page-writeback.c 59 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006
  1. /*
  2. * mm/page-writeback.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  6. *
  7. * Contains functions related to writing back dirty pages at the
  8. * address_space level.
  9. *
  10. * 10Apr2002 Andrew Morton
  11. * Initial version
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/fs.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/slab.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/writeback.h>
  22. #include <linux/init.h>
  23. #include <linux/backing-dev.h>
  24. #include <linux/task_io_accounting_ops.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/mpage.h>
  27. #include <linux/rmap.h>
  28. #include <linux/percpu.h>
  29. #include <linux/notifier.h>
  30. #include <linux/smp.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/buffer_head.h>
  35. #include <linux/pagevec.h>
  36. #include <trace/events/writeback.h>
  37. /*
  38. * Sleep at most 200ms at a time in balance_dirty_pages().
  39. */
  40. #define MAX_PAUSE max(HZ/5, 1)
  41. /*
  42. * Estimate write bandwidth at 200ms intervals.
  43. */
  44. #define BANDWIDTH_INTERVAL max(HZ/5, 1)
  45. #define RATELIMIT_CALC_SHIFT 10
  46. /*
  47. * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  48. * will look to see if it needs to force writeback or throttling.
  49. */
  50. static long ratelimit_pages = 32;
  51. /* The following parameters are exported via /proc/sys/vm */
  52. /*
  53. * Start background writeback (via writeback threads) at this percentage
  54. */
  55. int dirty_background_ratio = 10;
  56. /*
  57. * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  58. * dirty_background_ratio * the amount of dirtyable memory
  59. */
  60. unsigned long dirty_background_bytes;
  61. /*
  62. * free highmem will not be subtracted from the total free memory
  63. * for calculating free ratios if vm_highmem_is_dirtyable is true
  64. */
  65. int vm_highmem_is_dirtyable;
  66. /*
  67. * The generator of dirty data starts writeback at this percentage
  68. */
  69. int vm_dirty_ratio = 20;
  70. /*
  71. * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  72. * vm_dirty_ratio * the amount of dirtyable memory
  73. */
  74. unsigned long vm_dirty_bytes;
  75. /*
  76. * The interval between `kupdate'-style writebacks
  77. */
  78. unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
  79. /*
  80. * The longest time for which data is allowed to remain dirty
  81. */
  82. unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
  83. /*
  84. * Flag that makes the machine dump writes/reads and block dirtyings.
  85. */
  86. int block_dump;
  87. /*
  88. * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
  89. * a full sync is triggered after this time elapses without any disk activity.
  90. */
  91. int laptop_mode;
  92. EXPORT_SYMBOL(laptop_mode);
  93. /* End of sysctl-exported parameters */
  94. unsigned long global_dirty_limit;
  95. /*
  96. * Scale the writeback cache size proportional to the relative writeout speeds.
  97. *
  98. * We do this by keeping a floating proportion between BDIs, based on page
  99. * writeback completions [end_page_writeback()]. Those devices that write out
  100. * pages fastest will get the larger share, while the slower will get a smaller
  101. * share.
  102. *
  103. * We use page writeout completions because we are interested in getting rid of
  104. * dirty pages. Having them written out is the primary goal.
  105. *
  106. * We introduce a concept of time, a period over which we measure these events,
  107. * because demand can/will vary over time. The length of this period itself is
  108. * measured in page writeback completions.
  109. *
  110. */
  111. static struct prop_descriptor vm_completions;
  112. static struct prop_descriptor vm_dirties;
  113. /*
  114. * couple the period to the dirty_ratio:
  115. *
  116. * period/2 ~ roundup_pow_of_two(dirty limit)
  117. */
  118. static int calc_period_shift(void)
  119. {
  120. unsigned long dirty_total;
  121. if (vm_dirty_bytes)
  122. dirty_total = vm_dirty_bytes / PAGE_SIZE;
  123. else
  124. dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
  125. 100;
  126. return 2 + ilog2(dirty_total - 1);
  127. }
  128. /*
  129. * update the period when the dirty threshold changes.
  130. */
  131. static void update_completion_period(void)
  132. {
  133. int shift = calc_period_shift();
  134. prop_change_shift(&vm_completions, shift);
  135. prop_change_shift(&vm_dirties, shift);
  136. writeback_set_ratelimit();
  137. }
  138. int dirty_background_ratio_handler(struct ctl_table *table, int write,
  139. void __user *buffer, size_t *lenp,
  140. loff_t *ppos)
  141. {
  142. int ret;
  143. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  144. if (ret == 0 && write)
  145. dirty_background_bytes = 0;
  146. return ret;
  147. }
  148. int dirty_background_bytes_handler(struct ctl_table *table, int write,
  149. void __user *buffer, size_t *lenp,
  150. loff_t *ppos)
  151. {
  152. int ret;
  153. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  154. if (ret == 0 && write)
  155. dirty_background_ratio = 0;
  156. return ret;
  157. }
  158. int dirty_ratio_handler(struct ctl_table *table, int write,
  159. void __user *buffer, size_t *lenp,
  160. loff_t *ppos)
  161. {
  162. int old_ratio = vm_dirty_ratio;
  163. int ret;
  164. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  165. if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
  166. update_completion_period();
  167. vm_dirty_bytes = 0;
  168. }
  169. return ret;
  170. }
  171. int dirty_bytes_handler(struct ctl_table *table, int write,
  172. void __user *buffer, size_t *lenp,
  173. loff_t *ppos)
  174. {
  175. unsigned long old_bytes = vm_dirty_bytes;
  176. int ret;
  177. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  178. if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
  179. update_completion_period();
  180. vm_dirty_ratio = 0;
  181. }
  182. return ret;
  183. }
  184. /*
  185. * Increment the BDI's writeout completion count and the global writeout
  186. * completion count. Called from test_clear_page_writeback().
  187. */
  188. static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
  189. {
  190. __inc_bdi_stat(bdi, BDI_WRITTEN);
  191. __prop_inc_percpu_max(&vm_completions, &bdi->completions,
  192. bdi->max_prop_frac);
  193. }
  194. void bdi_writeout_inc(struct backing_dev_info *bdi)
  195. {
  196. unsigned long flags;
  197. local_irq_save(flags);
  198. __bdi_writeout_inc(bdi);
  199. local_irq_restore(flags);
  200. }
  201. EXPORT_SYMBOL_GPL(bdi_writeout_inc);
  202. void task_dirty_inc(struct task_struct *tsk)
  203. {
  204. prop_inc_single(&vm_dirties, &tsk->dirties);
  205. }
  206. /*
  207. * Obtain an accurate fraction of the BDI's portion.
  208. */
  209. static void bdi_writeout_fraction(struct backing_dev_info *bdi,
  210. long *numerator, long *denominator)
  211. {
  212. prop_fraction_percpu(&vm_completions, &bdi->completions,
  213. numerator, denominator);
  214. }
  215. /*
  216. *
  217. */
  218. static unsigned int bdi_min_ratio;
  219. int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
  220. {
  221. int ret = 0;
  222. spin_lock_bh(&bdi_lock);
  223. if (min_ratio > bdi->max_ratio) {
  224. ret = -EINVAL;
  225. } else {
  226. min_ratio -= bdi->min_ratio;
  227. if (bdi_min_ratio + min_ratio < 100) {
  228. bdi_min_ratio += min_ratio;
  229. bdi->min_ratio += min_ratio;
  230. } else {
  231. ret = -EINVAL;
  232. }
  233. }
  234. spin_unlock_bh(&bdi_lock);
  235. return ret;
  236. }
  237. int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
  238. {
  239. int ret = 0;
  240. if (max_ratio > 100)
  241. return -EINVAL;
  242. spin_lock_bh(&bdi_lock);
  243. if (bdi->min_ratio > max_ratio) {
  244. ret = -EINVAL;
  245. } else {
  246. bdi->max_ratio = max_ratio;
  247. bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
  248. }
  249. spin_unlock_bh(&bdi_lock);
  250. return ret;
  251. }
  252. EXPORT_SYMBOL(bdi_set_max_ratio);
  253. /*
  254. * Work out the current dirty-memory clamping and background writeout
  255. * thresholds.
  256. *
  257. * The main aim here is to lower them aggressively if there is a lot of mapped
  258. * memory around. To avoid stressing page reclaim with lots of unreclaimable
  259. * pages. It is better to clamp down on writers than to start swapping, and
  260. * performing lots of scanning.
  261. *
  262. * We only allow 1/2 of the currently-unmapped memory to be dirtied.
