xfs_log_cil.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780
  1. /*
  2. * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it would be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program; if not, write the Free Software Foundation,
  15. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  16. */
  17. #include "xfs.h"
  18. #include "xfs_fs.h"
  19. #include "xfs_types.h"
  20. #include "xfs_bit.h"
  21. #include "xfs_log.h"
  22. #include "xfs_inum.h"
  23. #include "xfs_trans.h"
  24. #include "xfs_trans_priv.h"
  25. #include "xfs_log_priv.h"
  26. #include "xfs_sb.h"
  27. #include "xfs_ag.h"
  28. #include "xfs_mount.h"
  29. #include "xfs_error.h"
  30. #include "xfs_alloc.h"
  31. /*
  32. * Perform initial CIL structure initialisation. If the CIL is not
  33. * enabled in this filesystem, ensure the log->l_cilp is null so
  34. * we can check this conditional to determine if we are doing delayed
  35. * logging or not.
  36. */
  37. int
  38. xlog_cil_init(
  39. struct log *log)
  40. {
  41. struct xfs_cil *cil;
  42. struct xfs_cil_ctx *ctx;
  43. log->l_cilp = NULL;
  44. if (!(log->l_mp->m_flags & XFS_MOUNT_DELAYLOG))
  45. return 0;
  46. cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL);
  47. if (!cil)
  48. return ENOMEM;
  49. ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL);
  50. if (!ctx) {
  51. kmem_free(cil);
  52. return ENOMEM;
  53. }
  54. INIT_LIST_HEAD(&cil->xc_cil);
  55. INIT_LIST_HEAD(&cil->xc_committing);
  56. spin_lock_init(&cil->xc_cil_lock);
  57. init_rwsem(&cil->xc_ctx_lock);
  58. sv_init(&cil->xc_commit_wait, SV_DEFAULT, "cilwait");
  59. INIT_LIST_HEAD(&ctx->committing);
  60. INIT_LIST_HEAD(&ctx->busy_extents);
  61. ctx->sequence = 1;
  62. ctx->cil = cil;
  63. cil->xc_ctx = ctx;
  64. cil->xc_current_sequence = ctx->sequence;
  65. cil->xc_log = log;
  66. log->l_cilp = cil;
  67. return 0;
  68. }
  69. void
  70. xlog_cil_destroy(
  71. struct log *log)
  72. {
  73. if (!log->l_cilp)
  74. return;
  75. if (log->l_cilp->xc_ctx) {
  76. if (log->l_cilp->xc_ctx->ticket)
  77. xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
  78. kmem_free(log->l_cilp->xc_ctx);
  79. }
  80. ASSERT(list_empty(&log->l_cilp->xc_cil));
  81. kmem_free(log->l_cilp);
  82. }
  83. /*
  84. * Allocate a new ticket. Failing to get a new ticket makes it really hard to
  85. * recover, so we don't allow failure here. Also, we allocate in a context that
  86. * we don't want to be issuing transactions from, so we need to tell the
  87. * allocation code this as well.
  88. *
  89. * We don't reserve any space for the ticket - we are going to steal whatever
  90. * space we require from transactions as they commit. To ensure we reserve all
  91. * the space required, we need to set the current reservation of the ticket to
  92. * zero so that we know to steal the initial transaction overhead from the
  93. * first transaction commit.
  94. */
  95. static struct xlog_ticket *
  96. xlog_cil_ticket_alloc(
  97. struct log *log)
  98. {
  99. struct xlog_ticket *tic;
  100. tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0,
  101. KM_SLEEP|KM_NOFS);
  102. tic->t_trans_type = XFS_TRANS_CHECKPOINT;
  103. /*
  104. * set the current reservation to zero so we know to steal the basic
  105. * transaction overhead reservation from the first transaction commit.
  106. */
  107. tic->t_curr_res = 0;
  108. return tic;
  109. }
  110. /*
  111. * After the first stage of log recovery is done, we know where the head and
  112. * tail of the log are. We need this log initialisation done before we can
  113. * initialise the first CIL checkpoint context.
  114. *
  115. * Here we allocate a log ticket to track space usage during a CIL push. This
  116. * ticket is passed to xlog_write() directly so that we don't slowly leak log
  117. * space by failing to account for space used by log headers and additional
  118. * region headers for split regions.
