futex.c 68 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672
  1. /*
  2. * Fast Userspace Mutexes (which I call "Futexes!").
  3. * (C) Rusty Russell, IBM 2002
  4. *
  5. * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
  6. * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
  7. *
  8. * Removed page pinning, fix privately mapped COW pages and other cleanups
  9. * (C) Copyright 2003, 2004 Jamie Lokier
  10. *
  11. * Robust futex support started by Ingo Molnar
  12. * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13. * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14. *
  15. * PI-futex support started by Ingo Molnar and Thomas Gleixner
  16. * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17. * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18. *
  19. * PRIVATE futexes by Eric Dumazet
  20. * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21. *
  22. * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23. * Copyright (C) IBM Corporation, 2009
  24. * Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25. *
  26. * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27. * enough at me, Linus for the original (flawed) idea, Matthew
  28. * Kirkwood for proof-of-concept implementation.
  29. *
  30. * "The futexes are also cursed."
  31. * "But they come in a choice of three flavours!"
  32. *
  33. * This program is free software; you can redistribute it and/or modify
  34. * it under the terms of the GNU General Public License as published by
  35. * the Free Software Foundation; either version 2 of the License, or
  36. * (at your option) any later version.
  37. *
  38. * This program is distributed in the hope that it will be useful,
  39. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  40. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  41. * GNU General Public License for more details.
  42. *
  43. * You should have received a copy of the GNU General Public License
  44. * along with this program; if not, write to the Free Software
  45. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  46. */
  47. #include <linux/slab.h>
  48. #include <linux/poll.h>
  49. #include <linux/fs.h>
  50. #include <linux/file.h>
  51. #include <linux/jhash.h>
  52. #include <linux/init.h>
  53. #include <linux/futex.h>
  54. #include <linux/mount.h>
  55. #include <linux/pagemap.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/signal.h>
  58. #include <linux/module.h>
  59. #include <linux/magic.h>
  60. #include <linux/pid.h>
  61. #include <linux/nsproxy.h>
  62. #include <asm/futex.h>
  63. #include "rtmutex_common.h"
  64. int __read_mostly futex_cmpxchg_enabled;
  65. #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
  66. /*
  67. * Priority Inheritance state:
  68. */
  69. struct futex_pi_state {
  70. /*
  71. * list of 'owned' pi_state instances - these have to be
  72. * cleaned up in do_exit() if the task exits prematurely:
  73. */
  74. struct list_head list;
  75. /*
  76. * The PI object:
  77. */
  78. struct rt_mutex pi_mutex;
  79. struct task_struct *owner;
  80. atomic_t refcount;
  81. union futex_key key;
  82. };
  83. /**
  84. * struct futex_q - The hashed futex queue entry, one per waiting task
  85. * @list: priority-sorted list of tasks waiting on this futex
  86. * @task: the task waiting on the futex
  87. * @lock_ptr: the hash bucket lock
  88. * @key: the key the futex is hashed on
  89. * @pi_state: optional priority inheritance state
  90. * @rt_waiter: rt_waiter storage for use with requeue_pi
  91. * @requeue_pi_key: the requeue_pi target futex key
  92. * @bitset: bitset for the optional bitmasked wakeup
  93. *
  94. * We use this hashed waitqueue, instead of a normal wait_queue_t, so
  95. * we can wake only the relevant ones (hashed queues may be shared).
  96. *
  97. * A futex_q has a woken state, just like tasks have TASK_RUNNING.
  98. * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
  99. * The order of wakeup is always to make the first condition true, then
  100. * the second.
  101. *
  102. * PI futexes are typically woken before they are removed from the hash list via
  103. * the rt_mutex code. See unqueue_me_pi().
  104. */
  105. struct futex_q {
  106. struct plist_node list;
  107. struct task_struct *task;
  108. spinlock_t *lock_ptr;
  109. union futex_key key;
  110. struct futex_pi_state *pi_state;
  111. struct rt_mutex_waiter *rt_waiter;
  112. union futex_key *requeue_pi_key;
  113. u32 bitset;
  114. };
  115. /*
  116. * Hash buckets are shared by all the futex_keys that hash to the same
  117. * location. Each key may have multiple futex_q structures, one for each task
  118. * waiting on a futex.
  119. */
  120. struct futex_hash_bucket {
  121. spinlock_t lock;
  122. struct plist_head chain;
  123. };
  124. static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
  125. /*
  126. * We hash on the keys returned from get_futex_key (see below).
  127. */
  128. static struct futex_hash_bucket *hash_futex(union futex_key *key)
  129. {
  130. u32 hash = jhash2((u32*)&key->both.word,
  131. (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
  132. key->both.offset);
  133. return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
  134. }
  135. /*
  136. * Return 1 if two futex_keys are equal, 0 otherwise.
  137. */
  138. static inline int match_futex(union futex_key *key1, union futex_key *key2)
  139. {
  140. return (key1 && key2
  141. && key1->both.word == key2->both.word
  142. && key1->both.ptr == key2->both.ptr
  143. && key1->both.offset == key2->both.offset);
  144. }
  145. /*
  146. * Take a reference to the resource addressed by a key.
  147. * Can be called while holding spinlocks.
  148. *
  149. */
  150. static void get_futex_key_refs(union futex_key *key)
  151. {
  152. if (!key->both.ptr)
  153. return;
  154. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  155. case FUT_OFF_INODE:
  156. atomic_inc(&key->shared.inode->i_count);
  157. break;
  158. case FUT_OFF_MMSHARED:
  159. atomic_inc(&key->private.mm->mm_count);
  160. break;
  161. }
  162. }
  163. /*
  164. * Drop a reference to the resource addressed by a key.
  165. * The hash bucket spinlock must not be held.
  166. */
  167. static void drop_futex_key_refs(union futex_key *key)
  168. {
  169. if (!key->both.ptr) {
  170. /* If we're here then we tried to put a key we failed to get */
  171. WARN_ON_ONCE(1);
  172. return;
  173. }
  174. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  175. case FUT_OFF_INODE:
  176. iput(key->shared.inode);
  177. break;
  178. case FUT_OFF_MMSHARED:
  179. mmdrop(key->private.mm);
  180. break;
  181. }
  182. }
  183. /**
  184. * get_futex_key() - Get parameters which are the keys for a futex
  185. * @uaddr: virtual address of the futex
  186. * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
  187. * @key: address where result is stored.
  188. *
  189. * Returns a negative error code or 0
  190. * The key words are stored in *key on success.
  191. *
  192. * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
  193. * offset_within_page). For private mappings, it's (uaddr, current->mm).
  194. * We can usually work out the index without swapping in the page.
  195. *
  196. * lock_page() might sleep, the caller should not hold a spinlock.
  197. */
  198. static int
  199. get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
  200. {
  201. unsigned long address = (unsigned long)uaddr;
  202. struct mm_struct *mm = current->mm;
  203. struct page *page;
  204. int err;
  205. /*
  206. * The futex address must be "naturally" aligned.
  207. */
  208. key->both.offset = address % PAGE_SIZE;
  209. if (unlikely((address % sizeof(u32)) != 0))
  210. return -EINVAL;
  211. address -= key->both.offset;
  212. /*
  213. * PROCESS_PRIVATE futexes are fast.
  214. * As the mm cannot disappear under us and the 'key' only needs
  215. * virtual address, we dont even have to find the underlying vma.
  216. * Note : We do have to check 'uaddr' is a valid user address,
  217. * but access_ok() should be faster than find_vma()
  218. */
  219. if (!fshared) {
  220. if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
  221. return -EFAULT;
  222. key->private.mm = mm;
  223. key->private.address = address;
  224. get_futex_key_refs(key);
  225. return 0;
  226. }
  227. again:
  228. err = get_user_pages_fast(address, 1, 1, &page);
  229. if (err < 0)
  230. return err;
  231. page = compound_head(page);
  232. lock_page(page);
  233. if (!page->mapping) {
  234. unlock_page(page);
  235. put_page(page);
  236. goto again;
  237. }
  238. /*
  239. * Private mappings are handled in a simple way.
  240. *
  241. * NOTE: When userspace waits on a MAP_SHARED mapping, even if
  242. * it's a read-only handle, it's expected that futexes attach to
  243. * the object not the particular process.
  244. */
  245. if (PageAnon(page)) {
  246. key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
  247. key->private.mm = mm;
  248. key->private.address = address;
  249. } else {
  250. key->both.offset |= FUT_OFF_INODE; /* inode-based key */
  251. key->shared.inode = page->mapping->host;
  252. key->shared.pgoff = page->index;
  253. }
  254. get_futex_key_refs(key);
  255. unlock_page(page);
  256. put_page(page);
  257. return 0;
  258. }
  259. static inline
  260. void put_futex_key(int fshared, union futex_key *key)
  261. {
  262. drop_futex_key_refs(key);
  263. }
  264. /**
  265. * fault_in_user_writeable() - Fault in user address and verify RW access
  266. * @uaddr: pointer to faulting user space address
  267. *
  268. * Slow path to fixup the fault we just took in the atomic write
  269. * access to @uaddr.
  270. *
  271. * We have no generic implementation of a non-destructive write to the
  272. * user address. We know that we faulted in the atomic pagefault
  273. * disabled section so we can as well avoid the #PF overhead by
  274. * calling get_user_pages() right away.
  275. */
  276. static int fault_in_user_writeable(u32 __user *uaddr)
  277. {
  278. struct mm_struct *mm = current->mm;
  279. int ret;
  280. down_read(&mm->mmap_sem);
  281. ret = get_user_pages(current, mm, (unsigned long)uaddr,
  282. 1, 1, 0, NULL, NULL);
  283. up_read(&mm->mmap_sem);
  284. return ret < 0 ? ret : 0;
  285. }
  286. /**
  287. * futex_top_waiter() - Return the highest priority waiter on a futex
  288. * @hb: the hash bucket the futex_q's reside in
  289. * @key: the futex key (to distinguish it from other futex futex_q's)
  290. *
  291. * Must be called with the hb lock held.