  263. *
  264. * We don't permit the clamping level to fall below 5% - that is getting rather
  265. * excessive.
  266. *
  267. * We make sure that the background writeout level is below the adjusted
  268. * clamping level.
  269. */
  270. static unsigned long highmem_dirtyable_memory(unsigned long total)
  271. {
  272. #ifdef CONFIG_HIGHMEM
  273. int node;
  274. unsigned long x = 0;
  275. for_each_node_state(node, N_HIGH_MEMORY) {
  276. struct zone *z =
  277. &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
  278. x += zone_page_state(z, NR_FREE_PAGES) +
  279. zone_reclaimable_pages(z);
  280. }
  281. /*
  282. * Make sure that the number of highmem pages is never larger
  283. * than the number of the total dirtyable memory. This can only
  284. * occur in very strange VM situations but we want to make sure
  285. * that this does not occur.
  286. */
  287. return min(x, total);
  288. #else
  289. return 0;
  290. #endif
  291. }
  292. /**
  293. * determine_dirtyable_memory - amount of memory that may be used
  294. *
  295. * Returns the numebr of pages that can currently be freed and used
  296. * by the kernel for direct mappings.
  297. */
  298. unsigned long determine_dirtyable_memory(void)
  299. {
  300. unsigned long x;
  301. x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
  302. if (!vm_highmem_is_dirtyable)
  303. x -= highmem_dirtyable_memory(x);
  304. return x + 1; /* Ensure that we never return 0 */
  305. }
  306. static unsigned long dirty_freerun_ceiling(unsigned long thresh,
  307. unsigned long bg_thresh)
  308. {
  309. return (thresh + bg_thresh) / 2;
  310. }
  311. static unsigned long hard_dirty_limit(unsigned long thresh)
  312. {
  313. return max(thresh, global_dirty_limit);
  314. }
  315. /*
  316. * global_dirty_limits - background-writeback and dirty-throttling thresholds
  317. *
  318. * Calculate the dirty thresholds based on sysctl parameters
  319. * - vm.dirty_background_ratio or vm.dirty_background_bytes
  320. * - vm.dirty_ratio or vm.dirty_bytes
  321. * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
  322. * real-time tasks.
  323. */
  324. void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
  325. {
  326. unsigned long background;
  327. unsigned long dirty;
  328. unsigned long uninitialized_var(available_memory);
  329. struct task_struct *tsk;
  330. if (!vm_dirty_bytes || !dirty_background_bytes)
  331. available_memory = determine_dirtyable_memory();
  332. if (vm_dirty_bytes)
  333. dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
  334. else
  335. dirty = (vm_dirty_ratio * available_memory) / 100;
  336. if (dirty_background_bytes)
  337. background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
  338. else
  339. background = (dirty_background_ratio * available_memory) / 100;
  340. if (background >= dirty)
  341. background = dirty / 2;
  342. tsk = current;
  343. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
  344. background += background / 4;
  345. dirty += dirty / 4;
  346. }
  347. *pbackground = background;
  348. *pdirty = dirty;
  349. trace_global_dirty_state(background, dirty);
  350. }
  351. /**
  352. * bdi_dirty_limit - @bdi's share of dirty throttling threshold
  353. * @bdi: the backing_dev_info to query
  354. * @dirty: global dirty limit in pages
  355. *
  356. * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
  357. * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
  358. * And the "limit" in the name is not seriously taken as hard limit in
  359. * balance_dirty_pages().
  360. *
  361. * It allocates high/low dirty limits to fast/slow devices, in order to prevent
  362. * - starving fast devices
  363. * - piling up dirty pages (that will take long time to sync) on slow devices
  364. *
  365. * The bdi's share of dirty limit will be adapting to its throughput and
  366. * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
  367. */
  368. unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
  369. {
  370. u64 bdi_dirty;
  371. long numerator, denominator;
  372. /*
  373. * Calculate this BDI's share of the dirty ratio.
  374. */
  375. bdi_writeout_fraction(bdi, &numerator, &denominator);
  376. bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
  377. bdi_dirty *= numerator;
  378. do_div(bdi_dirty, denominator);
  379. bdi_dirty += (dirty * bdi->min_ratio) / 100;
  380. if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
  381. bdi_dirty = dirty * bdi->max_ratio / 100;
  382. return bdi_dirty;
  383. }
  384. /*
  385. * Dirty position control.
  386. *
  387. * (o) global/bdi setpoints
  388. *
  389. * We want the dirty pages be balanced around the global/bdi setpoints.
  390. * When the number of dirty pages is higher/lower than the setpoint, the
  391. * dirty position control ratio (and hence task dirty ratelimit) will be
  392. * decreased/increased to bring the dirty pages back to the setpoint.
  393. *
  394. * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
  395. *
  396. * if (dirty < setpoint) scale up pos_ratio
  397. * if (dirty > setpoint) scale down pos_ratio
  398. *
  399. * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
  400. * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
  401. *
  402. * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
  403. *
  404. * (o) global control line
  405. *
  406. * ^ pos_ratio
  407. * |
  408. * | |<===== global dirty control scope ======>|
  409. * 2.0 .............*
  410. * | .*
  411. * | . *
  412. * | . *
  413. * | . *
  414. * | . *
  415. * | . *
  416. * 1.0 ................................*
  417. * | . . *
  418. * | . . *
  419. * | . . *
  420. * | . . *
  421. * | . . *
  422. * 0 +------------.------------------.----------------------*------------->
  423. * freerun^ setpoint^ limit^ dirty pages
  424. *
  425. * (o) bdi control line
  426. *
  427. * ^ pos_ratio
  428. * |
  429. * | *
  430. * | *
  431. * | *
  432. * | *
  433. * | * |<=========== span ============>|
  434. * 1.0 .......................*
  435. * | . *
  436. * | . *
  437. * | . *
  438. * | . *
  439. * | . *
  440. * | . *
  441. * | . *
  442. * | . *
  443. * | . *
  444. * | . *
  445. * | . *
  446. * 1/4 ...............................................* * * * * * * * * * * *
  447. * | . .
  448. * | . .
  449. * | . .
  450. * 0 +----------------------.-------------------------------.------------->
  451. * bdi_setpoint^ x_intercept^
  452. *
  453. * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
  454. * be smoothly throttled down to normal if it starts high in situations like
  455. * - start writing to a slow SD card and a fast disk at the same time. The SD
  456. * card's bdi_dirty may rush to many times higher than bdi_setpoint.
  457. * - the bdi dirty thresh drops quickly due to change of JBOD workload
  458. */
  459. static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
  460. unsigned long thresh,
  461. unsigned long bg_thresh,
  462. unsigned long dirty,
  463. unsigned long bdi_thresh,
  464. unsigned long bdi_dirty)
  465. {
  466. unsigned long write_bw = bdi->avg_write_bandwidth;
  467. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  468. unsigned long limit = hard_dirty_limit(thresh);
  469. unsigned long x_intercept;
  470. unsigned long setpoint; /* dirty pages' target balance point */
  471. unsigned long bdi_setpoint;
  472. unsigned long span;
  473. long long pos_ratio; /* for scaling up/down the rate limit */
  474. long x;
  475. if (unlikely(dirty >= limit))
  476. return 0;
  477. /*
  478. * global setpoint
  479. *
  480. * setpoint - dirty 3
  481. * f(dirty) := 1.0 + (----------------)
  482. * limit - setpoint
  483. *
  484. * it's a 3rd order polynomial that subjects to
  485. *
  486. * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
  487. * (2) f(setpoint) = 1.0 => the balance point
  488. * (3) f(limit) = 0 => the hard limit
  489. * (4) df/dx <= 0 => negative feedback control
  490. * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
  491. * => fast response on large errors; small oscillation near setpoint
  492. */
  493. setpoint = (freerun + limit) / 2;
  494. x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
  495. limit - setpoint + 1);
  496. pos_ratio = x;
  497. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  498. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  499. pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
  500. /*
  501. * We have computed basic pos_ratio above based on global situation. If
  502. * the bdi is over/under its share of dirty pages, we want to scale
  503. * pos_ratio further down/up. That is done by the following mechanism.
