input.c 51 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088
  1. /*
  2. * The input core
  3. *
  4. * Copyright (c) 1999-2002 Vojtech Pavlik
  5. */
  6. /*
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/types.h>
  13. #include <linux/input.h>
  14. #include <linux/module.h>
  15. #include <linux/slab.h>
  16. #include <linux/random.h>
  17. #include <linux/major.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/sched.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/poll.h>
  22. #include <linux/device.h>
  23. #include <linux/mutex.h>
  24. #include <linux/rcupdate.h>
  25. #include <linux/smp_lock.h>
  26. #include "input-compat.h"
  27. MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  28. MODULE_DESCRIPTION("Input core");
  29. MODULE_LICENSE("GPL");
  30. #define INPUT_DEVICES 256
  31. static LIST_HEAD(input_dev_list);
  32. static LIST_HEAD(input_handler_list);
  33. /*
  34. * input_mutex protects access to both input_dev_list and input_handler_list.
  35. * This also causes input_[un]register_device and input_[un]register_handler
  36. * be mutually exclusive which simplifies locking in drivers implementing
  37. * input handlers.
  38. */
  39. static DEFINE_MUTEX(input_mutex);
  40. static struct input_handler *input_table[8];
  41. static inline int is_event_supported(unsigned int code,
  42. unsigned long *bm, unsigned int max)
  43. {
  44. return code <= max && test_bit(code, bm);
  45. }
  46. static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  47. {
  48. if (fuzz) {
  49. if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  50. return old_val;
  51. if (value > old_val - fuzz && value < old_val + fuzz)
  52. return (old_val * 3 + value) / 4;
  53. if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  54. return (old_val + value) / 2;
  55. }
  56. return value;
  57. }
  58. /*
  59. * Pass event first through all filters and then, if event has not been
  60. * filtered out, through all open handles. This function is called with
  61. * dev->event_lock held and interrupts disabled.
  62. */
  63. static void input_pass_event(struct input_dev *dev,
  64. unsigned int type, unsigned int code, int value)
  65. {
  66. struct input_handler *handler;
  67. struct input_handle *handle;
  68. rcu_read_lock();
  69. handle = rcu_dereference(dev->grab);
  70. if (handle)
  71. handle->handler->event(handle, type, code, value);
  72. else {
  73. bool filtered = false;
  74. list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
  75. if (!handle->open)
  76. continue;
  77. handler = handle->handler;
  78. if (!handler->filter) {
  79. if (filtered)
  80. break;
  81. handler->event(handle, type, code, value);
  82. } else if (handler->filter(handle, type, code, value))
  83. filtered = true;
  84. }
  85. }
  86. rcu_read_unlock();
  87. }
  88. /*
  89. * Generate software autorepeat event. Note that we take
  90. * dev->event_lock here to avoid racing with input_event
  91. * which may cause keys get "stuck".
  92. */
  93. static void input_repeat_key(unsigned long data)
  94. {
  95. struct input_dev *dev = (void *) data;
  96. unsigned long flags;
  97. spin_lock_irqsave(&dev->event_lock, flags);
  98. if (test_bit(dev->repeat_key, dev->key) &&
  99. is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
  100. input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
  101. if (dev->sync) {
  102. /*
  103. * Only send SYN_REPORT if we are not in a middle
  104. * of driver parsing a new hardware packet.
  105. * Otherwise assume that the driver will send
  106. * SYN_REPORT once it's done.
  107. */
  108. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  109. }
  110. if (dev->rep[REP_PERIOD])
  111. mod_timer(&dev->timer, jiffies +
  112. msecs_to_jiffies(dev->rep[REP_PERIOD]));
  113. }
  114. spin_unlock_irqrestore(&dev->event_lock, flags);
  115. }
  116. static void input_start_autorepeat(struct input_dev *dev, int code)
  117. {
  118. if (test_bit(EV_REP, dev->evbit) &&
  119. dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  120. dev->timer.data) {
  121. dev->repeat_key = code;
  122. mod_timer(&dev->timer,
  123. jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  124. }
  125. }
  126. static void input_stop_autorepeat(struct input_dev *dev)
  127. {
  128. del_timer(&dev->timer);
  129. }
  130. #define INPUT_IGNORE_EVENT 0
  131. #define INPUT_PASS_TO_HANDLERS 1
  132. #define INPUT_PASS_TO_DEVICE 2
  133. #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
  134. static int input_handle_abs_event(struct input_dev *dev,
  135. unsigned int code, int *pval)
  136. {
  137. bool is_mt_event;
  138. int *pold;
  139. if (code == ABS_MT_SLOT) {
  140. /*
  141. * "Stage" the event; we'll flush it later, when we
  142. * get actiual touch data.
  143. */
  144. if (*pval >= 0 && *pval < dev->mtsize)
  145. dev->slot = *pval;
  146. return INPUT_IGNORE_EVENT;
  147. }
  148. is_mt_event = code >= ABS_MT_FIRST && code <= ABS_MT_LAST;
  149. if (!is_mt_event) {
  150. pold = &dev->absinfo[code].value;
  151. } else if (dev->mt) {
  152. struct input_mt_slot *mtslot = &dev->mt[dev->slot];
  153. pold = &mtslot->abs[code - ABS_MT_FIRST];
  154. } else {
  155. /*
  156. * Bypass filtering for multitouch events when
  157. * not employing slots.
  158. */
  159. pold = NULL;
  160. }
  161. if (pold) {
  162. *pval = input_defuzz_abs_event(*pval, *pold,
  163. dev->absinfo[code].fuzz);
  164. if (*pold == *pval)
  165. return INPUT_IGNORE_EVENT;
  166. *pold = *pval;
  167. }
  168. /* Flush pending "slot" event */
  169. if (is_mt_event && dev->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
  170. input_abs_set_val(dev, ABS_MT_SLOT, dev->slot);
  171. input_pass_event(dev, EV_ABS, ABS_MT_SLOT, dev->slot);
  172. }
  173. return INPUT_PASS_TO_HANDLERS;
  174. }
  175. static void input_handle_event(struct input_dev *dev,
  176. unsigned int type, unsigned int code, int value)
  177. {
  178. int disposition = INPUT_IGNORE_EVENT;
  179. switch (type) {
  180. case EV_SYN:
  181. switch (code) {
  182. case SYN_CONFIG:
  183. disposition = INPUT_PASS_TO_ALL;
  184. break;
  185. case SYN_REPORT:
  186. if (!dev->sync) {
  187. dev->sync = true;
  188. disposition = INPUT_PASS_TO_HANDLERS;
  189. }
  190. break;
  191. case SYN_MT_REPORT:
  192. dev->sync = false;
  193. disposition = INPUT_PASS_TO_HANDLERS;
  194. break;
  195. }
  196. break;
  197. case EV_KEY:
  198. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  199. !!test_bit(code, dev->key) != value) {
  200. if (value != 2) {
  201. __change_bit(code, dev->key);
  202. if (value)
  203. input_start_autorepeat(dev, code);
  204. else
  205. input_stop_autorepeat(dev);
  206. }
  207. disposition = INPUT_PASS_TO_HANDLERS;
  208. }
  209. break;
  210. case EV_SW:
  211. if (is_event_supported(code, dev->swbit, SW_MAX) &&
  212. !!test_bit(code, dev->sw) != value) {
  213. __change_bit(code, dev->sw);
  214. disposition = INPUT_PASS_TO_HANDLERS;
  215. }
  216. break;
  217. case EV_ABS:
  218. if (is_event_supported(code, dev->absbit, ABS_MAX))
  219. disposition = input_handle_abs_event(dev, code, &value);
  220. break;
  221. case EV_REL:
  222. if (is_event_supported(code, dev->relbit, REL_MAX) && value)
  223. disposition = INPUT_PASS_TO_HANDLERS;
  224. break;
  225. case EV_MSC:
  226. if (is_event_supported(code, dev->mscbit, MSC_MAX))
  227. disposition = INPUT_PASS_TO_ALL;
  228. break;
  229. case EV_LED:
  230. if (is_event_supported(code, dev->ledbit, LED_MAX) &&
  231. !!test_bit(code, dev->led) != value) {
  232. __change_bit(code, dev->led);
  233. disposition = INPUT_PASS_TO_ALL;
  234. }
  235. break;
  236. case EV_SND:
  237. if (is_event_supported(code, dev->sndbit, SND_MAX)) {
  238. if (!!test_bit(code, dev->snd) != !!value)
  239. __change_bit(code, dev->snd);
  240. disposition = INPUT_PASS_TO_ALL;
  241. }
  242. break;
  243. case EV_REP:
  244. if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
  245. dev->rep[code] = value;
  246. disposition = INPUT_PASS_TO_ALL;
  247. }
  248. break;
  249. case EV_FF:
  250. if (value >= 0)
  251. disposition = INPUT_PASS_TO_ALL;
  252. break;
  253. case EV_PWR:
  254. disposition = INPUT_PASS_TO_ALL;
  255. break;
  256. }
  257. if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
  258. dev->sync = false;
  259. if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
  260. dev->event(dev, type, code, value);
  261. if (disposition & INPUT_PASS_TO_HANDLERS)
  262. input_pass_event(dev, type, code, value);
  263. }
  264. /**
  265. * input_event() - report new input event
  266. * @dev: device that generated the event
  267. * @type: type of the event
  268. * @code: event code
  269. * @value: value of the event
  270. *
  271. * This function should be used by drivers implementing various input
  272. * devices to report input events. See also input_inject_event().