  292. */
  293. static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
  294. union futex_key *key)
  295. {
  296. struct futex_q *this;
  297. plist_for_each_entry(this, &hb->chain, list) {
  298. if (match_futex(&this->key, key))
  299. return this;
  300. }
  301. return NULL;
  302. }
  303. static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
  304. {
  305. u32 curval;
  306. pagefault_disable();
  307. curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
  308. pagefault_enable();
  309. return curval;
  310. }
  311. static int get_futex_value_locked(u32 *dest, u32 __user *from)
  312. {
  313. int ret;
  314. pagefault_disable();
  315. ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
  316. pagefault_enable();
  317. return ret ? -EFAULT : 0;
  318. }
  319. /*
  320. * PI code:
  321. */
  322. static int refill_pi_state_cache(void)
  323. {
  324. struct futex_pi_state *pi_state;
  325. if (likely(current->pi_state_cache))
  326. return 0;
  327. pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
  328. if (!pi_state)
  329. return -ENOMEM;
  330. INIT_LIST_HEAD(&pi_state->list);
  331. /* pi_mutex gets initialized later */
  332. pi_state->owner = NULL;
  333. atomic_set(&pi_state->refcount, 1);
  334. pi_state->key = FUTEX_KEY_INIT;
  335. current->pi_state_cache = pi_state;
  336. return 0;
  337. }
  338. static struct futex_pi_state * alloc_pi_state(void)
  339. {
  340. struct futex_pi_state *pi_state = current->pi_state_cache;
  341. WARN_ON(!pi_state);
  342. current->pi_state_cache = NULL;
  343. return pi_state;
  344. }
  345. static void free_pi_state(struct futex_pi_state *pi_state)
  346. {
  347. if (!atomic_dec_and_test(&pi_state->refcount))
  348. return;
  349. /*
  350. * If pi_state->owner is NULL, the owner is most probably dying
  351. * and has cleaned up the pi_state already
  352. */
  353. if (pi_state->owner) {
  354. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  355. list_del_init(&pi_state->list);
  356. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  357. rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
  358. }
  359. if (current->pi_state_cache)
  360. kfree(pi_state);
  361. else {
  362. /*
  363. * pi_state->list is already empty.
  364. * clear pi_state->owner.
  365. * refcount is at 0 - put it back to 1.
  366. */
  367. pi_state->owner = NULL;
  368. atomic_set(&pi_state->refcount, 1);
  369. current->pi_state_cache = pi_state;
  370. }
  371. }
  372. /*
  373. * Look up the task based on what TID userspace gave us.
  374. * We dont trust it.
  375. */
  376. static struct task_struct * futex_find_get_task(pid_t pid)
  377. {
  378. struct task_struct *p;
  379. rcu_read_lock();
  380. p = find_task_by_vpid(pid);
  381. if (p)
  382. get_task_struct(p);
  383. rcu_read_unlock();
  384. return p;
  385. }
  386. /*
  387. * This task is holding PI mutexes at exit time => bad.
  388. * Kernel cleans up PI-state, but userspace is likely hosed.
  389. * (Robust-futex cleanup is separate and might save the day for userspace.)
  390. */
  391. void exit_pi_state_list(struct task_struct *curr)
  392. {
  393. struct list_head *next, *head = &curr->pi_state_list;
  394. struct futex_pi_state *pi_state;
  395. struct futex_hash_bucket *hb;
  396. union futex_key key = FUTEX_KEY_INIT;
  397. if (!futex_cmpxchg_enabled)
  398. return;
  399. /*
  400. * We are a ZOMBIE and nobody can enqueue itself on
  401. * pi_state_list anymore, but we have to be careful
  402. * versus waiters unqueueing themselves:
  403. */
  404. raw_spin_lock_irq(&curr->pi_lock);
  405. while (!list_empty(head)) {
  406. next = head->next;
  407. pi_state = list_entry(next, struct futex_pi_state, list);
  408. key = pi_state->key;
  409. hb = hash_futex(&key);
  410. raw_spin_unlock_irq(&curr->pi_lock);
  411. spin_lock(&hb->lock);
  412. raw_spin_lock_irq(&curr->pi_lock);
  413. /*
  414. * We dropped the pi-lock, so re-check whether this
  415. * task still owns the PI-state:
  416. */
  417. if (head->next != next) {
  418. spin_unlock(&hb->lock);
  419. continue;
  420. }
  421. WARN_ON(pi_state->owner != curr);
  422. WARN_ON(list_empty(&pi_state->list));
  423. list_del_init(&pi_state->list);
  424. pi_state->owner = NULL;
  425. raw_spin_unlock_irq(&curr->pi_lock);
  426. rt_mutex_unlock(&pi_state->pi_mutex);
  427. spin_unlock(&hb->lock);
  428. raw_spin_lock_irq(&curr->pi_lock);
  429. }
  430. raw_spin_unlock_irq(&curr->pi_lock);
  431. }
  432. static int
  433. lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
  434. union futex_key *key, struct futex_pi_state **ps)
  435. {
  436. struct futex_pi_state *pi_state = NULL;
  437. struct futex_q *this, *next;
  438. struct plist_head *head;
  439. struct task_struct *p;
  440. pid_t pid = uval & FUTEX_TID_MASK;
  441. head = &hb->chain;
  442. plist_for_each_entry_safe(this, next, head, list) {
  443. if (match_futex(&this->key, key)) {
  444. /*
  445. * Another waiter already exists - bump up
  446. * the refcount and return its pi_state:
  447. */
  448. pi_state = this->pi_state;
  449. /*
  450. * Userspace might have messed up non-PI and PI futexes
  451. */
  452. if (unlikely(!pi_state))
  453. return -EINVAL;
  454. WARN_ON(!atomic_read(&pi_state->refcount));
  455. /*
  456. * When pi_state->owner is NULL then the owner died
  457. * and another waiter is on the fly. pi_state->owner
  458. * is fixed up by the task which acquires
  459. * pi_state->rt_mutex.
  460. *
  461. * We do not check for pid == 0 which can happen when
  462. * the owner died and robust_list_exit() cleared the
  463. * TID.
  464. */
  465. if (pid && pi_state->owner) {
  466. /*
  467. * Bail out if user space manipulated the
  468. * futex value.
  469. */
  470. if (pid != task_pid_vnr(pi_state->owner))
  471. return -EINVAL;
  472. }
  473. atomic_inc(&pi_state->refcount);
  474. *ps = pi_state;
  475. return 0;
  476. }
  477. }
  478. /*
  479. * We are the first waiter - try to look up the real owner and attach
  480. * the new pi_state to it, but bail out when TID = 0
  481. */
  482. if (!pid)
  483. return -ESRCH;
  484. p = futex_find_get_task(pid);
  485. if (!p)
  486. return -ESRCH;
  487. /*
  488. * We need to look at the task state flags to figure out,
  489. * whether the task is exiting. To protect against the do_exit
  490. * change of the task flags, we do this protected by
  491. * p->pi_lock:
  492. */
  493. raw_spin_lock_irq(&p->pi_lock);
  494. if (unlikely(p->flags & PF_EXITING)) {
  495. /*
  496. * The task is on the way out. When PF_EXITPIDONE is
  497. * set, we know that the task has finished the
  498. * cleanup:
  499. */
  500. int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
  501. raw_spin_unlock_irq(&p->pi_lock);
  502. put_task_struct(p);
  503. return ret;
  504. }
  505. pi_state = alloc_pi_state();
  506. /*
  507. * Initialize the pi_mutex in locked state and make 'p'
  508. * the owner of it:
  509. */
  510. rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
  511. /* Store the key for possible exit cleanups: */
  512. pi_state->key = *key;
  513. WARN_ON(!list_empty(&pi_state->list));
  514. list_add(&pi_state->list, &p->pi_state_list);
  515. pi_state->owner = p;
  516. raw_spin_unlock_irq(&p->pi_lock);
  517. put_task_struct(p);
  518. *ps = pi_state;
  519. return 0;
  520. }
  521. /**
  522. * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
  523. * @uaddr: the pi futex user address
  524. * @hb: the pi futex hash bucket
  525. * @key: the futex key associated with uaddr and hb
  526. * @ps: the pi_state pointer where we store the result of the
  527. * lookup
  528. * @task: the task to perform the atomic lock work for. This will
  529. * be "current" except in the case of requeue pi.
  530. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  531. *
  532. * Returns:
  533. * 0 - ready to wait
  534. * 1 - acquired the lock
  535. * <0 - error
  536. *
  537. * The hb->lock and futex_key refs shall be held by the caller.
  538. */
  539. static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
  540. union futex_key *key,
  541. struct futex_pi_state **ps,
  542. struct task_struct *task, int set_waiters)
  543. {
  544. int lock_taken, ret, ownerdied = 0;
  545. u32 uval, newval, curval;
  546. retry:
  547. ret = lock_taken = 0;
  548. /*
  549. * To avoid races, we attempt to take the lock here again
  550. * (by doing a 0 -> TID atomic cmpxchg), while holding all
  551. * the locks. It will most likely not succeed.
  552. */
  553. newval = task_pid_vnr(task);
  554. if (set_waiters)
  555. newval |= FUTEX_WAITERS;
  556. curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
  557. if (unlikely(curval == -EFAULT))
  558. return -EFAULT;
  559. /*
  560. * Detect deadlocks.
  561. */
  562. if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
  563. return -EDEADLK;
  564. /*
  565. * Surprise - we got the lock. Just return to userspace:
  566. */
  567. if (unlikely(!curval))
  568. return 1;
  569. uval = curval;
  570. /*
  571. * Set the FUTEX_WAITERS flag, so the owner will know it has someone
  572. * to wake at the next unlock.
  573. */
  574. newval = curval | FUTEX_WAITERS;
  575. /*
  576. * There are two cases, where a futex might have no owner (the
  577. * owner TID is 0): OWNER_DIED. We take over the futex in this
  578. * case. We also do an unconditional take over, when the owner
  579. * of the futex died.
  580. *
  581. * This is safe as we are protected by the hash bucket lock !
  582. */
  583. if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
  584. /* Keep the OWNER_DIED bit */
  585. newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
  586. ownerdied = 0;
  587. lock_taken = 1;
  588. }
  589. curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
  590. if (unlikely(curval == -EFAULT))
  591. return -EFAULT;
  592. if (unlikely(curval != uval))
  593. goto retry;
  594. /*
  595. * We took the lock due to owner died take over.
  596. */
  597. if (unlikely(lock_taken))
  598. return 1;
  599. /*
  600. * We dont have the lock. Look up the PI state (or create it if
  601. * we are the first waiter):
  602. */
  603. ret = lookup_pi_state(uval, hb, key, ps);
  604. if (unlikely(ret)) {
  605. switch (ret) {
  606. case -ESRCH:
  607. /*
  608. * No owner found for this futex. Check if the
  609. * OWNER_DIED bit is set to figure out whether
  610. * this is a robust futex or not.
  611. */
  612. if (get_futex_value_locked(&curval, uaddr))
  613. return -EFAULT;
  614. /*
  615. * We simply start over in case of a robust
  616. * futex. The code above will take the futex
  617. * and return happy.
  618. */
  619. if (curval & FUTEX_OWNER_DIED) {
  620. ownerdied = 1;
  621. goto retry;
  622. }
  623. default:
  624. break;
  625. }
  626. }
  627. return ret;
  628. }
  629. /*
  630. * The hash bucket lock must be held when this is called.