  119. */
  120. void
  121. xlog_cil_init_post_recovery(
  122. struct log *log)
  123. {
  124. if (!log->l_cilp)
  125. return;
  126. log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
  127. log->l_cilp->xc_ctx->sequence = 1;
  128. log->l_cilp->xc_ctx->commit_lsn = xlog_assign_lsn(log->l_curr_cycle,
  129. log->l_curr_block);
  130. }
  131. /*
  132. * Insert the log item into the CIL and calculate the difference in space
  133. * consumed by the item. Add the space to the checkpoint ticket and calculate
  134. * if the change requires additional log metadata. If it does, take that space
  135. * as well. Remove the amount of space we addded to the checkpoint ticket from
  136. * the current transaction ticket so that the accounting works out correctly.
  137. *
  138. * If this is the first time the item is being placed into the CIL in this
  139. * context, pin it so it can't be written to disk until the CIL is flushed to
  140. * the iclog and the iclog written to disk.
  141. */
  142. static void
  143. xlog_cil_insert(
  144. struct log *log,
  145. struct xlog_ticket *ticket,
  146. struct xfs_log_item *item,
  147. struct xfs_log_vec *lv)
  148. {
  149. struct xfs_cil *cil = log->l_cilp;
  150. struct xfs_log_vec *old = lv->lv_item->li_lv;
  151. struct xfs_cil_ctx *ctx = cil->xc_ctx;
  152. int len;
  153. int diff_iovecs;
  154. int iclog_space;
  155. if (old) {
  156. /* existing lv on log item, space used is a delta */
  157. ASSERT(!list_empty(&item->li_cil));
  158. ASSERT(old->lv_buf && old->lv_buf_len && old->lv_niovecs);
  159. len = lv->lv_buf_len - old->lv_buf_len;
  160. diff_iovecs = lv->lv_niovecs - old->lv_niovecs;
  161. kmem_free(old->lv_buf);
  162. kmem_free(old);
  163. } else {
  164. /* new lv, must pin the log item */
  165. ASSERT(!lv->lv_item->li_lv);
  166. ASSERT(list_empty(&item->li_cil));
  167. len = lv->lv_buf_len;
  168. diff_iovecs = lv->lv_niovecs;
  169. IOP_PIN(lv->lv_item);
  170. }
  171. len += diff_iovecs * sizeof(xlog_op_header_t);
  172. /* attach new log vector to log item */
  173. lv->lv_item->li_lv = lv;
  174. spin_lock(&cil->xc_cil_lock);
  175. list_move_tail(&item->li_cil, &cil->xc_cil);
  176. ctx->nvecs += diff_iovecs;
  177. /*
  178. * If this is the first time the item is being committed to the CIL,
  179. * store the sequence number on the log item so we can tell
  180. * in future commits whether this is the first checkpoint the item is
  181. * being committed into.
  182. */
  183. if (!item->li_seq)
  184. item->li_seq = ctx->sequence;
  185. /*
  186. * Now transfer enough transaction reservation to the context ticket
  187. * for the checkpoint. The context ticket is special - the unit
  188. * reservation has to grow as well as the current reservation as we
  189. * steal from tickets so we can correctly determine the space used
  190. * during the transaction commit.
  191. */
  192. if (ctx->ticket->t_curr_res == 0) {
  193. /* first commit in checkpoint, steal the header reservation */
  194. ASSERT(ticket->t_curr_res >= ctx->ticket->t_unit_res + len);
  195. ctx->ticket->t_curr_res = ctx->ticket->t_unit_res;
  196. ticket->t_curr_res -= ctx->ticket->t_unit_res;
  197. }
  198. /* do we need space for more log record headers? */
  199. iclog_space = log->l_iclog_size - log->l_iclog_hsize;
  200. if (len > 0 && (ctx->space_used / iclog_space !=
  201. (ctx->space_used + len) / iclog_space)) {
  202. int hdrs;
  203. hdrs = (len + iclog_space - 1) / iclog_space;
  204. /* need to take into account split region headers, too */
  205. hdrs *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
  206. ctx->ticket->t_unit_res += hdrs;
  207. ctx->ticket->t_curr_res += hdrs;
  208. ticket->t_curr_res -= hdrs;
  209. ASSERT(ticket->t_curr_res >= len);
  210. }
  211. ticket->t_curr_res -= len;
  212. ctx->space_used += len;
  213. spin_unlock(&cil->xc_cil_lock);
  214. }
  215. /*
  216. * Format log item into a flat buffers
  217. *
  218. * For delayed logging, we need to hold a formatted buffer containing all the
  219. * changes on the log item. This enables us to relog the item in memory and
  220. * write it out asynchronously without needing to relock the object that was
  221. * modified at the time it gets written into the iclog.
