intel_dp.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include "drmP.h"
  30. #include "drm.h"
  31. #include "drm_crtc.h"
  32. #include "drm_crtc_helper.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "drm_dp_helper.h"
  37. #define DP_LINK_STATUS_SIZE 6
  38. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  39. #define DP_LINK_CONFIGURATION_SIZE 9
  40. #define IS_eDP(i) ((i)->base.type == INTEL_OUTPUT_EDP)
  41. #define IS_PCH_eDP(i) ((i)->is_pch_edp)
  42. struct intel_dp {
  43. struct intel_encoder base;
  44. uint32_t output_reg;
  45. uint32_t DP;
  46. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  47. bool has_audio;
  48. int dpms_mode;
  49. uint8_t link_bw;
  50. uint8_t lane_count;
  51. uint8_t dpcd[4];
  52. struct i2c_adapter adapter;
  53. struct i2c_algo_dp_aux_data algo;
  54. bool is_pch_edp;
  55. };
  56. static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
  57. {
  58. return container_of(enc_to_intel_encoder(encoder), struct intel_dp, base);
  59. }
  60. static void intel_dp_link_train(struct intel_dp *intel_dp);
  61. static void intel_dp_link_down(struct intel_dp *intel_dp);
  62. void
  63. intel_edp_link_config (struct intel_encoder *intel_encoder,
  64. int *lane_num, int *link_bw)
  65. {
  66. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  67. *lane_num = intel_dp->lane_count;
  68. if (intel_dp->link_bw == DP_LINK_BW_1_62)
  69. *link_bw = 162000;
  70. else if (intel_dp->link_bw == DP_LINK_BW_2_7)
  71. *link_bw = 270000;
  72. }
  73. static int
  74. intel_dp_max_lane_count(struct intel_dp *intel_dp)
  75. {
  76. int max_lane_count = 4;
  77. if (intel_dp->dpcd[0] >= 0x11) {
  78. max_lane_count = intel_dp->dpcd[2] & 0x1f;
  79. switch (max_lane_count) {
  80. case 1: case 2: case 4:
  81. break;
  82. default:
  83. max_lane_count = 4;
  84. }
  85. }
  86. return max_lane_count;
  87. }
  88. static int
  89. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  90. {
  91. int max_link_bw = intel_dp->dpcd[1];
  92. switch (max_link_bw) {
  93. case DP_LINK_BW_1_62:
  94. case DP_LINK_BW_2_7:
  95. break;
  96. default:
  97. max_link_bw = DP_LINK_BW_1_62;
  98. break;
  99. }
  100. return max_link_bw;
  101. }
  102. static int
  103. intel_dp_link_clock(uint8_t link_bw)
  104. {
  105. if (link_bw == DP_LINK_BW_2_7)
  106. return 270000;
  107. else
  108. return 162000;
  109. }
  110. /* I think this is a fiction */
  111. static int
  112. intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
  113. {
  114. struct drm_i915_private *dev_priv = dev->dev_private;
  115. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  116. return (pixel_clock * dev_priv->edp_bpp) / 8;
  117. else
  118. return pixel_clock * 3;
  119. }
  120. static int
  121. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  122. {
  123. return (max_link_clock * max_lanes * 8) / 10;
  124. }
  125. static int
  126. intel_dp_mode_valid(struct drm_connector *connector,
  127. struct drm_display_mode *mode)
  128. {
  129. struct drm_encoder *encoder = intel_attached_encoder(connector);
  130. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  131. struct drm_device *dev = connector->dev;
  132. struct drm_i915_private *dev_priv = dev->dev_private;
  133. int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
  134. int max_lanes = intel_dp_max_lane_count(intel_dp);
  135. if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
  136. dev_priv->panel_fixed_mode) {
  137. if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
  138. return MODE_PANEL;
  139. if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
  140. return MODE_PANEL;
  141. }
  142. /* only refuse the mode on non eDP since we have seen some wierd eDP panels
  143. which are outside spec tolerances but somehow work by magic */
  144. if (!IS_eDP(intel_dp) &&
  145. (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
  146. > intel_dp_max_data_rate(max_link_clock, max_lanes)))
  147. return MODE_CLOCK_HIGH;
  148. if (mode->clock < 10000)
