skge.c 106 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179
  1. /*
  2. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Based on earlier sk98lin, e100 and
  4. * FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24. */
  25. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  26. #include <linux/in.h>
  27. #include <linux/kernel.h>
  28. #include <linux/module.h>
  29. #include <linux/moduleparam.h>
  30. #include <linux/netdevice.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/ethtool.h>
  33. #include <linux/pci.h>
  34. #include <linux/if_vlan.h>
  35. #include <linux/ip.h>
  36. #include <linux/delay.h>
  37. #include <linux/crc32.h>
  38. #include <linux/dma-mapping.h>
  39. #include <linux/debugfs.h>
  40. #include <linux/sched.h>
  41. #include <linux/seq_file.h>
  42. #include <linux/mii.h>
  43. #include <linux/slab.h>
  44. #include <linux/dmi.h>
  45. #include <asm/irq.h>
  46. #include "skge.h"
  47. #define DRV_NAME "skge"
  48. #define DRV_VERSION "1.13"
  49. #define DEFAULT_TX_RING_SIZE 128
  50. #define DEFAULT_RX_RING_SIZE 512
  51. #define MAX_TX_RING_SIZE 1024
  52. #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
  53. #define MAX_RX_RING_SIZE 4096
  54. #define RX_COPY_THRESHOLD 128
  55. #define RX_BUF_SIZE 1536
  56. #define PHY_RETRIES 1000
  57. #define ETH_JUMBO_MTU 9000
  58. #define TX_WATCHDOG (5 * HZ)
  59. #define NAPI_WEIGHT 64
  60. #define BLINK_MS 250
  61. #define LINK_HZ HZ
  62. #define SKGE_EEPROM_MAGIC 0x9933aabb
  63. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  64. MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
  65. MODULE_LICENSE("GPL");
  66. MODULE_VERSION(DRV_VERSION);
  67. static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  68. NETIF_MSG_LINK | NETIF_MSG_IFUP |
  69. NETIF_MSG_IFDOWN);
  70. static int debug = -1; /* defaults above */
  71. module_param(debug, int, 0);
  72. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  73. static DEFINE_PCI_DEVICE_TABLE(skge_id_table) = {
  74. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
  75. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
  76. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
  77. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
  78. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T) },
  79. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
  80. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
  81. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
  82. { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
  83. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
  84. { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 },
  85. { 0 }
  86. };
  87. MODULE_DEVICE_TABLE(pci, skge_id_table);
  88. static int skge_up(struct net_device *dev);
  89. static int skge_down(struct net_device *dev);
  90. static void skge_phy_reset(struct skge_port *skge);
  91. static void skge_tx_clean(struct net_device *dev);
  92. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  93. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  94. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  95. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  96. static void yukon_init(struct skge_hw *hw, int port);
  97. static void genesis_mac_init(struct skge_hw *hw, int port);
  98. static void genesis_link_up(struct skge_port *skge);
  99. static void skge_set_multicast(struct net_device *dev);
  100. /* Avoid conditionals by using array */
  101. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  102. static const int rxqaddr[] = { Q_R1, Q_R2 };
  103. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  104. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  105. static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
  106. static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
  107. static int skge_get_regs_len(struct net_device *dev)
  108. {
  109. return 0x4000;
  110. }
  111. /*
  112. * Returns copy of whole control register region
  113. * Note: skip RAM address register because accessing it will
  114. * cause bus hangs!
  115. */
  116. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  117. void *p)
  118. {
  119. const struct skge_port *skge = netdev_priv(dev);
  120. const void __iomem *io = skge->hw->regs;
  121. regs->version = 1;
  122. memset(p, 0, regs->len);
  123. memcpy_fromio(p, io, B3_RAM_ADDR);
  124. memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
  125. regs->len - B3_RI_WTO_R1);
  126. }
  127. /* Wake on Lan only supported on Yukon chips with rev 1 or above */
  128. static u32 wol_supported(const struct skge_hw *hw)
  129. {
  130. if (hw->chip_id == CHIP_ID_GENESIS)
  131. return 0;
  132. if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  133. return 0;
  134. return WAKE_MAGIC | WAKE_PHY;
  135. }
  136. static void skge_wol_init(struct skge_port *skge)
  137. {
  138. struct skge_hw *hw = skge->hw;
  139. int port = skge->port;
  140. u16 ctrl;
  141. skge_write16(hw, B0_CTST, CS_RST_CLR);
  142. skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
  143. /* Turn on Vaux */
  144. skge_write8(hw, B0_POWER_CTRL,
  145. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
  146. /* WA code for COMA mode -- clear PHY reset */
  147. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  148. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  149. u32 reg = skge_read32(hw, B2_GP_IO);
  150. reg |= GP_DIR_9;
  151. reg &= ~GP_IO_9;
  152. skge_write32(hw, B2_GP_IO, reg);
  153. }
  154. skge_write32(hw, SK_REG(port, GPHY_CTRL),
  155. GPC_DIS_SLEEP |
  156. GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
  157. GPC_ANEG_1 | GPC_RST_SET);
  158. skge_write32(hw, SK_REG(port, GPHY_CTRL),
  159. GPC_DIS_SLEEP |
  160. GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
  161. GPC_ANEG_1 | GPC_RST_CLR);
  162. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
  163. /* Force to 10/100 skge_reset will re-enable on resume */
  164. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  165. (PHY_AN_100FULL | PHY_AN_100HALF |
  166. PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
  167. /* no 1000 HD/FD */
  168. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
  169. gm_phy_write(hw, port, PHY_MARV_CTRL,
  170. PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
  171. PHY_CT_RE_CFG | PHY_CT_DUP_MD);
  172. /* Set GMAC to no flow control and auto update for speed/duplex */
  173. gma_write16(hw, port, GM_GP_CTRL,
  174. GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
  175. GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
  176. /* Set WOL address */
  177. memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
  178. skge->netdev->dev_addr, ETH_ALEN);
  179. /* Turn on appropriate WOL control bits */
  180. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
  181. ctrl = 0;
  182. if (skge->wol & WAKE_PHY)
  183. ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
  184. else
  185. ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
  186. if (skge->wol & WAKE_MAGIC)
  187. ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
  188. else
  189. ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
  190. ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
  191. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
  192. /* block receiver */
  193. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  194. }
  195. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  196. {
  197. struct skge_port *skge = netdev_priv(dev);
  198. wol->supported = wol_supported(skge->hw);
  199. wol->wolopts = skge->wol;
  200. }
  201. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  202. {
  203. struct skge_port *skge = netdev_priv(dev);
  204. struct skge_hw *hw = skge->hw;
  205. if ((wol->wolopts & ~wol_supported(hw)) ||
  206. !device_can_wakeup(&hw->pdev->dev))
  207. return -EOPNOTSUPP;
  208. skge->wol = wol->wolopts;
  209. device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
  210. return 0;
  211. }
  212. /* Determine supported/advertised modes based on hardware.
  213. * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
  214. */
  215. static u32 skge_supported_modes(const struct skge_hw *hw)
  216. {
  217. u32 supported;
  218. if (hw->copper) {
  219. supported = (SUPPORTED_10baseT_Half |
  220. SUPPORTED_10baseT_Full |
  221. SUPPORTED_100baseT_Half |
  222. SUPPORTED_100baseT_Full |
  223. SUPPORTED_1000baseT_Half |
  224. SUPPORTED_1000baseT_Full |
  225. SUPPORTED_Autoneg |
  226. SUPPORTED_TP);
  227. if (hw->chip_id == CHIP_ID_GENESIS)
  228. supported &= ~(SUPPORTED_10baseT_Half |
  229. SUPPORTED_10baseT_Full |
  230. SUPPORTED_100baseT_Half |
  231. SUPPORTED_100baseT_Full);
  232. else if (hw->chip_id == CHIP_ID_YUKON)
  233. supported &= ~SUPPORTED_1000baseT_Half;
  234. } else
  235. supported = (SUPPORTED_1000baseT_Full |
  236. SUPPORTED_1000baseT_Half |
  237. SUPPORTED_FIBRE |
  238. SUPPORTED_Autoneg);
  239. return supported;
  240. }
  241. static int skge_get_settings(struct net_device *dev,
  242. struct ethtool_cmd *ecmd)
  243. {
  244. struct skge_port *skge = netdev_priv(dev);
  245. struct skge_hw *hw = skge->hw;
  246. ecmd->transceiver = XCVR_INTERNAL;
  247. ecmd->supported = skge_supported_modes(hw);
  248. if (hw->copper) {
  249. ecmd->port = PORT_TP;
  250. ecmd->phy_address = hw->phy_addr;
  251. } else
  252. ecmd->port = PORT_FIBRE;
  253. ecmd->advertising = skge->advertising;
  254. ecmd->autoneg = skge->autoneg;
  255. ecmd->speed = skge->speed;
  256. ecmd->duplex = skge->duplex;
  257. return 0;
  258. }
  259. static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  260. {
  261. struct skge_port *skge = netdev_priv(dev);
  262. const struct skge_hw *hw = skge->hw;
  263. u32 supported = skge_supported_modes(hw);
  264. int err = 0;
  265. if (ecmd->autoneg == AUTONEG_ENABLE) {
  266. ecmd->advertising = supported;
  267. skge->duplex = -1;
  268. skge->speed = -1;
  269. } else {
  270. u32 setting;
  271. switch (ecmd->speed) {
  272. case SPEED_1000:
  273. if (ecmd->duplex == DUPLEX_FULL)
  274. setting = SUPPORTED_1000baseT_Full;
  275. else if (ecmd->duplex == DUPLEX_HALF)
  276. setting = SUPPORTED_1000baseT_Half;
  277. else
  278. return -EINVAL;
  279. break;
  280. case SPEED_100:
  281. if (ecmd->duplex == DUPLEX_FULL)
  282. setting = SUPPORTED_100baseT_Full;
  283. else if (ecmd->duplex == DUPLEX_HALF)
  284. setting = SUPPORTED_100baseT_Half;
  285. else
  286. return -EINVAL;
  287. break;
  288. case SPEED_10:
  289. if (ecmd->duplex == DUPLEX_FULL)
  290. setting = SUPPORTED_10baseT_Full;
  291. else if (ecmd->duplex == DUPLEX_HALF)
  292. setting = SUPPORTED_10baseT_Half;
  293. else
  294. return -EINVAL;
  295. break;
  296. default:
  297. return -EINVAL;
  298. }
  299. if ((setting & supported) == 0)
  300. return -EINVAL;
  301. skge->speed = ecmd->speed;
  302. skge->duplex = ecmd->duplex;
  303. }
  304. skge->autoneg = ecmd->autoneg;
  305. skge->advertising = ecmd->advertising;
  306. if (netif_running(dev)) {
  307. skge_down(dev);
  308. err = skge_up(dev);
  309. if (err) {
  310. dev_close(dev);
  311. return err;
  312. }
  313. }
  314. return 0;
  315. }
  316. static void skge_get_drvinfo(struct net_device *dev,
  317. struct ethtool_drvinfo *info)
  318. {
  319. struct skge_port *skge = netdev_priv(dev);
  320. strcpy(info->driver, DRV_NAME);
  321. strcpy(info->version, DRV_VERSION);
  322. strcpy(info->fw_version, "N/A");
  323. strcpy(info->bus_info, pci_name(skge->hw->pdev));
  324. }
  325. static const struct skge_stat {
  326. char name[ETH_GSTRING_LEN];
  327. u16 xmac_offset;
  328. u16 gma_offset;
  329. } skge_stats[] = {
  330. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  331. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  332. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  333. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  334. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  335. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  336. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  337. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  338. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  339. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  340. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  341. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  342. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  343. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  344. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  345. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  346. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  347. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  348. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  349. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  350. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  351. };
  352. static int skge_get_sset_count(struct net_device *dev, int sset)
  353. {
  354. switch (sset) {
  355. case ETH_SS_STATS:
  356. return ARRAY_SIZE(skge_stats);
  357. default:
  358. return -EOPNOTSUPP;
  359. }
  360. }
  361. static void skge_get_ethtool_stats(struct net_device *dev,
  362. struct ethtool_stats *stats, u64 *data)
  363. {
  364. struct skge_port *skge = netdev_priv(dev);
  365. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  366. genesis_get_stats(skge, data);
  367. else
  368. yukon_get_stats(skge, data);
  369. }
  370. /* Use hardware MIB variables for critical path statistics and
  371. * transmit feedback not reported at interrupt.
  372. * Other errors are accounted for in interrupt handler.