  222. *
  223. * This function builds a vector for the changes in each log item in the
  224. * transaction. It then works out the length of the buffer needed for each log
  225. * item, allocates them and formats the vector for the item into the buffer.
  226. * The buffer is then attached to the log item are then inserted into the
  227. * Committed Item List for tracking until the next checkpoint is written out.
  228. *
  229. * We don't set up region headers during this process; we simply copy the
  230. * regions into the flat buffer. We can do this because we still have to do a
  231. * formatting step to write the regions into the iclog buffer. Writing the
  232. * ophdrs during the iclog write means that we can support splitting large
  233. * regions across iclog boundares without needing a change in the format of the
  234. * item/region encapsulation.
  235. *
  236. * Hence what we need to do now is change the rewrite the vector array to point
  237. * to the copied region inside the buffer we just allocated. This allows us to
  238. * format the regions into the iclog as though they are being formatted
  239. * directly out of the objects themselves.
  240. */
  241. static void
  242. xlog_cil_format_items(
  243. struct log *log,
  244. struct xfs_log_vec *log_vector)
  245. {
  246. struct xfs_log_vec *lv;
  247. ASSERT(log_vector);
  248. for (lv = log_vector; lv; lv = lv->lv_next) {
  249. void *ptr;
  250. int index;
  251. int len = 0;
  252. /* build the vector array and calculate it's length */
  253. IOP_FORMAT(lv->lv_item, lv->lv_iovecp);
  254. for (index = 0; index < lv->lv_niovecs; index++)
  255. len += lv->lv_iovecp[index].i_len;
  256. lv->lv_buf_len = len;
  257. lv->lv_buf = kmem_zalloc(lv->lv_buf_len, KM_SLEEP|KM_NOFS);
  258. ptr = lv->lv_buf;
  259. for (index = 0; index < lv->lv_niovecs; index++) {
  260. struct xfs_log_iovec *vec = &lv->lv_iovecp[index];
  261. memcpy(ptr, vec->i_addr, vec->i_len);
  262. vec->i_addr = ptr;
  263. ptr += vec->i_len;
  264. }
  265. ASSERT(ptr == lv->lv_buf + lv->lv_buf_len);
  266. }
  267. }
  268. static void
  269. xlog_cil_insert_items(
  270. struct log *log,
  271. struct xfs_log_vec *log_vector,
  272. struct xlog_ticket *ticket,
  273. xfs_lsn_t *start_lsn)
  274. {
  275. struct xfs_log_vec *lv;
  276. if (start_lsn)
  277. *start_lsn = log->l_cilp->xc_ctx->sequence;
  278. ASSERT(log_vector);
  279. for (lv = log_vector; lv; lv = lv->lv_next)
  280. xlog_cil_insert(log, ticket, lv->lv_item, lv);
  281. }
  282. static void
  283. xlog_cil_free_logvec(
  284. struct xfs_log_vec *log_vector)
  285. {
  286. struct xfs_log_vec *lv;
  287. for (lv = log_vector; lv; ) {
  288. struct xfs_log_vec *next = lv->lv_next;
  289. kmem_free(lv->lv_buf);
  290. kmem_free(lv);
  291. lv = next;
  292. }
  293. }
  294. /*
  295. * Mark all items committed and clear busy extents. We free the log vector
  296. * chains in a separate pass so that we unpin the log items as quickly as
  297. * possible.