  504. */
  505. /*
  506. * bdi setpoint
  507. *
  508. * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
  509. *
  510. * x_intercept - bdi_dirty
  511. * := --------------------------
  512. * x_intercept - bdi_setpoint
  513. *
  514. * The main bdi control line is a linear function that subjects to
  515. *
  516. * (1) f(bdi_setpoint) = 1.0
  517. * (2) k = - 1 / (8 * write_bw) (in single bdi case)
  518. * or equally: x_intercept = bdi_setpoint + 8 * write_bw
  519. *
  520. * For single bdi case, the dirty pages are observed to fluctuate
  521. * regularly within range
  522. * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
  523. * for various filesystems, where (2) can yield in a reasonable 12.5%
  524. * fluctuation range for pos_ratio.
  525. *
  526. * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
  527. * own size, so move the slope over accordingly and choose a slope that
  528. * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
  529. */
  530. if (unlikely(bdi_thresh > thresh))
  531. bdi_thresh = thresh;
  532. bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
  533. /*
  534. * scale global setpoint to bdi's:
  535. * bdi_setpoint = setpoint * bdi_thresh / thresh
  536. */
  537. x = div_u64((u64)bdi_thresh << 16, thresh + 1);
  538. bdi_setpoint = setpoint * (u64)x >> 16;
  539. /*
  540. * Use span=(8*write_bw) in single bdi case as indicated by
  541. * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
  542. *
  543. * bdi_thresh thresh - bdi_thresh
  544. * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
  545. * thresh thresh
  546. */
  547. span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
  548. x_intercept = bdi_setpoint + span;
  549. if (bdi_dirty < x_intercept - span / 4) {
  550. pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
  551. x_intercept - bdi_setpoint + 1);
  552. } else
  553. pos_ratio /= 4;
  554. /*
  555. * bdi reserve area, safeguard against dirty pool underrun and disk idle
  556. * It may push the desired control point of global dirty pages higher
  557. * than setpoint.
  558. */
  559. x_intercept = bdi_thresh / 2;
  560. if (bdi_dirty < x_intercept) {
  561. if (bdi_dirty > x_intercept / 8)
  562. pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
  563. else
  564. pos_ratio *= 8;
  565. }
  566. return pos_ratio;
  567. }
  568. static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
  569. unsigned long elapsed,
  570. unsigned long written)
  571. {
  572. const unsigned long period = roundup_pow_of_two(3 * HZ);
  573. unsigned long avg = bdi->avg_write_bandwidth;
  574. unsigned long old = bdi->write_bandwidth;
  575. u64 bw;
  576. /*
  577. * bw = written * HZ / elapsed
  578. *
  579. * bw * elapsed + write_bandwidth * (period - elapsed)
  580. * write_bandwidth = ---------------------------------------------------
  581. * period
  582. */
  583. bw = written - bdi->written_stamp;
  584. bw *= HZ;
  585. if (unlikely(elapsed > period)) {
  586. do_div(bw, elapsed);
  587. avg = bw;
  588. goto out;
  589. }
  590. bw += (u64)bdi->write_bandwidth * (period - elapsed);
  591. bw >>= ilog2(period);
  592. /*
  593. * one more level of smoothing, for filtering out sudden spikes
  594. */
  595. if (avg > old && old >= (unsigned long)bw)
  596. avg -= (avg - old) >> 3;
  597. if (avg < old && old <= (unsigned long)bw)
  598. avg += (old - avg) >> 3;
  599. out:
  600. bdi->write_bandwidth = bw;
  601. bdi->avg_write_bandwidth = avg;
  602. }
  603. /*
  604. * The global dirtyable memory and dirty threshold could be suddenly knocked
  605. * down by a large amount (eg. on the startup of KVM in a swapless system).
  606. * This may throw the system into deep dirty exceeded state and throttle
  607. * heavy/light dirtiers alike. To retain good responsiveness, maintain
  608. * global_dirty_limit for tracking slowly down to the knocked down dirty
  609. * threshold.
  610. */
  611. static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
  612. {
  613. unsigned long limit = global_dirty_limit;
  614. /*
  615. * Follow up in one step.
  616. */
  617. if (limit < thresh) {
  618. limit = thresh;
  619. goto update;
  620. }
  621. /*
  622. * Follow down slowly. Use the higher one as the target, because thresh
  623. * may drop below dirty. This is exactly the reason to introduce
  624. * global_dirty_limit which is guaranteed to lie above the dirty pages.
  625. */
  626. thresh = max(thresh, dirty);
  627. if (limit > thresh) {
  628. limit -= (limit - thresh) >> 5;
  629. goto update;
  630. }
  631. return;
  632. update:
  633. global_dirty_limit = limit;
  634. }
  635. static void global_update_bandwidth(unsigned long thresh,
  636. unsigned long dirty,
  637. unsigned long now)
  638. {
  639. static DEFINE_SPINLOCK(dirty_lock);
  640. static unsigned long update_time;
  641. /*
  642. * check locklessly first to optimize away locking for the most time
  643. */
  644. if (time_before(now, update_time + BANDWIDTH_INTERVAL))
  645. return;
  646. spin_lock(&dirty_lock);
  647. if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
  648. update_dirty_limit(thresh, dirty);
  649. update_time = now;
  650. }
  651. spin_unlock(&dirty_lock);
  652. }
  653. /*
  654. * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
  655. *
  656. * Normal bdi tasks will be curbed at or below it in long term.
  657. * Obviously it should be around (write_bw / N) when there are N dd tasks.
  658. */
  659. static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
  660. unsigned long thresh,
  661. unsigned long bg_thresh,
  662. unsigned long dirty,
  663. unsigned long bdi_thresh,
  664. unsigned long bdi_dirty,
  665. unsigned long dirtied,
  666. unsigned long elapsed)
  667. {
  668. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  669. unsigned long limit = hard_dirty_limit(thresh);
  670. unsigned long setpoint = (freerun + limit) / 2;
  671. unsigned long write_bw = bdi->avg_write_bandwidth;
  672. unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
  673. unsigned long dirty_rate;
  674. unsigned long task_ratelimit;
  675. unsigned long balanced_dirty_ratelimit;
  676. unsigned long pos_ratio;
  677. unsigned long step;
  678. unsigned long x;
  679. /*
  680. * The dirty rate will match the writeout rate in long term, except
  681. * when dirty pages are truncated by userspace or re-dirtied by FS.
  682. */
  683. dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
  684. pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
  685. bdi_thresh, bdi_dirty);
  686. /*
  687. * task_ratelimit reflects each dd's dirty rate for the past 200ms.
  688. */
  689. task_ratelimit = (u64)dirty_ratelimit *
  690. pos_ratio >> RATELIMIT_CALC_SHIFT;
  691. task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
  692. /*
  693. * A linear estimation of the "balanced" throttle rate. The theory is,
  694. * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
  695. * dirty_rate will be measured to be (N * task_ratelimit). So the below
  696. * formula will yield the balanced rate limit (write_bw / N).
  697. *
  698. * Note that the expanded form is not a pure rate feedback:
  699. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
  700. * but also takes pos_ratio into account:
  701. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
  702. *
  703. * (1) is not realistic because pos_ratio also takes part in balancing
  704. * the dirty rate. Consider the state
  705. * pos_ratio = 0.5 (3)
  706. * rate = 2 * (write_bw / N) (4)
  707. * If (1) is used, it will stuck in that state! Because each dd will
  708. * be throttled at
  709. * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
  710. * yielding
  711. * dirty_rate = N * task_ratelimit = write_bw (6)
  712. * put (6) into (1) we get
  713. * rate_(i+1) = rate_(i) (7)
  714. *
  715. * So we end up using (2) to always keep
  716. * rate_(i+1) ~= (write_bw / N) (8)
  717. * regardless of the value of pos_ratio. As long as (8) is satisfied,
  718. * pos_ratio is able to drive itself to 1.0, which is not only where
  719. * the dirty count meet the setpoint, but also where the slope of
  720. * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
  721. */
  722. balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
  723. dirty_rate | 1);
  724. /*
  725. * We could safely do this and return immediately:
  726. *
  727. * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
  728. *
  729. * However to get a more stable dirty_ratelimit, the below elaborated
  730. * code makes use of task_ratelimit to filter out sigular points and
  731. * limit the step size.
  732. *
  733. * The below code essentially only uses the relative value of
  734. *
  735. * task_ratelimit - dirty_ratelimit
  736. * = (pos_ratio - 1) * dirty_ratelimit
  737. *
  738. * which reflects the direction and size of dirty position error.
  739. */
  740. /*
  741. * dirty_ratelimit will follow balanced_dirty_ratelimit iff
  742. * task_ratelimit is on the same side of dirty_ratelimit, too.