  373. */
  374. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  375. {
  376. struct skge_port *skge = netdev_priv(dev);
  377. u64 data[ARRAY_SIZE(skge_stats)];
  378. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  379. genesis_get_stats(skge, data);
  380. else
  381. yukon_get_stats(skge, data);
  382. dev->stats.tx_bytes = data[0];
  383. dev->stats.rx_bytes = data[1];
  384. dev->stats.tx_packets = data[2] + data[4] + data[6];
  385. dev->stats.rx_packets = data[3] + data[5] + data[7];
  386. dev->stats.multicast = data[3] + data[5];
  387. dev->stats.collisions = data[10];
  388. dev->stats.tx_aborted_errors = data[12];
  389. return &dev->stats;
  390. }
  391. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  392. {
  393. int i;
  394. switch (stringset) {
  395. case ETH_SS_STATS:
  396. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  397. memcpy(data + i * ETH_GSTRING_LEN,
  398. skge_stats[i].name, ETH_GSTRING_LEN);
  399. break;
  400. }
  401. }
  402. static void skge_get_ring_param(struct net_device *dev,
  403. struct ethtool_ringparam *p)
  404. {
  405. struct skge_port *skge = netdev_priv(dev);
  406. p->rx_max_pending = MAX_RX_RING_SIZE;
  407. p->tx_max_pending = MAX_TX_RING_SIZE;
  408. p->rx_mini_max_pending = 0;
  409. p->rx_jumbo_max_pending = 0;
  410. p->rx_pending = skge->rx_ring.count;
  411. p->tx_pending = skge->tx_ring.count;
  412. p->rx_mini_pending = 0;
  413. p->rx_jumbo_pending = 0;
  414. }
  415. static int skge_set_ring_param(struct net_device *dev,
  416. struct ethtool_ringparam *p)
  417. {
  418. struct skge_port *skge = netdev_priv(dev);
  419. int err = 0;
  420. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  421. p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
  422. return -EINVAL;
  423. skge->rx_ring.count = p->rx_pending;
  424. skge->tx_ring.count = p->tx_pending;
  425. if (netif_running(dev)) {
  426. skge_down(dev);
  427. err = skge_up(dev);
  428. if (err)
  429. dev_close(dev);
  430. }
  431. return err;
  432. }
  433. static u32 skge_get_msglevel(struct net_device *netdev)
  434. {
  435. struct skge_port *skge = netdev_priv(netdev);
  436. return skge->msg_enable;
  437. }
  438. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  439. {
  440. struct skge_port *skge = netdev_priv(netdev);
  441. skge->msg_enable = value;
  442. }
  443. static int skge_nway_reset(struct net_device *dev)
  444. {
  445. struct skge_port *skge = netdev_priv(dev);
  446. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  447. return -EINVAL;
  448. skge_phy_reset(skge);
  449. return 0;
  450. }
  451. static int skge_set_sg(struct net_device *dev, u32 data)
  452. {
  453. struct skge_port *skge = netdev_priv(dev);
  454. struct skge_hw *hw = skge->hw;
  455. if (hw->chip_id == CHIP_ID_GENESIS && data)
  456. return -EOPNOTSUPP;
  457. return ethtool_op_set_sg(dev, data);
  458. }
  459. static int skge_set_tx_csum(struct net_device *dev, u32 data)
  460. {
  461. struct skge_port *skge = netdev_priv(dev);
  462. struct skge_hw *hw = skge->hw;
  463. if (hw->chip_id == CHIP_ID_GENESIS && data)
  464. return -EOPNOTSUPP;
  465. return ethtool_op_set_tx_csum(dev, data);
  466. }
  467. static u32 skge_get_rx_csum(struct net_device *dev)
  468. {
  469. struct skge_port *skge = netdev_priv(dev);
  470. return skge->rx_csum;
  471. }
  472. /* Only Yukon supports checksum offload. */
  473. static int skge_set_rx_csum(struct net_device *dev, u32 data)
  474. {
  475. struct skge_port *skge = netdev_priv(dev);
  476. if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
  477. return -EOPNOTSUPP;
  478. skge->rx_csum = data;
  479. return 0;
  480. }
  481. static void skge_get_pauseparam(struct net_device *dev,
  482. struct ethtool_pauseparam *ecmd)
  483. {
  484. struct skge_port *skge = netdev_priv(dev);
  485. ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
  486. (skge->flow_control == FLOW_MODE_SYM_OR_REM));
  487. ecmd->tx_pause = (ecmd->rx_pause ||
  488. (skge->flow_control == FLOW_MODE_LOC_SEND));
  489. ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
  490. }
  491. static int skge_set_pauseparam(struct net_device *dev,
  492. struct ethtool_pauseparam *ecmd)
  493. {
  494. struct skge_port *skge = netdev_priv(dev);
  495. struct ethtool_pauseparam old;
  496. int err = 0;
  497. skge_get_pauseparam(dev, &old);
  498. if (ecmd->autoneg != old.autoneg)
  499. skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
  500. else {
  501. if (ecmd->rx_pause && ecmd->tx_pause)
  502. skge->flow_control = FLOW_MODE_SYMMETRIC;
  503. else if (ecmd->rx_pause && !ecmd->tx_pause)
  504. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  505. else if (!ecmd->rx_pause && ecmd->tx_pause)
  506. skge->flow_control = FLOW_MODE_LOC_SEND;
  507. else
  508. skge->flow_control = FLOW_MODE_NONE;
  509. }
  510. if (netif_running(dev)) {
  511. skge_down(dev);
  512. err = skge_up(dev);
  513. if (err) {
  514. dev_close(dev);
  515. return err;
  516. }
  517. }
  518. return 0;
  519. }
  520. /* Chip internal frequency for clock calculations */
  521. static inline u32 hwkhz(const struct skge_hw *hw)
  522. {
  523. return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
  524. }
  525. /* Chip HZ to microseconds */
  526. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  527. {
  528. return (ticks * 1000) / hwkhz(hw);
  529. }
  530. /* Microseconds to chip HZ */
  531. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  532. {
  533. return hwkhz(hw) * usec / 1000;
  534. }
  535. static int skge_get_coalesce(struct net_device *dev,
  536. struct ethtool_coalesce *ecmd)
  537. {
  538. struct skge_port *skge = netdev_priv(dev);
  539. struct skge_hw *hw = skge->hw;
  540. int port = skge->port;
  541. ecmd->rx_coalesce_usecs = 0;
  542. ecmd->tx_coalesce_usecs = 0;
  543. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  544. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  545. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  546. if (msk & rxirqmask[port])
  547. ecmd->rx_coalesce_usecs = delay;
  548. if (msk & txirqmask[port])
  549. ecmd->tx_coalesce_usecs = delay;
  550. }
  551. return 0;
  552. }
  553. /* Note: interrupt timer is per board, but can turn on/off per port */
  554. static int skge_set_coalesce(struct net_device *dev,
  555. struct ethtool_coalesce *ecmd)
  556. {
  557. struct skge_port *skge = netdev_priv(dev);
  558. struct skge_hw *hw = skge->hw;
  559. int port = skge->port;
  560. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  561. u32 delay = 25;
  562. if (ecmd->rx_coalesce_usecs == 0)
  563. msk &= ~rxirqmask[port];
  564. else if (ecmd->rx_coalesce_usecs < 25 ||
  565. ecmd->rx_coalesce_usecs > 33333)
  566. return -EINVAL;
  567. else {
  568. msk |= rxirqmask[port];
  569. delay = ecmd->rx_coalesce_usecs;
  570. }
  571. if (ecmd->tx_coalesce_usecs == 0)
  572. msk &= ~txirqmask[port];
  573. else if (ecmd->tx_coalesce_usecs < 25 ||
  574. ecmd->tx_coalesce_usecs > 33333)
  575. return -EINVAL;
  576. else {
  577. msk |= txirqmask[port];
  578. delay = min(delay, ecmd->rx_coalesce_usecs);
  579. }
  580. skge_write32(hw, B2_IRQM_MSK, msk);
  581. if (msk == 0)
  582. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  583. else {
  584. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  585. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  586. }
  587. return 0;
  588. }
  589. enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
  590. static void skge_led(struct skge_port *skge, enum led_mode mode)
  591. {
  592. struct skge_hw *hw = skge->hw;
  593. int port = skge->port;
  594. spin_lock_bh(&hw->phy_lock);
  595. if (hw->chip_id == CHIP_ID_GENESIS) {
  596. switch (mode) {
  597. case LED_MODE_OFF:
  598. if (hw->phy_type == SK_PHY_BCOM)
  599. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
  600. else {
  601. skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
  602. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
  603. }
  604. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  605. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  606. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  607. break;
  608. case LED_MODE_ON:
  609. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  610. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  611. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  612. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  613. break;
  614. case LED_MODE_TST:
  615. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  616. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  617. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  618. if (hw->phy_type == SK_PHY_BCOM)
  619. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
  620. else {
  621. skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
  622. skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
  623. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  624. }
  625. }
  626. } else {
  627. switch (mode) {
  628. case LED_MODE_OFF:
  629. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  630. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  631. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  632. PHY_M_LED_MO_10(MO_LED_OFF) |
  633. PHY_M_LED_MO_100(MO_LED_OFF) |
  634. PHY_M_LED_MO_1000(MO_LED_OFF) |
  635. PHY_M_LED_MO_RX(MO_LED_OFF));
  636. break;
  637. case LED_MODE_ON:
  638. gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
  639. PHY_M_LED_PULS_DUR(PULS_170MS) |
  640. PHY_M_LED_BLINK_RT(BLINK_84MS) |
  641. PHY_M_LEDC_TX_CTRL |
  642. PHY_M_LEDC_DP_CTRL);
  643. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  644. PHY_M_LED_MO_RX(MO_LED_OFF) |
  645. (skge->speed == SPEED_100 ?
  646. PHY_M_LED_MO_100(MO_LED_ON) : 0));
  647. break;
  648. case LED_MODE_TST:
  649. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  650. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  651. PHY_M_LED_MO_DUP(MO_LED_ON) |
  652. PHY_M_LED_MO_10(MO_LED_ON) |
  653. PHY_M_LED_MO_100(MO_LED_ON) |
  654. PHY_M_LED_MO_1000(MO_LED_ON) |
  655. PHY_M_LED_MO_RX(MO_LED_ON));
  656. }
  657. }
  658. spin_unlock_bh(&hw->phy_lock);
  659. }
  660. /* blink LED's for finding board */
  661. static int skge_phys_id(struct net_device *dev, u32 data)
  662. {
  663. struct skge_port *skge = netdev_priv(dev);
  664. unsigned long ms;
  665. enum led_mode mode = LED_MODE_TST;
  666. if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
  667. ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
  668. else
  669. ms = data * 1000;
  670. while (ms > 0) {
  671. skge_led(skge, mode);
  672. mode ^= LED_MODE_TST;
  673. if (msleep_interruptible(BLINK_MS))
  674. break;
  675. ms -= BLINK_MS;
  676. }
  677. /* back to regular LED state */
  678. skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
  679. return 0;
  680. }
  681. static int skge_get_eeprom_len(struct net_device *dev)
  682. {
  683. struct skge_port *skge = netdev_priv(dev);
  684. u32 reg2;
  685. pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
  686. return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
  687. }
  688. static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
  689. {
  690. u32 val;
  691. pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
  692. do {
  693. pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
  694. } while (!(offset & PCI_VPD_ADDR_F));
  695. pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
  696. return val;
  697. }
  698. static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
  699. {
  700. pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
  701. pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
  702. offset | PCI_VPD_ADDR_F);
  703. do {
  704. pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
  705. } while (offset & PCI_VPD_ADDR_F);
  706. }
  707. static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  708. u8 *data)
  709. {
  710. struct skge_port *skge = netdev_priv(dev);
  711. struct pci_dev *pdev = skge->hw->pdev;
  712. int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
  713. int length = eeprom->len;
  714. u16 offset = eeprom->offset;
  715. if (!cap)
  716. return -EINVAL;
  717. eeprom->magic = SKGE_EEPROM_MAGIC;
  718. while (length > 0) {
  719. u32 val = skge_vpd_read(pdev, cap, offset);
  720. int n = min_t(int, length, sizeof(val));
  721. memcpy(data, &val, n);
  722. length -= n;
  723. data += n;
  724. offset += n;
  725. }
  726. return 0;
  727. }
  728. static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  729. u8 *data)
  730. {
  731. struct skge_port *skge = netdev_priv(dev);
  732. struct pci_dev *pdev = skge->hw->pdev;
  733. int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
  734. int length = eeprom->len;
  735. u16 offset = eeprom->offset;
  736. if (!cap)
  737. return -EINVAL;
  738. if (eeprom->magic != SKGE_EEPROM_MAGIC)
  739. return -EINVAL;
  740. while (length > 0) {
  741. u32 val;
  742. int n = min_t(int, length, sizeof(val));
  743. if (n < sizeof(val))
  744. val = skge_vpd_read(pdev, cap, offset);
  745. memcpy(&val, data, n);
  746. skge_vpd_write(pdev, cap, offset, val);
  747. length -= n;
  748. data += n;
  749. offset += n;
  750. }
  751. return 0;
  752. }
  753. static const struct ethtool_ops skge_ethtool_ops = {
  754. .get_settings = skge_get_settings,
  755. .set_settings = skge_set_settings,
  756. .get_drvinfo = skge_get_drvinfo,
  757. .get_regs_len = skge_get_regs_len,
  758. .get_regs = skge_get_regs,
  759. .get_wol = skge_get_wol,
  760. .set_wol = skge_set_wol,
  761. .get_msglevel = skge_get_msglevel,
  762. .set_msglevel = skge_set_msglevel,
  763. .nway_reset = skge_nway_reset,
  764. .get_link = ethtool_op_get_link,
  765. .get_eeprom_len = skge_get_eeprom_len,
  766. .get_eeprom = skge_get_eeprom,
  767. .set_eeprom = skge_set_eeprom,
  768. .get_ringparam = skge_get_ring_param,
  769. .set_ringparam = skge_set_ring_param,
  770. .get_pauseparam = skge_get_pauseparam,
  771. .set_pauseparam = skge_set_pauseparam,
  772. .get_coalesce = skge_get_coalesce,
  773. .set_coalesce = skge_set_coalesce,
  774. .set_sg = skge_set_sg,
  775. .set_tx_csum = skge_set_tx_csum,
  776. .get_rx_csum = skge_get_rx_csum,
  777. .set_rx_csum = skge_set_rx_csum,
  778. .get_strings = skge_get_strings,
  779. .phys_id = skge_phys_id,
  780. .get_sset_count = skge_get_sset_count,
  781. .get_ethtool_stats = skge_get_ethtool_stats,
  782. };
  783. /*
  784. * Allocate ring elements and chain them together
  785. * One-to-one association of board descriptors with ring elements
  786. */
  787. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
  788. {
  789. struct skge_tx_desc *d;
  790. struct skge_element *e;
  791. int i;
  792. ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
  793. if (!ring->start)
  794. return -ENOMEM;
  795. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  796. e->desc = d;
  797. if (i == ring->count - 1) {
  798. e->next = ring->start;
  799. d->next_offset = base;
  800. } else {
  801. e->next = e + 1;
  802. d->next_offset = base + (i+1) * sizeof(*d);
  803. }
  804. }
  805. ring->to_use = ring->to_clean = ring->start;
  806. return 0;
  807. }
  808. /* Allocate and setup a new buffer for receiving */
  809. static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
  810. struct sk_buff *skb, unsigned int bufsize)
  811. {
  812. struct skge_rx_desc *rd = e->desc;
  813. u64 map;
  814. map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
  815. PCI_DMA_FROMDEVICE);
  816. rd->dma_lo = map;
  817. rd->dma_hi = map >> 32;
  818. e->skb = skb;
  819. rd->csum1_start = ETH_HLEN;
  820. rd->csum2_start = ETH_HLEN;
  821. rd->csum1 = 0;
  822. rd->csum2 = 0;
  823. wmb();
  824. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  825. dma_unmap_addr_set(e, mapaddr, map);
  826. dma_unmap_len_set(e, maplen, bufsize);
  827. }
  828. /* Resume receiving using existing skb,
  829. * Note: DMA address is not changed by chip.
  830. * MTU not changed while receiver active.
  831. */
  832. static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
  833. {
  834. struct skge_rx_desc *rd = e->desc;
  835. rd->csum2 = 0;
  836. rd->csum2_start = ETH_HLEN;
  837. wmb();
  838. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
  839. }
  840. /* Free all buffers in receive ring, assumes receiver stopped */
  841. static void skge_rx_clean(struct skge_port *skge)
  842. {
  843. struct skge_hw *hw = skge->hw;
  844. struct skge_ring *ring = &skge->rx_ring;
  845. struct skge_element *e;
  846. e = ring->start;
  847. do {
  848. struct skge_rx_desc *rd = e->desc;
  849. rd->control = 0;
  850. if (e->skb) {
  851. pci_unmap_single(hw->pdev,
  852. dma_unmap_addr(e, mapaddr),
  853. dma_unmap_len(e, maplen),
  854. PCI_DMA_FROMDEVICE);
  855. dev_kfree_skb(e->skb);
  856. e->skb = NULL;
  857. }
  858. } while ((e = e->next) != ring->start);
  859. }
  860. /* Allocate buffers for receive ring
  861. * For receive: to_clean is next received frame.