  631. * Afterwards, the futex_q must not be accessed.
  632. */
  633. static void wake_futex(struct futex_q *q)
  634. {
  635. struct task_struct *p = q->task;
  636. /*
  637. * We set q->lock_ptr = NULL _before_ we wake up the task. If
  638. * a non-futex wake up happens on another CPU then the task
  639. * might exit and p would dereference a non-existing task
  640. * struct. Prevent this by holding a reference on p across the
  641. * wake up.
  642. */
  643. get_task_struct(p);
  644. plist_del(&q->list, &q->list.plist);
  645. /*
  646. * The waiting task can free the futex_q as soon as
  647. * q->lock_ptr = NULL is written, without taking any locks. A
  648. * memory barrier is required here to prevent the following
  649. * store to lock_ptr from getting ahead of the plist_del.
  650. */
  651. smp_wmb();
  652. q->lock_ptr = NULL;
  653. wake_up_state(p, TASK_NORMAL);
  654. put_task_struct(p);
  655. }
  656. static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
  657. {
  658. struct task_struct *new_owner;
  659. struct futex_pi_state *pi_state = this->pi_state;
  660. u32 curval, newval;
  661. if (!pi_state)
  662. return -EINVAL;
  663. /*
  664. * If current does not own the pi_state then the futex is
  665. * inconsistent and user space fiddled with the futex value.
  666. */
  667. if (pi_state->owner != current)
  668. return -EINVAL;
  669. raw_spin_lock(&pi_state->pi_mutex.wait_lock);
  670. new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
  671. /*
  672. * This happens when we have stolen the lock and the original
  673. * pending owner did not enqueue itself back on the rt_mutex.
  674. * Thats not a tragedy. We know that way, that a lock waiter
  675. * is on the fly. We make the futex_q waiter the pending owner.
  676. */
  677. if (!new_owner)
  678. new_owner = this->task;
  679. /*
  680. * We pass it to the next owner. (The WAITERS bit is always
  681. * kept enabled while there is PI state around. We must also
  682. * preserve the owner died bit.)
  683. */
  684. if (!(uval & FUTEX_OWNER_DIED)) {
  685. int ret = 0;
  686. newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
  687. curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
  688. if (curval == -EFAULT)
  689. ret = -EFAULT;
  690. else if (curval != uval)
  691. ret = -EINVAL;
  692. if (ret) {
  693. raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
  694. return ret;
  695. }
  696. }
  697. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  698. WARN_ON(list_empty(&pi_state->list));
  699. list_del_init(&pi_state->list);
  700. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  701. raw_spin_lock_irq(&new_owner->pi_lock);
  702. WARN_ON(!list_empty(&pi_state->list));
  703. list_add(&pi_state->list, &new_owner->pi_state_list);
  704. pi_state->owner = new_owner;
  705. raw_spin_unlock_irq(&new_owner->pi_lock);
  706. raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
  707. rt_mutex_unlock(&pi_state->pi_mutex);
  708. return 0;
  709. }
  710. static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
  711. {
  712. u32 oldval;
  713. /*
  714. * There is no waiter, so we unlock the futex. The owner died
  715. * bit has not to be preserved here. We are the owner:
  716. */
  717. oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
  718. if (oldval == -EFAULT)
  719. return oldval;
  720. if (oldval != uval)
  721. return -EAGAIN;
  722. return 0;
  723. }
  724. /*
  725. * Express the locking dependencies for lockdep:
  726. */
  727. static inline void
  728. double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  729. {
  730. if (hb1 <= hb2) {
  731. spin_lock(&hb1->lock);
  732. if (hb1 < hb2)
  733. spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
  734. } else { /* hb1 > hb2 */
  735. spin_lock(&hb2->lock);
  736. spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
  737. }
  738. }
  739. static inline void
  740. double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  741. {
  742. spin_unlock(&hb1->lock);
  743. if (hb1 != hb2)
  744. spin_unlock(&hb2->lock);
  745. }
  746. /*
  747. * Wake up waiters matching bitset queued on this futex (uaddr).
  748. */
  749. static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
  750. {
  751. struct futex_hash_bucket *hb;
  752. struct futex_q *this, *next;
  753. struct plist_head *head;
  754. union futex_key key = FUTEX_KEY_INIT;
  755. int ret;
  756. if (!bitset)
  757. return -EINVAL;
  758. ret = get_futex_key(uaddr, fshared, &key);
  759. if (unlikely(ret != 0))
  760. goto out;
  761. hb = hash_futex(&key);
  762. spin_lock(&hb->lock);
  763. head = &hb->chain;
  764. plist_for_each_entry_safe(this, next, head, list) {
  765. if (match_futex (&this->key, &key)) {
  766. if (this->pi_state || this->rt_waiter) {
  767. ret = -EINVAL;
  768. break;
  769. }
  770. /* Check if one of the bits is set in both bitsets */
  771. if (!(this->bitset & bitset))
  772. continue;
  773. wake_futex(this);
  774. if (++ret >= nr_wake)
  775. break;
  776. }
  777. }
  778. spin_unlock(&hb->lock);
  779. put_futex_key(fshared, &key);
  780. out:
  781. return ret;
  782. }
  783. /*
  784. * Wake up all waiters hashed on the physical page that is mapped
  785. * to this virtual address:
  786. */
  787. static int
  788. futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
  789. int nr_wake, int nr_wake2, int op)
  790. {
  791. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  792. struct futex_hash_bucket *hb1, *hb2;
  793. struct plist_head *head;
  794. struct futex_q *this, *next;
  795. int ret, op_ret;
  796. retry:
  797. ret = get_futex_key(uaddr1, fshared, &key1);
  798. if (unlikely(ret != 0))
  799. goto out;
  800. ret = get_futex_key(uaddr2, fshared, &key2);
  801. if (unlikely(ret != 0))
  802. goto out_put_key1;
  803. hb1 = hash_futex(&key1);
  804. hb2 = hash_futex(&key2);
  805. retry_private:
  806. double_lock_hb(hb1, hb2);
  807. op_ret = futex_atomic_op_inuser(op, uaddr2);
  808. if (unlikely(op_ret < 0)) {
  809. double_unlock_hb(hb1, hb2);
  810. #ifndef CONFIG_MMU
  811. /*
  812. * we don't get EFAULT from MMU faults if we don't have an MMU,
  813. * but we might get them from range checking
  814. */
  815. ret = op_ret;
  816. goto out_put_keys;
  817. #endif
  818. if (unlikely(op_ret != -EFAULT)) {
  819. ret = op_ret;
  820. goto out_put_keys;
  821. }
  822. ret = fault_in_user_writeable(uaddr2);
  823. if (ret)
  824. goto out_put_keys;
  825. if (!fshared)
  826. goto retry_private;
  827. put_futex_key(fshared, &key2);
  828. put_futex_key(fshared, &key1);
  829. goto retry;
  830. }
  831. head = &hb1->chain;
  832. plist_for_each_entry_safe(this, next, head, list) {
  833. if (match_futex (&this->key, &key1)) {
  834. wake_futex(this);
  835. if (++ret >= nr_wake)
  836. break;
  837. }
  838. }
  839. if (op_ret > 0) {
  840. head = &hb2->chain;
  841. op_ret = 0;
  842. plist_for_each_entry_safe(this, next, head, list) {
  843. if (match_futex (&this->key, &key2)) {
  844. wake_futex(this);
  845. if (++op_ret >= nr_wake2)
  846. break;
  847. }
  848. }
  849. ret += op_ret;
  850. }
  851. double_unlock_hb(hb1, hb2);
  852. out_put_keys:
  853. put_futex_key(fshared, &key2);
  854. out_put_key1:
  855. put_futex_key(fshared, &key1);
  856. out:
  857. return ret;
  858. }
  859. /**
  860. * requeue_futex() - Requeue a futex_q from one hb to another
  861. * @q: the futex_q to requeue
  862. * @hb1: the source hash_bucket
  863. * @hb2: the target hash_bucket
  864. * @key2: the new key for the requeued futex_q
  865. */
  866. static inline
  867. void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
  868. struct futex_hash_bucket *hb2, union futex_key *key2)
  869. {
  870. /*
  871. * If key1 and key2 hash to the same bucket, no need to
  872. * requeue.
  873. */
  874. if (likely(&hb1->chain != &hb2->chain)) {
  875. plist_del(&q->list, &hb1->chain);
  876. plist_add(&q->list, &hb2->chain);
  877. q->lock_ptr = &hb2->lock;
  878. #ifdef CONFIG_DEBUG_PI_LIST
  879. q->list.plist.spinlock = &hb2->lock;
  880. #endif
  881. }
  882. get_futex_key_refs(key2);
  883. q->key = *key2;
  884. }
  885. /**
  886. * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
  887. * @q: the futex_q
  888. * @key: the key of the requeue target futex
  889. * @hb: the hash_bucket of the requeue target futex
  890. *
  891. * During futex_requeue, with requeue_pi=1, it is possible to acquire the
  892. * target futex if it is uncontended or via a lock steal. Set the futex_q key
  893. * to the requeue target futex so the waiter can detect the wakeup on the right
  894. * futex, but remove it from the hb and NULL the rt_waiter so it can detect
  895. * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
  896. * to protect access to the pi_state to fixup the owner later. Must be called
  897. * with both q->lock_ptr and hb->lock held.
  898. */
  899. static inline
  900. void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
  901. struct futex_hash_bucket *hb)
  902. {
  903. get_futex_key_refs(key);
  904. q->key = *key;
  905. WARN_ON(plist_node_empty(&q->list));
  906. plist_del(&q->list, &q->list.plist);
  907. WARN_ON(!q->rt_waiter);
  908. q->rt_waiter = NULL;
  909. q->lock_ptr = &hb->lock;
  910. #ifdef CONFIG_DEBUG_PI_LIST
  911. q->list.plist.spinlock = &hb->lock;
  912. #endif
  913. wake_up_state(q->task, TASK_NORMAL);
  914. }
  915. /**
  916. * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
  917. * @pifutex: the user address of the to futex
  918. * @hb1: the from futex hash bucket, must be locked by the caller
  919. * @hb2: the to futex hash bucket, must be locked by the caller
  920. * @key1: the from futex key
  921. * @key2: the to futex key
  922. * @ps: address to store the pi_state pointer
  923. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  924. *
  925. * Try and get the lock on behalf of the top waiter if we can do it atomically.
  926. * Wake the top waiter if we succeed. If the caller specified set_waiters,
  927. * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
  928. * hb1 and hb2 must be held by the caller.
