cfg80211.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809
  1. /*
  2. * Intel Wireless Multicomm 3200 WiFi driver
  3. *
  4. * Copyright (C) 2009 Intel Corporation <ilw@linux.intel.com>
  5. * Samuel Ortiz <samuel.ortiz@intel.com>
  6. * Zhu Yi <yi.zhu@intel.com>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License version
  10. * 2 as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  20. * 02110-1301, USA.
  21. *
  22. */
  23. #include <linux/kernel.h>
  24. #include <linux/netdevice.h>
  25. #include <linux/etherdevice.h>
  26. #include <linux/wireless.h>
  27. #include <linux/ieee80211.h>
  28. #include <net/cfg80211.h>
  29. #include "iwm.h"
  30. #include "commands.h"
  31. #include "cfg80211.h"
  32. #include "debug.h"
  33. #define RATETAB_ENT(_rate, _rateid, _flags) \
  34. { \
  35. .bitrate = (_rate), \
  36. .hw_value = (_rateid), \
  37. .flags = (_flags), \
  38. }
  39. #define CHAN2G(_channel, _freq, _flags) { \
  40. .band = IEEE80211_BAND_2GHZ, \
  41. .center_freq = (_freq), \
  42. .hw_value = (_channel), \
  43. .flags = (_flags), \
  44. .max_antenna_gain = 0, \
  45. .max_power = 30, \
  46. }
  47. #define CHAN5G(_channel, _flags) { \
  48. .band = IEEE80211_BAND_5GHZ, \
  49. .center_freq = 5000 + (5 * (_channel)), \
  50. .hw_value = (_channel), \
  51. .flags = (_flags), \
  52. .max_antenna_gain = 0, \
  53. .max_power = 30, \
  54. }
  55. static struct ieee80211_rate iwm_rates[] = {
  56. RATETAB_ENT(10, 0x1, 0),
  57. RATETAB_ENT(20, 0x2, 0),
  58. RATETAB_ENT(55, 0x4, 0),
  59. RATETAB_ENT(110, 0x8, 0),
  60. RATETAB_ENT(60, 0x10, 0),
  61. RATETAB_ENT(90, 0x20, 0),
  62. RATETAB_ENT(120, 0x40, 0),
  63. RATETAB_ENT(180, 0x80, 0),
  64. RATETAB_ENT(240, 0x100, 0),
  65. RATETAB_ENT(360, 0x200, 0),
  66. RATETAB_ENT(480, 0x400, 0),
  67. RATETAB_ENT(540, 0x800, 0),
  68. };
  69. #define iwm_a_rates (iwm_rates + 4)
  70. #define iwm_a_rates_size 8
  71. #define iwm_g_rates (iwm_rates + 0)
  72. #define iwm_g_rates_size 12
  73. static struct ieee80211_channel iwm_2ghz_channels[] = {
  74. CHAN2G(1, 2412, 0),
  75. CHAN2G(2, 2417, 0),
  76. CHAN2G(3, 2422, 0),
  77. CHAN2G(4, 2427, 0),
  78. CHAN2G(5, 2432, 0),
  79. CHAN2G(6, 2437, 0),
  80. CHAN2G(7, 2442, 0),
  81. CHAN2G(8, 2447, 0),
  82. CHAN2G(9, 2452, 0),
  83. CHAN2G(10, 2457, 0),
  84. CHAN2G(11, 2462, 0),
  85. CHAN2G(12, 2467, 0),
  86. CHAN2G(13, 2472, 0),
  87. CHAN2G(14, 2484, 0),
  88. };
  89. static struct ieee80211_channel iwm_5ghz_a_channels[] = {