  862. */
  863. static int skge_rx_fill(struct net_device *dev)
  864. {
  865. struct skge_port *skge = netdev_priv(dev);
  866. struct skge_ring *ring = &skge->rx_ring;
  867. struct skge_element *e;
  868. e = ring->start;
  869. do {
  870. struct sk_buff *skb;
  871. skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
  872. GFP_KERNEL);
  873. if (!skb)
  874. return -ENOMEM;
  875. skb_reserve(skb, NET_IP_ALIGN);
  876. skge_rx_setup(skge, e, skb, skge->rx_buf_size);
  877. } while ((e = e->next) != ring->start);
  878. ring->to_clean = ring->start;
  879. return 0;
  880. }
  881. static const char *skge_pause(enum pause_status status)
  882. {
  883. switch (status) {
  884. case FLOW_STAT_NONE:
  885. return "none";
  886. case FLOW_STAT_REM_SEND:
  887. return "rx only";
  888. case FLOW_STAT_LOC_SEND:
  889. return "tx_only";
  890. case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
  891. return "both";
  892. default:
  893. return "indeterminated";
  894. }
  895. }
  896. static void skge_link_up(struct skge_port *skge)
  897. {
  898. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
  899. LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
  900. netif_carrier_on(skge->netdev);
  901. netif_wake_queue(skge->netdev);
  902. netif_info(skge, link, skge->netdev,
  903. "Link is up at %d Mbps, %s duplex, flow control %s\n",
  904. skge->speed,
  905. skge->duplex == DUPLEX_FULL ? "full" : "half",
  906. skge_pause(skge->flow_status));
  907. }
  908. static void skge_link_down(struct skge_port *skge)
  909. {
  910. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  911. netif_carrier_off(skge->netdev);
  912. netif_stop_queue(skge->netdev);
  913. netif_info(skge, link, skge->netdev, "Link is down\n");
  914. }
  915. static void xm_link_down(struct skge_hw *hw, int port)
  916. {
  917. struct net_device *dev = hw->dev[port];
  918. struct skge_port *skge = netdev_priv(dev);
  919. xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
  920. if (netif_carrier_ok(dev))
  921. skge_link_down(skge);
  922. }
  923. static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  924. {
  925. int i;
  926. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  927. *val = xm_read16(hw, port, XM_PHY_DATA);
  928. if (hw->phy_type == SK_PHY_XMAC)
  929. goto ready;
  930. for (i = 0; i < PHY_RETRIES; i++) {
  931. if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
  932. goto ready;
  933. udelay(1);
  934. }
  935. return -ETIMEDOUT;
  936. ready:
  937. *val = xm_read16(hw, port, XM_PHY_DATA);
  938. return 0;
  939. }
  940. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  941. {
  942. u16 v = 0;
  943. if (__xm_phy_read(hw, port, reg, &v))
  944. pr_warning("%s: phy read timed out\n", hw->dev[port]->name);
  945. return v;
  946. }
  947. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  948. {
  949. int i;
  950. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  951. for (i = 0; i < PHY_RETRIES; i++) {
  952. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  953. goto ready;
  954. udelay(1);
  955. }
  956. return -EIO;
  957. ready:
  958. xm_write16(hw, port, XM_PHY_DATA, val);
  959. for (i = 0; i < PHY_RETRIES; i++) {
  960. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  961. return 0;
  962. udelay(1);
  963. }
  964. return -ETIMEDOUT;
  965. }
  966. static void genesis_init(struct skge_hw *hw)
  967. {
  968. /* set blink source counter */
  969. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  970. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  971. /* configure mac arbiter */
  972. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  973. /* configure mac arbiter timeout values */
  974. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  975. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  976. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  977. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  978. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  979. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  980. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  981. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  982. /* configure packet arbiter timeout */
  983. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  984. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  985. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  986. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  987. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  988. }
  989. static void genesis_reset(struct skge_hw *hw, int port)
  990. {
  991. const u8 zero[8] = { 0 };
  992. u32 reg;
  993. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  994. /* reset the statistics module */
  995. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  996. xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
  997. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  998. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  999. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  1000. /* disable Broadcom PHY IRQ */
  1001. if (hw->phy_type == SK_PHY_BCOM)
  1002. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  1003. xm_outhash(hw, port, XM_HSM, zero);
  1004. /* Flush TX and RX fifo */
  1005. reg = xm_read32(hw, port, XM_MODE);
  1006. xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
  1007. xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
  1008. }
  1009. /* Convert mode to MII values */
  1010. static const u16 phy_pause_map[] = {
  1011. [FLOW_MODE_NONE] = 0,
  1012. [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
  1013. [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
  1014. [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
  1015. };
  1016. /* special defines for FIBER (88E1011S only) */
  1017. static const u16 fiber_pause_map[] = {
  1018. [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
  1019. [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
  1020. [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
  1021. [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
  1022. };
  1023. /* Check status of Broadcom phy link */
  1024. static void bcom_check_link(struct skge_hw *hw, int port)
  1025. {
  1026. struct net_device *dev = hw->dev[port];
  1027. struct skge_port *skge = netdev_priv(dev);
  1028. u16 status;
  1029. /* read twice because of latch */
  1030. xm_phy_read(hw, port, PHY_BCOM_STAT);
  1031. status = xm_phy_read(hw, port, PHY_BCOM_STAT);
  1032. if ((status & PHY_ST_LSYNC) == 0) {
  1033. xm_link_down(hw, port);
  1034. return;
  1035. }
  1036. if (skge->autoneg == AUTONEG_ENABLE) {
  1037. u16 lpa, aux;
  1038. if (!(status & PHY_ST_AN_OVER))
  1039. return;
  1040. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1041. if (lpa & PHY_B_AN_RF) {
  1042. netdev_notice(dev, "remote fault\n");
  1043. return;
  1044. }
  1045. aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  1046. /* Check Duplex mismatch */
  1047. switch (aux & PHY_B_AS_AN_RES_MSK) {
  1048. case PHY_B_RES_1000FD:
  1049. skge->duplex = DUPLEX_FULL;
  1050. break;
  1051. case PHY_B_RES_1000HD:
  1052. skge->duplex = DUPLEX_HALF;
  1053. break;
  1054. default:
  1055. netdev_notice(dev, "duplex mismatch\n");
  1056. return;
  1057. }
  1058. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1059. switch (aux & PHY_B_AS_PAUSE_MSK) {
  1060. case PHY_B_AS_PAUSE_MSK:
  1061. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1062. break;
  1063. case PHY_B_AS_PRR:
  1064. skge->flow_status = FLOW_STAT_REM_SEND;
  1065. break;
  1066. case PHY_B_AS_PRT:
  1067. skge->flow_status = FLOW_STAT_LOC_SEND;
  1068. break;
  1069. default:
  1070. skge->flow_status = FLOW_STAT_NONE;
  1071. }
  1072. skge->speed = SPEED_1000;
  1073. }
  1074. if (!netif_carrier_ok(dev))
  1075. genesis_link_up(skge);
  1076. }
  1077. /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
  1078. * Phy on for 100 or 10Mbit operation
  1079. */
  1080. static void bcom_phy_init(struct skge_port *skge)
  1081. {
  1082. struct skge_hw *hw = skge->hw;
  1083. int port = skge->port;
  1084. int i;
  1085. u16 id1, r, ext, ctl;
  1086. /* magic workaround patterns for Broadcom */
  1087. static const struct {
  1088. u16 reg;
  1089. u16 val;
  1090. } A1hack[] = {
  1091. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  1092. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  1093. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  1094. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  1095. }, C0hack[] = {
  1096. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  1097. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  1098. };
  1099. /* read Id from external PHY (all have the same address) */
  1100. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  1101. /* Optimize MDIO transfer by suppressing preamble. */
  1102. r = xm_read16(hw, port, XM_MMU_CMD);
  1103. r |= XM_MMU_NO_PRE;
  1104. xm_write16(hw, port, XM_MMU_CMD, r);
  1105. switch (id1) {
  1106. case PHY_BCOM_ID1_C0:
  1107. /*
  1108. * Workaround BCOM Errata for the C0 type.
  1109. * Write magic patterns to reserved registers.
  1110. */
  1111. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  1112. xm_phy_write(hw, port,
  1113. C0hack[i].reg, C0hack[i].val);
  1114. break;
  1115. case PHY_BCOM_ID1_A1:
  1116. /*
  1117. * Workaround BCOM Errata for the A1 type.
  1118. * Write magic patterns to reserved registers.
  1119. */
  1120. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  1121. xm_phy_write(hw, port,
  1122. A1hack[i].reg, A1hack[i].val);
  1123. break;
  1124. }
  1125. /*
  1126. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  1127. * Disable Power Management after reset.
  1128. */
  1129. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  1130. r |= PHY_B_AC_DIS_PM;
  1131. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
  1132. /* Dummy read */
  1133. xm_read16(hw, port, XM_ISRC);
  1134. ext = PHY_B_PEC_EN_LTR; /* enable tx led */
  1135. ctl = PHY_CT_SP1000; /* always 1000mbit */
  1136. if (skge->autoneg == AUTONEG_ENABLE) {
  1137. /*
  1138. * Workaround BCOM Errata #1 for the C5 type.
  1139. * 1000Base-T Link Acquisition Failure in Slave Mode
  1140. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  1141. */
  1142. u16 adv = PHY_B_1000C_RD;
  1143. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1144. adv |= PHY_B_1000C_AHD;
  1145. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1146. adv |= PHY_B_1000C_AFD;
  1147. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
  1148. ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1149. } else {
  1150. if (skge->duplex == DUPLEX_FULL)
  1151. ctl |= PHY_CT_DUP_MD;
  1152. /* Force to slave */
  1153. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
  1154. }
  1155. /* Set autonegotiation pause parameters */
  1156. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
  1157. phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
  1158. /* Handle Jumbo frames */
  1159. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  1160. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1161. PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
  1162. ext |= PHY_B_PEC_HIGH_LA;
  1163. }
  1164. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
  1165. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
  1166. /* Use link status change interrupt */
  1167. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1168. }
  1169. static void xm_phy_init(struct skge_port *skge)
  1170. {
  1171. struct skge_hw *hw = skge->hw;
  1172. int port = skge->port;
  1173. u16 ctrl = 0;
  1174. if (skge->autoneg == AUTONEG_ENABLE) {
  1175. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1176. ctrl |= PHY_X_AN_HD;
  1177. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1178. ctrl |= PHY_X_AN_FD;
  1179. ctrl |= fiber_pause_map[skge->flow_control];
  1180. xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
  1181. /* Restart Auto-negotiation */
  1182. ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
  1183. } else {
  1184. /* Set DuplexMode in Config register */
  1185. if (skge->duplex == DUPLEX_FULL)
  1186. ctrl |= PHY_CT_DUP_MD;
  1187. /*
  1188. * Do NOT enable Auto-negotiation here. This would hold
  1189. * the link down because no IDLEs are transmitted
  1190. */
  1191. }
  1192. xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
  1193. /* Poll PHY for status changes */
  1194. mod_timer(&skge->link_timer, jiffies + LINK_HZ);
  1195. }
  1196. static int xm_check_link(struct net_device *dev)
  1197. {
  1198. struct skge_port *skge = netdev_priv(dev);
  1199. struct skge_hw *hw = skge->hw;
  1200. int port = skge->port;
  1201. u16 status;
  1202. /* read twice because of latch */
  1203. xm_phy_read(hw, port, PHY_XMAC_STAT);
  1204. status = xm_phy_read(hw, port, PHY_XMAC_STAT);
  1205. if ((status & PHY_ST_LSYNC) == 0) {
  1206. xm_link_down(hw, port);
  1207. return 0;
  1208. }
  1209. if (skge->autoneg == AUTONEG_ENABLE) {
  1210. u16 lpa, res;
  1211. if (!(status & PHY_ST_AN_OVER))
  1212. return 0;
  1213. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1214. if (lpa & PHY_B_AN_RF) {
  1215. netdev_notice(dev, "remote fault\n");
  1216. return 0;
  1217. }
  1218. res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
  1219. /* Check Duplex mismatch */
  1220. switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
  1221. case PHY_X_RS_FD:
  1222. skge->duplex = DUPLEX_FULL;
  1223. break;
  1224. case PHY_X_RS_HD:
  1225. skge->duplex = DUPLEX_HALF;
  1226. break;
  1227. default:
  1228. netdev_notice(dev, "duplex mismatch\n");
  1229. return 0;
  1230. }
  1231. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1232. if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1233. skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
  1234. (lpa & PHY_X_P_SYM_MD))
  1235. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1236. else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
  1237. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
  1238. /* Enable PAUSE receive, disable PAUSE transmit */
  1239. skge->flow_status = FLOW_STAT_REM_SEND;
  1240. else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
  1241. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
  1242. /* Disable PAUSE receive, enable PAUSE transmit */
  1243. skge->flow_status = FLOW_STAT_LOC_SEND;
  1244. else
  1245. skge->flow_status = FLOW_STAT_NONE;
  1246. skge->speed = SPEED_1000;
  1247. }
  1248. if (!netif_carrier_ok(dev))
  1249. genesis_link_up(skge);
  1250. return 1;
  1251. }
  1252. /* Poll to check for link coming up.
  1253. *
  1254. * Since internal PHY is wired to a level triggered pin, can't
  1255. * get an interrupt when carrier is detected, need to poll for
  1256. * link coming up.
  1257. */
  1258. static void xm_link_timer(unsigned long arg)
  1259. {
  1260. struct skge_port *skge = (struct skge_port *) arg;
  1261. struct net_device *dev = skge->netdev;
  1262. struct skge_hw *hw = skge->hw;
  1263. int port = skge->port;
  1264. int i;
  1265. unsigned long flags;
  1266. if (!netif_running(dev))
  1267. return;
  1268. spin_lock_irqsave(&hw->phy_lock, flags);
  1269. /*
  1270. * Verify that the link by checking GPIO register three times.
  1271. * This pin has the signal from the link_sync pin connected to it.
  1272. */
  1273. for (i = 0; i < 3; i++) {
  1274. if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
  1275. goto link_down;
  1276. }
  1277. /* Re-enable interrupt to detect link down */
  1278. if (xm_check_link(dev)) {
  1279. u16 msk = xm_read16(hw, port, XM_IMSK);
  1280. msk &= ~XM_IS_INP_ASS;
  1281. xm_write16(hw, port, XM_IMSK, msk);
  1282. xm_read16(hw, port, XM_ISRC);
  1283. } else {
  1284. link_down:
  1285. mod_timer(&skge->link_timer,
  1286. round_jiffies(jiffies + LINK_HZ));
  1287. }
  1288. spin_unlock_irqrestore(&hw->phy_lock, flags);
  1289. }
  1290. static void genesis_mac_init(struct skge_hw *hw, int port)
  1291. {
  1292. struct net_device *dev = hw->dev[port];
  1293. struct skge_port *skge = netdev_priv(dev);
  1294. int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
  1295. int i;
  1296. u32 r;
  1297. const u8 zero[6] = { 0 };
  1298. for (i = 0; i < 10; i++) {
  1299. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  1300. MFF_SET_MAC_RST);
  1301. if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
  1302. goto reset_ok;
  1303. udelay(1);
  1304. }
  1305. netdev_warn(dev, "genesis reset failed\n");
  1306. reset_ok:
  1307. /* Unreset the XMAC. */
  1308. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1309. /*
  1310. * Perform additional initialization for external PHYs,
  1311. * namely for the 1000baseTX cards that use the XMAC's
  1312. * GMII mode.