  743. * For example, when
  744. * - dirty_ratelimit > balanced_dirty_ratelimit
  745. * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
  746. * lowering dirty_ratelimit will help meet both the position and rate
  747. * control targets. Otherwise, don't update dirty_ratelimit if it will
  748. * only help meet the rate target. After all, what the users ultimately
  749. * feel and care are stable dirty rate and small position error.
  750. *
  751. * |task_ratelimit - dirty_ratelimit| is used to limit the step size
  752. * and filter out the sigular points of balanced_dirty_ratelimit. Which
  753. * keeps jumping around randomly and can even leap far away at times
  754. * due to the small 200ms estimation period of dirty_rate (we want to
  755. * keep that period small to reduce time lags).
  756. */
  757. step = 0;
  758. if (dirty < setpoint) {
  759. x = min(bdi->balanced_dirty_ratelimit,
  760. min(balanced_dirty_ratelimit, task_ratelimit));
  761. if (dirty_ratelimit < x)
  762. step = x - dirty_ratelimit;
  763. } else {
  764. x = max(bdi->balanced_dirty_ratelimit,
  765. max(balanced_dirty_ratelimit, task_ratelimit));
  766. if (dirty_ratelimit > x)
  767. step = dirty_ratelimit - x;
  768. }
  769. /*
  770. * Don't pursue 100% rate matching. It's impossible since the balanced
  771. * rate itself is constantly fluctuating. So decrease the track speed
  772. * when it gets close to the target. Helps eliminate pointless tremors.
  773. */
  774. step >>= dirty_ratelimit / (2 * step + 1);
  775. /*
  776. * Limit the tracking speed to avoid overshooting.
  777. */
  778. step = (step + 7) / 8;
  779. if (dirty_ratelimit < balanced_dirty_ratelimit)
  780. dirty_ratelimit += step;
  781. else
  782. dirty_ratelimit -= step;
  783. bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
  784. bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
  785. trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
  786. }
  787. void __bdi_update_bandwidth(struct backing_dev_info *bdi,
  788. unsigned long thresh,
  789. unsigned long bg_thresh,
  790. unsigned long dirty,
  791. unsigned long bdi_thresh,
  792. unsigned long bdi_dirty,
  793. unsigned long start_time)
  794. {
  795. unsigned long now = jiffies;
  796. unsigned long elapsed = now - bdi->bw_time_stamp;
  797. unsigned long dirtied;
  798. unsigned long written;
  799. /*
  800. * rate-limit, only update once every 200ms.
  801. */
  802. if (elapsed < BANDWIDTH_INTERVAL)
  803. return;
  804. dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
  805. written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
  806. /*
  807. * Skip quiet periods when disk bandwidth is under-utilized.
  808. * (at least 1s idle time between two flusher runs)
  809. */
  810. if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
  811. goto snapshot;
  812. if (thresh) {
  813. global_update_bandwidth(thresh, dirty, now);
  814. bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
  815. bdi_thresh, bdi_dirty,
  816. dirtied, elapsed);
  817. }
  818. bdi_update_write_bandwidth(bdi, elapsed, written);
  819. snapshot:
  820. bdi->dirtied_stamp = dirtied;
  821. bdi->written_stamp = written;
  822. bdi->bw_time_stamp = now;
  823. }
  824. static void bdi_update_bandwidth(struct backing_dev_info *bdi,
  825. unsigned long thresh,
  826. unsigned long bg_thresh,
  827. unsigned long dirty,
  828. unsigned long bdi_thresh,
  829. unsigned long bdi_dirty,
  830. unsigned long start_time)
  831. {
  832. if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
  833. return;
  834. spin_lock(&bdi->wb.list_lock);
  835. __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
  836. bdi_thresh, bdi_dirty, start_time);
  837. spin_unlock(&bdi->wb.list_lock);
  838. }
  839. /*
  840. * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
  841. * will look to see if it needs to start dirty throttling.
  842. *
  843. * If dirty_poll_interval is too low, big NUMA machines will call the expensive
  844. * global_page_state() too often. So scale it near-sqrt to the safety margin
  845. * (the number of pages we may dirty without exceeding the dirty limits).
  846. */
  847. static unsigned long dirty_poll_interval(unsigned long dirty,
  848. unsigned long thresh)
  849. {
  850. if (thresh > dirty)
  851. return 1UL << (ilog2(thresh - dirty) >> 1);
  852. return 1;
  853. }
  854. static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
  855. unsigned long bdi_dirty)
  856. {
  857. unsigned long bw = bdi->avg_write_bandwidth;
  858. unsigned long hi = ilog2(bw);
  859. unsigned long lo = ilog2(bdi->dirty_ratelimit);
  860. unsigned long t;
  861. /* target for 20ms max pause on 1-dd case */
  862. t = HZ / 50;
  863. /*
  864. * Scale up pause time for concurrent dirtiers in order to reduce CPU
  865. * overheads.
  866. *
  867. * (N * 20ms) on 2^N concurrent tasks.
  868. */
  869. if (hi > lo)
  870. t += (hi - lo) * (20 * HZ) / 1024;
  871. /*
  872. * Limit pause time for small memory systems. If sleeping for too long
  873. * time, a small pool of dirty/writeback pages may go empty and disk go
  874. * idle.
  875. *
  876. * 8 serves as the safety ratio.
  877. */
  878. if (bdi_dirty)
  879. t = min(t, bdi_dirty * HZ / (8 * bw + 1));
  880. /*
  881. * The pause time will be settled within range (max_pause/4, max_pause).
  882. * Apply a minimal value of 4 to get a non-zero max_pause/4.
  883. */
  884. return clamp_val(t, 4, MAX_PAUSE);
  885. }
  886. /*
  887. * balance_dirty_pages() must be called by processes which are generating dirty
  888. * data. It looks at the number of dirty pages in the machine and will force
  889. * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
  890. * If we're over `background_thresh' then the writeback threads are woken to
  891. * perform some writeout.
  892. */
  893. static void balance_dirty_pages(struct address_space *mapping,
  894. unsigned long pages_dirtied)
  895. {
  896. unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
  897. unsigned long bdi_reclaimable;
  898. unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
  899. unsigned long bdi_dirty;
  900. unsigned long freerun;
  901. unsigned long background_thresh;
  902. unsigned long dirty_thresh;
  903. unsigned long bdi_thresh;
  904. long pause = 0;
  905. long uninitialized_var(max_pause);
  906. bool dirty_exceeded = false;
  907. unsigned long task_ratelimit;
  908. unsigned long uninitialized_var(dirty_ratelimit);
  909. unsigned long pos_ratio;
  910. struct backing_dev_info *bdi = mapping->backing_dev_info;
  911. unsigned long start_time = jiffies;
  912. for (;;) {
  913. /*
  914. * Unstable writes are a feature of certain networked
  915. * filesystems (i.e. NFS) in which data may have been
  916. * written to the server's write cache, but has not yet
  917. * been flushed to permanent storage.
  918. */
  919. nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
  920. global_page_state(NR_UNSTABLE_NFS);
  921. nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
  922. global_dirty_limits(&background_thresh, &dirty_thresh);
  923. /*
  924. * Throttle it only when the background writeback cannot
  925. * catch-up. This avoids (excessively) small writeouts
  926. * when the bdi limits are ramping up.
  927. */
  928. freerun = dirty_freerun_ceiling(dirty_thresh,
  929. background_thresh);
  930. if (nr_dirty <= freerun)
  931. break;
  932. if (unlikely(!writeback_in_progress(bdi)))
  933. bdi_start_background_writeback(bdi);
  934. /*
  935. * bdi_thresh is not treated as some limiting factor as
  936. * dirty_thresh, due to reasons
  937. * - in JBOD setup, bdi_thresh can fluctuate a lot
  938. * - in a system with HDD and USB key, the USB key may somehow
  939. * go into state (bdi_dirty >> bdi_thresh) either because
  940. * bdi_dirty starts high, or because bdi_thresh drops low.
  941. * In this case we don't want to hard throttle the USB key
  942. * dirtiers for 100 seconds until bdi_dirty drops under
  943. * bdi_thresh. Instead the auxiliary bdi control line in
  944. * bdi_position_ratio() will let the dirtier task progress
  945. * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
  946. */
  947. bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
  948. /*
  949. * In order to avoid the stacked BDI deadlock we need
  950. * to ensure we accurately count the 'dirty' pages when
  951. * the threshold is low.
  952. *
  953. * Otherwise it would be possible to get thresh+n pages
  954. * reported dirty, even though there are thresh-m pages
  955. * actually dirty; with m+n sitting in the percpu
  956. * deltas.
