432. * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
  433. * manually here.
  434. */
  435. static void percpu_timer_stop(void)
  436. {
  437. unsigned int cpu = smp_processor_id();
  438. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  439. if (lt_ops)
  440. lt_ops->stop(evt);
  441. }
  442. #endif
  443. static DEFINE_RAW_SPINLOCK(stop_lock);
  444. /*
  445. * ipi_cpu_stop - handle IPI from smp_send_stop()
  446. */
  447. static void ipi_cpu_stop(unsigned int cpu)
  448. {
  449. if (system_state == SYSTEM_BOOTING ||
  450. system_state == SYSTEM_RUNNING) {
  451. raw_spin_lock(&stop_lock);
  452. printk(KERN_CRIT "CPU%u: stopping\n", cpu);
  453. dump_stack();
  454. raw_spin_unlock(&stop_lock);
  455. }
  456. set_cpu_online(cpu, false);
  457. local_fiq_disable();
  458. local_irq_disable();
  459. while (1)
  460. cpu_relax();
  461. }
  462. /*
  463. * Main handler for inter-processor interrupts
  464. */
  465. asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
  466. {
  467. handle_IPI(ipinr, regs);
  468. }
  469. void handle_IPI(int ipinr, struct pt_regs *regs)
  470. {
  471. unsigned int cpu = smp_processor_id();
  472. struct pt_regs *old_regs = set_irq_regs(regs);
  473. if (ipinr < NR_IPI)
  474. __inc_irq_stat(cpu, ipi_irqs[ipinr]);
  475. switch (ipinr) {
  476. case IPI_WAKEUP:
  477. break;
  478. case IPI_TIMER:
  479. irq_enter();
  480. ipi_timer();
  481. irq_exit();
  482. break;
  483. case IPI_RESCHEDULE:
  484. scheduler_ipi();
  485. break;
  486. case IPI_CALL_FUNC:
  487. irq_enter();
  488. generic_smp_call_function_interrupt();
  489. irq_exit();
  490. break;
  491. case IPI_CALL_FUNC_SINGLE:
  492. irq_enter();
  493. generic_smp_call_function_single_interrupt();
  494. irq_exit();
  495. break;
  496. case IPI_CPU_STOP:
  497. irq_enter();
  498. ipi_cpu_stop(cpu);
  499. irq_exit();
  500. break;
  501. default:
  502. printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
  503. cpu, ipinr);
  504. break;
  505. }
  506. set_irq_regs(old_regs);
  507. }
  508. void smp_send_reschedule(int cpu)
  509. {
  510. smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
  511. }
  512. #ifdef CONFIG_HOTPLUG_CPU
  513. static void smp_kill_cpus(cpumask_t *mask)
  514. {
  515. unsigned int cpu;
  516. for_each_cpu(cpu, mask)
  517. platform_cpu_kill(cpu);
  518. }
  519. #else
  520. static void smp_kill_cpus(cpumask_t *mask) { }
  521. #endif
  522. void smp_send_stop(void)
  523. {
  524. unsigned long timeout;
  525. struct cpumask mask;
  526. cpumask_copy(&mask, cpu_online_mask);
  527. cpumask_clear_cpu(smp_processor_id(), &mask);
  528. if (!cpumask_empty(&mask))
  529. smp_cross_call(&mask, IPI_CPU_STOP);
  530. /* Wait up to one second for other CPUs to stop */
  531. timeout = USEC_PER_SEC;
  532. while (num_online_cpus() > 1 && timeout--)
  533. udelay(1);
  534. if (num_online_cpus() > 1)
  535. pr_warning("SMP: failed to stop secondary CPUs\n");
  536. smp_kill_cpus(&mask);
  537. }
  538. /*
  539. * not supported here
  540. */
  541. int setup_profiling_timer(unsigned int multiplier)
  542. {
  543. return -EINVAL;
  544. }
  545. #ifdef CONFIG_CPU_FREQ
  546. static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
  547. static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
  548. static unsigned long global_l_p_j_ref;
  549. static unsigned long global_l_p_j_ref_freq;
  550. static int cpufreq_callback(struct notifier_block *nb,
  551. unsigned long val, void *data)
  552. {
  553. struct cpufreq_freqs *freq = data;
  554. int cpu = freq->cpu;
  555. if (freq->flags & CPUFREQ_CONST_LOOPS)
  556. return NOTIFY_OK;
  557. if (!per_cpu(l_p_j_ref, cpu)) {
  558. per_cpu(l_p_j_ref, cpu) =
  559. per_cpu(cpu_data, cpu).loops_per_jiffy;
  560. per_cpu(l_p_j_ref_freq, cpu) = freq->old;
  561. if (!global_l_p_j_ref) {
  562. global_l_p_j_ref = loops_per_jiffy;
  563. global_l_p_j_ref_freq = freq->old;
  564. }
  565. }
  566. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  567. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
  568. (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
  569. loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
  570. global_l_p_j_ref_freq,
  571. freq->new);
  572. per_cpu(cpu_data, cpu).loops_per_jiffy =
  573. cpufreq_scale(per_cpu(l_p_j_ref, cpu),
  574. per_cpu(l_p_j_ref_freq, cpu),
  575. freq->new);
  576. }
  577. return NOTIFY_OK;
  578. }
  579. static struct notifier_block cpufreq_notifier = {
  580. .notifier_call = cpufreq_callback,
  581. };
  582. static int __init register_cpufreq_notifier(void)
  583. {
  584. return cpufreq_register_notifier(&cpufreq_notifier,
  585. CPUFREQ_TRANSITION_NOTIFIER);
  586. }
  587. core_initcall(register_cpufreq_notifier);
  588. #endif