  298. */
  299. static void
  300. xlog_cil_committed(
  301. void *args,
  302. int abort)
  303. {
  304. struct xfs_cil_ctx *ctx = args;
  305. struct xfs_log_vec *lv;
  306. int abortflag = abort ? XFS_LI_ABORTED : 0;
  307. struct xfs_busy_extent *busyp, *n;
  308. /* unpin all the log items */
  309. for (lv = ctx->lv_chain; lv; lv = lv->lv_next ) {
  310. xfs_trans_item_committed(lv->lv_item, ctx->start_lsn,
  311. abortflag);
  312. }
  313. list_for_each_entry_safe(busyp, n, &ctx->busy_extents, list)
  314. xfs_alloc_busy_clear(ctx->cil->xc_log->l_mp, busyp);
  315. spin_lock(&ctx->cil->xc_cil_lock);
  316. list_del(&ctx->committing);
  317. spin_unlock(&ctx->cil->xc_cil_lock);
  318. xlog_cil_free_logvec(ctx->lv_chain);
  319. kmem_free(ctx);
  320. }
  321. /*
  322. * Push the Committed Item List to the log. If @push_seq flag is zero, then it
  323. * is a background flush and so we can chose to ignore it. Otherwise, if the
  324. * current sequence is the same as @push_seq we need to do a flush. If
  325. * @push_seq is less than the current sequence, then it has already been
  326. * flushed and we don't need to do anything - the caller will wait for it to
  327. * complete if necessary.
  328. *
  329. * @push_seq is a value rather than a flag because that allows us to do an
  330. * unlocked check of the sequence number for a match. Hence we can allows log
  331. * forces to run racily and not issue pushes for the same sequence twice. If we
  332. * get a race between multiple pushes for the same sequence they will block on
  333. * the first one and then abort, hence avoiding needless pushes.
  334. */
  335. STATIC int
  336. xlog_cil_push(
  337. struct log *log,
  338. xfs_lsn_t push_seq)
  339. {
  340. struct xfs_cil *cil = log->l_cilp;
  341. struct xfs_log_vec *lv;
  342. struct xfs_cil_ctx *ctx;
  343. struct xfs_cil_ctx *new_ctx;
  344. struct xlog_in_core *commit_iclog;
  345. struct xlog_ticket *tic;
  346. int num_lv;
  347. int num_iovecs;
  348. int len;
  349. int error = 0;
  350. struct xfs_trans_header thdr;
  351. struct xfs_log_iovec lhdr;
  352. struct xfs_log_vec lvhdr = { NULL };
  353. xfs_lsn_t commit_lsn;
  354. if (!cil)
  355. return 0;
  356. ASSERT(!push_seq || push_seq <= cil->xc_ctx->sequence);
  357. new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS);
  358. new_ctx->ticket = xlog_cil_ticket_alloc(log);
  359. /*
  360. * Lock out transaction commit, but don't block for background pushes
  361. * unless we are well over the CIL space limit. See the definition of
  362. * XLOG_CIL_HARD_SPACE_LIMIT() for the full explanation of the logic
  363. * used here.
  364. */
  365. if (!down_write_trylock(&cil->xc_ctx_lock)) {
  366. if (!push_seq &&
  367. cil->xc_ctx->space_used < XLOG_CIL_HARD_SPACE_LIMIT(log))
  368. goto out_free_ticket;
  369. down_write(&cil->xc_ctx_lock);
  370. }
  371. ctx = cil->xc_ctx;
  372. /* check if we've anything to push */
  373. if (list_empty(&cil->xc_cil))
  374. goto out_skip;
  375. /* check for spurious background flush */
  376. if (!push_seq && cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log))
  377. goto out_skip;
  378. /* check for a previously pushed seqeunce */
  379. if (push_seq && push_seq < cil->xc_ctx->sequence)
  380. goto out_skip;
  381. /*
  382. * pull all the log vectors off the items in the CIL, and
  383. * remove the items from the CIL. We don't need the CIL lock
  384. * here because it's only needed on the transaction commit
  385. * side which is currently locked out by the flush lock.