  957. */
  958. if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
  959. bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
  960. bdi_dirty = bdi_reclaimable +
  961. bdi_stat_sum(bdi, BDI_WRITEBACK);
  962. } else {
  963. bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
  964. bdi_dirty = bdi_reclaimable +
  965. bdi_stat(bdi, BDI_WRITEBACK);
  966. }
  967. dirty_exceeded = (bdi_dirty > bdi_thresh) ||
  968. (nr_dirty > dirty_thresh);
  969. if (dirty_exceeded && !bdi->dirty_exceeded)
  970. bdi->dirty_exceeded = 1;
  971. bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
  972. nr_dirty, bdi_thresh, bdi_dirty,
  973. start_time);
  974. max_pause = bdi_max_pause(bdi, bdi_dirty);
  975. dirty_ratelimit = bdi->dirty_ratelimit;
  976. pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
  977. background_thresh, nr_dirty,
  978. bdi_thresh, bdi_dirty);
  979. if (unlikely(pos_ratio == 0)) {
  980. pause = max_pause;
  981. goto pause;
  982. }
  983. task_ratelimit = (u64)dirty_ratelimit *
  984. pos_ratio >> RATELIMIT_CALC_SHIFT;
  985. pause = (HZ * pages_dirtied) / (task_ratelimit | 1);
  986. if (unlikely(pause <= 0)) {
  987. trace_balance_dirty_pages(bdi,
  988. dirty_thresh,
  989. background_thresh,
  990. nr_dirty,
  991. bdi_thresh,
  992. bdi_dirty,
  993. dirty_ratelimit,
  994. task_ratelimit,
  995. pages_dirtied,
  996. pause,
  997. start_time);
  998. pause = 1; /* avoid resetting nr_dirtied_pause below */
  999. break;
  1000. }
  1001. pause = min(pause, max_pause);
  1002. pause:
  1003. trace_balance_dirty_pages(bdi,
  1004. dirty_thresh,
  1005. background_thresh,
  1006. nr_dirty,
  1007. bdi_thresh,
  1008. bdi_dirty,
  1009. dirty_ratelimit,
  1010. task_ratelimit,
  1011. pages_dirtied,
  1012. pause,
  1013. start_time);
  1014. __set_current_state(TASK_UNINTERRUPTIBLE);
  1015. io_schedule_timeout(pause);
  1016. dirty_thresh = hard_dirty_limit(dirty_thresh);
  1017. /*
  1018. * max-pause area. If dirty exceeded but still within this
  1019. * area, no need to sleep for more than 200ms: (a) 8 pages per
  1020. * 200ms is typically more than enough to curb heavy dirtiers;
  1021. * (b) the pause time limit makes the dirtiers more responsive.
  1022. */
  1023. if (nr_dirty < dirty_thresh)
  1024. break;
  1025. }
  1026. if (!dirty_exceeded && bdi->dirty_exceeded)
  1027. bdi->dirty_exceeded = 0;
  1028. current->nr_dirtied = 0;
  1029. if (pause == 0) { /* in freerun area */
  1030. current->nr_dirtied_pause =
  1031. dirty_poll_interval(nr_dirty, dirty_thresh);
  1032. } else if (pause <= max_pause / 4 &&
  1033. pages_dirtied >= current->nr_dirtied_pause) {
  1034. current->nr_dirtied_pause = clamp_val(
  1035. dirty_ratelimit * (max_pause / 2) / HZ,
  1036. pages_dirtied + pages_dirtied / 8,
  1037. pages_dirtied * 4);
  1038. } else if (pause >= max_pause) {
  1039. current->nr_dirtied_pause = 1 | clamp_val(
  1040. dirty_ratelimit * (max_pause / 2) / HZ,
  1041. pages_dirtied / 4,
  1042. pages_dirtied - pages_dirtied / 8);
  1043. }
  1044. if (writeback_in_progress(bdi))
  1045. return;
  1046. /*
  1047. * In laptop mode, we wait until hitting the higher threshold before
  1048. * starting background writeout, and then write out all the way down
  1049. * to the lower threshold. So slow writers cause minimal disk activity.
  1050. *
  1051. * In normal mode, we start background writeout at the lower
  1052. * background_thresh, to keep the amount of dirty memory low.
  1053. */
  1054. if (laptop_mode)
  1055. return;
  1056. if (nr_reclaimable > background_thresh)
  1057. bdi_start_background_writeback(bdi);
  1058. }
  1059. void set_page_dirty_balance(struct page *page, int page_mkwrite)
  1060. {
  1061. if (set_page_dirty(page) || page_mkwrite) {
  1062. struct address_space *mapping = page_mapping(page);
  1063. if (mapping)
  1064. balance_dirty_pages_ratelimited(mapping);
  1065. }
  1066. }
  1067. static DEFINE_PER_CPU(int, bdp_ratelimits);
  1068. /**
  1069. * balance_dirty_pages_ratelimited_nr - balance dirty memory state
  1070. * @mapping: address_space which was dirtied
  1071. * @nr_pages_dirtied: number of pages which the caller has just dirtied
  1072. *
  1073. * Processes which are dirtying memory should call in here once for each page
  1074. * which was newly dirtied. The function will periodically check the system's
  1075. * dirty state and will initiate writeback if needed.
  1076. *
  1077. * On really big machines, get_writeback_state is expensive, so try to avoid
  1078. * calling it too often (ratelimiting). But once we're over the dirty memory
  1079. * limit we decrease the ratelimiting by a lot, to prevent individual processes
  1080. * from overshooting the limit by (ratelimit_pages) each.
  1081. */
  1082. void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
  1083. unsigned long nr_pages_dirtied)
  1084. {
  1085. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1086. int ratelimit;
  1087. int *p;
  1088. if (!bdi_cap_account_dirty(bdi))
  1089. return;
  1090. ratelimit = current->nr_dirtied_pause;
  1091. if (bdi->dirty_exceeded)
  1092. ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
  1093. current->nr_dirtied += nr_pages_dirtied;
  1094. preempt_disable();
  1095. /*
  1096. * This prevents one CPU to accumulate too many dirtied pages without
  1097. * calling into balance_dirty_pages(), which can happen when there are
  1098. * 1000+ tasks, all of them start dirtying pages at exactly the same
  1099. * time, hence all honoured too large initial task->nr_dirtied_pause.
  1100. */
  1101. p = &__get_cpu_var(bdp_ratelimits);
  1102. if (unlikely(current->nr_dirtied >= ratelimit))
  1103. *p = 0;
  1104. else {
  1105. *p += nr_pages_dirtied;
  1106. if (unlikely(*p >= ratelimit_pages)) {
  1107. *p = 0;
  1108. ratelimit = 0;
  1109. }
  1110. }
  1111. preempt_enable();
  1112. if (unlikely(current->nr_dirtied >= ratelimit))
  1113. balance_dirty_pages(mapping, current->nr_dirtied);
  1114. }
  1115. EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
  1116. void throttle_vm_writeout(gfp_t gfp_mask)
  1117. {
  1118. unsigned long background_thresh;
  1119. unsigned long dirty_thresh;
  1120. for ( ; ; ) {
  1121. global_dirty_limits(&background_thresh, &dirty_thresh);
  1122. /*
  1123. * Boost the allowable dirty threshold a bit for page
  1124. * allocators so they don't get DoS'ed by heavy writers
  1125. */
  1126. dirty_thresh += dirty_thresh / 10; /* wheeee... */
  1127. if (global_page_state(NR_UNSTABLE_NFS) +
  1128. global_page_state(NR_WRITEBACK) <= dirty_thresh)
  1129. break;
  1130. congestion_wait(BLK_RW_ASYNC, HZ/10);
  1131. /*
  1132. * The caller might hold locks which can prevent IO completion
  1133. * or progress in the filesystem. So we cannot just sit here
  1134. * waiting for IO to complete.