  149. return MODE_CLOCK_LOW;
  150. return MODE_OK;
  151. }
  152. static uint32_t
  153. pack_aux(uint8_t *src, int src_bytes)
  154. {
  155. int i;
  156. uint32_t v = 0;
  157. if (src_bytes > 4)
  158. src_bytes = 4;
  159. for (i = 0; i < src_bytes; i++)
  160. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  161. return v;
  162. }
  163. static void
  164. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  165. {
  166. int i;
  167. if (dst_bytes > 4)
  168. dst_bytes = 4;
  169. for (i = 0; i < dst_bytes; i++)
  170. dst[i] = src >> ((3-i) * 8);
  171. }
  172. /* hrawclock is 1/4 the FSB frequency */
  173. static int
  174. intel_hrawclk(struct drm_device *dev)
  175. {
  176. struct drm_i915_private *dev_priv = dev->dev_private;
  177. uint32_t clkcfg;
  178. clkcfg = I915_READ(CLKCFG);
  179. switch (clkcfg & CLKCFG_FSB_MASK) {
  180. case CLKCFG_FSB_400:
  181. return 100;
  182. case CLKCFG_FSB_533:
  183. return 133;
  184. case CLKCFG_FSB_667:
  185. return 166;
  186. case CLKCFG_FSB_800:
  187. return 200;
  188. case CLKCFG_FSB_1067:
  189. return 266;
  190. case CLKCFG_FSB_1333:
  191. return 333;
  192. /* these two are just a guess; one of them might be right */
  193. case CLKCFG_FSB_1600:
  194. case CLKCFG_FSB_1600_ALT:
  195. return 400;
  196. default:
  197. return 133;
  198. }
  199. }
  200. static int
  201. intel_dp_aux_ch(struct intel_dp *intel_dp,
  202. uint8_t *send, int send_bytes,
  203. uint8_t *recv, int recv_size)
  204. {
  205. uint32_t output_reg = intel_dp->output_reg;
  206. struct drm_device *dev = intel_dp->base.enc.dev;
  207. struct drm_i915_private *dev_priv = dev->dev_private;
  208. uint32_t ch_ctl = output_reg + 0x10;
  209. uint32_t ch_data = ch_ctl + 4;
  210. int i;
  211. int recv_bytes;
  212. uint32_t status;
  213. uint32_t aux_clock_divider;
  214. int try, precharge;
  215. /* The clock divider is based off the hrawclk,
  216. * and would like to run at 2MHz. So, take the
  217. * hrawclk value and divide by 2 and use that
  218. */
  219. if (IS_eDP(intel_dp)) {
  220. if (IS_GEN6(dev))
  221. aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
  222. else
  223. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  224. } else if (HAS_PCH_SPLIT(dev))
  225. aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
  226. else
  227. aux_clock_divider = intel_hrawclk(dev) / 2;
  228. if (IS_GEN6(dev))
  229. precharge = 3;
  230. else
  231. precharge = 5;
  232. if (I915_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
  233. DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
  234. I915_READ(ch_ctl));
  235. return -EBUSY;
  236. }
  237. /* Must try at least 3 times according to DP spec */
  238. for (try = 0; try < 5; try++) {
  239. /* Load the send data into the aux channel data registers */
  240. for (i = 0; i < send_bytes; i += 4)
  241. I915_WRITE(ch_data + i,
  242. pack_aux(send + i, send_bytes - i));
  243. /* Send the command and wait for it to complete */
  244. I915_WRITE(ch_ctl,
  245. DP_AUX_CH_CTL_SEND_BUSY |
  246. DP_AUX_CH_CTL_TIME_OUT_400us |
  247. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  248. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  249. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  250. DP_AUX_CH_CTL_DONE |
  251. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  252. DP_AUX_CH_CTL_RECEIVE_ERROR);
  253. for (;;) {
  254. status = I915_READ(ch_ctl);
  255. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  256. break;
  257. udelay(100);
  258. }
  259. /* Clear done status and any errors */
  260. I915_WRITE(ch_ctl,
  261. status |
  262. DP_AUX_CH_CTL_DONE |
  263. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  264. DP_AUX_CH_CTL_RECEIVE_ERROR);
  265. if (status & DP_AUX_CH_CTL_DONE)
  266. break;
  267. }
  268. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  269. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  270. return -EBUSY;
  271. }
  272. /* Check for timeout or receive error.