  929. *
  930. * Returns:
  931. * 0 - failed to acquire the lock atomicly
  932. * 1 - acquired the lock
  933. * <0 - error
  934. */
  935. static int futex_proxy_trylock_atomic(u32 __user *pifutex,
  936. struct futex_hash_bucket *hb1,
  937. struct futex_hash_bucket *hb2,
  938. union futex_key *key1, union futex_key *key2,
  939. struct futex_pi_state **ps, int set_waiters)
  940. {
  941. struct futex_q *top_waiter = NULL;
  942. u32 curval;
  943. int ret;
  944. if (get_futex_value_locked(&curval, pifutex))
  945. return -EFAULT;
  946. /*
  947. * Find the top_waiter and determine if there are additional waiters.
  948. * If the caller intends to requeue more than 1 waiter to pifutex,
  949. * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
  950. * as we have means to handle the possible fault. If not, don't set
  951. * the bit unecessarily as it will force the subsequent unlock to enter
  952. * the kernel.
  953. */
  954. top_waiter = futex_top_waiter(hb1, key1);
  955. /* There are no waiters, nothing for us to do. */
  956. if (!top_waiter)
  957. return 0;
  958. /* Ensure we requeue to the expected futex. */
  959. if (!match_futex(top_waiter->requeue_pi_key, key2))
  960. return -EINVAL;
  961. /*
  962. * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
  963. * the contended case or if set_waiters is 1. The pi_state is returned
  964. * in ps in contended cases.
  965. */
  966. ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
  967. set_waiters);
  968. if (ret == 1)
  969. requeue_pi_wake_futex(top_waiter, key2, hb2);
  970. return ret;
  971. }
  972. /**
  973. * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
  974. * @uaddr1: source futex user address
  975. * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
  976. * @uaddr2: target futex user address
  977. * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
  978. * @nr_requeue: number of waiters to requeue (0-INT_MAX)
  979. * @cmpval: @uaddr1 expected value (or %NULL)
  980. * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
  981. * pi futex (pi to pi requeue is not supported)
  982. *
  983. * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
  984. * uaddr2 atomically on behalf of the top waiter.
  985. *
  986. * Returns:
  987. * >=0 - on success, the number of tasks requeued or woken
  988. * <0 - on error
  989. */
  990. static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
  991. int nr_wake, int nr_requeue, u32 *cmpval,
  992. int requeue_pi)
  993. {
  994. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  995. int drop_count = 0, task_count = 0, ret;
  996. struct futex_pi_state *pi_state = NULL;
  997. struct futex_hash_bucket *hb1, *hb2;
  998. struct plist_head *head1;
  999. struct futex_q *this, *next;
  1000. u32 curval2;
  1001. if (requeue_pi) {
  1002. /*
  1003. * requeue_pi requires a pi_state, try to allocate it now
  1004. * without any locks in case it fails.
  1005. */
  1006. if (refill_pi_state_cache())
  1007. return -ENOMEM;
  1008. /*
  1009. * requeue_pi must wake as many tasks as it can, up to nr_wake
  1010. * + nr_requeue, since it acquires the rt_mutex prior to
  1011. * returning to userspace, so as to not leave the rt_mutex with
  1012. * waiters and no owner. However, second and third wake-ups
  1013. * cannot be predicted as they involve race conditions with the
  1014. * first wake and a fault while looking up the pi_state. Both
  1015. * pthread_cond_signal() and pthread_cond_broadcast() should
  1016. * use nr_wake=1.
  1017. */
  1018. if (nr_wake != 1)
  1019. return -EINVAL;
  1020. }
  1021. retry:
  1022. if (pi_state != NULL) {
  1023. /*
  1024. * We will have to lookup the pi_state again, so free this one
  1025. * to keep the accounting correct.
  1026. */
  1027. free_pi_state(pi_state);
  1028. pi_state = NULL;
  1029. }
  1030. ret = get_futex_key(uaddr1, fshared, &key1);
  1031. if (unlikely(ret != 0))
  1032. goto out;
  1033. ret = get_futex_key(uaddr2, fshared, &key2);
  1034. if (unlikely(ret != 0))
  1035. goto out_put_key1;
  1036. hb1 = hash_futex(&key1);
  1037. hb2 = hash_futex(&key2);
  1038. retry_private:
  1039. double_lock_hb(hb1, hb2);
  1040. if (likely(cmpval != NULL)) {
  1041. u32 curval;
  1042. ret = get_futex_value_locked(&curval, uaddr1);
  1043. if (unlikely(ret)) {
  1044. double_unlock_hb(hb1, hb2);
  1045. ret = get_user(curval, uaddr1);
  1046. if (ret)
  1047. goto out_put_keys;
  1048. if (!fshared)
  1049. goto retry_private;
  1050. put_futex_key(fshared, &key2);
  1051. put_futex_key(fshared, &key1);
  1052. goto retry;
  1053. }
  1054. if (curval != *cmpval) {
  1055. ret = -EAGAIN;
  1056. goto out_unlock;
  1057. }
  1058. }
  1059. if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
  1060. /*
  1061. * Attempt to acquire uaddr2 and wake the top waiter. If we
  1062. * intend to requeue waiters, force setting the FUTEX_WAITERS
  1063. * bit. We force this here where we are able to easily handle
  1064. * faults rather in the requeue loop below.
  1065. */
  1066. ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
  1067. &key2, &pi_state, nr_requeue);
  1068. /*
  1069. * At this point the top_waiter has either taken uaddr2 or is
  1070. * waiting on it. If the former, then the pi_state will not
  1071. * exist yet, look it up one more time to ensure we have a
  1072. * reference to it.
  1073. */
  1074. if (ret == 1) {
  1075. WARN_ON(pi_state);
  1076. drop_count++;
  1077. task_count++;
  1078. ret = get_futex_value_locked(&curval2, uaddr2);
  1079. if (!ret)
  1080. ret = lookup_pi_state(curval2, hb2, &key2,
  1081. &pi_state);
  1082. }
  1083. switch (ret) {
  1084. case 0:
  1085. break;
  1086. case -EFAULT:
  1087. double_unlock_hb(hb1, hb2);
  1088. put_futex_key(fshared, &key2);
  1089. put_futex_key(fshared, &key1);
  1090. ret = fault_in_user_writeable(uaddr2);
  1091. if (!ret)
  1092. goto retry;
  1093. goto out;
  1094. case -EAGAIN:
  1095. /* The owner was exiting, try again. */
  1096. double_unlock_hb(hb1, hb2);
  1097. put_futex_key(fshared, &key2);
  1098. put_futex_key(fshared, &key1);
  1099. cond_resched();
  1100. goto retry;
  1101. default:
  1102. goto out_unlock;
  1103. }
  1104. }
  1105. head1 = &hb1->chain;
  1106. plist_for_each_entry_safe(this, next, head1, list) {
  1107. if (task_count - nr_wake >= nr_requeue)
  1108. break;
  1109. if (!match_futex(&this->key, &key1))
  1110. continue;
  1111. /*
  1112. * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
  1113. * be paired with each other and no other futex ops.
  1114. */
  1115. if ((requeue_pi && !this->rt_waiter) ||
  1116. (!requeue_pi && this->rt_waiter)) {
  1117. ret = -EINVAL;
  1118. break;
  1119. }
  1120. /*
  1121. * Wake nr_wake waiters. For requeue_pi, if we acquired the
  1122. * lock, we already woke the top_waiter. If not, it will be
  1123. * woken by futex_unlock_pi().
  1124. */
  1125. if (++task_count <= nr_wake && !requeue_pi) {
  1126. wake_futex(this);
  1127. continue;
  1128. }
  1129. /* Ensure we requeue to the expected futex for requeue_pi. */
  1130. if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
  1131. ret = -EINVAL;
  1132. break;
  1133. }
  1134. /*
  1135. * Requeue nr_requeue waiters and possibly one more in the case
  1136. * of requeue_pi if we couldn't acquire the lock atomically.
  1137. */
  1138. if (requeue_pi) {
  1139. /* Prepare the waiter to take the rt_mutex. */
  1140. atomic_inc(&pi_state->refcount);
  1141. this->pi_state = pi_state;
  1142. ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
  1143. this->rt_waiter,
  1144. this->task, 1);
  1145. if (ret == 1) {
  1146. /* We got the lock. */
  1147. requeue_pi_wake_futex(this, &key2, hb2);
  1148. drop_count++;
  1149. continue;
  1150. } else if (ret) {
  1151. /* -EDEADLK */
  1152. this->pi_state = NULL;
  1153. free_pi_state(pi_state);
  1154. goto out_unlock;
  1155. }
  1156. }
  1157. requeue_futex(this, hb1, hb2, &key2);
  1158. drop_count++;
  1159. }
  1160. out_unlock:
  1161. double_unlock_hb(hb1, hb2);
  1162. /*
  1163. * drop_futex_key_refs() must be called outside the spinlocks. During
  1164. * the requeue we moved futex_q's from the hash bucket at key1 to the
  1165. * one at key2 and updated their key pointer. We no longer need to
  1166. * hold the references to key1.
  1167. */
  1168. while (--drop_count >= 0)
  1169. drop_futex_key_refs(&key1);
  1170. out_put_keys:
  1171. put_futex_key(fshared, &key2);
  1172. out_put_key1:
  1173. put_futex_key(fshared, &key1);
  1174. out:
  1175. if (pi_state != NULL)
  1176. free_pi_state(pi_state);
  1177. return ret ? ret : task_count;
  1178. }
  1179. /* The key must be already stored in q->key. */
  1180. static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
  1181. __acquires(&hb->lock)
  1182. {
  1183. struct futex_hash_bucket *hb;
  1184. hb = hash_futex(&q->key);
  1185. q->lock_ptr = &hb->lock;
  1186. spin_lock(&hb->lock);
  1187. return hb;
  1188. }
  1189. static inline void
  1190. queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
  1191. __releases(&hb->lock)
  1192. {
  1193. spin_unlock(&hb->lock);
  1194. }
  1195. /**
  1196. * queue_me() - Enqueue the futex_q on the futex_hash_bucket
  1197. * @q: The futex_q to enqueue
  1198. * @hb: The destination hash bucket
  1199. *
  1200. * The hb->lock must be held by the caller, and is released here. A call to
  1201. * queue_me() is typically paired with exactly one call to unqueue_me(). The
  1202. * exceptions involve the PI related operations, which may use unqueue_me_pi()
  1203. * or nothing if the unqueue is done as part of the wake process and the unqueue
  1204. * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
  1205. * an example).
  1206. */
  1207. static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
  1208. __releases(&hb->lock)
  1209. {
  1210. int prio;
  1211. /*
  1212. * The priority used to register this element is
  1213. * - either the real thread-priority for the real-time threads
  1214. * (i.e. threads with a priority lower than MAX_RT_PRIO)
  1215. * - or MAX_RT_PRIO for non-RT threads.