  386. */
  387. lv = NULL;
  388. num_lv = 0;
  389. num_iovecs = 0;
  390. len = 0;
  391. while (!list_empty(&cil->xc_cil)) {
  392. struct xfs_log_item *item;
  393. int i;
  394. item = list_first_entry(&cil->xc_cil,
  395. struct xfs_log_item, li_cil);
  396. list_del_init(&item->li_cil);
  397. if (!ctx->lv_chain)
  398. ctx->lv_chain = item->li_lv;
  399. else
  400. lv->lv_next = item->li_lv;
  401. lv = item->li_lv;
  402. item->li_lv = NULL;
  403. num_lv++;
  404. num_iovecs += lv->lv_niovecs;
  405. for (i = 0; i < lv->lv_niovecs; i++)
  406. len += lv->lv_iovecp[i].i_len;
  407. }
  408. /*
  409. * initialise the new context and attach it to the CIL. Then attach
  410. * the current context to the CIL committing lsit so it can be found
  411. * during log forces to extract the commit lsn of the sequence that
  412. * needs to be forced.
  413. */
  414. INIT_LIST_HEAD(&new_ctx->committing);
  415. INIT_LIST_HEAD(&new_ctx->busy_extents);
  416. new_ctx->sequence = ctx->sequence + 1;
  417. new_ctx->cil = cil;
  418. cil->xc_ctx = new_ctx;
  419. /*
  420. * mirror the new sequence into the cil structure so that we can do
  421. * unlocked checks against the current sequence in log forces without
  422. * risking deferencing a freed context pointer.
  423. */
  424. cil->xc_current_sequence = new_ctx->sequence;
  425. /*
  426. * The switch is now done, so we can drop the context lock and move out
  427. * of a shared context. We can't just go straight to the commit record,
  428. * though - we need to synchronise with previous and future commits so
  429. * that the commit records are correctly ordered in the log to ensure
  430. * that we process items during log IO completion in the correct order.
  431. *
  432. * For example, if we get an EFI in one checkpoint and the EFD in the
  433. * next (e.g. due to log forces), we do not want the checkpoint with
  434. * the EFD to be committed before the checkpoint with the EFI. Hence
  435. * we must strictly order the commit records of the checkpoints so
  436. * that: a) the checkpoint callbacks are attached to the iclogs in the
  437. * correct order; and b) the checkpoints are replayed in correct order
  438. * in log recovery.
  439. *
  440. * Hence we need to add this context to the committing context list so
  441. * that higher sequences will wait for us to write out a commit record
  442. * before they do.
  443. */
  444. spin_lock(&cil->xc_cil_lock);
  445. list_add(&ctx->committing, &cil->xc_committing);
  446. spin_unlock(&cil->xc_cil_lock);
  447. up_write(&cil->xc_ctx_lock);
  448. /*
  449. * Build a checkpoint transaction header and write it to the log to
  450. * begin the transaction. We need to account for the space used by the
  451. * transaction header here as it is not accounted for in xlog_write().
  452. *
  453. * The LSN we need to pass to the log items on transaction commit is
  454. * the LSN reported by the first log vector write. If we use the commit
  455. * record lsn then we can move the tail beyond the grant write head.
  456. */
  457. tic = ctx->ticket;
  458. thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
  459. thdr.th_type = XFS_TRANS_CHECKPOINT;
  460. thdr.th_tid = tic->t_tid;
  461. thdr.th_num_items = num_iovecs;
  462. lhdr.i_addr = &thdr;
  463. lhdr.i_len = sizeof(xfs_trans_header_t);
  464. lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
  465. tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
  466. lvhdr.lv_niovecs = 1;
  467. lvhdr.lv_iovecp = &lhdr;
  468. lvhdr.lv_next = ctx->lv_chain;
  469. error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0);
  470. if (error)
  471. goto out_abort;
  472. /*
  473. * now that we've written the checkpoint into the log, strictly
  474. * order the commit records so replay will get them in the right order.
  475. */
  476. restart:
  477. spin_lock(&cil->xc_cil_lock);
  478. list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
  479. /*
  480. * Higher sequences will wait for this one so skip them.
  481. * Don't wait for own own sequence, either.
  482. */
  483. if (new_ctx->sequence >= ctx->sequence)
  484. continue;
  485. if (!new_ctx->commit_lsn) {
  486. /*
  487. * It is still being pushed! Wait for the push to
  488. * complete, then start again from the beginning.