  1313. */
  1314. if (hw->phy_type != SK_PHY_XMAC) {
  1315. /* Take external Phy out of reset */
  1316. r = skge_read32(hw, B2_GP_IO);
  1317. if (port == 0)
  1318. r |= GP_DIR_0|GP_IO_0;
  1319. else
  1320. r |= GP_DIR_2|GP_IO_2;
  1321. skge_write32(hw, B2_GP_IO, r);
  1322. /* Enable GMII interface */
  1323. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  1324. }
  1325. switch (hw->phy_type) {
  1326. case SK_PHY_XMAC:
  1327. xm_phy_init(skge);
  1328. break;
  1329. case SK_PHY_BCOM:
  1330. bcom_phy_init(skge);
  1331. bcom_check_link(hw, port);
  1332. }
  1333. /* Set Station Address */
  1334. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  1335. /* We don't use match addresses so clear */
  1336. for (i = 1; i < 16; i++)
  1337. xm_outaddr(hw, port, XM_EXM(i), zero);
  1338. /* Clear MIB counters */
  1339. xm_write16(hw, port, XM_STAT_CMD,
  1340. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1341. /* Clear two times according to Errata #3 */
  1342. xm_write16(hw, port, XM_STAT_CMD,
  1343. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1344. /* configure Rx High Water Mark (XM_RX_HI_WM) */
  1345. xm_write16(hw, port, XM_RX_HI_WM, 1450);
  1346. /* We don't need the FCS appended to the packet. */
  1347. r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
  1348. if (jumbo)
  1349. r |= XM_RX_BIG_PK_OK;
  1350. if (skge->duplex == DUPLEX_HALF) {
  1351. /*
  1352. * If in manual half duplex mode the other side might be in
  1353. * full duplex mode, so ignore if a carrier extension is not seen
  1354. * on frames received
  1355. */
  1356. r |= XM_RX_DIS_CEXT;
  1357. }
  1358. xm_write16(hw, port, XM_RX_CMD, r);
  1359. /* We want short frames padded to 60 bytes. */
  1360. xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
  1361. /* Increase threshold for jumbo frames on dual port */
  1362. if (hw->ports > 1 && jumbo)
  1363. xm_write16(hw, port, XM_TX_THR, 1020);
  1364. else
  1365. xm_write16(hw, port, XM_TX_THR, 512);
  1366. /*
  1367. * Enable the reception of all error frames. This is is
  1368. * a necessary evil due to the design of the XMAC. The
  1369. * XMAC's receive FIFO is only 8K in size, however jumbo
  1370. * frames can be up to 9000 bytes in length. When bad
  1371. * frame filtering is enabled, the XMAC's RX FIFO operates
  1372. * in 'store and forward' mode. For this to work, the
  1373. * entire frame has to fit into the FIFO, but that means
  1374. * that jumbo frames larger than 8192 bytes will be
  1375. * truncated. Disabling all bad frame filtering causes
  1376. * the RX FIFO to operate in streaming mode, in which
  1377. * case the XMAC will start transferring frames out of the
  1378. * RX FIFO as soon as the FIFO threshold is reached.
  1379. */
  1380. xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
  1381. /*
  1382. * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
  1383. * - Enable all bits excepting 'Octets Rx OK Low CntOv'
  1384. * and 'Octets Rx OK Hi Cnt Ov'.
  1385. */
  1386. xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
  1387. /*
  1388. * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
  1389. * - Enable all bits excepting 'Octets Tx OK Low CntOv'
  1390. * and 'Octets Tx OK Hi Cnt Ov'.
  1391. */
  1392. xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
  1393. /* Configure MAC arbiter */
  1394. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  1395. /* configure timeout values */
  1396. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  1397. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  1398. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  1399. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  1400. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  1401. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  1402. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  1403. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  1404. /* Configure Rx MAC FIFO */
  1405. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  1406. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  1407. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  1408. /* Configure Tx MAC FIFO */
  1409. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  1410. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  1411. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  1412. if (jumbo) {
  1413. /* Enable frame flushing if jumbo frames used */
  1414. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
  1415. } else {
  1416. /* enable timeout timers if normal frames */
  1417. skge_write16(hw, B3_PA_CTRL,
  1418. (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  1419. }
  1420. }
  1421. static void genesis_stop(struct skge_port *skge)
  1422. {
  1423. struct skge_hw *hw = skge->hw;
  1424. int port = skge->port;
  1425. unsigned retries = 1000;
  1426. u16 cmd;
  1427. /* Disable Tx and Rx */
  1428. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1429. cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1430. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1431. genesis_reset(hw, port);
  1432. /* Clear Tx packet arbiter timeout IRQ */
  1433. skge_write16(hw, B3_PA_CTRL,
  1434. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1435. /* Reset the MAC */
  1436. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1437. do {
  1438. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1439. if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
  1440. break;
  1441. } while (--retries > 0);
  1442. /* For external PHYs there must be special handling */
  1443. if (hw->phy_type != SK_PHY_XMAC) {
  1444. u32 reg = skge_read32(hw, B2_GP_IO);
  1445. if (port == 0) {
  1446. reg |= GP_DIR_0;
  1447. reg &= ~GP_IO_0;
  1448. } else {
  1449. reg |= GP_DIR_2;
  1450. reg &= ~GP_IO_2;
  1451. }
  1452. skge_write32(hw, B2_GP_IO, reg);
  1453. skge_read32(hw, B2_GP_IO);
  1454. }
  1455. xm_write16(hw, port, XM_MMU_CMD,
  1456. xm_read16(hw, port, XM_MMU_CMD)
  1457. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1458. xm_read16(hw, port, XM_MMU_CMD);
  1459. }
  1460. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1461. {
  1462. struct skge_hw *hw = skge->hw;
  1463. int port = skge->port;
  1464. int i;
  1465. unsigned long timeout = jiffies + HZ;
  1466. xm_write16(hw, port,
  1467. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1468. /* wait for update to complete */
  1469. while (xm_read16(hw, port, XM_STAT_CMD)
  1470. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1471. if (time_after(jiffies, timeout))
  1472. break;
  1473. udelay(10);
  1474. }
  1475. /* special case for 64 bit octet counter */
  1476. data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1477. | xm_read32(hw, port, XM_TXO_OK_LO);
  1478. data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1479. | xm_read32(hw, port, XM_RXO_OK_LO);
  1480. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1481. data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
  1482. }
  1483. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1484. {
  1485. struct net_device *dev = hw->dev[port];
  1486. struct skge_port *skge = netdev_priv(dev);
  1487. u16 status = xm_read16(hw, port, XM_ISRC);
  1488. netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
  1489. "mac interrupt status 0x%x\n", status);
  1490. if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
  1491. xm_link_down(hw, port);
  1492. mod_timer(&skge->link_timer, jiffies + 1);
  1493. }
  1494. if (status & XM_IS_TXF_UR) {
  1495. xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1496. ++dev->stats.tx_fifo_errors;
  1497. }
  1498. }
  1499. static void genesis_link_up(struct skge_port *skge)
  1500. {
  1501. struct skge_hw *hw = skge->hw;
  1502. int port = skge->port;
  1503. u16 cmd, msk;
  1504. u32 mode;
  1505. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1506. /*
  1507. * enabling pause frame reception is required for 1000BT
  1508. * because the XMAC is not reset if the link is going down
  1509. */
  1510. if (skge->flow_status == FLOW_STAT_NONE ||
  1511. skge->flow_status == FLOW_STAT_LOC_SEND)
  1512. /* Disable Pause Frame Reception */
  1513. cmd |= XM_MMU_IGN_PF;
  1514. else
  1515. /* Enable Pause Frame Reception */
  1516. cmd &= ~XM_MMU_IGN_PF;
  1517. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1518. mode = xm_read32(hw, port, XM_MODE);
  1519. if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
  1520. skge->flow_status == FLOW_STAT_LOC_SEND) {
  1521. /*
  1522. * Configure Pause Frame Generation
  1523. * Use internal and external Pause Frame Generation.
  1524. * Sending pause frames is edge triggered.
  1525. * Send a Pause frame with the maximum pause time if
  1526. * internal oder external FIFO full condition occurs.
  1527. * Send a zero pause time frame to re-start transmission.
  1528. */
  1529. /* XM_PAUSE_DA = '010000C28001' (default) */
  1530. /* XM_MAC_PTIME = 0xffff (maximum) */
  1531. /* remember this value is defined in big endian (!) */
  1532. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1533. mode |= XM_PAUSE_MODE;
  1534. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1535. } else {
  1536. /*
  1537. * disable pause frame generation is required for 1000BT
  1538. * because the XMAC is not reset if the link is going down
  1539. */
  1540. /* Disable Pause Mode in Mode Register */
  1541. mode &= ~XM_PAUSE_MODE;
  1542. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1543. }
  1544. xm_write32(hw, port, XM_MODE, mode);
  1545. /* Turn on detection of Tx underrun */
  1546. msk = xm_read16(hw, port, XM_IMSK);
  1547. msk &= ~XM_IS_TXF_UR;
  1548. xm_write16(hw, port, XM_IMSK, msk);
  1549. xm_read16(hw, port, XM_ISRC);
  1550. /* get MMU Command Reg. */
  1551. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1552. if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
  1553. cmd |= XM_MMU_GMII_FD;
  1554. /*
  1555. * Workaround BCOM Errata (#10523) for all BCom Phys
  1556. * Enable Power Management after link up
  1557. */
  1558. if (hw->phy_type == SK_PHY_BCOM) {
  1559. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1560. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1561. & ~PHY_B_AC_DIS_PM);
  1562. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1563. }
  1564. /* enable Rx/Tx */
  1565. xm_write16(hw, port, XM_MMU_CMD,
  1566. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1567. skge_link_up(skge);
  1568. }
  1569. static inline void bcom_phy_intr(struct skge_port *skge)
  1570. {
  1571. struct skge_hw *hw = skge->hw;
  1572. int port = skge->port;
  1573. u16 isrc;
  1574. isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1575. netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
  1576. "phy interrupt status 0x%x\n", isrc);
  1577. if (isrc & PHY_B_IS_PSE)
  1578. pr_err("%s: uncorrectable pair swap error\n",
  1579. hw->dev[port]->name);
  1580. /* Workaround BCom Errata:
  1581. * enable and disable loopback mode if "NO HCD" occurs.
  1582. */
  1583. if (isrc & PHY_B_IS_NO_HDCL) {
  1584. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1585. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1586. ctrl | PHY_CT_LOOP);
  1587. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1588. ctrl & ~PHY_CT_LOOP);
  1589. }
  1590. if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
  1591. bcom_check_link(hw, port);
  1592. }
  1593. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1594. {
  1595. int i;
  1596. gma_write16(hw, port, GM_SMI_DATA, val);
  1597. gma_write16(hw, port, GM_SMI_CTRL,
  1598. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1599. for (i = 0; i < PHY_RETRIES; i++) {
  1600. udelay(1);
  1601. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1602. return 0;
  1603. }
  1604. pr_warning("%s: phy write timeout\n", hw->dev[port]->name);
  1605. return -EIO;
  1606. }
  1607. static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  1608. {
  1609. int i;
  1610. gma_write16(hw, port, GM_SMI_CTRL,
  1611. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1612. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1613. for (i = 0; i < PHY_RETRIES; i++) {
  1614. udelay(1);
  1615. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1616. goto ready;
  1617. }
  1618. return -ETIMEDOUT;
  1619. ready:
  1620. *val = gma_read16(hw, port, GM_SMI_DATA);
  1621. return 0;
  1622. }
  1623. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1624. {
  1625. u16 v = 0;
  1626. if (__gm_phy_read(hw, port, reg, &v))
  1627. pr_warning("%s: phy read timeout\n", hw->dev[port]->name);
  1628. return v;
  1629. }
  1630. /* Marvell Phy Initialization */
  1631. static void yukon_init(struct skge_hw *hw, int port)
  1632. {
  1633. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1634. u16 ctrl, ct1000, adv;
  1635. if (skge->autoneg == AUTONEG_ENABLE) {
  1636. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1637. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1638. PHY_M_EC_MAC_S_MSK);
  1639. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1640. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1641. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1642. }
  1643. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1644. if (skge->autoneg == AUTONEG_DISABLE)
  1645. ctrl &= ~PHY_CT_ANE;
  1646. ctrl |= PHY_CT_RESET;
  1647. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1648. ctrl = 0;
  1649. ct1000 = 0;
  1650. adv = PHY_AN_CSMA;
  1651. if (skge->autoneg == AUTONEG_ENABLE) {
  1652. if (hw->copper) {
  1653. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1654. ct1000 |= PHY_M_1000C_AFD;
  1655. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1656. ct1000 |= PHY_M_1000C_AHD;
  1657. if (skge->advertising & ADVERTISED_100baseT_Full)
  1658. adv |= PHY_M_AN_100_FD;
  1659. if (skge->advertising & ADVERTISED_100baseT_Half)
  1660. adv |= PHY_M_AN_100_HD;
  1661. if (skge->advertising & ADVERTISED_10baseT_Full)
  1662. adv |= PHY_M_AN_10_FD;
  1663. if (skge->advertising & ADVERTISED_10baseT_Half)
  1664. adv |= PHY_M_AN_10_HD;
  1665. /* Set Flow-control capabilities */
  1666. adv |= phy_pause_map[skge->flow_control];
  1667. } else {
  1668. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1669. adv |= PHY_M_AN_1000X_AFD;
  1670. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1671. adv |= PHY_M_AN_1000X_AHD;
  1672. adv |= fiber_pause_map[skge->flow_control];
  1673. }
  1674. /* Restart Auto-negotiation */
  1675. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1676. } else {
  1677. /* forced speed/duplex settings */
  1678. ct1000 = PHY_M_1000C_MSE;
  1679. if (skge->duplex == DUPLEX_FULL)
  1680. ctrl |= PHY_CT_DUP_MD;
  1681. switch (skge->speed) {
  1682. case SPEED_1000:
  1683. ctrl |= PHY_CT_SP1000;
  1684. break;
  1685. case SPEED_100:
  1686. ctrl |= PHY_CT_SP100;
  1687. break;
  1688. }
  1689. ctrl |= PHY_CT_RESET;
  1690. }
  1691. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1692. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1693. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1694. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1695. if (skge->autoneg == AUTONEG_ENABLE)
  1696. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
  1697. else
  1698. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1699. }
  1700. static void yukon_reset(struct skge_hw *hw, int port)
  1701. {
  1702. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1703. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1704. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1705. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1706. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1707. gma_write16(hw, port, GM_RX_CTRL,
  1708. gma_read16(hw, port, GM_RX_CTRL)
  1709. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1710. }
  1711. /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
  1712. static int is_yukon_lite_a0(struct skge_hw *hw)
  1713. {
  1714. u32 reg;
  1715. int ret;
  1716. if (hw->chip_id != CHIP_ID_YUKON)
  1717. return 0;
  1718. reg = skge_read32(hw, B2_FAR);
  1719. skge_write8(hw, B2_FAR + 3, 0xff);
  1720. ret = (skge_read8(hw, B2_FAR + 3) != 0);
  1721. skge_write32(hw, B2_FAR, reg);
  1722. return ret;
  1723. }
  1724. static void yukon_mac_init(struct skge_hw *hw, int port)
  1725. {
  1726. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1727. int i;
  1728. u32 reg;
  1729. const u8 *addr = hw->dev[port]->dev_addr;
  1730. /* WA code for COMA mode -- set PHY reset */
  1731. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1732. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1733. reg = skge_read32(hw, B2_GP_IO);
  1734. reg |= GP_DIR_9 | GP_IO_9;
  1735. skge_write32(hw, B2_GP_IO, reg);
  1736. }
  1737. /* hard reset */
  1738. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1739. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1740. /* WA code for COMA mode -- clear PHY reset */
  1741. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1742. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1743. reg = skge_read32(hw, B2_GP_IO);
  1744. reg |= GP_DIR_9;
  1745. reg &= ~GP_IO_9;
  1746. skge_write32(hw, B2_GP_IO, reg);
  1747. }
  1748. /* Set hardware config mode */
  1749. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1750. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1751. reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1752. /* Clear GMC reset */
  1753. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1754. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1755. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1756. if (skge->autoneg == AUTONEG_DISABLE) {
  1757. reg = GM_GPCR_AU_ALL_DIS;
  1758. gma_write16(hw, port, GM_GP_CTRL,
  1759. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1760. switch (skge->speed) {
  1761. case SPEED_1000:
  1762. reg &= ~GM_GPCR_SPEED_100;
  1763. reg |= GM_GPCR_SPEED_1000;
  1764. break;
  1765. case SPEED_100:
  1766. reg &= ~GM_GPCR_SPEED_1000;
  1767. reg |= GM_GPCR_SPEED_100;
  1768. break;
  1769. case SPEED_10:
  1770. reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
  1771. break;
  1772. }
  1773. if (skge->duplex == DUPLEX_FULL)
  1774. reg |= GM_GPCR_DUP_FULL;
  1775. } else
  1776. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1777. switch (skge->flow_control) {
  1778. case FLOW_MODE_NONE:
  1779. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1780. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1781. break;
  1782. case FLOW_MODE_LOC_SEND:
  1783. /* disable Rx flow-control */
  1784. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1785. break;
  1786. case FLOW_MODE_SYMMETRIC:
  1787. case FLOW_MODE_SYM_OR_REM:
  1788. /* enable Tx & Rx flow-control */
  1789. break;
  1790. }
  1791. gma_write16(hw, port, GM_GP_CTRL, reg);