  1216. * Thus, all RT-threads are woken first in priority order, and
  1217. * the others are woken last, in FIFO order.
  1218. */
  1219. prio = min(current->normal_prio, MAX_RT_PRIO);
  1220. plist_node_init(&q->list, prio);
  1221. #ifdef CONFIG_DEBUG_PI_LIST
  1222. q->list.plist.spinlock = &hb->lock;
  1223. #endif
  1224. plist_add(&q->list, &hb->chain);
  1225. q->task = current;
  1226. spin_unlock(&hb->lock);
  1227. }
  1228. /**
  1229. * unqueue_me() - Remove the futex_q from its futex_hash_bucket
  1230. * @q: The futex_q to unqueue
  1231. *
  1232. * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
  1233. * be paired with exactly one earlier call to queue_me().
  1234. *
  1235. * Returns:
  1236. * 1 - if the futex_q was still queued (and we removed unqueued it)
  1237. * 0 - if the futex_q was already removed by the waking thread
  1238. */
  1239. static int unqueue_me(struct futex_q *q)
  1240. {
  1241. spinlock_t *lock_ptr;
  1242. int ret = 0;
  1243. /* In the common case we don't take the spinlock, which is nice. */
  1244. retry:
  1245. lock_ptr = q->lock_ptr;
  1246. barrier();
  1247. if (lock_ptr != NULL) {
  1248. spin_lock(lock_ptr);
  1249. /*
  1250. * q->lock_ptr can change between reading it and
  1251. * spin_lock(), causing us to take the wrong lock. This
  1252. * corrects the race condition.
  1253. *
  1254. * Reasoning goes like this: if we have the wrong lock,
  1255. * q->lock_ptr must have changed (maybe several times)
  1256. * between reading it and the spin_lock(). It can
  1257. * change again after the spin_lock() but only if it was
  1258. * already changed before the spin_lock(). It cannot,
  1259. * however, change back to the original value. Therefore
  1260. * we can detect whether we acquired the correct lock.
  1261. */
  1262. if (unlikely(lock_ptr != q->lock_ptr)) {
  1263. spin_unlock(lock_ptr);
  1264. goto retry;
  1265. }
  1266. WARN_ON(plist_node_empty(&q->list));
  1267. plist_del(&q->list, &q->list.plist);
  1268. BUG_ON(q->pi_state);
  1269. spin_unlock(lock_ptr);
  1270. ret = 1;
  1271. }
  1272. drop_futex_key_refs(&q->key);
  1273. return ret;
  1274. }
  1275. /*
  1276. * PI futexes can not be requeued and must remove themself from the
  1277. * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
  1278. * and dropped here.
  1279. */
  1280. static void unqueue_me_pi(struct futex_q *q)
  1281. __releases(q->lock_ptr)
  1282. {
  1283. WARN_ON(plist_node_empty(&q->list));
  1284. plist_del(&q->list, &q->list.plist);
  1285. BUG_ON(!q->pi_state);
  1286. free_pi_state(q->pi_state);
  1287. q->pi_state = NULL;
  1288. spin_unlock(q->lock_ptr);
  1289. }
  1290. /*
  1291. * Fixup the pi_state owner with the new owner.
  1292. *
  1293. * Must be called with hash bucket lock held and mm->sem held for non
  1294. * private futexes.
  1295. */
  1296. static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
  1297. struct task_struct *newowner, int fshared)
  1298. {
  1299. u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
  1300. struct futex_pi_state *pi_state = q->pi_state;
  1301. struct task_struct *oldowner = pi_state->owner;
  1302. u32 uval, curval, newval;
  1303. int ret;
  1304. /* Owner died? */
  1305. if (!pi_state->owner)
  1306. newtid |= FUTEX_OWNER_DIED;
  1307. /*
  1308. * We are here either because we stole the rtmutex from the
  1309. * pending owner or we are the pending owner which failed to
  1310. * get the rtmutex. We have to replace the pending owner TID
  1311. * in the user space variable. This must be atomic as we have
  1312. * to preserve the owner died bit here.
  1313. *
  1314. * Note: We write the user space value _before_ changing the pi_state
  1315. * because we can fault here. Imagine swapped out pages or a fork
  1316. * that marked all the anonymous memory readonly for cow.
  1317. *
  1318. * Modifying pi_state _before_ the user space value would
  1319. * leave the pi_state in an inconsistent state when we fault
  1320. * here, because we need to drop the hash bucket lock to
  1321. * handle the fault. This might be observed in the PID check
  1322. * in lookup_pi_state.
  1323. */
  1324. retry:
  1325. if (get_futex_value_locked(&uval, uaddr))
  1326. goto handle_fault;
  1327. while (1) {
  1328. newval = (uval & FUTEX_OWNER_DIED) | newtid;
  1329. curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
  1330. if (curval == -EFAULT)
  1331. goto handle_fault;
  1332. if (curval == uval)
  1333. break;
  1334. uval = curval;
  1335. }
  1336. /*
  1337. * We fixed up user space. Now we need to fix the pi_state
  1338. * itself.
  1339. */
  1340. if (pi_state->owner != NULL) {
  1341. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  1342. WARN_ON(list_empty(&pi_state->list));
  1343. list_del_init(&pi_state->list);
  1344. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  1345. }
  1346. pi_state->owner = newowner;
  1347. raw_spin_lock_irq(&newowner->pi_lock);
  1348. WARN_ON(!list_empty(&pi_state->list));
  1349. list_add(&pi_state->list, &newowner->pi_state_list);
  1350. raw_spin_unlock_irq(&newowner->pi_lock);
  1351. return 0;
  1352. /*
  1353. * To handle the page fault we need to drop the hash bucket
  1354. * lock here. That gives the other task (either the pending
  1355. * owner itself or the task which stole the rtmutex) the
  1356. * chance to try the fixup of the pi_state. So once we are
  1357. * back from handling the fault we need to check the pi_state
  1358. * after reacquiring the hash bucket lock and before trying to
  1359. * do another fixup. When the fixup has been done already we
  1360. * simply return.
  1361. */
  1362. handle_fault:
  1363. spin_unlock(q->lock_ptr);
  1364. ret = fault_in_user_writeable(uaddr);
  1365. spin_lock(q->lock_ptr);
  1366. /*
  1367. * Check if someone else fixed it for us:
  1368. */
  1369. if (pi_state->owner != oldowner)
  1370. return 0;
  1371. if (ret)
  1372. return ret;
  1373. goto retry;
  1374. }
  1375. /*
  1376. * In case we must use restart_block to restart a futex_wait,
  1377. * we encode in the 'flags' shared capability
  1378. */
  1379. #define FLAGS_SHARED 0x01
  1380. #define FLAGS_CLOCKRT 0x02
  1381. #define FLAGS_HAS_TIMEOUT 0x04
  1382. static long futex_wait_restart(struct restart_block *restart);
  1383. /**
  1384. * fixup_owner() - Post lock pi_state and corner case management
  1385. * @uaddr: user address of the futex
  1386. * @fshared: whether the futex is shared (1) or not (0)
  1387. * @q: futex_q (contains pi_state and access to the rt_mutex)
  1388. * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
  1389. *
  1390. * After attempting to lock an rt_mutex, this function is called to cleanup
  1391. * the pi_state owner as well as handle race conditions that may allow us to
  1392. * acquire the lock. Must be called with the hb lock held.
  1393. *
  1394. * Returns:
  1395. * 1 - success, lock taken
  1396. * 0 - success, lock not taken
  1397. * <0 - on error (-EFAULT)
  1398. */
  1399. static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
  1400. int locked)
  1401. {
  1402. struct task_struct *owner;
  1403. int ret = 0;
  1404. if (locked) {
  1405. /*
  1406. * Got the lock. We might not be the anticipated owner if we
  1407. * did a lock-steal - fix up the PI-state in that case:
  1408. */
  1409. if (q->pi_state->owner != current)
  1410. ret = fixup_pi_state_owner(uaddr, q, current, fshared);
  1411. goto out;
  1412. }
  1413. /*
  1414. * Catch the rare case, where the lock was released when we were on the
  1415. * way back before we locked the hash bucket.
  1416. */
  1417. if (q->pi_state->owner == current) {
  1418. /*
  1419. * Try to get the rt_mutex now. This might fail as some other
  1420. * task acquired the rt_mutex after we removed ourself from the
  1421. * rt_mutex waiters list.
  1422. */
  1423. if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
  1424. locked = 1;
  1425. goto out;
  1426. }
  1427. /*
  1428. * pi_state is incorrect, some other task did a lock steal and
  1429. * we returned due to timeout or signal without taking the
  1430. * rt_mutex. Too late. We can access the rt_mutex_owner without
  1431. * locking, as the other task is now blocked on the hash bucket
  1432. * lock. Fix the state up.
  1433. */
  1434. owner = rt_mutex_owner(&q->pi_state->pi_mutex);
  1435. ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
  1436. goto out;
  1437. }
  1438. /*
  1439. * Paranoia check. If we did not take the lock, then we should not be
  1440. * the owner, nor the pending owner, of the rt_mutex.
  1441. */
  1442. if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
  1443. printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
  1444. "pi-state %p\n", ret,
  1445. q->pi_state->pi_mutex.owner,
  1446. q->pi_state->owner);
  1447. out:
  1448. return ret ? ret : locked;
  1449. }
  1450. /**
  1451. * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
  1452. * @hb: the futex hash bucket, must be locked by the caller
  1453. * @q: the futex_q to queue up on
  1454. * @timeout: the prepared hrtimer_sleeper, or null for no timeout
  1455. */
  1456. static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
  1457. struct hrtimer_sleeper *timeout)
  1458. {
  1459. /*
  1460. * The task state is guaranteed to be set before another task can
  1461. * wake it. set_current_state() is implemented using set_mb() and
  1462. * queue_me() calls spin_unlock() upon completion, both serializing
  1463. * access to the hash list and forcing another memory barrier.
  1464. */
  1465. set_current_state(TASK_INTERRUPTIBLE);
  1466. queue_me(q, hb);
  1467. /* Arm the timer */
  1468. if (timeout) {
  1469. hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
  1470. if (!hrtimer_active(&timeout->timer))
  1471. timeout->task = NULL;
  1472. }
  1473. /*
  1474. * If we have been removed from the hash list, then another task
  1475. * has tried to wake us, and we can skip the call to schedule().
  1476. */
  1477. if (likely(!plist_node_empty(&q->list))) {
  1478. /*
  1479. * If the timer has already expired, current will already be
  1480. * flagged for rescheduling. Only call schedule if there
  1481. * is no timeout, or if it has yet to expire.