  489. */
  490. sv_wait(&cil->xc_commit_wait, 0, &cil->xc_cil_lock, 0);
  491. goto restart;
  492. }
  493. }
  494. spin_unlock(&cil->xc_cil_lock);
  495. commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, 0);
  496. if (error || commit_lsn == -1)
  497. goto out_abort;
  498. /* attach all the transactions w/ busy extents to iclog */
  499. ctx->log_cb.cb_func = xlog_cil_committed;
  500. ctx->log_cb.cb_arg = ctx;
  501. error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb);
  502. if (error)
  503. goto out_abort;
  504. /*
  505. * now the checkpoint commit is complete and we've attached the
  506. * callbacks to the iclog we can assign the commit LSN to the context
  507. * and wake up anyone who is waiting for the commit to complete.
  508. */
  509. spin_lock(&cil->xc_cil_lock);
  510. ctx->commit_lsn = commit_lsn;
  511. sv_broadcast(&cil->xc_commit_wait);
  512. spin_unlock(&cil->xc_cil_lock);
  513. /* release the hounds! */
  514. return xfs_log_release_iclog(log->l_mp, commit_iclog);
  515. out_skip:
  516. up_write(&cil->xc_ctx_lock);
  517. out_free_ticket:
  518. xfs_log_ticket_put(new_ctx->ticket);
  519. kmem_free(new_ctx);
  520. return 0;
  521. out_abort:
  522. xlog_cil_committed(ctx, XFS_LI_ABORTED);
  523. return XFS_ERROR(EIO);
  524. }
  525. /*
  526. * Commit a transaction with the given vector to the Committed Item List.
  527. *
  528. * To do this, we need to format the item, pin it in memory if required and
  529. * account for the space used by the transaction. Once we have done that we
  530. * need to release the unused reservation for the transaction, attach the
  531. * transaction to the checkpoint context so we carry the busy extents through
  532. * to checkpoint completion, and then unlock all the items in the transaction.
  533. *
  534. * For more specific information about the order of operations in
  535. * xfs_log_commit_cil() please refer to the comments in
  536. * xfs_trans_commit_iclog().
  537. *
  538. * Called with the context lock already held in read mode to lock out
  539. * background commit, returns without it held once background commits are
  540. * allowed again.
  541. */
  542. int
  543. xfs_log_commit_cil(
  544. struct xfs_mount *mp,
  545. struct xfs_trans *tp,
  546. struct xfs_log_vec *log_vector,
  547. xfs_lsn_t *commit_lsn,
  548. int flags)
  549. {
  550. struct log *log = mp->m_log;
  551. int log_flags = 0;
  552. int push = 0;
  553. if (flags & XFS_TRANS_RELEASE_LOG_RES)
  554. log_flags = XFS_LOG_REL_PERM_RESERV;
  555. if (XLOG_FORCED_SHUTDOWN(log)) {
  556. xlog_cil_free_logvec(log_vector);
  557. return XFS_ERROR(EIO);
  558. }
  559. /*
  560. * do all the hard work of formatting items (including memory
  561. * allocation) outside the CIL context lock. This prevents stalling CIL
  562. * pushes when we are low on memory and a transaction commit spends a
  563. * lot of time in memory reclaim.
  564. */
  565. xlog_cil_format_items(log, log_vector);
  566. /* lock out background commit */
  567. down_read(&log->l_cilp->xc_ctx_lock);
  568. xlog_cil_insert_items(log, log_vector, tp->t_ticket, commit_lsn);
  569. /* check we didn't blow the reservation */
  570. if (tp->t_ticket->t_curr_res < 0)
  571. xlog_print_tic_res(log->l_mp, tp->t_ticket);
  572. /* attach the transaction to the CIL if it has any busy extents */
  573. if (!list_empty(&tp->t_busy)) {
  574. spin_lock(&log->l_cilp->xc_cil_lock);
  575. list_splice_init(&tp->t_busy,
  576. &log->l_cilp->xc_ctx->busy_extents);
  577. spin_unlock(&log->l_cilp->xc_cil_lock);
  578. }
  579. tp->t_commit_lsn = *commit_lsn;
  580. xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
  581. xfs_trans_unreserve_and_mod_sb(tp);
  582. /*
  583. * Once all the items of the transaction have been copied to the CIL,
  584. * the items can be unlocked and freed.
  585. *
  586. * This needs to be done before we drop the CIL context lock because we
  587. * have to update state in the log items and unlock them before they go
  588. * to disk. If we don't, then the CIL checkpoint can race with us and
  589. * we can run checkpoint completion before we've updated and unlocked
  590. * the log items. This affects (at least) processing of stale buffers,
  591. * inodes and EFIs.