  1792. skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  1793. yukon_init(hw, port);
  1794. /* MIB clear */
  1795. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1796. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1797. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1798. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1799. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1800. /* transmit control */
  1801. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1802. /* receive control reg: unicast + multicast + no FCS */
  1803. gma_write16(hw, port, GM_RX_CTRL,
  1804. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1805. /* transmit flow control */
  1806. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1807. /* transmit parameter */
  1808. gma_write16(hw, port, GM_TX_PARAM,
  1809. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1810. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1811. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1812. /* configure the Serial Mode Register */
  1813. reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
  1814. | GM_SMOD_VLAN_ENA
  1815. | IPG_DATA_VAL(IPG_DATA_DEF);
  1816. if (hw->dev[port]->mtu > ETH_DATA_LEN)
  1817. reg |= GM_SMOD_JUMBO_ENA;
  1818. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1819. /* physical address: used for pause frames */
  1820. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1821. /* virtual address for data */
  1822. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1823. /* enable interrupt mask for counter overflows */
  1824. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1825. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1826. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1827. /* Initialize Mac Fifo */
  1828. /* Configure Rx MAC FIFO */
  1829. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1830. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1831. /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
  1832. if (is_yukon_lite_a0(hw))
  1833. reg &= ~GMF_RX_F_FL_ON;
  1834. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1835. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1836. /*
  1837. * because Pause Packet Truncation in GMAC is not working
  1838. * we have to increase the Flush Threshold to 64 bytes
  1839. * in order to flush pause packets in Rx FIFO on Yukon-1
  1840. */
  1841. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
  1842. /* Configure Tx MAC FIFO */
  1843. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1844. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1845. }
  1846. /* Go into power down mode */
  1847. static void yukon_suspend(struct skge_hw *hw, int port)
  1848. {
  1849. u16 ctrl;
  1850. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  1851. ctrl |= PHY_M_PC_POL_R_DIS;
  1852. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  1853. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1854. ctrl |= PHY_CT_RESET;
  1855. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1856. /* switch IEEE compatible power down mode on */
  1857. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1858. ctrl |= PHY_CT_PDOWN;
  1859. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1860. }
  1861. static void yukon_stop(struct skge_port *skge)
  1862. {
  1863. struct skge_hw *hw = skge->hw;
  1864. int port = skge->port;
  1865. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  1866. yukon_reset(hw, port);
  1867. gma_write16(hw, port, GM_GP_CTRL,
  1868. gma_read16(hw, port, GM_GP_CTRL)
  1869. & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
  1870. gma_read16(hw, port, GM_GP_CTRL);
  1871. yukon_suspend(hw, port);
  1872. /* set GPHY Control reset */
  1873. skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1874. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1875. }
  1876. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1877. {
  1878. struct skge_hw *hw = skge->hw;
  1879. int port = skge->port;
  1880. int i;
  1881. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1882. | gma_read32(hw, port, GM_TXO_OK_LO);
  1883. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1884. | gma_read32(hw, port, GM_RXO_OK_LO);
  1885. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1886. data[i] = gma_read32(hw, port,
  1887. skge_stats[i].gma_offset);
  1888. }
  1889. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1890. {
  1891. struct net_device *dev = hw->dev[port];
  1892. struct skge_port *skge = netdev_priv(dev);
  1893. u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1894. netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
  1895. "mac interrupt status 0x%x\n", status);
  1896. if (status & GM_IS_RX_FF_OR) {
  1897. ++dev->stats.rx_fifo_errors;
  1898. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1899. }
  1900. if (status & GM_IS_TX_FF_UR) {
  1901. ++dev->stats.tx_fifo_errors;
  1902. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1903. }
  1904. }
  1905. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1906. {
  1907. switch (aux & PHY_M_PS_SPEED_MSK) {
  1908. case PHY_M_PS_SPEED_1000:
  1909. return SPEED_1000;
  1910. case PHY_M_PS_SPEED_100:
  1911. return SPEED_100;
  1912. default:
  1913. return SPEED_10;
  1914. }
  1915. }
  1916. static void yukon_link_up(struct skge_port *skge)
  1917. {
  1918. struct skge_hw *hw = skge->hw;
  1919. int port = skge->port;
  1920. u16 reg;
  1921. /* Enable Transmit FIFO Underrun */
  1922. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1923. reg = gma_read16(hw, port, GM_GP_CTRL);
  1924. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1925. reg |= GM_GPCR_DUP_FULL;
  1926. /* enable Rx/Tx */
  1927. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1928. gma_write16(hw, port, GM_GP_CTRL, reg);
  1929. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1930. skge_link_up(skge);
  1931. }
  1932. static void yukon_link_down(struct skge_port *skge)
  1933. {
  1934. struct skge_hw *hw = skge->hw;
  1935. int port = skge->port;
  1936. u16 ctrl;
  1937. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1938. ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1939. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1940. if (skge->flow_status == FLOW_STAT_REM_SEND) {
  1941. ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
  1942. ctrl |= PHY_M_AN_ASP;
  1943. /* restore Asymmetric Pause bit */
  1944. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
  1945. }
  1946. skge_link_down(skge);
  1947. yukon_init(hw, port);
  1948. }
  1949. static void yukon_phy_intr(struct skge_port *skge)
  1950. {
  1951. struct skge_hw *hw = skge->hw;
  1952. int port = skge->port;
  1953. const char *reason = NULL;
  1954. u16 istatus, phystat;
  1955. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1956. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1957. netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
  1958. "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
  1959. if (istatus & PHY_M_IS_AN_COMPL) {
  1960. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1961. & PHY_M_AN_RF) {
  1962. reason = "remote fault";
  1963. goto failed;
  1964. }
  1965. if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1966. reason = "master/slave fault";
  1967. goto failed;
  1968. }
  1969. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1970. reason = "speed/duplex";
  1971. goto failed;
  1972. }
  1973. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1974. ? DUPLEX_FULL : DUPLEX_HALF;
  1975. skge->speed = yukon_speed(hw, phystat);
  1976. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1977. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1978. case PHY_M_PS_PAUSE_MSK:
  1979. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1980. break;
  1981. case PHY_M_PS_RX_P_EN:
  1982. skge->flow_status = FLOW_STAT_REM_SEND;
  1983. break;
  1984. case PHY_M_PS_TX_P_EN:
  1985. skge->flow_status = FLOW_STAT_LOC_SEND;
  1986. break;
  1987. default:
  1988. skge->flow_status = FLOW_STAT_NONE;
  1989. }
  1990. if (skge->flow_status == FLOW_STAT_NONE ||
  1991. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1992. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1993. else
  1994. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1995. yukon_link_up(skge);
  1996. return;
  1997. }
  1998. if (istatus & PHY_M_IS_LSP_CHANGE)
  1999. skge->speed = yukon_speed(hw, phystat);
  2000. if (istatus & PHY_M_IS_DUP_CHANGE)
  2001. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  2002. if (istatus & PHY_M_IS_LST_CHANGE) {
  2003. if (phystat & PHY_M_PS_LINK_UP)
  2004. yukon_link_up(skge);
  2005. else
  2006. yukon_link_down(skge);
  2007. }
  2008. return;
  2009. failed:
  2010. pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
  2011. /* XXX restart autonegotiation? */
  2012. }
  2013. static void skge_phy_reset(struct skge_port *skge)
  2014. {
  2015. struct skge_hw *hw = skge->hw;
  2016. int port = skge->port;
  2017. struct net_device *dev = hw->dev[port];
  2018. netif_stop_queue(skge->netdev);
  2019. netif_carrier_off(skge->netdev);
  2020. spin_lock_bh(&hw->phy_lock);
  2021. if (hw->chip_id == CHIP_ID_GENESIS) {
  2022. genesis_reset(hw, port);
  2023. genesis_mac_init(hw, port);
  2024. } else {
  2025. yukon_reset(hw, port);
  2026. yukon_init(hw, port);
  2027. }
  2028. spin_unlock_bh(&hw->phy_lock);
  2029. skge_set_multicast(dev);
  2030. }
  2031. /* Basic MII support */
  2032. static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  2033. {
  2034. struct mii_ioctl_data *data = if_mii(ifr);
  2035. struct skge_port *skge = netdev_priv(dev);
  2036. struct skge_hw *hw = skge->hw;
  2037. int err = -EOPNOTSUPP;
  2038. if (!netif_running(dev))
  2039. return -ENODEV; /* Phy still in reset */
  2040. switch (cmd) {
  2041. case SIOCGMIIPHY:
  2042. data->phy_id = hw->phy_addr;
  2043. /* fallthru */
  2044. case SIOCGMIIREG: {
  2045. u16 val = 0;
  2046. spin_lock_bh(&hw->phy_lock);
  2047. if (hw->chip_id == CHIP_ID_GENESIS)
  2048. err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  2049. else
  2050. err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  2051. spin_unlock_bh(&hw->phy_lock);
  2052. data->val_out = val;
  2053. break;
  2054. }
  2055. case SIOCSMIIREG:
  2056. spin_lock_bh(&hw->phy_lock);
  2057. if (hw->chip_id == CHIP_ID_GENESIS)
  2058. err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  2059. data->val_in);
  2060. else
  2061. err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  2062. data->val_in);
  2063. spin_unlock_bh(&hw->phy_lock);
  2064. break;
  2065. }
  2066. return err;
  2067. }
  2068. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  2069. {
  2070. u32 end;
  2071. start /= 8;
  2072. len /= 8;
  2073. end = start + len - 1;
  2074. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  2075. skge_write32(hw, RB_ADDR(q, RB_START), start);
  2076. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  2077. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  2078. skge_write32(hw, RB_ADDR(q, RB_END), end);
  2079. if (q == Q_R1 || q == Q_R2) {
  2080. /* Set thresholds on receive queue's */
  2081. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  2082. start + (2*len)/3);
  2083. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  2084. start + (len/3));
  2085. } else {
  2086. /* Enable store & forward on Tx queue's because
  2087. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  2088. */
  2089. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  2090. }
  2091. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  2092. }
  2093. /* Setup Bus Memory Interface */
  2094. static void skge_qset(struct skge_port *skge, u16 q,
  2095. const struct skge_element *e)
  2096. {
  2097. struct skge_hw *hw = skge->hw;
  2098. u32 watermark = 0x600;
  2099. u64 base = skge->dma + (e->desc - skge->mem);
  2100. /* optimization to reduce window on 32bit/33mhz */
  2101. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  2102. watermark /= 2;
  2103. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  2104. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  2105. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  2106. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  2107. }
  2108. static int skge_up(struct net_device *dev)
  2109. {
  2110. struct skge_port *skge = netdev_priv(dev);
  2111. struct skge_hw *hw = skge->hw;
  2112. int port = skge->port;
  2113. u32 chunk, ram_addr;
  2114. size_t rx_size, tx_size;
  2115. int err;
  2116. if (!is_valid_ether_addr(dev->dev_addr))
  2117. return -EINVAL;
  2118. netif_info(skge, ifup, skge->netdev, "enabling interface\n");
  2119. if (dev->mtu > RX_BUF_SIZE)
  2120. skge->rx_buf_size = dev->mtu + ETH_HLEN;
  2121. else
  2122. skge->rx_buf_size = RX_BUF_SIZE;
  2123. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  2124. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  2125. skge->mem_size = tx_size + rx_size;
  2126. skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
  2127. if (!skge->mem)
  2128. return -ENOMEM;
  2129. BUG_ON(skge->dma & 7);
  2130. if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
  2131. dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
  2132. err = -EINVAL;
  2133. goto free_pci_mem;
  2134. }
  2135. memset(skge->mem, 0, skge->mem_size);
  2136. err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
  2137. if (err)
  2138. goto free_pci_mem;
  2139. err = skge_rx_fill(dev);
  2140. if (err)
  2141. goto free_rx_ring;
  2142. err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  2143. skge->dma + rx_size);
  2144. if (err)
  2145. goto free_rx_ring;
  2146. /* Initialize MAC */
  2147. spin_lock_bh(&hw->phy_lock);
  2148. if (hw->chip_id == CHIP_ID_GENESIS)
  2149. genesis_mac_init(hw, port);
  2150. else
  2151. yukon_mac_init(hw, port);
  2152. spin_unlock_bh(&hw->phy_lock);
  2153. /* Configure RAMbuffers - equally between ports and tx/rx */
  2154. chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2);
  2155. ram_addr = hw->ram_offset + 2 * chunk * port;
  2156. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  2157. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  2158. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  2159. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  2160. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  2161. /* Start receiver BMU */
  2162. wmb();
  2163. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  2164. skge_led(skge, LED_MODE_ON);
  2165. spin_lock_irq(&hw->hw_lock);
  2166. hw->intr_mask |= portmask[port];
  2167. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2168. spin_unlock_irq(&hw->hw_lock);
  2169. napi_enable(&skge->napi);
  2170. return 0;
  2171. free_rx_ring:
  2172. skge_rx_clean(skge);
  2173. kfree(skge->rx_ring.start);
  2174. free_pci_mem:
  2175. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2176. skge->mem = NULL;
  2177. return err;
  2178. }
  2179. /* stop receiver */
  2180. static void skge_rx_stop(struct skge_hw *hw, int port)
  2181. {
  2182. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  2183. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  2184. RB_RST_SET|RB_DIS_OP_MD);
  2185. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  2186. }
  2187. static int skge_down(struct net_device *dev)
  2188. {
  2189. struct skge_port *skge = netdev_priv(dev);
  2190. struct skge_hw *hw = skge->hw;
  2191. int port = skge->port;
  2192. if (skge->mem == NULL)
  2193. return 0;
  2194. netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
  2195. netif_tx_disable(dev);
  2196. if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
  2197. del_timer_sync(&skge->link_timer);
  2198. napi_disable(&skge->napi);
  2199. netif_carrier_off(dev);
  2200. spin_lock_irq(&hw->hw_lock);
  2201. hw->intr_mask &= ~portmask[port];
  2202. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2203. spin_unlock_irq(&hw->hw_lock);
  2204. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  2205. if (hw->chip_id == CHIP_ID_GENESIS)
  2206. genesis_stop(skge);
  2207. else
  2208. yukon_stop(skge);
  2209. /* Stop transmitter */
  2210. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  2211. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  2212. RB_RST_SET|RB_DIS_OP_MD);
  2213. /* Disable Force Sync bit and Enable Alloc bit */
  2214. skge_write8(hw, SK_REG(port, TXA_CTRL),
  2215. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  2216. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  2217. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  2218. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  2219. /* Reset PCI FIFO */
  2220. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  2221. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  2222. /* Reset the RAM Buffer async Tx queue */
  2223. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  2224. skge_rx_stop(hw, port);
  2225. if (hw->chip_id == CHIP_ID_GENESIS) {
  2226. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  2227. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  2228. } else {
  2229. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  2230. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  2231. }
  2232. skge_led(skge, LED_MODE_OFF);
  2233. netif_tx_lock_bh(dev);
  2234. skge_tx_clean(dev);
  2235. netif_tx_unlock_bh(dev);
  2236. skge_rx_clean(skge);
  2237. kfree(skge->rx_ring.start);
  2238. kfree(skge->tx_ring.start);
  2239. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2240. skge->mem = NULL;
  2241. return 0;
  2242. }
  2243. static inline int skge_avail(const struct skge_ring *ring)
  2244. {
  2245. smp_mb();
  2246. return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
  2247. + (ring->to_clean - ring->to_use) - 1;
  2248. }
  2249. static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
  2250. struct net_device *dev)
  2251. {
  2252. struct skge_port *skge = netdev_priv(dev);
  2253. struct skge_hw *hw = skge->hw;
  2254. struct skge_element *e;
  2255. struct skge_tx_desc *td;
  2256. int i;
  2257. u32 control, len;
  2258. u64 map;
  2259. if (skb_padto(skb, ETH_ZLEN))
  2260. return NETDEV_TX_OK;
  2261. if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
  2262. return NETDEV_TX_BUSY;
  2263. e = skge->tx_ring.to_use;
  2264. td = e->desc;
  2265. BUG_ON(td->control & BMU_OWN);
  2266. e->skb = skb;
  2267. len = skb_headlen(skb);
  2268. map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  2269. dma_unmap_addr_set(e, mapaddr, map);
  2270. dma_unmap_len_set(e, maplen, len);
  2271. td->dma_lo = map;
  2272. td->dma_hi = map >> 32;
  2273. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  2274. const int offset = skb_transport_offset(skb);
  2275. /* This seems backwards, but it is what the sk98lin
  2276. * does. Looks like hardware is wrong?