  90. CHAN5G(34, 0), CHAN5G(36, 0),
  91. CHAN5G(38, 0), CHAN5G(40, 0),
  92. CHAN5G(42, 0), CHAN5G(44, 0),
  93. CHAN5G(46, 0), CHAN5G(48, 0),
  94. CHAN5G(52, 0), CHAN5G(56, 0),
  95. CHAN5G(60, 0), CHAN5G(64, 0),
  96. CHAN5G(100, 0), CHAN5G(104, 0),
  97. CHAN5G(108, 0), CHAN5G(112, 0),
  98. CHAN5G(116, 0), CHAN5G(120, 0),
  99. CHAN5G(124, 0), CHAN5G(128, 0),
  100. CHAN5G(132, 0), CHAN5G(136, 0),
  101. CHAN5G(140, 0), CHAN5G(149, 0),
  102. CHAN5G(153, 0), CHAN5G(157, 0),
  103. CHAN5G(161, 0), CHAN5G(165, 0),
  104. CHAN5G(184, 0), CHAN5G(188, 0),
  105. CHAN5G(192, 0), CHAN5G(196, 0),
  106. CHAN5G(200, 0), CHAN5G(204, 0),
  107. CHAN5G(208, 0), CHAN5G(212, 0),
  108. CHAN5G(216, 0),
  109. };
  110. static struct ieee80211_supported_band iwm_band_2ghz = {
  111. .channels = iwm_2ghz_channels,
  112. .n_channels = ARRAY_SIZE(iwm_2ghz_channels),
  113. .bitrates = iwm_g_rates,
  114. .n_bitrates = iwm_g_rates_size,
  115. };
  116. static struct ieee80211_supported_band iwm_band_5ghz = {
  117. .channels = iwm_5ghz_a_channels,
  118. .n_channels = ARRAY_SIZE(iwm_5ghz_a_channels),
  119. .bitrates = iwm_a_rates,
  120. .n_bitrates = iwm_a_rates_size,
  121. };
  122. static int iwm_key_init(struct iwm_key *key, u8 key_index,
  123. const u8 *mac_addr, struct key_params *params)
  124. {
  125. key->hdr.key_idx = key_index;
  126. if (!mac_addr || is_broadcast_ether_addr(mac_addr)) {
  127. key->hdr.multicast = 1;
  128. memset(key->hdr.mac, 0xff, ETH_ALEN);
  129. } else {
  130. key->hdr.multicast = 0;
  131. memcpy(key->hdr.mac, mac_addr, ETH_ALEN);
  132. }
  133. if (params) {
  134. if (params->key_len > WLAN_MAX_KEY_LEN ||
  135. params->seq_len > IW_ENCODE_SEQ_MAX_SIZE)
  136. return -EINVAL;
  137. key->cipher = params->cipher;
  138. key->key_len = params->key_len;
  139. key->seq_len = params->seq_len;
  140. memcpy(key->key, params->key, key->key_len);
  141. memcpy(key->seq, params->seq, key->seq_len);
  142. }
  143. return 0;
  144. }
  145. static int iwm_reset_profile(struct iwm_priv *iwm)
  146. {
  147. int ret;
  148. if (!iwm->umac_profile_active)
  149. return 0;
  150. /*
  151. * If there is a current active profile, but no
  152. * default key, it's not worth trying to associate again.
  153. */
  154. if (iwm->default_key < 0)
  155. return 0;
  156. /*
  157. * Here we have an active profile, but a key setting changed.
  158. * We thus have to invalidate the current profile, and push the
  159. * new one. Keys will be pushed when association takes place.