  273. *
  274. * NOTE: input_event() may be safely used right after input device was
  275. * allocated with input_allocate_device(), even before it is registered
  276. * with input_register_device(), but the event will not reach any of the
  277. * input handlers. Such early invocation of input_event() may be used
  278. * to 'seed' initial state of a switch or initial position of absolute
  279. * axis, etc.
  280. */
  281. void input_event(struct input_dev *dev,
  282. unsigned int type, unsigned int code, int value)
  283. {
  284. unsigned long flags;
  285. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  286. spin_lock_irqsave(&dev->event_lock, flags);
  287. add_input_randomness(type, code, value);
  288. input_handle_event(dev, type, code, value);
  289. spin_unlock_irqrestore(&dev->event_lock, flags);
  290. }
  291. }
  292. EXPORT_SYMBOL(input_event);
  293. /**
  294. * input_inject_event() - send input event from input handler
  295. * @handle: input handle to send event through
  296. * @type: type of the event
  297. * @code: event code
  298. * @value: value of the event
  299. *
  300. * Similar to input_event() but will ignore event if device is
  301. * "grabbed" and handle injecting event is not the one that owns
  302. * the device.
  303. */
  304. void input_inject_event(struct input_handle *handle,
  305. unsigned int type, unsigned int code, int value)
  306. {
  307. struct input_dev *dev = handle->dev;
  308. struct input_handle *grab;
  309. unsigned long flags;
  310. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  311. spin_lock_irqsave(&dev->event_lock, flags);
  312. rcu_read_lock();
  313. grab = rcu_dereference(dev->grab);
  314. if (!grab || grab == handle)
  315. input_handle_event(dev, type, code, value);
  316. rcu_read_unlock();
  317. spin_unlock_irqrestore(&dev->event_lock, flags);
  318. }
  319. }
  320. EXPORT_SYMBOL(input_inject_event);
  321. /**
  322. * input_alloc_absinfo - allocates array of input_absinfo structs
  323. * @dev: the input device emitting absolute events
  324. *
  325. * If the absinfo struct the caller asked for is already allocated, this
  326. * functions will not do anything.
  327. */
  328. void input_alloc_absinfo(struct input_dev *dev)
  329. {
  330. if (!dev->absinfo)
  331. dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
  332. GFP_KERNEL);
  333. WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
  334. }
  335. EXPORT_SYMBOL(input_alloc_absinfo);
  336. void input_set_abs_params(struct input_dev *dev, unsigned int axis,
  337. int min, int max, int fuzz, int flat)
  338. {
  339. struct input_absinfo *absinfo;
  340. input_alloc_absinfo(dev);
  341. if (!dev->absinfo)
  342. return;
  343. absinfo = &dev->absinfo[axis];
  344. absinfo->minimum = min;
  345. absinfo->maximum = max;
  346. absinfo->fuzz = fuzz;
  347. absinfo->flat = flat;
  348. dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis);
  349. }
  350. EXPORT_SYMBOL(input_set_abs_params);
  351. /**
  352. * input_grab_device - grabs device for exclusive use
  353. * @handle: input handle that wants to own the device
  354. *
  355. * When a device is grabbed by an input handle all events generated by
  356. * the device are delivered only to this handle. Also events injected
  357. * by other input handles are ignored while device is grabbed.
  358. */
  359. int input_grab_device(struct input_handle *handle)
  360. {
  361. struct input_dev *dev = handle->dev;
  362. int retval;
  363. retval = mutex_lock_interruptible(&dev->mutex);
  364. if (retval)
  365. return retval;
  366. if (dev->grab) {
  367. retval = -EBUSY;
  368. goto out;
  369. }
  370. rcu_assign_pointer(dev->grab, handle);
  371. synchronize_rcu();
  372. out:
  373. mutex_unlock(&dev->mutex);
  374. return retval;
  375. }
  376. EXPORT_SYMBOL(input_grab_device);
  377. static void __input_release_device(struct input_handle *handle)
  378. {
  379. struct input_dev *dev = handle->dev;
  380. if (dev->grab == handle) {
  381. rcu_assign_pointer(dev->grab, NULL);
  382. /* Make sure input_pass_event() notices that grab is gone */
  383. synchronize_rcu();
  384. list_for_each_entry(handle, &dev->h_list, d_node)
  385. if (handle->open && handle->handler->start)
  386. handle->handler->start(handle);
  387. }
  388. }
  389. /**
  390. * input_release_device - release previously grabbed device
  391. * @handle: input handle that owns the device
  392. *
  393. * Releases previously grabbed device so that other input handles can
  394. * start receiving input events. Upon release all handlers attached
  395. * to the device have their start() method called so they have a change
  396. * to synchronize device state with the rest of the system.
  397. */
  398. void input_release_device(struct input_handle *handle)
  399. {
  400. struct input_dev *dev = handle->dev;
  401. mutex_lock(&dev->mutex);
  402. __input_release_device(handle);
  403. mutex_unlock(&dev->mutex);
  404. }
  405. EXPORT_SYMBOL(input_release_device);
  406. /**
  407. * input_open_device - open input device
  408. * @handle: handle through which device is being accessed
  409. *
  410. * This function should be called by input handlers when they
  411. * want to start receive events from given input device.
  412. */
  413. int input_open_device(struct input_handle *handle)
  414. {
  415. struct input_dev *dev = handle->dev;
  416. int retval;
  417. retval = mutex_lock_interruptible(&dev->mutex);
  418. if (retval)
  419. return retval;
  420. if (dev->going_away) {
  421. retval = -ENODEV;
  422. goto out;
  423. }
  424. handle->open++;
  425. if (!dev->users++ && dev->open)
  426. retval = dev->open(dev);
  427. if (retval) {
  428. dev->users--;
  429. if (!--handle->open) {
  430. /*
  431. * Make sure we are not delivering any more events
  432. * through this handle
  433. */
  434. synchronize_rcu();
  435. }
  436. }
  437. out:
  438. mutex_unlock(&dev->mutex);
  439. return retval;
  440. }
  441. EXPORT_SYMBOL(input_open_device);
  442. int input_flush_device(struct input_handle *handle, struct file *file)
  443. {
  444. struct input_dev *dev = handle->dev;
  445. int retval;
  446. retval = mutex_lock_interruptible(&dev->mutex);
  447. if (retval)
  448. return retval;
  449. if (dev->flush)
  450. retval = dev->flush(dev, file);
  451. mutex_unlock(&dev->mutex);
  452. return retval;
  453. }
  454. EXPORT_SYMBOL(input_flush_device);
  455. /**
  456. * input_close_device - close input device
  457. * @handle: handle through which device is being accessed
  458. *
  459. * This function should be called by input handlers when they
  460. * want to stop receive events from given input device.