  1135. */
  1136. if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
  1137. break;
  1138. }
  1139. }
  1140. /*
  1141. * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
  1142. */
  1143. int dirty_writeback_centisecs_handler(ctl_table *table, int write,
  1144. void __user *buffer, size_t *length, loff_t *ppos)
  1145. {
  1146. proc_dointvec(table, write, buffer, length, ppos);
  1147. bdi_arm_supers_timer();
  1148. return 0;
  1149. }
  1150. #ifdef CONFIG_BLOCK
  1151. void laptop_mode_timer_fn(unsigned long data)
  1152. {
  1153. struct request_queue *q = (struct request_queue *)data;
  1154. int nr_pages = global_page_state(NR_FILE_DIRTY) +
  1155. global_page_state(NR_UNSTABLE_NFS);
  1156. /*
  1157. * We want to write everything out, not just down to the dirty
  1158. * threshold
  1159. */
  1160. if (bdi_has_dirty_io(&q->backing_dev_info))
  1161. bdi_start_writeback(&q->backing_dev_info, nr_pages,
  1162. WB_REASON_LAPTOP_TIMER);
  1163. }
  1164. /*
  1165. * We've spun up the disk and we're in laptop mode: schedule writeback
  1166. * of all dirty data a few seconds from now. If the flush is already scheduled
  1167. * then push it back - the user is still using the disk.
  1168. */
  1169. void laptop_io_completion(struct backing_dev_info *info)
  1170. {
  1171. mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
  1172. }
  1173. /*
  1174. * We're in laptop mode and we've just synced. The sync's writes will have
  1175. * caused another writeback to be scheduled by laptop_io_completion.
  1176. * Nothing needs to be written back anymore, so we unschedule the writeback.
  1177. */
  1178. void laptop_sync_completion(void)
  1179. {
  1180. struct backing_dev_info *bdi;
  1181. rcu_read_lock();
  1182. list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
  1183. del_timer(&bdi->laptop_mode_wb_timer);
  1184. rcu_read_unlock();
  1185. }
  1186. #endif
  1187. /*
  1188. * If ratelimit_pages is too high then we can get into dirty-data overload
  1189. * if a large number of processes all perform writes at the same time.
  1190. * If it is too low then SMP machines will call the (expensive)
  1191. * get_writeback_state too often.
  1192. *
  1193. * Here we set ratelimit_pages to a level which ensures that when all CPUs are
  1194. * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
  1195. * thresholds.
  1196. */
  1197. void writeback_set_ratelimit(void)
  1198. {
  1199. unsigned long background_thresh;
  1200. unsigned long dirty_thresh;
  1201. global_dirty_limits(&background_thresh, &dirty_thresh);
  1202. ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
  1203. if (ratelimit_pages < 16)
  1204. ratelimit_pages = 16;
  1205. }
  1206. static int __cpuinit
  1207. ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
  1208. {
  1209. writeback_set_ratelimit();
  1210. return NOTIFY_DONE;
  1211. }
  1212. static struct notifier_block __cpuinitdata ratelimit_nb = {
  1213. .notifier_call = ratelimit_handler,
  1214. .next = NULL,
  1215. };
  1216. /*
  1217. * Called early on to tune the page writeback dirty limits.
  1218. *
  1219. * We used to scale dirty pages according to how total memory
  1220. * related to pages that could be allocated for buffers (by
  1221. * comparing nr_free_buffer_pages() to vm_total_pages.
  1222. *
  1223. * However, that was when we used "dirty_ratio" to scale with
  1224. * all memory, and we don't do that any more. "dirty_ratio"
  1225. * is now applied to total non-HIGHPAGE memory (by subtracting
  1226. * totalhigh_pages from vm_total_pages), and as such we can't
  1227. * get into the old insane situation any more where we had
  1228. * large amounts of dirty pages compared to a small amount of
  1229. * non-HIGHMEM memory.
  1230. *
  1231. * But we might still want to scale the dirty_ratio by how
  1232. * much memory the box has..
  1233. */
  1234. void __init page_writeback_init(void)
  1235. {
  1236. int shift;
  1237. writeback_set_ratelimit();
  1238. register_cpu_notifier(&ratelimit_nb);
  1239. shift = calc_period_shift();
  1240. prop_descriptor_init(&vm_completions, shift);
  1241. prop_descriptor_init(&vm_dirties, shift);
  1242. }
  1243. /**
  1244. * tag_pages_for_writeback - tag pages to be written by write_cache_pages
  1245. * @mapping: address space structure to write
  1246. * @start: starting page index
  1247. * @end: ending page index (inclusive)
  1248. *
  1249. * This function scans the page range from @start to @end (inclusive) and tags
  1250. * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
  1251. * that write_cache_pages (or whoever calls this function) will then use
  1252. * TOWRITE tag to identify pages eligible for writeback. This mechanism is
  1253. * used to avoid livelocking of writeback by a process steadily creating new
  1254. * dirty pages in the file (thus it is important for this function to be quick
  1255. * so that it can tag pages faster than a dirtying process can create them).
  1256. */
  1257. /*
  1258. * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
  1259. */
  1260. void tag_pages_for_writeback(struct address_space *mapping,
  1261. pgoff_t start, pgoff_t end)
  1262. {
  1263. #define WRITEBACK_TAG_BATCH 4096
  1264. unsigned long tagged;
  1265. do {
  1266. spin_lock_irq(&mapping->tree_lock);
  1267. tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
  1268. &start, end, WRITEBACK_TAG_BATCH,
  1269. PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
  1270. spin_unlock_irq(&mapping->tree_lock);
  1271. WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
  1272. cond_resched();
  1273. /* We check 'start' to handle wrapping when end == ~0UL */
  1274. } while (tagged >= WRITEBACK_TAG_BATCH && start);
  1275. }
  1276. EXPORT_SYMBOL(tag_pages_for_writeback);
  1277. /**
  1278. * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
  1279. * @mapping: address space structure to write
  1280. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1281. * @writepage: function called for each page
  1282. * @data: data passed to writepage function
  1283. *
  1284. * If a page is already under I/O, write_cache_pages() skips it, even
  1285. * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
  1286. * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
  1287. * and msync() need to guarantee that all the data which was dirty at the time
  1288. * the call was made get new I/O started against them. If wbc->sync_mode is
  1289. * WB_SYNC_ALL then we were called for data integrity and we must wait for
  1290. * existing IO to complete.
  1291. *
  1292. * To avoid livelocks (when other process dirties new pages), we first tag
  1293. * pages which should be written back with TOWRITE tag and only then start
  1294. * writing them. For data-integrity sync we have to be careful so that we do
  1295. * not miss some pages (e.g., because some other process has cleared TOWRITE
  1296. * tag we set). The rule we follow is that TOWRITE tag can be cleared only
  1297. * by the process clearing the DIRTY tag (and submitting the page for IO).
  1298. */
  1299. int write_cache_pages(struct address_space *mapping,
  1300. struct writeback_control *wbc, writepage_t writepage,
  1301. void *data)
  1302. {
  1303. int ret = 0;
  1304. int done = 0;
  1305. struct pagevec pvec;
  1306. int nr_pages;
  1307. pgoff_t uninitialized_var(writeback_index);
  1308. pgoff_t index;
  1309. pgoff_t end; /* Inclusive */
  1310. pgoff_t done_index;
  1311. int cycled;
  1312. int range_whole = 0;
  1313. int tag;
  1314. pagevec_init(&pvec, 0);
  1315. if (wbc->range_cyclic) {
  1316. writeback_index = mapping->writeback_index; /* prev offset */
  1317. index = writeback_index;
  1318. if (index == 0)
  1319. cycled = 1;
  1320. else
  1321. cycled = 0;
  1322. end = -1;
  1323. } else {
  1324. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  1325. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  1326. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  1327. range_whole = 1;
  1328. cycled = 1; /* ignore range_cyclic tests */
  1329. }
  1330. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1331. tag = PAGECACHE_TAG_TOWRITE;
  1332. else
  1333. tag = PAGECACHE_TAG_DIRTY;
  1334. retry:
  1335. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1336. tag_pages_for_writeback(mapping, index, end);
  1337. done_index = index;
  1338. while (!done && (index <= end)) {
  1339. int i;
  1340. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
  1341. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1342. if (nr_pages == 0)
  1343. break;
  1344. for (i = 0; i < nr_pages; i++) {
  1345. struct page *page = pvec.pages[i];
  1346. /*
  1347. * At this point, the page may be truncated or
  1348. * invalidated (changing page->mapping to NULL), or
  1349. * even swizzled back from swapper_space to tmpfs file
  1350. * mapping. However, page->index will not change
  1351. * because we have a reference on the page.
  1352. */
  1353. if (page->index > end) {
  1354. /*
  1355. * can't be range_cyclic (1st pass) because
  1356. * end == -1 in that case.
  1357. */
  1358. done = 1;
  1359. break;
  1360. }
  1361. done_index = page->index;
  1362. lock_page(page);
  1363. /*
  1364. * Page truncated or invalidated. We can freely skip it
  1365. * then, even for data integrity operations: the page
  1366. * has disappeared concurrently, so there could be no
  1367. * real expectation of this data interity operation
  1368. * even if there is now a new, dirty page at the same
  1369. * pagecache address.