  273. * Timeouts occur when the sink is not connected
  274. */
  275. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  276. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  277. return -EIO;
  278. }
  279. /* Timeouts occur when the device isn't connected, so they're
  280. * "normal" -- don't fill the kernel log with these */
  281. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  282. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  283. return -ETIMEDOUT;
  284. }
  285. /* Unload any bytes sent back from the other side */
  286. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  287. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  288. if (recv_bytes > recv_size)
  289. recv_bytes = recv_size;
  290. for (i = 0; i < recv_bytes; i += 4)
  291. unpack_aux(I915_READ(ch_data + i),
  292. recv + i, recv_bytes - i);
  293. return recv_bytes;
  294. }
  295. /* Write data to the aux channel in native mode */
  296. static int
  297. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  298. uint16_t address, uint8_t *send, int send_bytes)
  299. {
  300. int ret;
  301. uint8_t msg[20];
  302. int msg_bytes;
  303. uint8_t ack;
  304. if (send_bytes > 16)
  305. return -1;
  306. msg[0] = AUX_NATIVE_WRITE << 4;
  307. msg[1] = address >> 8;
  308. msg[2] = address & 0xff;
  309. msg[3] = send_bytes - 1;
  310. memcpy(&msg[4], send, send_bytes);
  311. msg_bytes = send_bytes + 4;
  312. for (;;) {
  313. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  314. if (ret < 0)
  315. return ret;
  316. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  317. break;
  318. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  319. udelay(100);
  320. else
  321. return -EIO;
  322. }
  323. return send_bytes;
  324. }
  325. /* Write a single byte to the aux channel in native mode */
  326. static int
  327. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  328. uint16_t address, uint8_t byte)
  329. {
  330. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  331. }
  332. /* read bytes from a native aux channel */
  333. static int
  334. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  335. uint16_t address, uint8_t *recv, int recv_bytes)
  336. {
  337. uint8_t msg[4];
  338. int msg_bytes;
  339. uint8_t reply[20];
  340. int reply_bytes;
  341. uint8_t ack;
  342. int ret;
  343. msg[0] = AUX_NATIVE_READ << 4;
  344. msg[1] = address >> 8;
  345. msg[2] = address & 0xff;
  346. msg[3] = recv_bytes - 1;
  347. msg_bytes = 4;
  348. reply_bytes = recv_bytes + 1;
  349. for (;;) {
  350. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  351. reply, reply_bytes);
  352. if (ret == 0)
  353. return -EPROTO;
  354. if (ret < 0)
  355. return ret;
  356. ack = reply[0];
  357. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  358. memcpy(recv, reply + 1, ret - 1);
  359. return ret - 1;
  360. }
  361. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  362. udelay(100);
  363. else
  364. return -EIO;
  365. }
  366. }
  367. static int
  368. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  369. uint8_t write_byte, uint8_t *read_byte)
  370. {
  371. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  372. struct intel_dp *intel_dp = container_of(adapter,
  373. struct intel_dp,
  374. adapter);
  375. uint16_t address = algo_data->address;
  376. uint8_t msg[5];
  377. uint8_t reply[2];
  378. int msg_bytes;
  379. int reply_bytes;
  380. int ret;
  381. /* Set up the command byte */
  382. if (mode & MODE_I2C_READ)
  383. msg[0] = AUX_I2C_READ << 4;
  384. else
  385. msg[0] = AUX_I2C_WRITE << 4;
  386. if (!(mode & MODE_I2C_STOP))
  387. msg[0] |= AUX_I2C_MOT << 4;
  388. msg[1] = address >> 8;