  160. */
  161. ret = iwm_invalidate_mlme_profile(iwm);
  162. if (ret < 0) {
  163. IWM_ERR(iwm, "Couldn't invalidate profile\n");
  164. return ret;
  165. }
  166. return iwm_send_mlme_profile(iwm);
  167. }
  168. static int iwm_cfg80211_add_key(struct wiphy *wiphy, struct net_device *ndev,
  169. u8 key_index, const u8 *mac_addr,
  170. struct key_params *params)
  171. {
  172. struct iwm_priv *iwm = ndev_to_iwm(ndev);
  173. struct iwm_key *key = &iwm->keys[key_index];
  174. int ret;
  175. IWM_DBG_WEXT(iwm, DBG, "Adding key for %pM\n", mac_addr);
  176. memset(key, 0, sizeof(struct iwm_key));
  177. ret = iwm_key_init(key, key_index, mac_addr, params);
  178. if (ret < 0) {
  179. IWM_ERR(iwm, "Invalid key_params\n");
  180. return ret;
  181. }
  182. return iwm_set_key(iwm, 0, key);
  183. }
  184. static int iwm_cfg80211_get_key(struct wiphy *wiphy, struct net_device *ndev,
  185. u8 key_index, const u8 *mac_addr, void *cookie,
  186. void (*callback)(void *cookie,
  187. struct key_params*))
  188. {
  189. struct iwm_priv *iwm = ndev_to_iwm(ndev);
  190. struct iwm_key *key = &iwm->keys[key_index];
  191. struct key_params params;
  192. IWM_DBG_WEXT(iwm, DBG, "Getting key %d\n", key_index);
  193. memset(&params, 0, sizeof(params));
  194. params.cipher = key->cipher;
  195. params.key_len = key->key_len;
  196. params.seq_len = key->seq_len;
  197. params.seq = key->seq;
  198. params.key = key->key;
  199. callback(cookie, &params);
  200. return key->key_len ? 0 : -ENOENT;
  201. }
  202. static int iwm_cfg80211_del_key(struct wiphy *wiphy, struct net_device *ndev,
  203. u8 key_index, const u8 *mac_addr)
  204. {
  205. struct iwm_priv *iwm = ndev_to_iwm(ndev);
  206. struct iwm_key *key = &iwm->keys[key_index];
  207. if (!iwm->keys[key_index].key_len) {
  208. IWM_DBG_WEXT(iwm, DBG, "Key %d not used\n", key_index);
  209. return 0;
  210. }
  211. if (key_index == iwm->default_key)
  212. iwm->default_key = -1;
  213. /* If the interface is down, we just cache this */
  214. if (!test_bit(IWM_STATUS_READY, &iwm->status))
  215. return 0;
  216. return iwm_set_key(iwm, 1, key);
  217. }
  218. static int iwm_cfg80211_set_default_key(struct wiphy *wiphy,
  219. struct net_device *ndev,
  220. u8 key_index)
  221. {
  222. struct iwm_priv *iwm = ndev_to_iwm(ndev);
  223. int ret;
  224. IWM_DBG_WEXT(iwm, DBG, "Default key index is: %d\n", key_index);
  225. if (!iwm->keys[key_index].key_len) {
  226. IWM_ERR(iwm, "Key %d not used\n", key_index);
  227. return -EINVAL;
  228. }
  229. iwm->default_key = key_index;
  230. /* If the interface is down, we just cache this */
  231. if (!test_bit(IWM_STATUS_READY, &iwm->status))
  232. return 0;
  233. ret = iwm_set_tx_key(iwm, key_index);
  234. if (ret < 0)
  235. return ret;
  236. return iwm_reset_profile(iwm);
  237. }
  238. int iwm_cfg80211_get_station(struct wiphy *wiphy, struct net_device *ndev,
  239. u8 *mac, struct station_info *sinfo)
  240. {
  241. struct iwm_priv *iwm = ndev_to_iwm(ndev);