  461. */
  462. void input_close_device(struct input_handle *handle)
  463. {
  464. struct input_dev *dev = handle->dev;
  465. mutex_lock(&dev->mutex);
  466. __input_release_device(handle);
  467. if (!--dev->users && dev->close)
  468. dev->close(dev);
  469. if (!--handle->open) {
  470. /*
  471. * synchronize_rcu() makes sure that input_pass_event()
  472. * completed and that no more input events are delivered
  473. * through this handle
  474. */
  475. synchronize_rcu();
  476. }
  477. mutex_unlock(&dev->mutex);
  478. }
  479. EXPORT_SYMBOL(input_close_device);
  480. /*
  481. * Simulate keyup events for all keys that are marked as pressed.
  482. * The function must be called with dev->event_lock held.
  483. */
  484. static void input_dev_release_keys(struct input_dev *dev)
  485. {
  486. int code;
  487. if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
  488. for (code = 0; code <= KEY_MAX; code++) {
  489. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  490. __test_and_clear_bit(code, dev->key)) {
  491. input_pass_event(dev, EV_KEY, code, 0);
  492. }
  493. }
  494. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  495. }
  496. }
  497. /*
  498. * Prepare device for unregistering
  499. */
  500. static void input_disconnect_device(struct input_dev *dev)
  501. {
  502. struct input_handle *handle;
  503. /*
  504. * Mark device as going away. Note that we take dev->mutex here
  505. * not to protect access to dev->going_away but rather to ensure
  506. * that there are no threads in the middle of input_open_device()
  507. */
  508. mutex_lock(&dev->mutex);
  509. dev->going_away = true;
  510. mutex_unlock(&dev->mutex);
  511. spin_lock_irq(&dev->event_lock);
  512. /*
  513. * Simulate keyup events for all pressed keys so that handlers
  514. * are not left with "stuck" keys. The driver may continue
  515. * generate events even after we done here but they will not
  516. * reach any handlers.
  517. */
  518. input_dev_release_keys(dev);
  519. list_for_each_entry(handle, &dev->h_list, d_node)
  520. handle->open = 0;
  521. spin_unlock_irq(&dev->event_lock);
  522. }
  523. static int input_fetch_keycode(struct input_dev *dev, int scancode)
  524. {
  525. switch (dev->keycodesize) {
  526. case 1:
  527. return ((u8 *)dev->keycode)[scancode];
  528. case 2:
  529. return ((u16 *)dev->keycode)[scancode];
  530. default:
  531. return ((u32 *)dev->keycode)[scancode];
  532. }
  533. }
  534. static int input_default_getkeycode(struct input_dev *dev,
  535. unsigned int scancode,
  536. unsigned int *keycode)
  537. {
  538. if (!dev->keycodesize)
  539. return -EINVAL;
  540. if (scancode >= dev->keycodemax)
  541. return -EINVAL;
  542. *keycode = input_fetch_keycode(dev, scancode);
  543. return 0;
  544. }
  545. static int input_default_setkeycode(struct input_dev *dev,
  546. unsigned int scancode,
  547. unsigned int keycode)
  548. {
  549. int old_keycode;
  550. int i;
  551. if (scancode >= dev->keycodemax)
  552. return -EINVAL;
  553. if (!dev->keycodesize)
  554. return -EINVAL;
  555. if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
  556. return -EINVAL;
  557. switch (dev->keycodesize) {
  558. case 1: {
  559. u8 *k = (u8 *)dev->keycode;
  560. old_keycode = k[scancode];
  561. k[scancode] = keycode;
  562. break;
  563. }
  564. case 2: {
  565. u16 *k = (u16 *)dev->keycode;
  566. old_keycode = k[scancode];
  567. k[scancode] = keycode;
  568. break;
  569. }
  570. default: {
  571. u32 *k = (u32 *)dev->keycode;
  572. old_keycode = k[scancode];
  573. k[scancode] = keycode;
  574. break;
  575. }
  576. }
  577. __clear_bit(old_keycode, dev->keybit);
  578. __set_bit(keycode, dev->keybit);
  579. for (i = 0; i < dev->keycodemax; i++) {
  580. if (input_fetch_keycode(dev, i) == old_keycode) {
  581. __set_bit(old_keycode, dev->keybit);
  582. break; /* Setting the bit twice is useless, so break */
  583. }
  584. }
  585. return 0;
  586. }
  587. /**
  588. * input_get_keycode - retrieve keycode currently mapped to a given scancode
  589. * @dev: input device which keymap is being queried
  590. * @scancode: scancode (or its equivalent for device in question) for which
  591. * keycode is needed
  592. * @keycode: result
  593. *
  594. * This function should be called by anyone interested in retrieving current
  595. * keymap. Presently keyboard and evdev handlers use it.
  596. */
  597. int input_get_keycode(struct input_dev *dev,
  598. unsigned int scancode, unsigned int *keycode)
  599. {
  600. unsigned long flags;
  601. int retval;
  602. spin_lock_irqsave(&dev->event_lock, flags);
  603. retval = dev->getkeycode(dev, scancode, keycode);
  604. spin_unlock_irqrestore(&dev->event_lock, flags);
  605. return retval;
  606. }
  607. EXPORT_SYMBOL(input_get_keycode);
  608. /**
  609. * input_get_keycode - assign new keycode to a given scancode
  610. * @dev: input device which keymap is being updated
  611. * @scancode: scancode (or its equivalent for device in question)
  612. * @keycode: new keycode to be assigned to the scancode
  613. *
  614. * This function should be called by anyone needing to update current
  615. * keymap. Presently keyboard and evdev handlers use it.
  616. */
  617. int input_set_keycode(struct input_dev *dev,
  618. unsigned int scancode, unsigned int keycode)
  619. {
  620. unsigned long flags;
  621. unsigned int old_keycode;
  622. int retval;
  623. if (keycode > KEY_MAX)
  624. return -EINVAL;
  625. spin_lock_irqsave(&dev->event_lock, flags);
  626. retval = dev->getkeycode(dev, scancode, &old_keycode);
  627. if (retval)
  628. goto out;
  629. retval = dev->setkeycode(dev, scancode, keycode);
  630. if (retval)
  631. goto out;
  632. /* Make sure KEY_RESERVED did not get enabled. */
  633. __clear_bit(KEY_RESERVED, dev->keybit);
  634. /*
  635. * Simulate keyup event if keycode is not present
  636. * in the keymap anymore
  637. */
  638. if (test_bit(EV_KEY, dev->evbit) &&
  639. !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
  640. __test_and_clear_bit(old_keycode, dev->key)) {
  641. input_pass_event(dev, EV_KEY, old_keycode, 0);
  642. if (dev->sync)
  643. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  644. }
  645. out:
  646. spin_unlock_irqrestore(&dev->event_lock, flags);
  647. return retval;
  648. }
  649. EXPORT_SYMBOL(input_set_keycode);
  650. #define MATCH_BIT(bit, max) \
  651. for (i = 0; i < BITS_TO_LONGS(max); i++) \
  652. if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
  653. break; \
  654. if (i != BITS_TO_LONGS(max)) \
  655. continue;
  656. static const struct input_device_id *input_match_device(struct input_handler *handler,
  657. struct input_dev *dev)
  658. {
  659. const struct input_device_id *id;
  660. int i;
  661. for (id = handler->id_table; id->flags || id->driver_info; id++) {
  662. if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
  663. if (id->bustype != dev->id.bustype)
  664. continue;
  665. if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
  666. if (id->vendor != dev->id.vendor)
  667. continue;
  668. if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
  669. if (id->product != dev->id.product)
  670. continue;
  671. if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
  672. if (id->version != dev->id.version)
  673. continue;
  674. MATCH_BIT(evbit, EV_MAX);
  675. MATCH_BIT(keybit, KEY_MAX);
  676. MATCH_BIT(relbit, REL_MAX);
  677. MATCH_BIT(absbit, ABS_MAX);
  678. MATCH_BIT(mscbit, MSC_MAX);
  679. MATCH_BIT(ledbit, LED_MAX);
  680. MATCH_BIT(sndbit, SND_MAX);
  681. MATCH_BIT(ffbit, FF_MAX);
  682. MATCH_BIT(swbit, SW_MAX);
  683. if (!handler->match || handler->match(handler, dev))
  684. return id;
  685. }
  686. return NULL;
  687. }
  688. static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
  689. {
  690. const struct input_device_id *id;
  691. int error;
  692. id = input_match_device(handler, dev);
  693. if (!id)
  694. return -ENODEV;
  695. error = handler->connect(handler, dev, id);
  696. if (error && error != -ENODEV)
  697. printk(KERN_ERR
  698. "input: failed to attach handler %s to device %s, "
  699. "error: %d\n",
  700. handler->name, kobject_name(&dev->dev.kobj), error);
  701. return error;
  702. }
  703. #ifdef CONFIG_COMPAT
  704. static int input_bits_to_string(char *buf, int buf_size,
  705. unsigned long bits, bool skip_empty)
  706. {
  707. int len = 0;
  708. if (INPUT_COMPAT_TEST) {
  709. u32 dword = bits >> 32;
  710. if (dword || !skip_empty)
  711. len += snprintf(buf, buf_size, "%x ", dword);
  712. dword = bits & 0xffffffffUL;
  713. if (dword || !skip_empty || len)
  714. len += snprintf(buf + len, max(buf_size - len, 0),
  715. "%x", dword);
  716. } else {
  717. if (bits || !skip_empty)
  718. len += snprintf(buf, buf_size, "%lx", bits);
  719. }
  720. return len;
  721. }
  722. #else /* !CONFIG_COMPAT */
  723. static int input_bits_to_string(char *buf, int buf_size,
  724. unsigned long bits, bool skip_empty)
  725. {
  726. return bits || !skip_empty ?