  592. */
  593. xfs_trans_free_items(tp, *commit_lsn, 0);
  594. /* check for background commit before unlock */
  595. if (log->l_cilp->xc_ctx->space_used > XLOG_CIL_SPACE_LIMIT(log))
  596. push = 1;
  597. up_read(&log->l_cilp->xc_ctx_lock);
  598. /*
  599. * We need to push CIL every so often so we don't cache more than we
  600. * can fit in the log. The limit really is that a checkpoint can't be
  601. * more than half the log (the current checkpoint is not allowed to
  602. * overwrite the previous checkpoint), but commit latency and memory
  603. * usage limit this to a smaller size in most cases.
  604. */
  605. if (push)
  606. xlog_cil_push(log, 0);
  607. return 0;
  608. }
  609. /*
  610. * Conditionally push the CIL based on the sequence passed in.
  611. *
  612. * We only need to push if we haven't already pushed the sequence
  613. * number given. Hence the only time we will trigger a push here is
  614. * if the push sequence is the same as the current context.
  615. *
  616. * We return the current commit lsn to allow the callers to determine if a
  617. * iclog flush is necessary following this call.
  618. *
  619. * XXX: Initially, just push the CIL unconditionally and return whatever
  620. * commit lsn is there. It'll be empty, so this is broken for now.
  621. */
  622. xfs_lsn_t
  623. xlog_cil_force_lsn(
  624. struct log *log,
  625. xfs_lsn_t sequence)
  626. {
  627. struct xfs_cil *cil = log->l_cilp;
  628. struct xfs_cil_ctx *ctx;
  629. xfs_lsn_t commit_lsn = NULLCOMMITLSN;
  630. ASSERT(sequence <= cil->xc_current_sequence);
  631. /*
  632. * check to see if we need to force out the current context.
  633. * xlog_cil_push() handles racing pushes for the same sequence,
  634. * so no need to deal with it here.
  635. */
  636. if (sequence == cil->xc_current_sequence)
  637. xlog_cil_push(log, sequence);
  638. /*
  639. * See if we can find a previous sequence still committing.
  640. * We need to wait for all previous sequence commits to complete
  641. * before allowing the force of push_seq to go ahead. Hence block
  642. * on commits for those as well.
  643. */
  644. restart:
  645. spin_lock(&cil->xc_cil_lock);
  646. list_for_each_entry(ctx, &cil->xc_committing, committing) {
  647. if (ctx->sequence > sequence)
  648. continue;
  649. if (!ctx->commit_lsn) {
  650. /*
  651. * It is still being pushed! Wait for the push to
  652. * complete, then start again from the beginning.
  653. */
  654. sv_wait(&cil->xc_commit_wait, 0, &cil->xc_cil_lock, 0);
  655. goto restart;
  656. }
  657. if (ctx->sequence != sequence)
  658. continue;
  659. /* found it! */
  660. commit_lsn = ctx->commit_lsn;
  661. }
  662. spin_unlock(&cil->xc_cil_lock);
  663. return commit_lsn;
  664. }
  665. /*
  666. * Check if the current log item was first committed in this sequence.
  667. * We can't rely on just the log item being in the CIL, we have to check
  668. * the recorded commit sequence number.
  669. *
  670. * Note: for this to be used in a non-racy manner, it has to be called with
  671. * CIL flushing locked out. As a result, it should only be used during the
  672. * transaction commit process when deciding what to format into the item.
  673. */
  674. bool
  675. xfs_log_item_in_current_chkpt(
  676. struct xfs_log_item *lip)
  677. {
  678. struct xfs_cil_ctx *ctx;
  679. if (!(lip->li_mountp->m_flags & XFS_MOUNT_DELAYLOG))
  680. return false;
  681. if (list_empty(&lip->li_cil))
  682. return false;
  683. ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
  684. /*
  685. * li_seq is written on the first commit of a log item to record the
  686. * first checkpoint it is written to. Hence if it is different to the
  687. * current sequence, we're in a new checkpoint.
  688. */
  689. if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0)
  690. return false;
  691. return true;
  692. }