  242. if (memcmp(mac, iwm->bssid, ETH_ALEN))
  243. return -ENOENT;
  244. sinfo->filled |= STATION_INFO_TX_BITRATE;
  245. sinfo->txrate.legacy = iwm->rate * 10;
  246. if (test_bit(IWM_STATUS_ASSOCIATED, &iwm->status)) {
  247. sinfo->filled |= STATION_INFO_SIGNAL;
  248. sinfo->signal = iwm->wstats.qual.level;
  249. }
  250. return 0;
  251. }
  252. int iwm_cfg80211_inform_bss(struct iwm_priv *iwm)
  253. {
  254. struct wiphy *wiphy = iwm_to_wiphy(iwm);
  255. struct iwm_bss_info *bss, *next;
  256. struct iwm_umac_notif_bss_info *umac_bss;
  257. struct ieee80211_mgmt *mgmt;
  258. struct ieee80211_channel *channel;
  259. struct ieee80211_supported_band *band;
  260. s32 signal;
  261. int freq;
  262. list_for_each_entry_safe(bss, next, &iwm->bss_list, node) {
  263. umac_bss = bss->bss;
  264. mgmt = (struct ieee80211_mgmt *)(umac_bss->frame_buf);
  265. if (umac_bss->band == UMAC_BAND_2GHZ)
  266. band = wiphy->bands[IEEE80211_BAND_2GHZ];
  267. else if (umac_bss->band == UMAC_BAND_5GHZ)
  268. band = wiphy->bands[IEEE80211_BAND_5GHZ];
  269. else {
  270. IWM_ERR(iwm, "Invalid band: %d\n", umac_bss->band);
  271. return -EINVAL;
  272. }
  273. freq = ieee80211_channel_to_frequency(umac_bss->channel);
  274. channel = ieee80211_get_channel(wiphy, freq);
  275. signal = umac_bss->rssi * 100;
  276. if (!cfg80211_inform_bss_frame(wiphy, channel, mgmt,
  277. le16_to_cpu(umac_bss->frame_len),
  278. signal, GFP_KERNEL))
  279. return -EINVAL;
  280. }
  281. return 0;
  282. }
  283. static int iwm_cfg80211_change_iface(struct wiphy *wiphy,
  284. struct net_device *ndev,
  285. enum nl80211_iftype type, u32 *flags,
  286. struct vif_params *params)
  287. {
  288. struct wireless_dev *wdev;
  289. struct iwm_priv *iwm;
  290. u32 old_mode;
  291. wdev = ndev->ieee80211_ptr;
  292. iwm = ndev_to_iwm(ndev);
  293. old_mode = iwm->conf.mode;
  294. switch (type) {
  295. case NL80211_IFTYPE_STATION:
  296. iwm->conf.mode = UMAC_MODE_BSS;
  297. break;
  298. case NL80211_IFTYPE_ADHOC:
  299. iwm->conf.mode = UMAC_MODE_IBSS;
  300. break;
  301. default:
  302. return -EOPNOTSUPP;
  303. }
  304. wdev->iftype = type;
  305. if ((old_mode == iwm->conf.mode) || !iwm->umac_profile)
  306. return 0;
  307. iwm->umac_profile->mode = cpu_to_le32(iwm->conf.mode);
  308. if (iwm->umac_profile_active) {
  309. int ret = iwm_invalidate_mlme_profile(iwm);
  310. if (ret < 0)
  311. IWM_ERR(iwm, "Couldn't invalidate profile\n");
  312. }
  313. return 0;
  314. }
  315. static int iwm_cfg80211_scan(struct wiphy *wiphy, struct net_device *ndev,
  316. struct cfg80211_scan_request *request)
  317. {
  318. struct iwm_priv *iwm = ndev_to_iwm(ndev);
  319. int ret;
  320. if (!test_bit(IWM_STATUS_READY, &iwm->status)) {
  321. IWM_ERR(iwm, "Scan while device is not ready\n");
  322. return -EIO;
  323. }
  324. if (test_bit(IWM_STATUS_SCANNING, &iwm->status)) {
  325. IWM_ERR(iwm, "Scanning already\n");
  326. return -EAGAIN;
  327. }