  1370. */
  1371. if (unlikely(page->mapping != mapping)) {
  1372. continue_unlock:
  1373. unlock_page(page);
  1374. continue;
  1375. }
  1376. if (!PageDirty(page)) {
  1377. /* someone wrote it for us */
  1378. goto continue_unlock;
  1379. }
  1380. if (PageWriteback(page)) {
  1381. if (wbc->sync_mode != WB_SYNC_NONE)
  1382. wait_on_page_writeback(page);
  1383. else
  1384. goto continue_unlock;
  1385. }
  1386. BUG_ON(PageWriteback(page));
  1387. if (!clear_page_dirty_for_io(page))
  1388. goto continue_unlock;
  1389. trace_wbc_writepage(wbc, mapping->backing_dev_info);
  1390. ret = (*writepage)(page, wbc, data);
  1391. if (unlikely(ret)) {
  1392. if (ret == AOP_WRITEPAGE_ACTIVATE) {
  1393. unlock_page(page);
  1394. ret = 0;
  1395. } else {
  1396. /*
  1397. * done_index is set past this page,
  1398. * so media errors will not choke
  1399. * background writeout for the entire
  1400. * file. This has consequences for
  1401. * range_cyclic semantics (ie. it may
  1402. * not be suitable for data integrity
  1403. * writeout).
  1404. */
  1405. done_index = page->index + 1;
  1406. done = 1;
  1407. break;
  1408. }
  1409. }
  1410. /*
  1411. * We stop writing back only if we are not doing
  1412. * integrity sync. In case of integrity sync we have to
  1413. * keep going until we have written all the pages
  1414. * we tagged for writeback prior to entering this loop.
  1415. */
  1416. if (--wbc->nr_to_write <= 0 &&
  1417. wbc->sync_mode == WB_SYNC_NONE) {
  1418. done = 1;
  1419. break;
  1420. }
  1421. }
  1422. pagevec_release(&pvec);
  1423. cond_resched();
  1424. }
  1425. if (!cycled && !done) {
  1426. /*
  1427. * range_cyclic:
  1428. * We hit the last page and there is more work to be done: wrap
  1429. * back to the start of the file
  1430. */
  1431. cycled = 1;
  1432. index = 0;
  1433. end = writeback_index - 1;
  1434. goto retry;
  1435. }
  1436. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  1437. mapping->writeback_index = done_index;
  1438. return ret;
  1439. }
  1440. EXPORT_SYMBOL(write_cache_pages);
  1441. /*
  1442. * Function used by generic_writepages to call the real writepage
  1443. * function and set the mapping flags on error
  1444. */
  1445. static int __writepage(struct page *page, struct writeback_control *wbc,
  1446. void *data)
  1447. {
  1448. struct address_space *mapping = data;
  1449. int ret = mapping->a_ops->writepage(page, wbc);
  1450. mapping_set_error(mapping, ret);
  1451. return ret;
  1452. }
  1453. /**
  1454. * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
  1455. * @mapping: address space structure to write
  1456. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1457. *
  1458. * This is a library function, which implements the writepages()
  1459. * address_space_operation.
  1460. */
  1461. int generic_writepages(struct address_space *mapping,
  1462. struct writeback_control *wbc)
  1463. {
  1464. struct blk_plug plug;
  1465. int ret;
  1466. /* deal with chardevs and other special file */
  1467. if (!mapping->a_ops->writepage)
  1468. return 0;
  1469. blk_start_plug(&plug);
  1470. ret = write_cache_pages(mapping, wbc, __writepage, mapping);
  1471. blk_finish_plug(&plug);
  1472. return ret;
  1473. }
  1474. EXPORT_SYMBOL(generic_writepages);
  1475. int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
  1476. {
  1477. int ret;
  1478. if (wbc->nr_to_write <= 0)
  1479. return 0;
  1480. if (mapping->a_ops->writepages)
  1481. ret = mapping->a_ops->writepages(mapping, wbc);
  1482. else
  1483. ret = generic_writepages(mapping, wbc);
  1484. return ret;
  1485. }
  1486. /**
  1487. * write_one_page - write out a single page and optionally wait on I/O
  1488. * @page: the page to write
  1489. * @wait: if true, wait on writeout
  1490. *
  1491. * The page must be locked by the caller and will be unlocked upon return.
  1492. *
  1493. * write_one_page() returns a negative error code if I/O failed.
  1494. */
  1495. int write_one_page(struct page *page, int wait)
  1496. {
  1497. struct address_space *mapping = page->mapping;
  1498. int ret = 0;
  1499. struct writeback_control wbc = {
  1500. .sync_mode = WB_SYNC_ALL,
  1501. .nr_to_write = 1,
  1502. };
  1503. BUG_ON(!PageLocked(page));
  1504. if (wait)
  1505. wait_on_page_writeback(page);
  1506. if (clear_page_dirty_for_io(page)) {
  1507. page_cache_get(page);
  1508. ret = mapping->a_ops->writepage(page, &wbc);
  1509. if (ret == 0 && wait) {
  1510. wait_on_page_writeback(page);
  1511. if (PageError(page))
  1512. ret = -EIO;
  1513. }
  1514. page_cache_release(page);
  1515. } else {
  1516. unlock_page(page);
  1517. }
  1518. return ret;
  1519. }
  1520. EXPORT_SYMBOL(write_one_page);
  1521. /*
  1522. * For address_spaces which do not use buffers nor write back.
  1523. */
  1524. int __set_page_dirty_no_writeback(struct page *page)
  1525. {
  1526. if (!PageDirty(page))
  1527. return !TestSetPageDirty(page);
  1528. return 0;
  1529. }
  1530. /*
  1531. * Helper function for set_page_dirty family.
  1532. * NOTE: This relies on being atomic wrt interrupts.
  1533. */
  1534. void account_page_dirtied(struct page *page, struct address_space *mapping)
  1535. {
  1536. if (mapping_cap_account_dirty(mapping)) {
  1537. __inc_zone_page_state(page, NR_FILE_DIRTY);
  1538. __inc_zone_page_state(page, NR_DIRTIED);
  1539. __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
  1540. __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
  1541. task_dirty_inc(current);
  1542. task_io_account_write(PAGE_CACHE_SIZE);
  1543. }
  1544. }
  1545. EXPORT_SYMBOL(account_page_dirtied);
  1546. /*
  1547. * Helper function for set_page_writeback family.
  1548. * NOTE: Unlike account_page_dirtied this does not rely on being atomic
  1549. * wrt interrupts.
  1550. */
  1551. void account_page_writeback(struct page *page)
  1552. {
  1553. inc_zone_page_state(page, NR_WRITEBACK);
  1554. }
  1555. EXPORT_SYMBOL(account_page_writeback);
  1556. /*
  1557. * For address_spaces which do not use buffers. Just tag the page as dirty in
  1558. * its radix tree.
  1559. *
  1560. * This is also used when a single buffer is being dirtied: we want to set the
  1561. * page dirty in that case, but not all the buffers. This is a "bottom-up"
  1562. * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
  1563. *
  1564. * Most callers have locked the page, which pins the address_space in memory.
  1565. * But zap_pte_range() does not lock the page, however in that case the
  1566. * mapping is pinned by the vma's ->vm_file reference.
  1567. *
  1568. * We take care to handle the case where the page was truncated from the
  1569. * mapping by re-checking page_mapping() inside tree_lock.
  1570. */
  1571. int __set_page_dirty_nobuffers(struct page *page)
  1572. {
  1573. if (!TestSetPageDirty(page)) {
  1574. struct address_space *mapping = page_mapping(page);
  1575. struct address_space *mapping2;
  1576. if (!mapping)
  1577. return 1;
  1578. spin_lock_irq(&mapping->tree_lock);
  1579. mapping2 = page_mapping(page);
  1580. if (mapping2) { /* Race with truncate? */
  1581. BUG_ON(mapping2 != mapping);
  1582. WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
  1583. account_page_dirtied(page, mapping);
  1584. radix_tree_tag_set(&mapping->page_tree,
  1585. page_index(page), PAGECACHE_TAG_DIRTY);
  1586. }
  1587. spin_unlock_irq(&mapping->tree_lock);
  1588. if (mapping->host) {
  1589. /* !PageAnon && !swapper_space */
  1590. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  1591. }
  1592. return 1;
  1593. }
  1594. return 0;
  1595. }
  1596. EXPORT_SYMBOL(__set_page_dirty_nobuffers);
  1597. /*
  1598. * When a writepage implementation decides that it doesn't want to write this
  1599. * page for some reason, it should redirty the locked page via
  1600. * redirty_page_for_writepage() and it should then unlock the page and return 0
  1601. */
  1602. int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
  1603. {
  1604. wbc->pages_skipped++;
  1605. return __set_page_dirty_nobuffers(page);
  1606. }
  1607. EXPORT_SYMBOL(redirty_page_for_writepage);
  1608. /*
  1609. * Dirty a page.