  2277. */
  2278. if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
  2279. hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
  2280. control = BMU_TCP_CHECK;
  2281. else
  2282. control = BMU_UDP_CHECK;
  2283. td->csum_offs = 0;
  2284. td->csum_start = offset;
  2285. td->csum_write = offset + skb->csum_offset;
  2286. } else
  2287. control = BMU_CHECK;
  2288. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  2289. control |= BMU_EOF | BMU_IRQ_EOF;
  2290. else {
  2291. struct skge_tx_desc *tf = td;
  2292. control |= BMU_STFWD;
  2293. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2294. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2295. map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  2296. frag->size, PCI_DMA_TODEVICE);
  2297. e = e->next;
  2298. e->skb = skb;
  2299. tf = e->desc;
  2300. BUG_ON(tf->control & BMU_OWN);
  2301. tf->dma_lo = map;
  2302. tf->dma_hi = (u64) map >> 32;
  2303. dma_unmap_addr_set(e, mapaddr, map);
  2304. dma_unmap_len_set(e, maplen, frag->size);
  2305. tf->control = BMU_OWN | BMU_SW | control | frag->size;
  2306. }
  2307. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  2308. }
  2309. /* Make sure all the descriptors written */
  2310. wmb();
  2311. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  2312. wmb();
  2313. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  2314. netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
  2315. "tx queued, slot %td, len %d\n",
  2316. e - skge->tx_ring.start, skb->len);
  2317. skge->tx_ring.to_use = e->next;
  2318. smp_wmb();
  2319. if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
  2320. netdev_dbg(dev, "transmit queue full\n");
  2321. netif_stop_queue(dev);
  2322. }
  2323. return NETDEV_TX_OK;
  2324. }
  2325. /* Free resources associated with this reing element */
  2326. static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
  2327. u32 control)
  2328. {
  2329. struct pci_dev *pdev = skge->hw->pdev;
  2330. /* skb header vs. fragment */
  2331. if (control & BMU_STF)
  2332. pci_unmap_single(pdev, dma_unmap_addr(e, mapaddr),
  2333. dma_unmap_len(e, maplen),
  2334. PCI_DMA_TODEVICE);
  2335. else
  2336. pci_unmap_page(pdev, dma_unmap_addr(e, mapaddr),
  2337. dma_unmap_len(e, maplen),
  2338. PCI_DMA_TODEVICE);
  2339. if (control & BMU_EOF) {
  2340. netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
  2341. "tx done slot %td\n", e - skge->tx_ring.start);
  2342. dev_kfree_skb(e->skb);
  2343. }
  2344. }
  2345. /* Free all buffers in transmit ring */
  2346. static void skge_tx_clean(struct net_device *dev)
  2347. {
  2348. struct skge_port *skge = netdev_priv(dev);
  2349. struct skge_element *e;
  2350. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  2351. struct skge_tx_desc *td = e->desc;
  2352. skge_tx_free(skge, e, td->control);
  2353. td->control = 0;
  2354. }
  2355. skge->tx_ring.to_clean = e;
  2356. }
  2357. static void skge_tx_timeout(struct net_device *dev)
  2358. {
  2359. struct skge_port *skge = netdev_priv(dev);
  2360. netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
  2361. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  2362. skge_tx_clean(dev);
  2363. netif_wake_queue(dev);
  2364. }
  2365. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  2366. {
  2367. int err;
  2368. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  2369. return -EINVAL;
  2370. if (!netif_running(dev)) {
  2371. dev->mtu = new_mtu;
  2372. return 0;
  2373. }
  2374. skge_down(dev);
  2375. dev->mtu = new_mtu;
  2376. err = skge_up(dev);
  2377. if (err)
  2378. dev_close(dev);
  2379. return err;
  2380. }
  2381. static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
  2382. static void genesis_add_filter(u8 filter[8], const u8 *addr)
  2383. {
  2384. u32 crc, bit;
  2385. crc = ether_crc_le(ETH_ALEN, addr);
  2386. bit = ~crc & 0x3f;
  2387. filter[bit/8] |= 1 << (bit%8);
  2388. }
  2389. static void genesis_set_multicast(struct net_device *dev)
  2390. {
  2391. struct skge_port *skge = netdev_priv(dev);
  2392. struct skge_hw *hw = skge->hw;
  2393. int port = skge->port;
  2394. struct netdev_hw_addr *ha;
  2395. u32 mode;
  2396. u8 filter[8];
  2397. mode = xm_read32(hw, port, XM_MODE);
  2398. mode |= XM_MD_ENA_HASH;
  2399. if (dev->flags & IFF_PROMISC)
  2400. mode |= XM_MD_ENA_PROM;
  2401. else
  2402. mode &= ~XM_MD_ENA_PROM;
  2403. if (dev->flags & IFF_ALLMULTI)
  2404. memset(filter, 0xff, sizeof(filter));
  2405. else {
  2406. memset(filter, 0, sizeof(filter));
  2407. if (skge->flow_status == FLOW_STAT_REM_SEND ||
  2408. skge->flow_status == FLOW_STAT_SYMMETRIC)
  2409. genesis_add_filter(filter, pause_mc_addr);
  2410. netdev_for_each_mc_addr(ha, dev)
  2411. genesis_add_filter(filter, ha->addr);
  2412. }
  2413. xm_write32(hw, port, XM_MODE, mode);
  2414. xm_outhash(hw, port, XM_HSM, filter);
  2415. }
  2416. static void yukon_add_filter(u8 filter[8], const u8 *addr)
  2417. {
  2418. u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
  2419. filter[bit/8] |= 1 << (bit%8);
  2420. }
  2421. static void yukon_set_multicast(struct net_device *dev)
  2422. {
  2423. struct skge_port *skge = netdev_priv(dev);
  2424. struct skge_hw *hw = skge->hw;
  2425. int port = skge->port;
  2426. struct netdev_hw_addr *ha;
  2427. int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
  2428. skge->flow_status == FLOW_STAT_SYMMETRIC);
  2429. u16 reg;
  2430. u8 filter[8];
  2431. memset(filter, 0, sizeof(filter));
  2432. reg = gma_read16(hw, port, GM_RX_CTRL);
  2433. reg |= GM_RXCR_UCF_ENA;
  2434. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2435. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2436. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  2437. memset(filter, 0xff, sizeof(filter));
  2438. else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
  2439. reg &= ~GM_RXCR_MCF_ENA;
  2440. else {
  2441. reg |= GM_RXCR_MCF_ENA;
  2442. if (rx_pause)
  2443. yukon_add_filter(filter, pause_mc_addr);
  2444. netdev_for_each_mc_addr(ha, dev)
  2445. yukon_add_filter(filter, ha->addr);
  2446. }
  2447. gma_write16(hw, port, GM_MC_ADDR_H1,
  2448. (u16)filter[0] | ((u16)filter[1] << 8));
  2449. gma_write16(hw, port, GM_MC_ADDR_H2,
  2450. (u16)filter[2] | ((u16)filter[3] << 8));
  2451. gma_write16(hw, port, GM_MC_ADDR_H3,
  2452. (u16)filter[4] | ((u16)filter[5] << 8));
  2453. gma_write16(hw, port, GM_MC_ADDR_H4,
  2454. (u16)filter[6] | ((u16)filter[7] << 8));
  2455. gma_write16(hw, port, GM_RX_CTRL, reg);
  2456. }
  2457. static inline u16 phy_length(const struct skge_hw *hw, u32 status)
  2458. {
  2459. if (hw->chip_id == CHIP_ID_GENESIS)
  2460. return status >> XMR_FS_LEN_SHIFT;
  2461. else
  2462. return status >> GMR_FS_LEN_SHIFT;
  2463. }
  2464. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2465. {
  2466. if (hw->chip_id == CHIP_ID_GENESIS)
  2467. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2468. else
  2469. return (status & GMR_FS_ANY_ERR) ||
  2470. (status & GMR_FS_RX_OK) == 0;
  2471. }
  2472. static void skge_set_multicast(struct net_device *dev)
  2473. {
  2474. struct skge_port *skge = netdev_priv(dev);
  2475. struct skge_hw *hw = skge->hw;
  2476. if (hw->chip_id == CHIP_ID_GENESIS)
  2477. genesis_set_multicast(dev);
  2478. else
  2479. yukon_set_multicast(dev);
  2480. }
  2481. /* Get receive buffer from descriptor.
  2482. * Handles copy of small buffers and reallocation failures
  2483. */
  2484. static struct sk_buff *skge_rx_get(struct net_device *dev,
  2485. struct skge_element *e,
  2486. u32 control, u32 status, u16 csum)
  2487. {
  2488. struct skge_port *skge = netdev_priv(dev);
  2489. struct sk_buff *skb;
  2490. u16 len = control & BMU_BBC;
  2491. netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
  2492. "rx slot %td status 0x%x len %d\n",
  2493. e - skge->rx_ring.start, status, len);
  2494. if (len > skge->rx_buf_size)
  2495. goto error;
  2496. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
  2497. goto error;
  2498. if (bad_phy_status(skge->hw, status))
  2499. goto error;
  2500. if (phy_length(skge->hw, status) != len)
  2501. goto error;
  2502. if (len < RX_COPY_THRESHOLD) {
  2503. skb = netdev_alloc_skb_ip_align(dev, len);
  2504. if (!skb)
  2505. goto resubmit;
  2506. pci_dma_sync_single_for_cpu(skge->hw->pdev,
  2507. dma_unmap_addr(e, mapaddr),
  2508. len, PCI_DMA_FROMDEVICE);
  2509. skb_copy_from_linear_data(e->skb, skb->data, len);
  2510. pci_dma_sync_single_for_device(skge->hw->pdev,
  2511. dma_unmap_addr(e, mapaddr),
  2512. len, PCI_DMA_FROMDEVICE);
  2513. skge_rx_reuse(e, skge->rx_buf_size);
  2514. } else {
  2515. struct sk_buff *nskb;
  2516. nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
  2517. if (!nskb)
  2518. goto resubmit;
  2519. pci_unmap_single(skge->hw->pdev,
  2520. dma_unmap_addr(e, mapaddr),
  2521. dma_unmap_len(e, maplen),
  2522. PCI_DMA_FROMDEVICE);
  2523. skb = e->skb;
  2524. prefetch(skb->data);
  2525. skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
  2526. }
  2527. skb_put(skb, len);
  2528. if (skge->rx_csum) {
  2529. skb->csum = csum;
  2530. skb->ip_summed = CHECKSUM_COMPLETE;
  2531. }
  2532. skb->protocol = eth_type_trans(skb, dev);
  2533. return skb;
  2534. error:
  2535. netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
  2536. "rx err, slot %td control 0x%x status 0x%x\n",
  2537. e - skge->rx_ring.start, control, status);
  2538. if (skge->hw->chip_id == CHIP_ID_GENESIS) {
  2539. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2540. dev->stats.rx_length_errors++;
  2541. if (status & XMR_FS_FRA_ERR)
  2542. dev->stats.rx_frame_errors++;
  2543. if (status & XMR_FS_FCS_ERR)
  2544. dev->stats.rx_crc_errors++;
  2545. } else {
  2546. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2547. dev->stats.rx_length_errors++;
  2548. if (status & GMR_FS_FRAGMENT)
  2549. dev->stats.rx_frame_errors++;
  2550. if (status & GMR_FS_CRC_ERR)
  2551. dev->stats.rx_crc_errors++;
  2552. }
  2553. resubmit:
  2554. skge_rx_reuse(e, skge->rx_buf_size);
  2555. return NULL;
  2556. }
  2557. /* Free all buffers in Tx ring which are no longer owned by device */
  2558. static void skge_tx_done(struct net_device *dev)
  2559. {
  2560. struct skge_port *skge = netdev_priv(dev);
  2561. struct skge_ring *ring = &skge->tx_ring;
  2562. struct skge_element *e;
  2563. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2564. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  2565. u32 control = ((const struct skge_tx_desc *) e->desc)->control;
  2566. if (control & BMU_OWN)
  2567. break;
  2568. skge_tx_free(skge, e, control);
  2569. }
  2570. skge->tx_ring.to_clean = e;
  2571. /* Can run lockless until we need to synchronize to restart queue. */
  2572. smp_mb();
  2573. if (unlikely(netif_queue_stopped(dev) &&
  2574. skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
  2575. netif_tx_lock(dev);
  2576. if (unlikely(netif_queue_stopped(dev) &&
  2577. skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
  2578. netif_wake_queue(dev);
  2579. }
  2580. netif_tx_unlock(dev);
  2581. }
  2582. }
  2583. static int skge_poll(struct napi_struct *napi, int to_do)
  2584. {
  2585. struct skge_port *skge = container_of(napi, struct skge_port, napi);
  2586. struct net_device *dev = skge->netdev;
  2587. struct skge_hw *hw = skge->hw;
  2588. struct skge_ring *ring = &skge->rx_ring;
  2589. struct skge_element *e;
  2590. int work_done = 0;
  2591. skge_tx_done(dev);
  2592. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2593. for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
  2594. struct skge_rx_desc *rd = e->desc;
  2595. struct sk_buff *skb;
  2596. u32 control;
  2597. rmb();
  2598. control = rd->control;
  2599. if (control & BMU_OWN)
  2600. break;
  2601. skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
  2602. if (likely(skb)) {
  2603. netif_receive_skb(skb);
  2604. ++work_done;
  2605. }
  2606. }
  2607. ring->to_clean = e;
  2608. /* restart receiver */
  2609. wmb();
  2610. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
  2611. if (work_done < to_do) {
  2612. unsigned long flags;
  2613. spin_lock_irqsave(&hw->hw_lock, flags);
  2614. __napi_complete(napi);
  2615. hw->intr_mask |= napimask[skge->port];
  2616. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2617. skge_read32(hw, B0_IMSK);
  2618. spin_unlock_irqrestore(&hw->hw_lock, flags);
  2619. }
  2620. return work_done;
  2621. }
  2622. /* Parity errors seem to happen when Genesis is connected to a switch
  2623. * with no other ports present. Heartbeat error??