  1482. */
  1483. if (!timeout || timeout->task)
  1484. schedule();
  1485. }
  1486. __set_current_state(TASK_RUNNING);
  1487. }
  1488. /**
  1489. * futex_wait_setup() - Prepare to wait on a futex
  1490. * @uaddr: the futex userspace address
  1491. * @val: the expected value
  1492. * @fshared: whether the futex is shared (1) or not (0)
  1493. * @q: the associated futex_q
  1494. * @hb: storage for hash_bucket pointer to be returned to caller
  1495. *
  1496. * Setup the futex_q and locate the hash_bucket. Get the futex value and
  1497. * compare it with the expected value. Handle atomic faults internally.
  1498. * Return with the hb lock held and a q.key reference on success, and unlocked
  1499. * with no q.key reference on failure.
  1500. *
  1501. * Returns:
  1502. * 0 - uaddr contains val and hb has been locked
  1503. * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
  1504. */
  1505. static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
  1506. struct futex_q *q, struct futex_hash_bucket **hb)
  1507. {
  1508. u32 uval;
  1509. int ret;
  1510. /*
  1511. * Access the page AFTER the hash-bucket is locked.
  1512. * Order is important:
  1513. *
  1514. * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
  1515. * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
  1516. *
  1517. * The basic logical guarantee of a futex is that it blocks ONLY
  1518. * if cond(var) is known to be true at the time of blocking, for
  1519. * any cond. If we queued after testing *uaddr, that would open
  1520. * a race condition where we could block indefinitely with
  1521. * cond(var) false, which would violate the guarantee.
  1522. *
  1523. * A consequence is that futex_wait() can return zero and absorb
  1524. * a wakeup when *uaddr != val on entry to the syscall. This is
  1525. * rare, but normal.
  1526. */
  1527. retry:
  1528. q->key = FUTEX_KEY_INIT;
  1529. ret = get_futex_key(uaddr, fshared, &q->key);
  1530. if (unlikely(ret != 0))
  1531. return ret;
  1532. retry_private:
  1533. *hb = queue_lock(q);
  1534. ret = get_futex_value_locked(&uval, uaddr);
  1535. if (ret) {
  1536. queue_unlock(q, *hb);
  1537. ret = get_user(uval, uaddr);
  1538. if (ret)
  1539. goto out;
  1540. if (!fshared)
  1541. goto retry_private;
  1542. put_futex_key(fshared, &q->key);
  1543. goto retry;
  1544. }
  1545. if (uval != val) {
  1546. queue_unlock(q, *hb);
  1547. ret = -EWOULDBLOCK;
  1548. }
  1549. out:
  1550. if (ret)
  1551. put_futex_key(fshared, &q->key);
  1552. return ret;
  1553. }
  1554. static int futex_wait(u32 __user *uaddr, int fshared,
  1555. u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
  1556. {
  1557. struct hrtimer_sleeper timeout, *to = NULL;
  1558. struct restart_block *restart;
  1559. struct futex_hash_bucket *hb;
  1560. struct futex_q q;
  1561. int ret;
  1562. if (!bitset)
  1563. return -EINVAL;
  1564. q.pi_state = NULL;
  1565. q.bitset = bitset;
  1566. q.rt_waiter = NULL;
  1567. q.requeue_pi_key = NULL;
  1568. if (abs_time) {
  1569. to = &timeout;
  1570. hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
  1571. CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  1572. hrtimer_init_sleeper(to, current);
  1573. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  1574. current->timer_slack_ns);
  1575. }
  1576. retry:
  1577. /*
  1578. * Prepare to wait on uaddr. On success, holds hb lock and increments
  1579. * q.key refs.
  1580. */
  1581. ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
  1582. if (ret)
  1583. goto out;
  1584. /* queue_me and wait for wakeup, timeout, or a signal. */
  1585. futex_wait_queue_me(hb, &q, to);
  1586. /* If we were woken (and unqueued), we succeeded, whatever. */
  1587. ret = 0;
  1588. /* unqueue_me() drops q.key ref */
  1589. if (!unqueue_me(&q))
  1590. goto out;
  1591. ret = -ETIMEDOUT;
  1592. if (to && !to->task)
  1593. goto out;
  1594. /*
  1595. * We expect signal_pending(current), but we might be the
  1596. * victim of a spurious wakeup as well.
  1597. */
  1598. if (!signal_pending(current))
  1599. goto retry;
  1600. ret = -ERESTARTSYS;
  1601. if (!abs_time)
  1602. goto out;
  1603. restart = &current_thread_info()->restart_block;
  1604. restart->fn = futex_wait_restart;
  1605. restart->futex.uaddr = uaddr;
  1606. restart->futex.val = val;
  1607. restart->futex.time = abs_time->tv64;
  1608. restart->futex.bitset = bitset;
  1609. restart->futex.flags = FLAGS_HAS_TIMEOUT;
  1610. if (fshared)
  1611. restart->futex.flags |= FLAGS_SHARED;
  1612. if (clockrt)
  1613. restart->futex.flags |= FLAGS_CLOCKRT;
  1614. ret = -ERESTART_RESTARTBLOCK;
  1615. out:
  1616. if (to) {
  1617. hrtimer_cancel(&to->timer);
  1618. destroy_hrtimer_on_stack(&to->timer);
  1619. }
  1620. return ret;
  1621. }
  1622. static long futex_wait_restart(struct restart_block *restart)
  1623. {
  1624. u32 __user *uaddr = restart->futex.uaddr;
  1625. int fshared = 0;
  1626. ktime_t t, *tp = NULL;
  1627. if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
  1628. t.tv64 = restart->futex.time;
  1629. tp = &t;
  1630. }
  1631. restart->fn = do_no_restart_syscall;
  1632. if (restart->futex.flags & FLAGS_SHARED)
  1633. fshared = 1;
  1634. return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
  1635. restart->futex.bitset,
  1636. restart->futex.flags & FLAGS_CLOCKRT);
  1637. }
  1638. /*
  1639. * Userspace tried a 0 -> TID atomic transition of the futex value
  1640. * and failed. The kernel side here does the whole locking operation:
  1641. * if there are waiters then it will block, it does PI, etc. (Due to
  1642. * races the kernel might see a 0 value of the futex too.)
  1643. */
  1644. static int futex_lock_pi(u32 __user *uaddr, int fshared,
  1645. int detect, ktime_t *time, int trylock)
  1646. {
  1647. struct hrtimer_sleeper timeout, *to = NULL;
  1648. struct futex_hash_bucket *hb;
  1649. struct futex_q q;
  1650. int res, ret;
  1651. if (refill_pi_state_cache())
  1652. return -ENOMEM;
  1653. if (time) {
  1654. to = &timeout;
  1655. hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
  1656. HRTIMER_MODE_ABS);
  1657. hrtimer_init_sleeper(to, current);
  1658. hrtimer_set_expires(&to->timer, *time);
  1659. }
  1660. q.pi_state = NULL;
  1661. q.rt_waiter = NULL;
  1662. q.requeue_pi_key = NULL;
  1663. retry:
  1664. q.key = FUTEX_KEY_INIT;
  1665. ret = get_futex_key(uaddr, fshared, &q.key);
  1666. if (unlikely(ret != 0))
  1667. goto out;
  1668. retry_private:
  1669. hb = queue_lock(&q);
  1670. ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
  1671. if (unlikely(ret)) {
  1672. switch (ret) {
  1673. case 1:
  1674. /* We got the lock. */
  1675. ret = 0;
  1676. goto out_unlock_put_key;
  1677. case -EFAULT:
  1678. goto uaddr_faulted;
  1679. case -EAGAIN:
  1680. /*
  1681. * Task is exiting and we just wait for the
  1682. * exit to complete.
  1683. */
  1684. queue_unlock(&q, hb);
  1685. put_futex_key(fshared, &q.key);
  1686. cond_resched();
  1687. goto retry;
  1688. default:
  1689. goto out_unlock_put_key;
  1690. }
  1691. }
  1692. /*
  1693. * Only actually queue now that the atomic ops are done:
  1694. */
  1695. queue_me(&q, hb);
  1696. WARN_ON(!q.pi_state);
  1697. /*
  1698. * Block on the PI mutex:
  1699. */
  1700. if (!trylock)
  1701. ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
  1702. else {
  1703. ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
  1704. /* Fixup the trylock return value: */
  1705. ret = ret ? 0 : -EWOULDBLOCK;
  1706. }
  1707. spin_lock(q.lock_ptr);
  1708. /*
  1709. * Fixup the pi_state owner and possibly acquire the lock if we
  1710. * haven't already.
  1711. */
  1712. res = fixup_owner(uaddr, fshared, &q, !ret);
  1713. /*
  1714. * If fixup_owner() returned an error, proprogate that. If it acquired
  1715. * the lock, clear our -ETIMEDOUT or -EINTR.
  1716. */
  1717. if (res)
  1718. ret = (res < 0) ? res : 0;
  1719. /*
  1720. * If fixup_owner() faulted and was unable to handle the fault, unlock
  1721. * it and return the fault to userspace.
  1722. */
  1723. if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
  1724. rt_mutex_unlock(&q.pi_state->pi_mutex);
  1725. /* Unqueue and drop the lock */
  1726. unqueue_me_pi(&q);
  1727. goto out_put_key;
  1728. out_unlock_put_key:
  1729. queue_unlock(&q, hb);
  1730. out_put_key:
  1731. put_futex_key(fshared, &q.key);
  1732. out:
  1733. if (to)
  1734. destroy_hrtimer_on_stack(&to->timer);
  1735. return ret != -EINTR ? ret : -ERESTARTNOINTR;
  1736. uaddr_faulted:
  1737. queue_unlock(&q, hb);
  1738. ret = fault_in_user_writeable(uaddr);
  1739. if (ret)
  1740. goto out_put_key;
  1741. if (!fshared)
  1742. goto retry_private;
  1743. put_futex_key(fshared, &q.key);
  1744. goto retry;
  1745. }
  1746. /*
  1747. * Userspace attempted a TID -> 0 atomic transition, and failed.
  1748. * This is the in-kernel slowpath: we look up the PI state (if any),
  1749. * and do the rt-mutex unlock.