  727. snprintf(buf, buf_size, "%lx", bits) : 0;
  728. }
  729. #endif
  730. #ifdef CONFIG_PROC_FS
  731. static struct proc_dir_entry *proc_bus_input_dir;
  732. static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
  733. static int input_devices_state;
  734. static inline void input_wakeup_procfs_readers(void)
  735. {
  736. input_devices_state++;
  737. wake_up(&input_devices_poll_wait);
  738. }
  739. static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
  740. {
  741. poll_wait(file, &input_devices_poll_wait, wait);
  742. if (file->f_version != input_devices_state) {
  743. file->f_version = input_devices_state;
  744. return POLLIN | POLLRDNORM;
  745. }
  746. return 0;
  747. }
  748. union input_seq_state {
  749. struct {
  750. unsigned short pos;
  751. bool mutex_acquired;
  752. };
  753. void *p;
  754. };
  755. static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
  756. {
  757. union input_seq_state *state = (union input_seq_state *)&seq->private;
  758. int error;
  759. /* We need to fit into seq->private pointer */
  760. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  761. error = mutex_lock_interruptible(&input_mutex);
  762. if (error) {
  763. state->mutex_acquired = false;
  764. return ERR_PTR(error);
  765. }
  766. state->mutex_acquired = true;
  767. return seq_list_start(&input_dev_list, *pos);
  768. }
  769. static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  770. {
  771. return seq_list_next(v, &input_dev_list, pos);
  772. }
  773. static void input_seq_stop(struct seq_file *seq, void *v)
  774. {
  775. union input_seq_state *state = (union input_seq_state *)&seq->private;
  776. if (state->mutex_acquired)
  777. mutex_unlock(&input_mutex);
  778. }
  779. static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
  780. unsigned long *bitmap, int max)
  781. {
  782. int i;
  783. bool skip_empty = true;
  784. char buf[18];
  785. seq_printf(seq, "B: %s=", name);
  786. for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
  787. if (input_bits_to_string(buf, sizeof(buf),
  788. bitmap[i], skip_empty)) {
  789. skip_empty = false;
  790. seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
  791. }
  792. }
  793. /*
  794. * If no output was produced print a single 0.
  795. */
  796. if (skip_empty)
  797. seq_puts(seq, "0");
  798. seq_putc(seq, '\n');
  799. }
  800. static int input_devices_seq_show(struct seq_file *seq, void *v)
  801. {
  802. struct input_dev *dev = container_of(v, struct input_dev, node);
  803. const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  804. struct input_handle *handle;
  805. seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
  806. dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
  807. seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
  808. seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
  809. seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
  810. seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
  811. seq_printf(seq, "H: Handlers=");
  812. list_for_each_entry(handle, &dev->h_list, d_node)
  813. seq_printf(seq, "%s ", handle->name);
  814. seq_putc(seq, '\n');
  815. input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
  816. if (test_bit(EV_KEY, dev->evbit))
  817. input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
  818. if (test_bit(EV_REL, dev->evbit))
  819. input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
  820. if (test_bit(EV_ABS, dev->evbit))
  821. input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
  822. if (test_bit(EV_MSC, dev->evbit))
  823. input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
  824. if (test_bit(EV_LED, dev->evbit))
  825. input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
  826. if (test_bit(EV_SND, dev->evbit))
  827. input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
  828. if (test_bit(EV_FF, dev->evbit))
  829. input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
  830. if (test_bit(EV_SW, dev->evbit))
  831. input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
  832. seq_putc(seq, '\n');
  833. kfree(path);
  834. return 0;
  835. }
  836. static const struct seq_operations input_devices_seq_ops = {
  837. .start = input_devices_seq_start,
  838. .next = input_devices_seq_next,
  839. .stop = input_seq_stop,
  840. .show = input_devices_seq_show,
  841. };
  842. static int input_proc_devices_open(struct inode *inode, struct file *file)
  843. {
  844. return seq_open(file, &input_devices_seq_ops);
  845. }
  846. static const struct file_operations input_devices_fileops = {
  847. .owner = THIS_MODULE,
  848. .open = input_proc_devices_open,
  849. .poll = input_proc_devices_poll,
  850. .read = seq_read,
  851. .llseek = seq_lseek,
  852. .release = seq_release,
  853. };
  854. static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
  855. {
  856. union input_seq_state *state = (union input_seq_state *)&seq->private;
  857. int error;
  858. /* We need to fit into seq->private pointer */
  859. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  860. error = mutex_lock_interruptible(&input_mutex);
  861. if (error) {
  862. state->mutex_acquired = false;
  863. return ERR_PTR(error);
  864. }
  865. state->mutex_acquired = true;
  866. state->pos = *pos;
  867. return seq_list_start(&input_handler_list, *pos);
  868. }
  869. static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  870. {
  871. union input_seq_state *state = (union input_seq_state *)&seq->private;
  872. state->pos = *pos + 1;
  873. return seq_list_next(v, &input_handler_list, pos);
  874. }
  875. static int input_handlers_seq_show(struct seq_file *seq, void *v)
  876. {
  877. struct input_handler *handler = container_of(v, struct input_handler, node);
  878. union input_seq_state *state = (union input_seq_state *)&seq->private;
  879. seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
  880. if (handler->filter)
  881. seq_puts(seq, " (filter)");
  882. if (handler->fops)
  883. seq_printf(seq, " Minor=%d", handler->minor);
  884. seq_putc(seq, '\n');
  885. return 0;
  886. }
  887. static const struct seq_operations input_handlers_seq_ops = {
  888. .start = input_handlers_seq_start,
  889. .next = input_handlers_seq_next,
  890. .stop = input_seq_stop,
  891. .show = input_handlers_seq_show,
  892. };
  893. static int input_proc_handlers_open(struct inode *inode, struct file *file)
  894. {
  895. return seq_open(file, &input_handlers_seq_ops);
  896. }
  897. static const struct file_operations input_handlers_fileops = {
  898. .owner = THIS_MODULE,
  899. .open = input_proc_handlers_open,
  900. .read = seq_read,
  901. .llseek = seq_lseek,
  902. .release = seq_release,
  903. };
  904. static int __init input_proc_init(void)
  905. {
  906. struct proc_dir_entry *entry;
  907. proc_bus_input_dir = proc_mkdir("bus/input", NULL);
  908. if (!proc_bus_input_dir)
  909. return -ENOMEM;
  910. entry = proc_create("devices", 0, proc_bus_input_dir,
  911. &input_devices_fileops);
  912. if (!entry)
  913. goto fail1;
  914. entry = proc_create("handlers", 0, proc_bus_input_dir,