  2624. */
  2625. static void skge_mac_parity(struct skge_hw *hw, int port)
  2626. {
  2627. struct net_device *dev = hw->dev[port];
  2628. ++dev->stats.tx_heartbeat_errors;
  2629. if (hw->chip_id == CHIP_ID_GENESIS)
  2630. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  2631. MFF_CLR_PERR);
  2632. else
  2633. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2634. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
  2635. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  2636. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2637. }
  2638. static void skge_mac_intr(struct skge_hw *hw, int port)
  2639. {
  2640. if (hw->chip_id == CHIP_ID_GENESIS)
  2641. genesis_mac_intr(hw, port);
  2642. else
  2643. yukon_mac_intr(hw, port);
  2644. }
  2645. /* Handle device specific framing and timeout interrupts */
  2646. static void skge_error_irq(struct skge_hw *hw)
  2647. {
  2648. struct pci_dev *pdev = hw->pdev;
  2649. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2650. if (hw->chip_id == CHIP_ID_GENESIS) {
  2651. /* clear xmac errors */
  2652. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2653. skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
  2654. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2655. skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
  2656. } else {
  2657. /* Timestamp (unused) overflow */
  2658. if (hwstatus & IS_IRQ_TIST_OV)
  2659. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2660. }
  2661. if (hwstatus & IS_RAM_RD_PAR) {
  2662. dev_err(&pdev->dev, "Ram read data parity error\n");
  2663. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2664. }
  2665. if (hwstatus & IS_RAM_WR_PAR) {
  2666. dev_err(&pdev->dev, "Ram write data parity error\n");
  2667. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2668. }
  2669. if (hwstatus & IS_M1_PAR_ERR)
  2670. skge_mac_parity(hw, 0);
  2671. if (hwstatus & IS_M2_PAR_ERR)
  2672. skge_mac_parity(hw, 1);
  2673. if (hwstatus & IS_R1_PAR_ERR) {
  2674. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2675. hw->dev[0]->name);
  2676. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2677. }
  2678. if (hwstatus & IS_R2_PAR_ERR) {
  2679. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2680. hw->dev[1]->name);
  2681. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2682. }
  2683. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2684. u16 pci_status, pci_cmd;
  2685. pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
  2686. pci_read_config_word(pdev, PCI_STATUS, &pci_status);
  2687. dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
  2688. pci_cmd, pci_status);
  2689. /* Write the error bits back to clear them. */
  2690. pci_status &= PCI_STATUS_ERROR_BITS;
  2691. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2692. pci_write_config_word(pdev, PCI_COMMAND,
  2693. pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  2694. pci_write_config_word(pdev, PCI_STATUS, pci_status);
  2695. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2696. /* if error still set then just ignore it */
  2697. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2698. if (hwstatus & IS_IRQ_STAT) {
  2699. dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
  2700. hw->intr_mask &= ~IS_HW_ERR;
  2701. }
  2702. }
  2703. }
  2704. /*
  2705. * Interrupt from PHY are handled in tasklet (softirq)
  2706. * because accessing phy registers requires spin wait which might
  2707. * cause excess interrupt latency.
  2708. */
  2709. static void skge_extirq(unsigned long arg)
  2710. {
  2711. struct skge_hw *hw = (struct skge_hw *) arg;
  2712. int port;
  2713. for (port = 0; port < hw->ports; port++) {
  2714. struct net_device *dev = hw->dev[port];
  2715. if (netif_running(dev)) {
  2716. struct skge_port *skge = netdev_priv(dev);
  2717. spin_lock(&hw->phy_lock);
  2718. if (hw->chip_id != CHIP_ID_GENESIS)
  2719. yukon_phy_intr(skge);
  2720. else if (hw->phy_type == SK_PHY_BCOM)
  2721. bcom_phy_intr(skge);
  2722. spin_unlock(&hw->phy_lock);
  2723. }
  2724. }
  2725. spin_lock_irq(&hw->hw_lock);
  2726. hw->intr_mask |= IS_EXT_REG;
  2727. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2728. skge_read32(hw, B0_IMSK);
  2729. spin_unlock_irq(&hw->hw_lock);
  2730. }
  2731. static irqreturn_t skge_intr(int irq, void *dev_id)
  2732. {
  2733. struct skge_hw *hw = dev_id;
  2734. u32 status;
  2735. int handled = 0;
  2736. spin_lock(&hw->hw_lock);
  2737. /* Reading this register masks IRQ */
  2738. status = skge_read32(hw, B0_SP_ISRC);
  2739. if (status == 0 || status == ~0)
  2740. goto out;
  2741. handled = 1;
  2742. status &= hw->intr_mask;
  2743. if (status & IS_EXT_REG) {
  2744. hw->intr_mask &= ~IS_EXT_REG;
  2745. tasklet_schedule(&hw->phy_task);
  2746. }
  2747. if (status & (IS_XA1_F|IS_R1_F)) {
  2748. struct skge_port *skge = netdev_priv(hw->dev[0]);
  2749. hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
  2750. napi_schedule(&skge->napi);
  2751. }
  2752. if (status & IS_PA_TO_TX1)
  2753. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
  2754. if (status & IS_PA_TO_RX1) {
  2755. ++hw->dev[0]->stats.rx_over_errors;
  2756. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
  2757. }
  2758. if (status & IS_MAC1)
  2759. skge_mac_intr(hw, 0);
  2760. if (hw->dev[1]) {
  2761. struct skge_port *skge = netdev_priv(hw->dev[1]);
  2762. if (status & (IS_XA2_F|IS_R2_F)) {
  2763. hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
  2764. napi_schedule(&skge->napi);
  2765. }
  2766. if (status & IS_PA_TO_RX2) {
  2767. ++hw->dev[1]->stats.rx_over_errors;
  2768. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
  2769. }
  2770. if (status & IS_PA_TO_TX2)
  2771. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
  2772. if (status & IS_MAC2)
  2773. skge_mac_intr(hw, 1);
  2774. }
  2775. if (status & IS_HW_ERR)
  2776. skge_error_irq(hw);
  2777. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2778. skge_read32(hw, B0_IMSK);
  2779. out:
  2780. spin_unlock(&hw->hw_lock);
  2781. return IRQ_RETVAL(handled);
  2782. }
  2783. #ifdef CONFIG_NET_POLL_CONTROLLER
  2784. static void skge_netpoll(struct net_device *dev)
  2785. {
  2786. struct skge_port *skge = netdev_priv(dev);
  2787. disable_irq(dev->irq);
  2788. skge_intr(dev->irq, skge->hw);
  2789. enable_irq(dev->irq);
  2790. }
  2791. #endif
  2792. static int skge_set_mac_address(struct net_device *dev, void *p)
  2793. {
  2794. struct skge_port *skge = netdev_priv(dev);
  2795. struct skge_hw *hw = skge->hw;
  2796. unsigned port = skge->port;
  2797. const struct sockaddr *addr = p;
  2798. u16 ctrl;
  2799. if (!is_valid_ether_addr(addr->sa_data))
  2800. return -EADDRNOTAVAIL;
  2801. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2802. if (!netif_running(dev)) {
  2803. memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
  2804. memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
  2805. } else {
  2806. /* disable Rx */
  2807. spin_lock_bh(&hw->phy_lock);
  2808. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  2809. gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
  2810. memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
  2811. memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
  2812. if (hw->chip_id == CHIP_ID_GENESIS)
  2813. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  2814. else {
  2815. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2816. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2817. }
  2818. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  2819. spin_unlock_bh(&hw->phy_lock);
  2820. }
  2821. return 0;
  2822. }
  2823. static const struct {
  2824. u8 id;
  2825. const char *name;
  2826. } skge_chips[] = {
  2827. { CHIP_ID_GENESIS, "Genesis" },
  2828. { CHIP_ID_YUKON, "Yukon" },
  2829. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2830. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2831. };
  2832. static const char *skge_board_name(const struct skge_hw *hw)
  2833. {
  2834. int i;
  2835. static char buf[16];
  2836. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2837. if (skge_chips[i].id == hw->chip_id)
  2838. return skge_chips[i].name;
  2839. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  2840. return buf;
  2841. }
  2842. /*
  2843. * Setup the board data structure, but don't bring up
  2844. * the port(s)
  2845. */
  2846. static int skge_reset(struct skge_hw *hw)
  2847. {
  2848. u32 reg;
  2849. u16 ctst, pci_status;
  2850. u8 t8, mac_cfg, pmd_type;
  2851. int i;
  2852. ctst = skge_read16(hw, B0_CTST);
  2853. /* do a SW reset */
  2854. skge_write8(hw, B0_CTST, CS_RST_SET);
  2855. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2856. /* clear PCI errors, if any */
  2857. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2858. skge_write8(hw, B2_TST_CTRL2, 0);
  2859. pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
  2860. pci_write_config_word(hw->pdev, PCI_STATUS,
  2861. pci_status | PCI_STATUS_ERROR_BITS);
  2862. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2863. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2864. /* restore CLK_RUN bits (for Yukon-Lite) */
  2865. skge_write16(hw, B0_CTST,
  2866. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2867. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2868. hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2869. pmd_type = skge_read8(hw, B2_PMD_TYP);
  2870. hw->copper = (pmd_type == 'T' || pmd_type == '1');
  2871. switch (hw->chip_id) {
  2872. case CHIP_ID_GENESIS:
  2873. switch (hw->phy_type) {
  2874. case SK_PHY_XMAC:
  2875. hw->phy_addr = PHY_ADDR_XMAC;
  2876. break;
  2877. case SK_PHY_BCOM:
  2878. hw->phy_addr = PHY_ADDR_BCOM;
  2879. break;
  2880. default:
  2881. dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
  2882. hw->phy_type);
  2883. return -EOPNOTSUPP;
  2884. }
  2885. break;
  2886. case CHIP_ID_YUKON:
  2887. case CHIP_ID_YUKON_LITE:
  2888. case CHIP_ID_YUKON_LP:
  2889. if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
  2890. hw->copper = 1;
  2891. hw->phy_addr = PHY_ADDR_MARV;
  2892. break;
  2893. default:
  2894. dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
  2895. hw->chip_id);
  2896. return -EOPNOTSUPP;
  2897. }
  2898. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2899. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  2900. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  2901. /* read the adapters RAM size */
  2902. t8 = skge_read8(hw, B2_E_0);
  2903. if (hw->chip_id == CHIP_ID_GENESIS) {
  2904. if (t8 == 3) {
  2905. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2906. hw->ram_size = 0x100000;
  2907. hw->ram_offset = 0x80000;
  2908. } else
  2909. hw->ram_size = t8 * 512;
  2910. } else if (t8 == 0)
  2911. hw->ram_size = 0x20000;
  2912. else
  2913. hw->ram_size = t8 * 4096;
  2914. hw->intr_mask = IS_HW_ERR;
  2915. /* Use PHY IRQ for all but fiber based Genesis board */
  2916. if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
  2917. hw->intr_mask |= IS_EXT_REG;
  2918. if (hw->chip_id == CHIP_ID_GENESIS)
  2919. genesis_init(hw);
  2920. else {
  2921. /* switch power to VCC (WA for VAUX problem) */
  2922. skge_write8(hw, B0_POWER_CTRL,
  2923. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2924. /* avoid boards with stuck Hardware error bits */
  2925. if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
  2926. (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
  2927. dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
  2928. hw->intr_mask &= ~IS_HW_ERR;
  2929. }
  2930. /* Clear PHY COMA */
  2931. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2932. pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
  2933. reg &= ~PCI_PHY_COMA;
  2934. pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
  2935. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2936. for (i = 0; i < hw->ports; i++) {
  2937. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2938. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2939. }
  2940. }
  2941. /* turn off hardware timer (unused) */
  2942. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2943. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2944. skge_write8(hw, B0_LED, LED_STAT_ON);
  2945. /* enable the Tx Arbiters */
  2946. for (i = 0; i < hw->ports; i++)
  2947. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2948. /* Initialize ram interface */
  2949. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2950. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2951. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2952. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2953. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2954. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2955. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  2956. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  2957. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  2958. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  2959. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  2960. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  2961. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  2962. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  2963. /* Set interrupt moderation for Transmit only
  2964. * Receive interrupts avoided by NAPI
  2965. */
  2966. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  2967. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  2968. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  2969. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2970. for (i = 0; i < hw->ports; i++) {
  2971. if (hw->chip_id == CHIP_ID_GENESIS)
  2972. genesis_reset(hw, i);
  2973. else
  2974. yukon_reset(hw, i);
  2975. }
  2976. return 0;
  2977. }
  2978. #ifdef CONFIG_SKGE_DEBUG
  2979. static struct dentry *skge_debug;
  2980. static int skge_debug_show(struct seq_file *seq, void *v)
  2981. {
  2982. struct net_device *dev = seq->private;
  2983. const struct skge_port *skge = netdev_priv(dev);
  2984. const struct skge_hw *hw = skge->hw;