  328. if (test_bit(IWM_STATUS_SCAN_ABORTING, &iwm->status)) {
  329. IWM_ERR(iwm, "Scanning being aborted\n");
  330. return -EAGAIN;
  331. }
  332. set_bit(IWM_STATUS_SCANNING, &iwm->status);
  333. ret = iwm_scan_ssids(iwm, request->ssids, request->n_ssids);
  334. if (ret) {
  335. clear_bit(IWM_STATUS_SCANNING, &iwm->status);
  336. return ret;
  337. }
  338. iwm->scan_request = request;
  339. return 0;
  340. }
  341. static int iwm_cfg80211_set_wiphy_params(struct wiphy *wiphy, u32 changed)
  342. {
  343. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  344. if (changed & WIPHY_PARAM_RTS_THRESHOLD &&
  345. (iwm->conf.rts_threshold != wiphy->rts_threshold)) {
  346. int ret;
  347. iwm->conf.rts_threshold = wiphy->rts_threshold;
  348. ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
  349. CFG_RTS_THRESHOLD,
  350. iwm->conf.rts_threshold);
  351. if (ret < 0)
  352. return ret;
  353. }
  354. if (changed & WIPHY_PARAM_FRAG_THRESHOLD &&
  355. (iwm->conf.frag_threshold != wiphy->frag_threshold)) {
  356. int ret;
  357. iwm->conf.frag_threshold = wiphy->frag_threshold;
  358. ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_FA_CFG_FIX,
  359. CFG_FRAG_THRESHOLD,
  360. iwm->conf.frag_threshold);
  361. if (ret < 0)
  362. return ret;
  363. }
  364. return 0;
  365. }
  366. static int iwm_cfg80211_join_ibss(struct wiphy *wiphy, struct net_device *dev,
  367. struct cfg80211_ibss_params *params)
  368. {
  369. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  370. struct ieee80211_channel *chan = params->channel;
  371. struct cfg80211_bss *bss;
  372. if (!test_bit(IWM_STATUS_READY, &iwm->status))
  373. return -EIO;
  374. /* UMAC doesn't support creating IBSS network with specified bssid.
  375. * This should be removed after we have join only mode supported. */
  376. if (params->bssid)
  377. return -EOPNOTSUPP;
  378. bss = cfg80211_get_ibss(iwm_to_wiphy(iwm), NULL,
  379. params->ssid, params->ssid_len);
  380. if (!bss) {
  381. iwm_scan_one_ssid(iwm, params->ssid, params->ssid_len);
  382. schedule_timeout_interruptible(2 * HZ);
  383. bss = cfg80211_get_ibss(iwm_to_wiphy(iwm), NULL,
  384. params->ssid, params->ssid_len);
  385. }
  386. /* IBSS join only mode is not supported by UMAC ATM */
  387. if (bss) {
  388. cfg80211_put_bss(bss);
  389. return -EOPNOTSUPP;
  390. }
  391. iwm->channel = ieee80211_frequency_to_channel(chan->center_freq);
  392. iwm->umac_profile->ibss.band = chan->band;
  393. iwm->umac_profile->ibss.channel = iwm->channel;
  394. iwm->umac_profile->ssid.ssid_len = params->ssid_len;
  395. memcpy(iwm->umac_profile->ssid.ssid, params->ssid, params->ssid_len);
  396. if (params->bssid)
  397. memcpy(&iwm->umac_profile->bssid[0], params->bssid, ETH_ALEN);
  398. return iwm_send_mlme_profile(iwm);
  399. }
  400. static int iwm_cfg80211_leave_ibss(struct wiphy *wiphy, struct net_device *dev)
  401. {
  402. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  403. if (iwm->umac_profile_active)
  404. return iwm_invalidate_mlme_profile(iwm);