  915. &input_handlers_fileops);
  916. if (!entry)
  917. goto fail2;
  918. return 0;
  919. fail2: remove_proc_entry("devices", proc_bus_input_dir);
  920. fail1: remove_proc_entry("bus/input", NULL);
  921. return -ENOMEM;
  922. }
  923. static void input_proc_exit(void)
  924. {
  925. remove_proc_entry("devices", proc_bus_input_dir);
  926. remove_proc_entry("handlers", proc_bus_input_dir);
  927. remove_proc_entry("bus/input", NULL);
  928. }
  929. #else /* !CONFIG_PROC_FS */
  930. static inline void input_wakeup_procfs_readers(void) { }
  931. static inline int input_proc_init(void) { return 0; }
  932. static inline void input_proc_exit(void) { }
  933. #endif
  934. #define INPUT_DEV_STRING_ATTR_SHOW(name) \
  935. static ssize_t input_dev_show_##name(struct device *dev, \
  936. struct device_attribute *attr, \
  937. char *buf) \
  938. { \
  939. struct input_dev *input_dev = to_input_dev(dev); \
  940. \
  941. return scnprintf(buf, PAGE_SIZE, "%s\n", \
  942. input_dev->name ? input_dev->name : ""); \
  943. } \
  944. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
  945. INPUT_DEV_STRING_ATTR_SHOW(name);
  946. INPUT_DEV_STRING_ATTR_SHOW(phys);
  947. INPUT_DEV_STRING_ATTR_SHOW(uniq);
  948. static int input_print_modalias_bits(char *buf, int size,
  949. char name, unsigned long *bm,
  950. unsigned int min_bit, unsigned int max_bit)
  951. {
  952. int len = 0, i;
  953. len += snprintf(buf, max(size, 0), "%c", name);
  954. for (i = min_bit; i < max_bit; i++)
  955. if (bm[BIT_WORD(i)] & BIT_MASK(i))
  956. len += snprintf(buf + len, max(size - len, 0), "%X,", i);
  957. return len;
  958. }
  959. static int input_print_modalias(char *buf, int size, struct input_dev *id,
  960. int add_cr)
  961. {
  962. int len;
  963. len = snprintf(buf, max(size, 0),
  964. "input:b%04Xv%04Xp%04Xe%04X-",
  965. id->id.bustype, id->id.vendor,
  966. id->id.product, id->id.version);
  967. len += input_print_modalias_bits(buf + len, size - len,
  968. 'e', id->evbit, 0, EV_MAX);
  969. len += input_print_modalias_bits(buf + len, size - len,
  970. 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
  971. len += input_print_modalias_bits(buf + len, size - len,
  972. 'r', id->relbit, 0, REL_MAX);
  973. len += input_print_modalias_bits(buf + len, size - len,
  974. 'a', id->absbit, 0, ABS_MAX);
  975. len += input_print_modalias_bits(buf + len, size - len,
  976. 'm', id->mscbit, 0, MSC_MAX);
  977. len += input_print_modalias_bits(buf + len, size - len,
  978. 'l', id->ledbit, 0, LED_MAX);
  979. len += input_print_modalias_bits(buf + len, size - len,
  980. 's', id->sndbit, 0, SND_MAX);
  981. len += input_print_modalias_bits(buf + len, size - len,
  982. 'f', id->ffbit, 0, FF_MAX);
  983. len += input_print_modalias_bits(buf + len, size - len,
  984. 'w', id->swbit, 0, SW_MAX);
  985. if (add_cr)
  986. len += snprintf(buf + len, max(size - len, 0), "\n");
  987. return len;
  988. }
  989. static ssize_t input_dev_show_modalias(struct device *dev,
  990. struct device_attribute *attr,
  991. char *buf)
  992. {
  993. struct input_dev *id = to_input_dev(dev);
  994. ssize_t len;
  995. len = input_print_modalias(buf, PAGE_SIZE, id, 1);
  996. return min_t(int, len, PAGE_SIZE);
  997. }
  998. static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
  999. static struct attribute *input_dev_attrs[] = {
  1000. &dev_attr_name.attr,
  1001. &dev_attr_phys.attr,
  1002. &dev_attr_uniq.attr,
  1003. &dev_attr_modalias.attr,
  1004. NULL
  1005. };
  1006. static struct attribute_group input_dev_attr_group = {
  1007. .attrs = input_dev_attrs,
  1008. };
  1009. #define INPUT_DEV_ID_ATTR(name) \
  1010. static ssize_t input_dev_show_id_##name(struct device *dev, \
  1011. struct device_attribute *attr, \
  1012. char *buf) \
  1013. { \
  1014. struct input_dev *input_dev = to_input_dev(dev); \
  1015. return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
  1016. } \
  1017. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
  1018. INPUT_DEV_ID_ATTR(bustype);
  1019. INPUT_DEV_ID_ATTR(vendor);
  1020. INPUT_DEV_ID_ATTR(product);
  1021. INPUT_DEV_ID_ATTR(version);
  1022. static struct attribute *input_dev_id_attrs[] = {
  1023. &dev_attr_bustype.attr,
  1024. &dev_attr_vendor.attr,
  1025. &dev_attr_product.attr,
  1026. &dev_attr_version.attr,
  1027. NULL
  1028. };
  1029. static struct attribute_group input_dev_id_attr_group = {
  1030. .name = "id",
  1031. .attrs = input_dev_id_attrs,
  1032. };
  1033. static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
  1034. int max, int add_cr)
  1035. {
  1036. int i;
  1037. int len = 0;
  1038. bool skip_empty = true;
  1039. for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
  1040. len += input_bits_to_string(buf + len, max(buf_size - len, 0),
  1041. bitmap[i], skip_empty);
  1042. if (len) {
  1043. skip_empty = false;
  1044. if (i > 0)
  1045. len += snprintf(buf + len, max(buf_size - len, 0), " ");
  1046. }
  1047. }
  1048. /*
  1049. * If no output was produced print a single 0.
  1050. */
  1051. if (len == 0)
  1052. len = snprintf(buf, buf_size, "%d", 0);
  1053. if (add_cr)
  1054. len += snprintf(buf + len, max(buf_size - len, 0), "\n");
  1055. return len;
  1056. }
  1057. #define INPUT_DEV_CAP_ATTR(ev, bm) \
  1058. static ssize_t input_dev_show_cap_##bm(struct device *dev, \
  1059. struct device_attribute *attr, \
  1060. char *buf) \
  1061. { \
  1062. struct input_dev *input_dev = to_input_dev(dev); \
  1063. int len = input_print_bitmap(buf, PAGE_SIZE, \
  1064. input_dev->bm##bit, ev##_MAX, \
  1065. true); \
  1066. return min_t(int, len, PAGE_SIZE); \
  1067. } \
  1068. static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
  1069. INPUT_DEV_CAP_ATTR(EV, ev);
  1070. INPUT_DEV_CAP_ATTR(KEY, key);
  1071. INPUT_DEV_CAP_ATTR(REL, rel);
  1072. INPUT_DEV_CAP_ATTR(ABS, abs);
  1073. INPUT_DEV_CAP_ATTR(MSC, msc);
  1074. INPUT_DEV_CAP_ATTR(LED, led);
  1075. INPUT_DEV_CAP_ATTR(SND, snd);
  1076. INPUT_DEV_CAP_ATTR(FF, ff);
  1077. INPUT_DEV_CAP_ATTR(SW, sw);
  1078. static struct attribute *input_dev_caps_attrs[] = {
  1079. &dev_attr_ev.attr,
  1080. &dev_attr_key.attr,
  1081. &dev_attr_rel.attr,
  1082. &dev_attr_abs.attr,
  1083. &dev_attr_msc.attr,
  1084. &dev_attr_led.attr,
  1085. &dev_attr_snd.attr,
  1086. &dev_attr_ff.attr,
  1087. &dev_attr_sw.attr,
  1088. NULL
  1089. };
  1090. static struct attribute_group input_dev_caps_attr_group = {
  1091. .name = "capabilities",
  1092. .attrs = input_dev_caps_attrs,
  1093. };
  1094. static const struct attribute_group *input_dev_attr_groups[] = {
  1095. &input_dev_attr_group,
  1096. &input_dev_id_attr_group,
  1097. &input_dev_caps_attr_group,
  1098. NULL
  1099. };
  1100. static void input_dev_release(struct device *device)
  1101. {
  1102. struct input_dev *dev = to_input_dev(device);
  1103. input_ff_destroy(dev);
  1104. input_mt_destroy_slots(dev);
  1105. kfree(dev->absinfo);
  1106. kfree(dev);
  1107. module_put(THIS_MODULE);
  1108. }
  1109. /*
  1110. * Input uevent interface - loading event handlers based on
  1111. * device bitfields.