  1750. */
  1751. static int futex_unlock_pi(u32 __user *uaddr, int fshared)
  1752. {
  1753. struct futex_hash_bucket *hb;
  1754. struct futex_q *this, *next;
  1755. u32 uval;
  1756. struct plist_head *head;
  1757. union futex_key key = FUTEX_KEY_INIT;
  1758. int ret;
  1759. retry:
  1760. if (get_user(uval, uaddr))
  1761. return -EFAULT;
  1762. /*
  1763. * We release only a lock we actually own:
  1764. */
  1765. if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
  1766. return -EPERM;
  1767. ret = get_futex_key(uaddr, fshared, &key);
  1768. if (unlikely(ret != 0))
  1769. goto out;
  1770. hb = hash_futex(&key);
  1771. spin_lock(&hb->lock);
  1772. /*
  1773. * To avoid races, try to do the TID -> 0 atomic transition
  1774. * again. If it succeeds then we can return without waking
  1775. * anyone else up:
  1776. */
  1777. if (!(uval & FUTEX_OWNER_DIED))
  1778. uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
  1779. if (unlikely(uval == -EFAULT))
  1780. goto pi_faulted;
  1781. /*
  1782. * Rare case: we managed to release the lock atomically,
  1783. * no need to wake anyone else up:
  1784. */
  1785. if (unlikely(uval == task_pid_vnr(current)))
  1786. goto out_unlock;
  1787. /*
  1788. * Ok, other tasks may need to be woken up - check waiters
  1789. * and do the wakeup if necessary:
  1790. */
  1791. head = &hb->chain;
  1792. plist_for_each_entry_safe(this, next, head, list) {
  1793. if (!match_futex (&this->key, &key))
  1794. continue;
  1795. ret = wake_futex_pi(uaddr, uval, this);
  1796. /*
  1797. * The atomic access to the futex value
  1798. * generated a pagefault, so retry the
  1799. * user-access and the wakeup:
  1800. */
  1801. if (ret == -EFAULT)
  1802. goto pi_faulted;
  1803. goto out_unlock;
  1804. }
  1805. /*
  1806. * No waiters - kernel unlocks the futex:
  1807. */
  1808. if (!(uval & FUTEX_OWNER_DIED)) {
  1809. ret = unlock_futex_pi(uaddr, uval);
  1810. if (ret == -EFAULT)
  1811. goto pi_faulted;
  1812. }
  1813. out_unlock:
  1814. spin_unlock(&hb->lock);
  1815. put_futex_key(fshared, &key);
  1816. out:
  1817. return ret;
  1818. pi_faulted:
  1819. spin_unlock(&hb->lock);
  1820. put_futex_key(fshared, &key);
  1821. ret = fault_in_user_writeable(uaddr);
  1822. if (!ret)
  1823. goto retry;
  1824. return ret;
  1825. }
  1826. /**
  1827. * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
  1828. * @hb: the hash_bucket futex_q was original enqueued on
  1829. * @q: the futex_q woken while waiting to be requeued
  1830. * @key2: the futex_key of the requeue target futex
  1831. * @timeout: the timeout associated with the wait (NULL if none)
  1832. *
  1833. * Detect if the task was woken on the initial futex as opposed to the requeue
  1834. * target futex. If so, determine if it was a timeout or a signal that caused
  1835. * the wakeup and return the appropriate error code to the caller. Must be
  1836. * called with the hb lock held.
  1837. *
  1838. * Returns
  1839. * 0 - no early wakeup detected
  1840. * <0 - -ETIMEDOUT or -ERESTARTNOINTR
  1841. */
  1842. static inline
  1843. int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
  1844. struct futex_q *q, union futex_key *key2,
  1845. struct hrtimer_sleeper *timeout)
  1846. {
  1847. int ret = 0;
  1848. /*
  1849. * With the hb lock held, we avoid races while we process the wakeup.
  1850. * We only need to hold hb (and not hb2) to ensure atomicity as the
  1851. * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
  1852. * It can't be requeued from uaddr2 to something else since we don't
  1853. * support a PI aware source futex for requeue.
  1854. */
  1855. if (!match_futex(&q->key, key2)) {
  1856. WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
  1857. /*
  1858. * We were woken prior to requeue by a timeout or a signal.
  1859. * Unqueue the futex_q and determine which it was.
  1860. */
  1861. plist_del(&q->list, &q->list.plist);
  1862. /* Handle spurious wakeups gracefully */
  1863. ret = -EWOULDBLOCK;
  1864. if (timeout && !timeout->task)
  1865. ret = -ETIMEDOUT;
  1866. else if (signal_pending(current))
  1867. ret = -ERESTARTNOINTR;
  1868. }
  1869. return ret;
  1870. }
  1871. /**
  1872. * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
  1873. * @uaddr: the futex we initially wait on (non-pi)
  1874. * @fshared: whether the futexes are shared (1) or not (0). They must be
  1875. * the same type, no requeueing from private to shared, etc.
  1876. * @val: the expected value of uaddr
  1877. * @abs_time: absolute timeout
  1878. * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
  1879. * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
  1880. * @uaddr2: the pi futex we will take prior to returning to user-space
  1881. *
  1882. * The caller will wait on uaddr and will be requeued by futex_requeue() to
  1883. * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
  1884. * complete the acquisition of the rt_mutex prior to returning to userspace.
  1885. * This ensures the rt_mutex maintains an owner when it has waiters; without
  1886. * one, the pi logic wouldn't know which task to boost/deboost, if there was a
  1887. * need to.
  1888. *
  1889. * We call schedule in futex_wait_queue_me() when we enqueue and return there
  1890. * via the following:
  1891. * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
  1892. * 2) wakeup on uaddr2 after a requeue
  1893. * 3) signal
  1894. * 4) timeout
  1895. *
  1896. * If 3, cleanup and return -ERESTARTNOINTR.
  1897. *
  1898. * If 2, we may then block on trying to take the rt_mutex and return via:
  1899. * 5) successful lock
  1900. * 6) signal
  1901. * 7) timeout
  1902. * 8) other lock acquisition failure
  1903. *
  1904. * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
  1905. *
  1906. * If 4 or 7, we cleanup and return with -ETIMEDOUT.
  1907. *
  1908. * Returns:
  1909. * 0 - On success
  1910. * <0 - On error
  1911. */
  1912. static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
  1913. u32 val, ktime_t *abs_time, u32 bitset,
  1914. int clockrt, u32 __user *uaddr2)
  1915. {
  1916. struct hrtimer_sleeper timeout, *to = NULL;
  1917. struct rt_mutex_waiter rt_waiter;
  1918. struct rt_mutex *pi_mutex = NULL;
  1919. struct futex_hash_bucket *hb;
  1920. union futex_key key2;
  1921. struct futex_q q;
  1922. int res, ret;
  1923. if (!bitset)
  1924. return -EINVAL;
  1925. if (abs_time) {
  1926. to = &timeout;
  1927. hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
  1928. CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  1929. hrtimer_init_sleeper(to, current);
  1930. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  1931. current->timer_slack_ns);
  1932. }
  1933. /*
  1934. * The waiter is allocated on our stack, manipulated by the requeue
  1935. * code while we sleep on uaddr.
  1936. */
  1937. debug_rt_mutex_init_waiter(&rt_waiter);
  1938. rt_waiter.task = NULL;
  1939. key2 = FUTEX_KEY_INIT;
  1940. ret = get_futex_key(uaddr2, fshared, &key2);
  1941. if (unlikely(ret != 0))
  1942. goto out;
  1943. q.pi_state = NULL;
  1944. q.bitset = bitset;
  1945. q.rt_waiter = &rt_waiter;
  1946. q.requeue_pi_key = &key2;
  1947. /*
  1948. * Prepare to wait on uaddr. On success, increments q.key (key1) ref
  1949. * count.
  1950. */
  1951. ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
  1952. if (ret)
  1953. goto out_key2;
  1954. /* Queue the futex_q, drop the hb lock, wait for wakeup. */
  1955. futex_wait_queue_me(hb, &q, to);
  1956. spin_lock(&hb->lock);
  1957. ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
  1958. spin_unlock(&hb->lock);
  1959. if (ret)
  1960. goto out_put_keys;
  1961. /*
  1962. * In order for us to be here, we know our q.key == key2, and since
  1963. * we took the hb->lock above, we also know that futex_requeue() has
  1964. * completed and we no longer have to concern ourselves with a wakeup
  1965. * race with the atomic proxy lock acquisition by the requeue code. The
  1966. * futex_requeue dropped our key1 reference and incremented our key2
  1967. * reference count.
  1968. */
  1969. /* Check if the requeue code acquired the second futex for us. */
  1970. if (!q.rt_waiter) {
  1971. /*
  1972. * Got the lock. We might not be the anticipated owner if we
  1973. * did a lock-steal - fix up the PI-state in that case.
  1974. */
  1975. if (q.pi_state && (q.pi_state->owner != current)) {
  1976. spin_lock(q.lock_ptr);
  1977. ret = fixup_pi_state_owner(uaddr2, &q, current,
  1978. fshared);
  1979. spin_unlock(q.lock_ptr);
  1980. }
  1981. } else {
  1982. /*
  1983. * We have been woken up by futex_unlock_pi(), a timeout, or a
  1984. * signal. futex_unlock_pi() will not destroy the lock_ptr nor
  1985. * the pi_state.
  1986. */
  1987. WARN_ON(!&q.pi_state);
  1988. pi_mutex = &q.pi_state->pi_mutex;
  1989. ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
  1990. debug_rt_mutex_free_waiter(&rt_waiter);
  1991. spin_lock(q.lock_ptr);
  1992. /*
  1993. * Fixup the pi_state owner and possibly acquire the lock if we
  1994. * haven't already.
  1995. */
  1996. res = fixup_owner(uaddr2, fshared, &q, !ret);
  1997. /*
  1998. * If fixup_owner() returned an error, proprogate that. If it
  1999. * acquired the lock, clear -ETIMEDOUT or -EINTR.
  2000. */
  2001. if (res)
  2002. ret = (res < 0) ? res : 0;
  2003. /* Unqueue and drop the lock. */
  2004. unqueue_me_pi(&q);
  2005. }
  2006. /*
  2007. * If fixup_pi_state_owner() faulted and was unable to handle the
  2008. * fault, unlock the rt_mutex and return the fault to userspace.
  2009. */
  2010. if (ret == -EFAULT) {
  2011. if (rt_mutex_owner(pi_mutex) == current)
  2012. rt_mutex_unlock(pi_mutex);
  2013. } else if (ret == -EINTR) {
  2014. /*
  2015. * We've already been requeued, but cannot restart by calling
  2016. * futex_lock_pi() directly. We could restart this syscall, but
  2017. * it would detect that the user space "val" changed and return
  2018. * -EWOULDBLOCK. Save the overhead of the restart and return
  2019. * -EWOULDBLOCK directly.
  2020. */
  2021. ret = -EWOULDBLOCK;
  2022. }
  2023. out_put_keys:
  2024. put_futex_key(fshared, &q.key);
  2025. out_key2:
  2026. put_futex_key(fshared, &key2);
  2027. out:
  2028. if (to) {
  2029. hrtimer_cancel(&to->timer);
  2030. destroy_hrtimer_on_stack(&to->timer);
  2031. }
  2032. return ret;
  2033. }
  2034. /*
  2035. * Support for robust futexes: the kernel cleans up held futexes at
  2036. * thread exit time.