  405. return 0;
  406. }
  407. static int iwm_set_auth_type(struct iwm_priv *iwm,
  408. enum nl80211_auth_type sme_auth_type)
  409. {
  410. u8 *auth_type = &iwm->umac_profile->sec.auth_type;
  411. switch (sme_auth_type) {
  412. case NL80211_AUTHTYPE_AUTOMATIC:
  413. case NL80211_AUTHTYPE_OPEN_SYSTEM:
  414. IWM_DBG_WEXT(iwm, DBG, "OPEN auth\n");
  415. *auth_type = UMAC_AUTH_TYPE_OPEN;
  416. break;
  417. case NL80211_AUTHTYPE_SHARED_KEY:
  418. if (iwm->umac_profile->sec.flags &
  419. (UMAC_SEC_FLG_WPA_ON_MSK | UMAC_SEC_FLG_RSNA_ON_MSK)) {
  420. IWM_DBG_WEXT(iwm, DBG, "WPA auth alg\n");
  421. *auth_type = UMAC_AUTH_TYPE_RSNA_PSK;
  422. } else {
  423. IWM_DBG_WEXT(iwm, DBG, "WEP shared key auth alg\n");
  424. *auth_type = UMAC_AUTH_TYPE_LEGACY_PSK;
  425. }
  426. break;
  427. default:
  428. IWM_ERR(iwm, "Unsupported auth alg: 0x%x\n", sme_auth_type);
  429. return -ENOTSUPP;
  430. }
  431. return 0;
  432. }
  433. static int iwm_set_wpa_version(struct iwm_priv *iwm, u32 wpa_version)
  434. {
  435. if (!wpa_version) {
  436. iwm->umac_profile->sec.flags = UMAC_SEC_FLG_LEGACY_PROFILE;
  437. return 0;
  438. }
  439. if (wpa_version & NL80211_WPA_VERSION_2)
  440. iwm->umac_profile->sec.flags = UMAC_SEC_FLG_RSNA_ON_MSK;
  441. if (wpa_version & NL80211_WPA_VERSION_1)
  442. iwm->umac_profile->sec.flags |= UMAC_SEC_FLG_WPA_ON_MSK;
  443. return 0;
  444. }
  445. static int iwm_set_cipher(struct iwm_priv *iwm, u32 cipher, bool ucast)
  446. {
  447. u8 *profile_cipher = ucast ? &iwm->umac_profile->sec.ucast_cipher :
  448. &iwm->umac_profile->sec.mcast_cipher;
  449. if (!cipher) {
  450. *profile_cipher = UMAC_CIPHER_TYPE_NONE;
  451. return 0;
  452. }
  453. switch (cipher) {
  454. case IW_AUTH_CIPHER_NONE:
  455. *profile_cipher = UMAC_CIPHER_TYPE_NONE;
  456. break;
  457. case WLAN_CIPHER_SUITE_WEP40:
  458. *profile_cipher = UMAC_CIPHER_TYPE_WEP_40;
  459. break;
  460. case WLAN_CIPHER_SUITE_WEP104:
  461. *profile_cipher = UMAC_CIPHER_TYPE_WEP_104;
  462. break;
  463. case WLAN_CIPHER_SUITE_TKIP:
  464. *profile_cipher = UMAC_CIPHER_TYPE_TKIP;
  465. break;
  466. case WLAN_CIPHER_SUITE_CCMP:
  467. *profile_cipher = UMAC_CIPHER_TYPE_CCMP;
  468. break;
  469. default:
  470. IWM_ERR(iwm, "Unsupported cipher: 0x%x\n", cipher);
  471. return -ENOTSUPP;
  472. }
  473. return 0;
  474. }
  475. static int iwm_set_key_mgt(struct iwm_priv *iwm, u32 key_mgt)
  476. {
  477. u8 *auth_type = &iwm->umac_profile->sec.auth_type;
  478. IWM_DBG_WEXT(iwm, DBG, "key_mgt: 0x%x\n", key_mgt);
  479. if (key_mgt == WLAN_AKM_SUITE_8021X)
  480. *auth_type = UMAC_AUTH_TYPE_8021X;
  481. else if (key_mgt == WLAN_AKM_SUITE_PSK) {
  482. if (iwm->umac_profile->sec.flags &
  483. (UMAC_SEC_FLG_WPA_ON_MSK | UMAC_SEC_FLG_RSNA_ON_MSK))
  484. *auth_type = UMAC_AUTH_TYPE_RSNA_PSK;
  485. else
  486. *auth_type = UMAC_AUTH_TYPE_LEGACY_PSK;
  487. } else {
  488. IWM_ERR(iwm, "Invalid key mgt: 0x%x\n", key_mgt);
  489. return -EINVAL;