  1112. */
  1113. static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
  1114. const char *name, unsigned long *bitmap, int max)
  1115. {
  1116. int len;
  1117. if (add_uevent_var(env, "%s=", name))
  1118. return -ENOMEM;
  1119. len = input_print_bitmap(&env->buf[env->buflen - 1],
  1120. sizeof(env->buf) - env->buflen,
  1121. bitmap, max, false);
  1122. if (len >= (sizeof(env->buf) - env->buflen))
  1123. return -ENOMEM;
  1124. env->buflen += len;
  1125. return 0;
  1126. }
  1127. static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
  1128. struct input_dev *dev)
  1129. {
  1130. int len;
  1131. if (add_uevent_var(env, "MODALIAS="))
  1132. return -ENOMEM;
  1133. len = input_print_modalias(&env->buf[env->buflen - 1],
  1134. sizeof(env->buf) - env->buflen,
  1135. dev, 0);
  1136. if (len >= (sizeof(env->buf) - env->buflen))
  1137. return -ENOMEM;
  1138. env->buflen += len;
  1139. return 0;
  1140. }
  1141. #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
  1142. do { \
  1143. int err = add_uevent_var(env, fmt, val); \
  1144. if (err) \
  1145. return err; \
  1146. } while (0)
  1147. #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
  1148. do { \
  1149. int err = input_add_uevent_bm_var(env, name, bm, max); \
  1150. if (err) \
  1151. return err; \
  1152. } while (0)
  1153. #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
  1154. do { \
  1155. int err = input_add_uevent_modalias_var(env, dev); \
  1156. if (err) \
  1157. return err; \
  1158. } while (0)
  1159. static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
  1160. {
  1161. struct input_dev *dev = to_input_dev(device);
  1162. INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
  1163. dev->id.bustype, dev->id.vendor,
  1164. dev->id.product, dev->id.version);
  1165. if (dev->name)
  1166. INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
  1167. if (dev->phys)
  1168. INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
  1169. if (dev->uniq)
  1170. INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
  1171. INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
  1172. if (test_bit(EV_KEY, dev->evbit))
  1173. INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
  1174. if (test_bit(EV_REL, dev->evbit))
  1175. INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
  1176. if (test_bit(EV_ABS, dev->evbit))
  1177. INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
  1178. if (test_bit(EV_MSC, dev->evbit))
  1179. INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
  1180. if (test_bit(EV_LED, dev->evbit))
  1181. INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
  1182. if (test_bit(EV_SND, dev->evbit))
  1183. INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
  1184. if (test_bit(EV_FF, dev->evbit))
  1185. INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
  1186. if (test_bit(EV_SW, dev->evbit))
  1187. INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
  1188. INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
  1189. return 0;
  1190. }
  1191. #define INPUT_DO_TOGGLE(dev, type, bits, on) \
  1192. do { \
  1193. int i; \
  1194. bool active; \
  1195. \
  1196. if (!test_bit(EV_##type, dev->evbit)) \
  1197. break; \
  1198. \
  1199. for (i = 0; i < type##_MAX; i++) { \
  1200. if (!test_bit(i, dev->bits##bit)) \
  1201. continue; \
  1202. \
  1203. active = test_bit(i, dev->bits); \
  1204. if (!active && !on) \
  1205. continue; \
  1206. \
  1207. dev->event(dev, EV_##type, i, on ? active : 0); \
  1208. } \
  1209. } while (0)
  1210. #ifdef CONFIG_PM
  1211. static void input_dev_reset(struct input_dev *dev, bool activate)
  1212. {
  1213. if (!dev->event)
  1214. return;
  1215. INPUT_DO_TOGGLE(dev, LED, led, activate);
  1216. INPUT_DO_TOGGLE(dev, SND, snd, activate);
  1217. if (activate && test_bit(EV_REP, dev->evbit)) {
  1218. dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
  1219. dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
  1220. }
  1221. }
  1222. static int input_dev_suspend(struct device *dev)
  1223. {
  1224. struct input_dev *input_dev = to_input_dev(dev);
  1225. mutex_lock(&input_dev->mutex);
  1226. input_dev_reset(input_dev, false);
  1227. mutex_unlock(&input_dev->mutex);
  1228. return 0;
  1229. }
  1230. static int input_dev_resume(struct device *dev)
  1231. {
  1232. struct input_dev *input_dev = to_input_dev(dev);
  1233. mutex_lock(&input_dev->mutex);
  1234. input_dev_reset(input_dev, true);
  1235. /*
  1236. * Keys that have been pressed at suspend time are unlikely
  1237. * to be still pressed when we resume.
  1238. */
  1239. spin_lock_irq(&input_dev->event_lock);
  1240. input_dev_release_keys(input_dev);
  1241. spin_unlock_irq(&input_dev->event_lock);
  1242. mutex_unlock(&input_dev->mutex);
  1243. return 0;
  1244. }
  1245. static const struct dev_pm_ops input_dev_pm_ops = {
  1246. .suspend = input_dev_suspend,
  1247. .resume = input_dev_resume,
  1248. .poweroff = input_dev_suspend,
  1249. .restore = input_dev_resume,
  1250. };
  1251. #endif /* CONFIG_PM */
  1252. static struct device_type input_dev_type = {
  1253. .groups = input_dev_attr_groups,
  1254. .release = input_dev_release,
  1255. .uevent = input_dev_uevent,
  1256. #ifdef CONFIG_PM
  1257. .pm = &input_dev_pm_ops,
  1258. #endif
  1259. };
  1260. static char *input_devnode(struct device *dev, mode_t *mode)
  1261. {
  1262. return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
  1263. }
  1264. struct class input_class = {
  1265. .name = "input",
  1266. .devnode = input_devnode,
  1267. };
  1268. EXPORT_SYMBOL_GPL(input_class);
  1269. /**
  1270. * input_allocate_device - allocate memory for new input device
  1271. *
  1272. * Returns prepared struct input_dev or NULL.
  1273. *
  1274. * NOTE: Use input_free_device() to free devices that have not been
  1275. * registered; input_unregister_device() should be used for already
  1276. * registered devices.
  1277. */
  1278. struct input_dev *input_allocate_device(void)
  1279. {
  1280. struct input_dev *dev;
  1281. dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
  1282. if (dev) {
  1283. dev->dev.type = &input_dev_type;
  1284. dev->dev.class = &input_class;
  1285. device_initialize(&dev->dev);
  1286. mutex_init(&dev->mutex);
  1287. spin_lock_init(&dev->event_lock);
  1288. INIT_LIST_HEAD(&dev->h_list);
  1289. INIT_LIST_HEAD(&dev->node);
  1290. __module_get(THIS_MODULE);
  1291. }
  1292. return dev;
  1293. }
  1294. EXPORT_SYMBOL(input_allocate_device);
  1295. /**
  1296. * input_free_device - free memory occupied by input_dev structure
  1297. * @dev: input device to free
  1298. *
  1299. * This function should only be used if input_register_device()
  1300. * was not called yet or if it failed. Once device was registered
  1301. * use input_unregister_device() and memory will be freed once last
  1302. * reference to the device is dropped.
  1303. *
  1304. * Device should be allocated by input_allocate_device().