  2985. const struct skge_element *e;
  2986. if (!netif_running(dev))
  2987. return -ENETDOWN;
  2988. seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
  2989. skge_read32(hw, B0_IMSK));
  2990. seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
  2991. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  2992. const struct skge_tx_desc *t = e->desc;
  2993. seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
  2994. t->control, t->dma_hi, t->dma_lo, t->status,
  2995. t->csum_offs, t->csum_write, t->csum_start);
  2996. }
  2997. seq_printf(seq, "\nRx Ring:\n");
  2998. for (e = skge->rx_ring.to_clean; ; e = e->next) {
  2999. const struct skge_rx_desc *r = e->desc;
  3000. if (r->control & BMU_OWN)
  3001. break;
  3002. seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
  3003. r->control, r->dma_hi, r->dma_lo, r->status,
  3004. r->timestamp, r->csum1, r->csum1_start);
  3005. }
  3006. return 0;
  3007. }
  3008. static int skge_debug_open(struct inode *inode, struct file *file)
  3009. {
  3010. return single_open(file, skge_debug_show, inode->i_private);
  3011. }
  3012. static const struct file_operations skge_debug_fops = {
  3013. .owner = THIS_MODULE,
  3014. .open = skge_debug_open,
  3015. .read = seq_read,
  3016. .llseek = seq_lseek,
  3017. .release = single_release,
  3018. };
  3019. /*
  3020. * Use network device events to create/remove/rename
  3021. * debugfs file entries
  3022. */
  3023. static int skge_device_event(struct notifier_block *unused,
  3024. unsigned long event, void *ptr)
  3025. {
  3026. struct net_device *dev = ptr;
  3027. struct skge_port *skge;
  3028. struct dentry *d;
  3029. if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
  3030. goto done;
  3031. skge = netdev_priv(dev);
  3032. switch (event) {
  3033. case NETDEV_CHANGENAME:
  3034. if (skge->debugfs) {
  3035. d = debugfs_rename(skge_debug, skge->debugfs,
  3036. skge_debug, dev->name);
  3037. if (d)
  3038. skge->debugfs = d;
  3039. else {
  3040. netdev_info(dev, "rename failed\n");
  3041. debugfs_remove(skge->debugfs);
  3042. }
  3043. }
  3044. break;
  3045. case NETDEV_GOING_DOWN:
  3046. if (skge->debugfs) {
  3047. debugfs_remove(skge->debugfs);
  3048. skge->debugfs = NULL;
  3049. }
  3050. break;
  3051. case NETDEV_UP:
  3052. d = debugfs_create_file(dev->name, S_IRUGO,
  3053. skge_debug, dev,
  3054. &skge_debug_fops);
  3055. if (!d || IS_ERR(d))
  3056. netdev_info(dev, "debugfs create failed\n");
  3057. else
  3058. skge->debugfs = d;
  3059. break;
  3060. }
  3061. done:
  3062. return NOTIFY_DONE;
  3063. }
  3064. static struct notifier_block skge_notifier = {
  3065. .notifier_call = skge_device_event,
  3066. };
  3067. static __init void skge_debug_init(void)
  3068. {
  3069. struct dentry *ent;
  3070. ent = debugfs_create_dir("skge", NULL);
  3071. if (!ent || IS_ERR(ent)) {
  3072. pr_info("debugfs create directory failed\n");
  3073. return;
  3074. }
  3075. skge_debug = ent;
  3076. register_netdevice_notifier(&skge_notifier);
  3077. }
  3078. static __exit void skge_debug_cleanup(void)
  3079. {
  3080. if (skge_debug) {
  3081. unregister_netdevice_notifier(&skge_notifier);
  3082. debugfs_remove(skge_debug);
  3083. skge_debug = NULL;
  3084. }
  3085. }
  3086. #else
  3087. #define skge_debug_init()
  3088. #define skge_debug_cleanup()
  3089. #endif
  3090. static const struct net_device_ops skge_netdev_ops = {
  3091. .ndo_open = skge_up,
  3092. .ndo_stop = skge_down,
  3093. .ndo_start_xmit = skge_xmit_frame,
  3094. .ndo_do_ioctl = skge_ioctl,
  3095. .ndo_get_stats = skge_get_stats,
  3096. .ndo_tx_timeout = skge_tx_timeout,
  3097. .ndo_change_mtu = skge_change_mtu,
  3098. .ndo_validate_addr = eth_validate_addr,
  3099. .ndo_set_multicast_list = skge_set_multicast,
  3100. .ndo_set_mac_address = skge_set_mac_address,
  3101. #ifdef CONFIG_NET_POLL_CONTROLLER
  3102. .ndo_poll_controller = skge_netpoll,
  3103. #endif
  3104. };
  3105. /* Initialize network device */
  3106. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  3107. int highmem)
  3108. {
  3109. struct skge_port *skge;
  3110. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  3111. if (!dev) {
  3112. dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
  3113. return NULL;
  3114. }
  3115. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  3116. dev->netdev_ops = &skge_netdev_ops;
  3117. dev->ethtool_ops = &skge_ethtool_ops;
  3118. dev->watchdog_timeo = TX_WATCHDOG;
  3119. dev->irq = hw->pdev->irq;
  3120. if (highmem)
  3121. dev->features |= NETIF_F_HIGHDMA;
  3122. skge = netdev_priv(dev);
  3123. netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
  3124. skge->netdev = dev;
  3125. skge->hw = hw;
  3126. skge->msg_enable = netif_msg_init(debug, default_msg);
  3127. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  3128. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  3129. /* Auto speed and flow control */
  3130. skge->autoneg = AUTONEG_ENABLE;
  3131. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  3132. skge->duplex = -1;
  3133. skge->speed = -1;
  3134. skge->advertising = skge_supported_modes(hw);
  3135. if (device_can_wakeup(&hw->pdev->dev)) {
  3136. skge->wol = wol_supported(hw) & WAKE_MAGIC;
  3137. device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
  3138. }
  3139. hw->dev[port] = dev;
  3140. skge->port = port;
  3141. /* Only used for Genesis XMAC */
  3142. setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
  3143. if (hw->chip_id != CHIP_ID_GENESIS) {
  3144. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  3145. skge->rx_csum = 1;
  3146. }
  3147. /* read the mac address */
  3148. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  3149. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  3150. /* device is off until link detection */
  3151. netif_carrier_off(dev);
  3152. netif_stop_queue(dev);
  3153. return dev;
  3154. }
  3155. static void __devinit skge_show_addr(struct net_device *dev)
  3156. {
  3157. const struct skge_port *skge = netdev_priv(dev);
  3158. netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
  3159. }
  3160. static int only_32bit_dma;
  3161. static int __devinit skge_probe(struct pci_dev *pdev,
  3162. const struct pci_device_id *ent)
  3163. {
  3164. struct net_device *dev, *dev1;
  3165. struct skge_hw *hw;
  3166. int err, using_dac = 0;
  3167. err = pci_enable_device(pdev);
  3168. if (err) {
  3169. dev_err(&pdev->dev, "cannot enable PCI device\n");
  3170. goto err_out;
  3171. }
  3172. err = pci_request_regions(pdev, DRV_NAME);
  3173. if (err) {
  3174. dev_err(&pdev->dev, "cannot obtain PCI resources\n");
  3175. goto err_out_disable_pdev;
  3176. }
  3177. pci_set_master(pdev);
  3178. if (!only_32bit_dma && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  3179. using_dac = 1;
  3180. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  3181. } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
  3182. using_dac = 0;
  3183. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3184. }
  3185. if (err) {
  3186. dev_err(&pdev->dev, "no usable DMA configuration\n");
  3187. goto err_out_free_regions;
  3188. }
  3189. #ifdef __BIG_ENDIAN
  3190. /* byte swap descriptors in hardware */
  3191. {
  3192. u32 reg;
  3193. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  3194. reg |= PCI_REV_DESC;
  3195. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  3196. }
  3197. #endif
  3198. err = -ENOMEM;
  3199. /* space for skge@pci:0000:04:00.0 */
  3200. hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
  3201. + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
  3202. if (!hw) {
  3203. dev_err(&pdev->dev, "cannot allocate hardware struct\n");
  3204. goto err_out_free_regions;
  3205. }
  3206. sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
  3207. hw->pdev = pdev;
  3208. spin_lock_init(&hw->hw_lock);
  3209. spin_lock_init(&hw->phy_lock);
  3210. tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw);
  3211. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  3212. if (!hw->regs) {
  3213. dev_err(&pdev->dev, "cannot map device registers\n");
  3214. goto err_out_free_hw;
  3215. }
  3216. err = skge_reset(hw);
  3217. if (err)
  3218. goto err_out_iounmap;
  3219. pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
  3220. DRV_VERSION,
  3221. (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
  3222. skge_board_name(hw), hw->chip_rev);
  3223. dev = skge_devinit(hw, 0, using_dac);
  3224. if (!dev)
  3225. goto err_out_led_off;
  3226. /* Some motherboards are broken and has zero in ROM. */
  3227. if (!is_valid_ether_addr(dev->dev_addr))
  3228. dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
  3229. err = register_netdev(dev);
  3230. if (err) {
  3231. dev_err(&pdev->dev, "cannot register net device\n");
  3232. goto err_out_free_netdev;
  3233. }
  3234. err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, hw->irq_name, hw);
  3235. if (err) {
  3236. dev_err(&pdev->dev, "%s: cannot assign irq %d\n",
  3237. dev->name, pdev->irq);
  3238. goto err_out_unregister;
  3239. }
  3240. skge_show_addr(dev);
  3241. if (hw->ports > 1) {
  3242. dev1 = skge_devinit(hw, 1, using_dac);
  3243. if (dev1 && register_netdev(dev1) == 0)
  3244. skge_show_addr(dev1);
  3245. else {
  3246. /* Failure to register second port need not be fatal */
  3247. dev_warn(&pdev->dev, "register of second port failed\n");
  3248. hw->dev[1] = NULL;
  3249. hw->ports = 1;
  3250. if (dev1)
  3251. free_netdev(dev1);
  3252. }
  3253. }
  3254. pci_set_drvdata(pdev, hw);
  3255. return 0;
  3256. err_out_unregister:
  3257. unregister_netdev(dev);
  3258. err_out_free_netdev:
  3259. free_netdev(dev);
  3260. err_out_led_off:
  3261. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3262. err_out_iounmap:
  3263. iounmap(hw->regs);
  3264. err_out_free_hw:
  3265. kfree(hw);
  3266. err_out_free_regions:
  3267. pci_release_regions(pdev);
  3268. err_out_disable_pdev:
  3269. pci_disable_device(pdev);
  3270. pci_set_drvdata(pdev, NULL);
  3271. err_out:
  3272. return err;
  3273. }
  3274. static void __devexit skge_remove(struct pci_dev *pdev)
  3275. {
  3276. struct skge_hw *hw = pci_get_drvdata(pdev);
  3277. struct net_device *dev0, *dev1;
  3278. if (!hw)
  3279. return;
  3280. flush_scheduled_work();
  3281. dev1 = hw->dev[1];
  3282. if (dev1)
  3283. unregister_netdev(dev1);
  3284. dev0 = hw->dev[0];
  3285. unregister_netdev(dev0);
  3286. tasklet_disable(&hw->phy_task);
  3287. spin_lock_irq(&hw->hw_lock);
  3288. hw->intr_mask = 0;
  3289. skge_write32(hw, B0_IMSK, 0);
  3290. skge_read32(hw, B0_IMSK);
  3291. spin_unlock_irq(&hw->hw_lock);
  3292. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3293. skge_write8(hw, B0_CTST, CS_RST_SET);
  3294. free_irq(pdev->irq, hw);
  3295. pci_release_regions(pdev);
  3296. pci_disable_device(pdev);
  3297. if (dev1)
  3298. free_netdev(dev1);
  3299. free_netdev(dev0);
  3300. iounmap(hw->regs);
  3301. kfree(hw);
  3302. pci_set_drvdata(pdev, NULL);
  3303. }
  3304. #ifdef CONFIG_PM
  3305. static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
  3306. {
  3307. struct skge_hw *hw = pci_get_drvdata(pdev);
  3308. int i, err, wol = 0;
  3309. if (!hw)
  3310. return 0;
  3311. err = pci_save_state(pdev);
  3312. if (err)
  3313. return err;
  3314. for (i = 0; i < hw->ports; i++) {
  3315. struct net_device *dev = hw->dev[i];
  3316. struct skge_port *skge = netdev_priv(dev);
  3317. if (netif_running(dev))
  3318. skge_down(dev);
  3319. if (skge->wol)
  3320. skge_wol_init(skge);
  3321. wol |= skge->wol;
  3322. }
  3323. skge_write32(hw, B0_IMSK, 0);
  3324. pci_prepare_to_sleep(pdev);
  3325. return 0;
  3326. }
  3327. static int skge_resume(struct pci_dev *pdev)
  3328. {
  3329. struct skge_hw *hw = pci_get_drvdata(pdev);
  3330. int i, err;
  3331. if (!hw)
  3332. return 0;
  3333. err = pci_back_from_sleep(pdev);
  3334. if (err)
  3335. goto out;
  3336. err = pci_restore_state(pdev);
  3337. if (err)
  3338. goto out;
  3339. err = skge_reset(hw);
  3340. if (err)
  3341. goto out;
  3342. for (i = 0; i < hw->ports; i++) {
  3343. struct net_device *dev = hw->dev[i];
  3344. if (netif_running(dev)) {
  3345. err = skge_up(dev);
  3346. if (err) {
  3347. netdev_err(dev, "could not up: %d\n", err);
  3348. dev_close(dev);
  3349. goto out;
  3350. }
  3351. }
  3352. }
  3353. out:
  3354. return err;
  3355. }
  3356. #endif
  3357. static void skge_shutdown(struct pci_dev *pdev)
  3358. {
  3359. struct skge_hw *hw = pci_get_drvdata(pdev);
  3360. int i, wol = 0;
  3361. if (!hw)
  3362. return;
  3363. for (i = 0; i < hw->ports; i++) {
  3364. struct net_device *dev = hw->dev[i];
  3365. struct skge_port *skge = netdev_priv(dev);
  3366. if (skge->wol)
  3367. skge_wol_init(skge);
  3368. wol |= skge->wol;
  3369. }
  3370. if (pci_enable_wake(pdev, PCI_D3cold, wol))
  3371. pci_enable_wake(pdev, PCI_D3hot, wol);
  3372. pci_disable_device(pdev);
  3373. pci_set_power_state(pdev, PCI_D3hot);
  3374. }
  3375. static struct pci_driver skge_driver = {
  3376. .name = DRV_NAME,
  3377. .id_table = skge_id_table,
  3378. .probe = skge_probe,
  3379. .remove = __devexit_p(skge_remove),
  3380. #ifdef CONFIG_PM
  3381. .suspend = skge_suspend,
  3382. .resume = skge_resume,
  3383. #endif
  3384. .shutdown = skge_shutdown,
  3385. };
  3386. static struct dmi_system_id skge_32bit_dma_boards[] = {
  3387. {
  3388. .ident = "Gigabyte nForce boards",
  3389. .matches = {
  3390. DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
  3391. DMI_MATCH(DMI_BOARD_NAME, "nForce"),
  3392. },
  3393. },
  3394. {}
  3395. };
  3396. static int __init skge_init_module(void)
  3397. {
  3398. if (dmi_check_system(skge_32bit_dma_boards))
  3399. only_32bit_dma = 1;
  3400. skge_debug_init();
  3401. return pci_register_driver(&skge_driver);
  3402. }
  3403. static void __exit skge_cleanup_module(void)
  3404. {
  3405. pci_unregister_driver(&skge_driver);
  3406. skge_debug_cleanup();
  3407. }
  3408. module_init(skge_init_module);
  3409. module_exit(skge_cleanup_module);