  2037. *
  2038. * Implementation: user-space maintains a per-thread list of locks it
  2039. * is holding. Upon do_exit(), the kernel carefully walks this list,
  2040. * and marks all locks that are owned by this thread with the
  2041. * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
  2042. * always manipulated with the lock held, so the list is private and
  2043. * per-thread. Userspace also maintains a per-thread 'list_op_pending'
  2044. * field, to allow the kernel to clean up if the thread dies after
  2045. * acquiring the lock, but just before it could have added itself to
  2046. * the list. There can only be one such pending lock.
  2047. */
  2048. /**
  2049. * sys_set_robust_list() - Set the robust-futex list head of a task
  2050. * @head: pointer to the list-head
  2051. * @len: length of the list-head, as userspace expects
  2052. */
  2053. SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
  2054. size_t, len)
  2055. {
  2056. if (!futex_cmpxchg_enabled)
  2057. return -ENOSYS;
  2058. /*
  2059. * The kernel knows only one size for now:
  2060. */
  2061. if (unlikely(len != sizeof(*head)))
  2062. return -EINVAL;
  2063. current->robust_list = head;
  2064. return 0;
  2065. }
  2066. /**
  2067. * sys_get_robust_list() - Get the robust-futex list head of a task
  2068. * @pid: pid of the process [zero for current task]
  2069. * @head_ptr: pointer to a list-head pointer, the kernel fills it in
  2070. * @len_ptr: pointer to a length field, the kernel fills in the header size
  2071. */
  2072. SYSCALL_DEFINE3(get_robust_list, int, pid,
  2073. struct robust_list_head __user * __user *, head_ptr,
  2074. size_t __user *, len_ptr)
  2075. {
  2076. struct robust_list_head __user *head;
  2077. unsigned long ret;
  2078. const struct cred *cred = current_cred(), *pcred;
  2079. if (!futex_cmpxchg_enabled)
  2080. return -ENOSYS;
  2081. if (!pid)
  2082. head = current->robust_list;
  2083. else {
  2084. struct task_struct *p;
  2085. ret = -ESRCH;
  2086. rcu_read_lock();
  2087. p = find_task_by_vpid(pid);
  2088. if (!p)
  2089. goto err_unlock;
  2090. ret = -EPERM;
  2091. pcred = __task_cred(p);
  2092. if (cred->euid != pcred->euid &&
  2093. cred->euid != pcred->uid &&
  2094. !capable(CAP_SYS_PTRACE))
  2095. goto err_unlock;
  2096. head = p->robust_list;
  2097. rcu_read_unlock();
  2098. }
  2099. if (put_user(sizeof(*head), len_ptr))
  2100. return -EFAULT;
  2101. return put_user(head, head_ptr);
  2102. err_unlock:
  2103. rcu_read_unlock();
  2104. return ret;
  2105. }
  2106. /*
  2107. * Process a futex-list entry, check whether it's owned by the
  2108. * dying task, and do notification if so:
  2109. */
  2110. int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
  2111. {
  2112. u32 uval, nval, mval;
  2113. retry:
  2114. if (get_user(uval, uaddr))
  2115. return -1;
  2116. if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
  2117. /*
  2118. * Ok, this dying thread is truly holding a futex
  2119. * of interest. Set the OWNER_DIED bit atomically
  2120. * via cmpxchg, and if the value had FUTEX_WAITERS
  2121. * set, wake up a waiter (if any). (We have to do a
  2122. * futex_wake() even if OWNER_DIED is already set -
  2123. * to handle the rare but possible case of recursive
  2124. * thread-death.) The rest of the cleanup is done in
  2125. * userspace.
  2126. */
  2127. mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
  2128. nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
  2129. if (nval == -EFAULT)
  2130. return -1;
  2131. if (nval != uval)
  2132. goto retry;
  2133. /*
  2134. * Wake robust non-PI futexes here. The wakeup of
  2135. * PI futexes happens in exit_pi_state():
  2136. */
  2137. if (!pi && (uval & FUTEX_WAITERS))
  2138. futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
  2139. }
  2140. return 0;
  2141. }
  2142. /*
  2143. * Fetch a robust-list pointer. Bit 0 signals PI futexes:
  2144. */
  2145. static inline int fetch_robust_entry(struct robust_list __user **entry,
  2146. struct robust_list __user * __user *head,
  2147. unsigned int *pi)
  2148. {
  2149. unsigned long uentry;
  2150. if (get_user(uentry, (unsigned long __user *)head))
  2151. return -EFAULT;
  2152. *entry = (void __user *)(uentry & ~1UL);
  2153. *pi = uentry & 1;
  2154. return 0;
  2155. }
  2156. /*
  2157. * Walk curr->robust_list (very carefully, it's a userspace list!)
  2158. * and mark any locks found there dead, and notify any waiters.
  2159. *
  2160. * We silently return on any sign of list-walking problem.
  2161. */
  2162. void exit_robust_list(struct task_struct *curr)
  2163. {
  2164. struct robust_list_head __user *head = curr->robust_list;
  2165. struct robust_list __user *entry, *next_entry, *pending;
  2166. unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
  2167. unsigned long futex_offset;
  2168. int rc;
  2169. if (!futex_cmpxchg_enabled)
  2170. return;
  2171. /*
  2172. * Fetch the list head (which was registered earlier, via
  2173. * sys_set_robust_list()):
  2174. */
  2175. if (fetch_robust_entry(&entry, &head->list.next, &pi))
  2176. return;
  2177. /*
  2178. * Fetch the relative futex offset:
  2179. */
  2180. if (get_user(futex_offset, &head->futex_offset))
  2181. return;
  2182. /*
  2183. * Fetch any possibly pending lock-add first, and handle it
  2184. * if it exists:
  2185. */
  2186. if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
  2187. return;
  2188. next_entry = NULL; /* avoid warning with gcc */
  2189. while (entry != &head->list) {
  2190. /*
  2191. * Fetch the next entry in the list before calling
  2192. * handle_futex_death:
  2193. */
  2194. rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
  2195. /*
  2196. * A pending lock might already be on the list, so
  2197. * don't process it twice:
  2198. */
  2199. if (entry != pending)
  2200. if (handle_futex_death((void __user *)entry + futex_offset,
  2201. curr, pi))
  2202. return;
  2203. if (rc)
  2204. return;
  2205. entry = next_entry;
  2206. pi = next_pi;
  2207. /*
  2208. * Avoid excessively long or circular lists:
  2209. */
  2210. if (!--limit)
  2211. break;
  2212. cond_resched();
  2213. }
  2214. if (pending)
  2215. handle_futex_death((void __user *)pending + futex_offset,
  2216. curr, pip);
  2217. }
  2218. long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
  2219. u32 __user *uaddr2, u32 val2, u32 val3)
  2220. {
  2221. int clockrt, ret = -ENOSYS;
  2222. int cmd = op & FUTEX_CMD_MASK;
  2223. int fshared = 0;
  2224. if (!(op & FUTEX_PRIVATE_FLAG))
  2225. fshared = 1;
  2226. clockrt = op & FUTEX_CLOCK_REALTIME;
  2227. if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
  2228. return -ENOSYS;
  2229. switch (cmd) {
  2230. case FUTEX_WAIT:
  2231. val3 = FUTEX_BITSET_MATCH_ANY;
  2232. case FUTEX_WAIT_BITSET:
  2233. ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
  2234. break;
  2235. case FUTEX_WAKE:
  2236. val3 = FUTEX_BITSET_MATCH_ANY;
  2237. case FUTEX_WAKE_BITSET:
  2238. ret = futex_wake(uaddr, fshared, val, val3);
  2239. break;
  2240. case FUTEX_REQUEUE:
  2241. ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
  2242. break;
  2243. case FUTEX_CMP_REQUEUE:
  2244. ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
  2245. 0);
  2246. break;
  2247. case FUTEX_WAKE_OP:
  2248. ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
  2249. break;
  2250. case FUTEX_LOCK_PI:
  2251. if (futex_cmpxchg_enabled)
  2252. ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
  2253. break;
  2254. case FUTEX_UNLOCK_PI:
  2255. if (futex_cmpxchg_enabled)
  2256. ret = futex_unlock_pi(uaddr, fshared);
  2257. break;
  2258. case FUTEX_TRYLOCK_PI:
  2259. if (futex_cmpxchg_enabled)
  2260. ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
  2261. break;
  2262. case FUTEX_WAIT_REQUEUE_PI:
  2263. val3 = FUTEX_BITSET_MATCH_ANY;
  2264. ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
  2265. clockrt, uaddr2);
  2266. break;
  2267. case FUTEX_CMP_REQUEUE_PI:
  2268. ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
  2269. 1);
  2270. break;
  2271. default:
  2272. ret = -ENOSYS;
  2273. }
  2274. return ret;
  2275. }
  2276. SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
  2277. struct timespec __user *, utime, u32 __user *, uaddr2,
  2278. u32, val3)
  2279. {
  2280. struct timespec ts;
  2281. ktime_t t, *tp = NULL;
  2282. u32 val2 = 0;
  2283. int cmd = op & FUTEX_CMD_MASK;
  2284. if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
  2285. cmd == FUTEX_WAIT_BITSET ||
  2286. cmd == FUTEX_WAIT_REQUEUE_PI)) {
  2287. if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
  2288. return -EFAULT;
  2289. if (!timespec_valid(&ts))
  2290. return -EINVAL;
  2291. t = timespec_to_ktime(ts);
  2292. if (cmd == FUTEX_WAIT)
  2293. t = ktime_add_safe(ktime_get(), t);
  2294. tp = &t;
  2295. }
  2296. /*
  2297. * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
  2298. * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
  2299. */
  2300. if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
  2301. cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
  2302. val2 = (u32) (unsigned long) utime;
  2303. return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
  2304. }
  2305. static int __init futex_init(void)
  2306. {
  2307. u32 curval;
  2308. int i;
  2309. /*
  2310. * This will fail and we want it. Some arch implementations do
  2311. * runtime detection of the futex_atomic_cmpxchg_inatomic()
  2312. * functionality. We want to know that before we call in any
  2313. * of the complex code paths. Also we want to prevent
  2314. * registration of robust lists in that case. NULL is
  2315. * guaranteed to fault and we get -EFAULT on functional
  2316. * implementation, the non-functional ones will return
  2317. * -ENOSYS.
  2318. */
  2319. curval = cmpxchg_futex_value_locked(NULL, 0, 0);
  2320. if (curval == -EFAULT)
  2321. futex_cmpxchg_enabled = 1;
  2322. for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
  2323. plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
  2324. spin_lock_init(&futex_queues[i].lock);
  2325. }
  2326. return 0;
  2327. }
  2328. __initcall(futex_init);