  1305. *
  1306. * NOTE: If there are references to the input device then memory
  1307. * will not be freed until last reference is dropped.
  1308. */
  1309. void input_free_device(struct input_dev *dev)
  1310. {
  1311. if (dev)
  1312. input_put_device(dev);
  1313. }
  1314. EXPORT_SYMBOL(input_free_device);
  1315. /**
  1316. * input_mt_create_slots() - create MT input slots
  1317. * @dev: input device supporting MT events and finger tracking
  1318. * @num_slots: number of slots used by the device
  1319. *
  1320. * This function allocates all necessary memory for MT slot handling in the
  1321. * input device, and adds ABS_MT_SLOT to the device capabilities. All slots
  1322. * are initially marked as unused iby setting ABS_MT_TRACKING_ID to -1.
  1323. */
  1324. int input_mt_create_slots(struct input_dev *dev, unsigned int num_slots)
  1325. {
  1326. int i;
  1327. if (!num_slots)
  1328. return 0;
  1329. dev->mt = kcalloc(num_slots, sizeof(struct input_mt_slot), GFP_KERNEL);
  1330. if (!dev->mt)
  1331. return -ENOMEM;
  1332. dev->mtsize = num_slots;
  1333. input_set_abs_params(dev, ABS_MT_SLOT, 0, num_slots - 1, 0, 0);
  1334. /* Mark slots as 'unused' */
  1335. for (i = 0; i < num_slots; i++)
  1336. dev->mt[i].abs[ABS_MT_TRACKING_ID - ABS_MT_FIRST] = -1;
  1337. return 0;
  1338. }
  1339. EXPORT_SYMBOL(input_mt_create_slots);
  1340. /**
  1341. * input_mt_destroy_slots() - frees the MT slots of the input device
  1342. * @dev: input device with allocated MT slots
  1343. *
  1344. * This function is only needed in error path as the input core will
  1345. * automatically free the MT slots when the device is destroyed.
  1346. */
  1347. void input_mt_destroy_slots(struct input_dev *dev)
  1348. {
  1349. kfree(dev->mt);
  1350. dev->mt = NULL;
  1351. dev->mtsize = 0;
  1352. }
  1353. EXPORT_SYMBOL(input_mt_destroy_slots);
  1354. /**
  1355. * input_set_capability - mark device as capable of a certain event
  1356. * @dev: device that is capable of emitting or accepting event
  1357. * @type: type of the event (EV_KEY, EV_REL, etc...)
  1358. * @code: event code
  1359. *
  1360. * In addition to setting up corresponding bit in appropriate capability
  1361. * bitmap the function also adjusts dev->evbit.
  1362. */
  1363. void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
  1364. {
  1365. switch (type) {
  1366. case EV_KEY:
  1367. __set_bit(code, dev->keybit);
  1368. break;
  1369. case EV_REL:
  1370. __set_bit(code, dev->relbit);
  1371. break;
  1372. case EV_ABS:
  1373. __set_bit(code, dev->absbit);
  1374. break;
  1375. case EV_MSC:
  1376. __set_bit(code, dev->mscbit);
  1377. break;
  1378. case EV_SW:
  1379. __set_bit(code, dev->swbit);
  1380. break;
  1381. case EV_LED:
  1382. __set_bit(code, dev->ledbit);
  1383. break;
  1384. case EV_SND:
  1385. __set_bit(code, dev->sndbit);
  1386. break;
  1387. case EV_FF:
  1388. __set_bit(code, dev->ffbit);
  1389. break;
  1390. case EV_PWR:
  1391. /* do nothing */
  1392. break;
  1393. default:
  1394. printk(KERN_ERR
  1395. "input_set_capability: unknown type %u (code %u)\n",
  1396. type, code);
  1397. dump_stack();
  1398. return;
  1399. }
  1400. __set_bit(type, dev->evbit);
  1401. }
  1402. EXPORT_SYMBOL(input_set_capability);
  1403. #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
  1404. do { \
  1405. if (!test_bit(EV_##type, dev->evbit)) \
  1406. memset(dev->bits##bit, 0, \
  1407. sizeof(dev->bits##bit)); \
  1408. } while (0)
  1409. static void input_cleanse_bitmasks(struct input_dev *dev)
  1410. {
  1411. INPUT_CLEANSE_BITMASK(dev, KEY, key);
  1412. INPUT_CLEANSE_BITMASK(dev, REL, rel);
  1413. INPUT_CLEANSE_BITMASK(dev, ABS, abs);
  1414. INPUT_CLEANSE_BITMASK(dev, MSC, msc);
  1415. INPUT_CLEANSE_BITMASK(dev, LED, led);
  1416. INPUT_CLEANSE_BITMASK(dev, SND, snd);
  1417. INPUT_CLEANSE_BITMASK(dev, FF, ff);
  1418. INPUT_CLEANSE_BITMASK(dev, SW, sw);
  1419. }
  1420. /**
  1421. * input_register_device - register device with input core
  1422. * @dev: device to be registered
  1423. *
  1424. * This function registers device with input core. The device must be
  1425. * allocated with input_allocate_device() and all it's capabilities
  1426. * set up before registering.
  1427. * If function fails the device must be freed with input_free_device().
  1428. * Once device has been successfully registered it can be unregistered
  1429. * with input_unregister_device(); input_free_device() should not be
  1430. * called in this case.
  1431. */
  1432. int input_register_device(struct input_dev *dev)
  1433. {
  1434. static atomic_t input_no = ATOMIC_INIT(0);
  1435. struct input_handler *handler;
  1436. const char *path;
  1437. int error;
  1438. /* Every input device generates EV_SYN/SYN_REPORT events. */
  1439. __set_bit(EV_SYN, dev->evbit);
  1440. /* KEY_RESERVED is not supposed to be transmitted to userspace. */
  1441. __clear_bit(KEY_RESERVED, dev->keybit);
  1442. /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
  1443. input_cleanse_bitmasks(dev);
  1444. /*
  1445. * If delay and period are pre-set by the driver, then autorepeating
  1446. * is handled by the driver itself and we don't do it in input.c.
  1447. */
  1448. init_timer(&dev->timer);
  1449. if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
  1450. dev->timer.data = (long) dev;
  1451. dev->timer.function = input_repeat_key;
  1452. dev->rep[REP_DELAY] = 250;
  1453. dev->rep[REP_PERIOD] = 33;
  1454. }
  1455. if (!dev->getkeycode)
  1456. dev->getkeycode = input_default_getkeycode;
  1457. if (!dev->setkeycode)
  1458. dev->setkeycode = input_default_setkeycode;
  1459. dev_set_name(&dev->dev, "input%ld",
  1460. (unsigned long) atomic_inc_return(&input_no) - 1);
  1461. error = device_add(&dev->dev);
  1462. if (error)
  1463. return error;
  1464. path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  1465. printk(KERN_INFO "input: %s as %s\n",
  1466. dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
  1467. kfree(path);
  1468. error = mutex_lock_interruptible(&input_mutex);
  1469. if (error) {
  1470. device_del(&dev->dev);
  1471. return error;
  1472. }
  1473. list_add_tail(&dev->node, &input_dev_list);
  1474. list_for_each_entry(handler, &input_handler_list, node)
  1475. input_attach_handler(dev, handler);
  1476. input_wakeup_procfs_readers();
  1477. mutex_unlock(&input_mutex);
  1478. return 0;
  1479. }
  1480. EXPORT_SYMBOL(input_register_device);
  1481. /**
  1482. * input_unregister_device - unregister previously registered device
  1483. * @dev: device to be unregistered
  1484. *
  1485. * This function unregisters an input device. Once device is unregistered
  1486. * the caller should not try to access it as it may get freed at any moment.