  490. }
  491. return 0;
  492. }
  493. static int iwm_cfg80211_connect(struct wiphy *wiphy, struct net_device *dev,
  494. struct cfg80211_connect_params *sme)
  495. {
  496. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  497. struct ieee80211_channel *chan = sme->channel;
  498. int ret;
  499. if (!test_bit(IWM_STATUS_READY, &iwm->status))
  500. return -EIO;
  501. if (!sme->ssid)
  502. return -EINVAL;
  503. if (chan)
  504. iwm->channel =
  505. ieee80211_frequency_to_channel(chan->center_freq);
  506. iwm->umac_profile->ssid.ssid_len = sme->ssid_len;
  507. memcpy(iwm->umac_profile->ssid.ssid, sme->ssid, sme->ssid_len);
  508. if (sme->bssid) {
  509. IWM_DBG_WEXT(iwm, DBG, "BSSID: %pM\n", sme->bssid);
  510. memcpy(&iwm->umac_profile->bssid[0], sme->bssid, ETH_ALEN);
  511. iwm->umac_profile->bss_num = 1;
  512. } else {
  513. memset(&iwm->umac_profile->bssid[0], 0, ETH_ALEN);
  514. iwm->umac_profile->bss_num = 0;
  515. }
  516. ret = iwm_set_auth_type(iwm, sme->auth_type);
  517. if (ret < 0)
  518. return ret;
  519. ret = iwm_set_wpa_version(iwm, sme->crypto.wpa_versions);
  520. if (ret < 0)
  521. return ret;
  522. if (sme->crypto.n_ciphers_pairwise) {
  523. ret = iwm_set_cipher(iwm, sme->crypto.ciphers_pairwise[0],
  524. true);
  525. if (ret < 0)
  526. return ret;
  527. }
  528. ret = iwm_set_cipher(iwm, sme->crypto.cipher_group, false);
  529. if (ret < 0)
  530. return ret;
  531. if (sme->crypto.n_akm_suites) {
  532. ret = iwm_set_key_mgt(iwm, sme->crypto.akm_suites[0]);
  533. if (ret < 0)
  534. return ret;
  535. }
  536. return iwm_send_mlme_profile(iwm);
  537. }
  538. static int iwm_cfg80211_disconnect(struct wiphy *wiphy, struct net_device *dev,
  539. u16 reason_code)
  540. {
  541. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  542. IWM_DBG_WEXT(iwm, DBG, "Active: %d\n", iwm->umac_profile_active);
  543. if (iwm->umac_profile_active)
  544. return iwm_invalidate_mlme_profile(iwm);
  545. return 0;
  546. }
  547. static int iwm_cfg80211_set_txpower(struct wiphy *wiphy,
  548. enum tx_power_setting type, int dbm)
  549. {
  550. switch (type) {
  551. case TX_POWER_AUTOMATIC:
  552. return 0;
  553. default:
  554. return -EOPNOTSUPP;
  555. }
  556. return 0;
  557. }
  558. static int iwm_cfg80211_get_txpower(struct wiphy *wiphy, int *dbm)
  559. {
  560. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  561. *dbm = iwm->txpower;
  562. return 0;
  563. }
  564. static int iwm_cfg80211_set_power_mgmt(struct wiphy *wiphy,
  565. struct net_device *dev,
  566. bool enabled, int timeout)
  567. {
  568. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  569. u32 power_index;
  570. if (enabled)
  571. power_index = IWM_POWER_INDEX_DEFAULT;
  572. else
  573. power_index = IWM_POWER_INDEX_MIN;
  574. if (power_index == iwm->conf.power_index)
  575. return 0;
  576. iwm->conf.power_index = power_index;
  577. return iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
  578. CFG_POWER_INDEX, iwm->conf.power_index);