  1610. *
  1611. * For pages with a mapping this should be done under the page lock
  1612. * for the benefit of asynchronous memory errors who prefer a consistent
  1613. * dirty state. This rule can be broken in some special cases,
  1614. * but should be better not to.
  1615. *
  1616. * If the mapping doesn't provide a set_page_dirty a_op, then
  1617. * just fall through and assume that it wants buffer_heads.
  1618. */
  1619. int set_page_dirty(struct page *page)
  1620. {
  1621. struct address_space *mapping = page_mapping(page);
  1622. if (likely(mapping)) {
  1623. int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
  1624. /*
  1625. * readahead/lru_deactivate_page could remain
  1626. * PG_readahead/PG_reclaim due to race with end_page_writeback
  1627. * About readahead, if the page is written, the flags would be
  1628. * reset. So no problem.
  1629. * About lru_deactivate_page, if the page is redirty, the flag
  1630. * will be reset. So no problem. but if the page is used by readahead
  1631. * it will confuse readahead and make it restart the size rampup
  1632. * process. But it's a trivial problem.
  1633. */
  1634. ClearPageReclaim(page);
  1635. #ifdef CONFIG_BLOCK
  1636. if (!spd)
  1637. spd = __set_page_dirty_buffers;
  1638. #endif
  1639. return (*spd)(page);
  1640. }
  1641. if (!PageDirty(page)) {
  1642. if (!TestSetPageDirty(page))
  1643. return 1;
  1644. }
  1645. return 0;
  1646. }
  1647. EXPORT_SYMBOL(set_page_dirty);
  1648. /*
  1649. * set_page_dirty() is racy if the caller has no reference against
  1650. * page->mapping->host, and if the page is unlocked. This is because another
  1651. * CPU could truncate the page off the mapping and then free the mapping.
  1652. *
  1653. * Usually, the page _is_ locked, or the caller is a user-space process which
  1654. * holds a reference on the inode by having an open file.
  1655. *
  1656. * In other cases, the page should be locked before running set_page_dirty().
  1657. */
  1658. int set_page_dirty_lock(struct page *page)
  1659. {
  1660. int ret;
  1661. lock_page(page);
  1662. ret = set_page_dirty(page);
  1663. unlock_page(page);
  1664. return ret;
  1665. }
  1666. EXPORT_SYMBOL(set_page_dirty_lock);
  1667. /*
  1668. * Clear a page's dirty flag, while caring for dirty memory accounting.
  1669. * Returns true if the page was previously dirty.
  1670. *
  1671. * This is for preparing to put the page under writeout. We leave the page
  1672. * tagged as dirty in the radix tree so that a concurrent write-for-sync
  1673. * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
  1674. * implementation will run either set_page_writeback() or set_page_dirty(),
  1675. * at which stage we bring the page's dirty flag and radix-tree dirty tag
  1676. * back into sync.
  1677. *
  1678. * This incoherency between the page's dirty flag and radix-tree tag is
  1679. * unfortunate, but it only exists while the page is locked.
  1680. */
  1681. int clear_page_dirty_for_io(struct page *page)
  1682. {
  1683. struct address_space *mapping = page_mapping(page);
  1684. BUG_ON(!PageLocked(page));
  1685. if (mapping && mapping_cap_account_dirty(mapping)) {
  1686. /*
  1687. * Yes, Virginia, this is indeed insane.
  1688. *
  1689. * We use this sequence to make sure that
  1690. * (a) we account for dirty stats properly
  1691. * (b) we tell the low-level filesystem to
  1692. * mark the whole page dirty if it was
  1693. * dirty in a pagetable. Only to then
  1694. * (c) clean the page again and return 1 to
  1695. * cause the writeback.
  1696. *
  1697. * This way we avoid all nasty races with the
  1698. * dirty bit in multiple places and clearing
  1699. * them concurrently from different threads.
  1700. *
  1701. * Note! Normally the "set_page_dirty(page)"
  1702. * has no effect on the actual dirty bit - since
  1703. * that will already usually be set. But we
  1704. * need the side effects, and it can help us
  1705. * avoid races.
  1706. *
  1707. * We basically use the page "master dirty bit"
  1708. * as a serialization point for all the different
  1709. * threads doing their things.
  1710. */
  1711. if (page_mkclean(page))
  1712. set_page_dirty(page);
  1713. /*
  1714. * We carefully synchronise fault handlers against
  1715. * installing a dirty pte and marking the page dirty
  1716. * at this point. We do this by having them hold the
  1717. * page lock at some point after installing their
  1718. * pte, but before marking the page dirty.
  1719. * Pages are always locked coming in here, so we get
  1720. * the desired exclusion. See mm/memory.c:do_wp_page()
  1721. * for more comments.
  1722. */
  1723. if (TestClearPageDirty(page)) {
  1724. dec_zone_page_state(page, NR_FILE_DIRTY);
  1725. dec_bdi_stat(mapping->backing_dev_info,
  1726. BDI_RECLAIMABLE);
  1727. return 1;
  1728. }
  1729. return 0;
  1730. }
  1731. return TestClearPageDirty(page);
  1732. }
  1733. EXPORT_SYMBOL(clear_page_dirty_for_io);
  1734. int test_clear_page_writeback(struct page *page)
  1735. {
  1736. struct address_space *mapping = page_mapping(page);
  1737. int ret;
  1738. if (mapping) {
  1739. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1740. unsigned long flags;
  1741. spin_lock_irqsave(&mapping->tree_lock, flags);
  1742. ret = TestClearPageWriteback(page);
  1743. if (ret) {
  1744. radix_tree_tag_clear(&mapping->page_tree,
  1745. page_index(page),
  1746. PAGECACHE_TAG_WRITEBACK);
  1747. if (bdi_cap_account_writeback(bdi)) {
  1748. __dec_bdi_stat(bdi, BDI_WRITEBACK);
  1749. __bdi_writeout_inc(bdi);
  1750. }
  1751. }
  1752. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  1753. } else {
  1754. ret = TestClearPageWriteback(page);
  1755. }
  1756. if (ret) {
  1757. dec_zone_page_state(page, NR_WRITEBACK);
  1758. inc_zone_page_state(page, NR_WRITTEN);
  1759. }
  1760. return ret;
  1761. }
  1762. int test_set_page_writeback(struct page *page)
  1763. {
  1764. struct address_space *mapping = page_mapping(page);
  1765. int ret;
  1766. if (mapping) {
  1767. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1768. unsigned long flags;
  1769. spin_lock_irqsave(&mapping->tree_lock, flags);
  1770. ret = TestSetPageWriteback(page);
  1771. if (!ret) {
  1772. radix_tree_tag_set(&mapping->page_tree,
  1773. page_index(page),
  1774. PAGECACHE_TAG_WRITEBACK);
  1775. if (bdi_cap_account_writeback(bdi))
  1776. __inc_bdi_stat(bdi, BDI_WRITEBACK);
  1777. }
  1778. if (!PageDirty(page))
  1779. radix_tree_tag_clear(&mapping->page_tree,
  1780. page_index(page),
  1781. PAGECACHE_TAG_DIRTY);
  1782. radix_tree_tag_clear(&mapping->page_tree,
  1783. page_index(page),
  1784. PAGECACHE_TAG_TOWRITE);
  1785. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  1786. } else {
  1787. ret = TestSetPageWriteback(page);
  1788. }
  1789. if (!ret)
  1790. account_page_writeback(page);
  1791. return ret;
  1792. }
  1793. EXPORT_SYMBOL(test_set_page_writeback);
  1794. /*
  1795. * Return true if any of the pages in the mapping are marked with the
  1796. * passed tag.
  1797. */
  1798. int mapping_tagged(struct address_space *mapping, int tag)
  1799. {
  1800. return radix_tree_tagged(&mapping->page_tree, tag);
  1801. }
  1802. EXPORT_SYMBOL(mapping_tagged);