  1487. */
  1488. void input_unregister_device(struct input_dev *dev)
  1489. {
  1490. struct input_handle *handle, *next;
  1491. input_disconnect_device(dev);
  1492. mutex_lock(&input_mutex);
  1493. list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
  1494. handle->handler->disconnect(handle);
  1495. WARN_ON(!list_empty(&dev->h_list));
  1496. del_timer_sync(&dev->timer);
  1497. list_del_init(&dev->node);
  1498. input_wakeup_procfs_readers();
  1499. mutex_unlock(&input_mutex);
  1500. device_unregister(&dev->dev);
  1501. }
  1502. EXPORT_SYMBOL(input_unregister_device);
  1503. /**
  1504. * input_register_handler - register a new input handler
  1505. * @handler: handler to be registered
  1506. *
  1507. * This function registers a new input handler (interface) for input
  1508. * devices in the system and attaches it to all input devices that
  1509. * are compatible with the handler.
  1510. */
  1511. int input_register_handler(struct input_handler *handler)
  1512. {
  1513. struct input_dev *dev;
  1514. int retval;
  1515. retval = mutex_lock_interruptible(&input_mutex);
  1516. if (retval)
  1517. return retval;
  1518. INIT_LIST_HEAD(&handler->h_list);
  1519. if (handler->fops != NULL) {
  1520. if (input_table[handler->minor >> 5]) {
  1521. retval = -EBUSY;
  1522. goto out;
  1523. }
  1524. input_table[handler->minor >> 5] = handler;
  1525. }
  1526. list_add_tail(&handler->node, &input_handler_list);
  1527. list_for_each_entry(dev, &input_dev_list, node)
  1528. input_attach_handler(dev, handler);
  1529. input_wakeup_procfs_readers();
  1530. out:
  1531. mutex_unlock(&input_mutex);
  1532. return retval;
  1533. }
  1534. EXPORT_SYMBOL(input_register_handler);
  1535. /**
  1536. * input_unregister_handler - unregisters an input handler
  1537. * @handler: handler to be unregistered
  1538. *
  1539. * This function disconnects a handler from its input devices and
  1540. * removes it from lists of known handlers.
  1541. */
  1542. void input_unregister_handler(struct input_handler *handler)
  1543. {
  1544. struct input_handle *handle, *next;
  1545. mutex_lock(&input_mutex);
  1546. list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
  1547. handler->disconnect(handle);
  1548. WARN_ON(!list_empty(&handler->h_list));
  1549. list_del_init(&handler->node);
  1550. if (handler->fops != NULL)
  1551. input_table[handler->minor >> 5] = NULL;
  1552. input_wakeup_procfs_readers();
  1553. mutex_unlock(&input_mutex);
  1554. }
  1555. EXPORT_SYMBOL(input_unregister_handler);
  1556. /**
  1557. * input_handler_for_each_handle - handle iterator
  1558. * @handler: input handler to iterate
  1559. * @data: data for the callback
  1560. * @fn: function to be called for each handle
  1561. *
  1562. * Iterate over @bus's list of devices, and call @fn for each, passing
  1563. * it @data and stop when @fn returns a non-zero value. The function is
  1564. * using RCU to traverse the list and therefore may be usind in atonic
  1565. * contexts. The @fn callback is invoked from RCU critical section and
  1566. * thus must not sleep.
  1567. */
  1568. int input_handler_for_each_handle(struct input_handler *handler, void *data,
  1569. int (*fn)(struct input_handle *, void *))
  1570. {
  1571. struct input_handle *handle;
  1572. int retval = 0;
  1573. rcu_read_lock();
  1574. list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
  1575. retval = fn(handle, data);
  1576. if (retval)
  1577. break;
  1578. }
  1579. rcu_read_unlock();
  1580. return retval;
  1581. }
  1582. EXPORT_SYMBOL(input_handler_for_each_handle);
  1583. /**
  1584. * input_register_handle - register a new input handle
  1585. * @handle: handle to register
  1586. *
  1587. * This function puts a new input handle onto device's
  1588. * and handler's lists so that events can flow through
  1589. * it once it is opened using input_open_device().
  1590. *
  1591. * This function is supposed to be called from handler's
  1592. * connect() method.
  1593. */
  1594. int input_register_handle(struct input_handle *handle)
  1595. {
  1596. struct input_handler *handler = handle->handler;
  1597. struct input_dev *dev = handle->dev;
  1598. int error;
  1599. /*
  1600. * We take dev->mutex here to prevent race with
  1601. * input_release_device().
  1602. */
  1603. error = mutex_lock_interruptible(&dev->mutex);
  1604. if (error)
  1605. return error;
  1606. /*
  1607. * Filters go to the head of the list, normal handlers
  1608. * to the tail.
  1609. */
  1610. if (handler->filter)
  1611. list_add_rcu(&handle->d_node, &dev->h_list);
  1612. else
  1613. list_add_tail_rcu(&handle->d_node, &dev->h_list);
  1614. mutex_unlock(&dev->mutex);
  1615. /*
  1616. * Since we are supposed to be called from ->connect()
  1617. * which is mutually exclusive with ->disconnect()
  1618. * we can't be racing with input_unregister_handle()
  1619. * and so separate lock is not needed here.
  1620. */
  1621. list_add_tail_rcu(&handle->h_node, &handler->h_list);
  1622. if (handler->start)
  1623. handler->start(handle);
  1624. return 0;
  1625. }
  1626. EXPORT_SYMBOL(input_register_handle);
  1627. /**
  1628. * input_unregister_handle - unregister an input handle
  1629. * @handle: handle to unregister
  1630. *
  1631. * This function removes input handle from device's
  1632. * and handler's lists.
  1633. *
  1634. * This function is supposed to be called from handler's
  1635. * disconnect() method.
  1636. */
  1637. void input_unregister_handle(struct input_handle *handle)
  1638. {
  1639. struct input_dev *dev = handle->dev;
  1640. list_del_rcu(&handle->h_node);
  1641. /*
  1642. * Take dev->mutex to prevent race with input_release_device().
  1643. */
  1644. mutex_lock(&dev->mutex);
  1645. list_del_rcu(&handle->d_node);
  1646. mutex_unlock(&dev->mutex);
  1647. synchronize_rcu();
  1648. }
  1649. EXPORT_SYMBOL(input_unregister_handle);
  1650. static int input_open_file(struct inode *inode, struct file *file)
  1651. {
  1652. struct input_handler *handler;
  1653. const struct file_operations *old_fops, *new_fops = NULL;
  1654. int err;
  1655. err = mutex_lock_interruptible(&input_mutex);
  1656. if (err)
  1657. return err;
  1658. /* No load-on-demand here? */
  1659. handler = input_table[iminor(inode) >> 5];
  1660. if (handler)
  1661. new_fops = fops_get(handler->fops);
  1662. mutex_unlock(&input_mutex);
  1663. /*
  1664. * That's _really_ odd. Usually NULL ->open means "nothing special",
  1665. * not "no device". Oh, well...
  1666. */
  1667. if (!new_fops || !new_fops->open) {
  1668. fops_put(new_fops);
  1669. err = -ENODEV;
  1670. goto out;
  1671. }
  1672. old_fops = file->f_op;
  1673. file->f_op = new_fops;
  1674. err = new_fops->open(inode, file);
  1675. if (err) {
  1676. fops_put(file->f_op);
  1677. file->f_op = fops_get(old_fops);
  1678. }
  1679. fops_put(old_fops);
  1680. out:
  1681. return err;
  1682. }
  1683. static const struct file_operations input_fops = {
  1684. .owner = THIS_MODULE,
  1685. .open = input_open_file,
  1686. .llseek = noop_llseek,
  1687. };
  1688. static int __init input_init(void)
  1689. {
  1690. int err;
  1691. err = class_register(&input_class);
  1692. if (err) {
  1693. printk(KERN_ERR "input: unable to register input_dev class\n");
  1694. return err;
  1695. }
  1696. err = input_proc_init();
  1697. if (err)
  1698. goto fail1;
  1699. err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
  1700. if (err) {
  1701. printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
  1702. goto fail2;
  1703. }
  1704. return 0;
  1705. fail2: input_proc_exit();
  1706. fail1: class_unregister(&input_class);
  1707. return err;
  1708. }
  1709. static void __exit input_exit(void)
  1710. {
  1711. input_proc_exit();
  1712. unregister_chrdev(INPUT_MAJOR, "input");
  1713. class_unregister(&input_class);
  1714. }
  1715. subsys_initcall(input_init);
  1716. module_exit(input_exit);