  579. }
  580. static struct cfg80211_ops iwm_cfg80211_ops = {
  581. .change_virtual_intf = iwm_cfg80211_change_iface,
  582. .add_key = iwm_cfg80211_add_key,
  583. .get_key = iwm_cfg80211_get_key,
  584. .del_key = iwm_cfg80211_del_key,
  585. .set_default_key = iwm_cfg80211_set_default_key,
  586. .get_station = iwm_cfg80211_get_station,
  587. .scan = iwm_cfg80211_scan,
  588. .set_wiphy_params = iwm_cfg80211_set_wiphy_params,
  589. .connect = iwm_cfg80211_connect,
  590. .disconnect = iwm_cfg80211_disconnect,
  591. .join_ibss = iwm_cfg80211_join_ibss,
  592. .leave_ibss = iwm_cfg80211_leave_ibss,
  593. .set_tx_power = iwm_cfg80211_set_txpower,
  594. .get_tx_power = iwm_cfg80211_get_txpower,
  595. .set_power_mgmt = iwm_cfg80211_set_power_mgmt,
  596. };
  597. static const u32 cipher_suites[] = {
  598. WLAN_CIPHER_SUITE_WEP40,
  599. WLAN_CIPHER_SUITE_WEP104,
  600. WLAN_CIPHER_SUITE_TKIP,
  601. WLAN_CIPHER_SUITE_CCMP,
  602. };
  603. struct wireless_dev *iwm_wdev_alloc(int sizeof_bus, struct device *dev)
  604. {
  605. int ret = 0;
  606. struct wireless_dev *wdev;
  607. /*
  608. * We're trying to have the following memory
  609. * layout:
  610. *
  611. * +-------------------------+
  612. * | struct wiphy |
  613. * +-------------------------+
  614. * | struct iwm_priv |
  615. * +-------------------------+
  616. * | bus private data |
  617. * | (e.g. iwm_priv_sdio) |
  618. * +-------------------------+
  619. *
  620. */
  621. wdev = kzalloc(sizeof(struct wireless_dev), GFP_KERNEL);
  622. if (!wdev) {
  623. dev_err(dev, "Couldn't allocate wireless device\n");
  624. return ERR_PTR(-ENOMEM);
  625. }
  626. wdev->wiphy = wiphy_new(&iwm_cfg80211_ops,
  627. sizeof(struct iwm_priv) + sizeof_bus);
  628. if (!wdev->wiphy) {
  629. dev_err(dev, "Couldn't allocate wiphy device\n");
  630. ret = -ENOMEM;
  631. goto out_err_new;
  632. }
  633. set_wiphy_dev(wdev->wiphy, dev);
  634. wdev->wiphy->max_scan_ssids = UMAC_WIFI_IF_PROBE_OPTION_MAX;
  635. wdev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
  636. BIT(NL80211_IFTYPE_ADHOC);
  637. wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = &iwm_band_2ghz;
  638. wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = &iwm_band_5ghz;
  639. wdev->wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
  640. wdev->wiphy->cipher_suites = cipher_suites;
  641. wdev->wiphy->n_cipher_suites = ARRAY_SIZE(cipher_suites);
  642. ret = wiphy_register(wdev->wiphy);
  643. if (ret < 0) {
  644. dev_err(dev, "Couldn't register wiphy device\n");
  645. goto out_err_register;
  646. }
  647. return wdev;
  648. out_err_register:
  649. wiphy_free(wdev->wiphy);
  650. out_err_new:
  651. kfree(wdev);
  652. return ERR_PTR(ret);
  653. }
  654. void iwm_wdev_free(struct iwm_priv *iwm)
  655. {
  656. struct wireless_dev *wdev = iwm_to_wdev(iwm);
  657. if (!wdev)
  658. return;
  659. wiphy_unregister(wdev->wiphy);
  660. wiphy_free(wdev->wiphy);
  661. kfree(wdev);
  662. }