  389. msg[2] = address;
  390. switch (mode) {
  391. case MODE_I2C_WRITE:
  392. msg[3] = 0;
  393. msg[4] = write_byte;
  394. msg_bytes = 5;
  395. reply_bytes = 1;
  396. break;
  397. case MODE_I2C_READ:
  398. msg[3] = 0;
  399. msg_bytes = 4;
  400. reply_bytes = 2;
  401. break;
  402. default:
  403. msg_bytes = 3;
  404. reply_bytes = 1;
  405. break;
  406. }
  407. for (;;) {
  408. ret = intel_dp_aux_ch(intel_dp,
  409. msg, msg_bytes,
  410. reply, reply_bytes);
  411. if (ret < 0) {
  412. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  413. return ret;
  414. }
  415. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  416. case AUX_I2C_REPLY_ACK:
  417. if (mode == MODE_I2C_READ) {
  418. *read_byte = reply[1];
  419. }
  420. return reply_bytes - 1;
  421. case AUX_I2C_REPLY_NACK:
  422. DRM_DEBUG_KMS("aux_ch nack\n");
  423. return -EREMOTEIO;
  424. case AUX_I2C_REPLY_DEFER:
  425. DRM_DEBUG_KMS("aux_ch defer\n");
  426. udelay(100);
  427. break;
  428. default:
  429. DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
  430. return -EREMOTEIO;
  431. }
  432. }
  433. }
  434. static int
  435. intel_dp_i2c_init(struct intel_dp *intel_dp,
  436. struct intel_connector *intel_connector, const char *name)
  437. {
  438. DRM_DEBUG_KMS("i2c_init %s\n", name);
  439. intel_dp->algo.running = false;
  440. intel_dp->algo.address = 0;
  441. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  442. memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
  443. intel_dp->adapter.owner = THIS_MODULE;
  444. intel_dp->adapter.class = I2C_CLASS_DDC;
  445. strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  446. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  447. intel_dp->adapter.algo_data = &intel_dp->algo;
  448. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  449. return i2c_dp_aux_add_bus(&intel_dp->adapter);
  450. }
  451. static bool
  452. intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
  453. struct drm_display_mode *adjusted_mode)
  454. {
  455. struct drm_device *dev = encoder->dev;
  456. struct drm_i915_private *dev_priv = dev->dev_private;
  457. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  458. int lane_count, clock;
  459. int max_lane_count = intel_dp_max_lane_count(intel_dp);
  460. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  461. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  462. if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
  463. dev_priv->panel_fixed_mode) {
  464. intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
  465. intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
  466. mode, adjusted_mode);
  467. /*
  468. * the mode->clock is used to calculate the Data&Link M/N
  469. * of the pipe. For the eDP the fixed clock should be used.
  470. */
  471. mode->clock = dev_priv->panel_fixed_mode->clock;
  472. }
  473. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  474. for (clock = 0; clock <= max_clock; clock++) {
  475. int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
  476. if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
  477. <= link_avail) {
  478. intel_dp->link_bw = bws[clock];
  479. intel_dp->lane_count = lane_count;
  480. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  481. DRM_DEBUG_KMS("Display port link bw %02x lane "
  482. "count %d clock %d\n",
  483. intel_dp->link_bw, intel_dp->lane_count,
  484. adjusted_mode->clock);
  485. return true;
  486. }
  487. }
  488. }
  489. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
  490. /* okay we failed just pick the highest */
  491. intel_dp->lane_count = max_lane_count;
  492. intel_dp->link_bw = bws[max_clock];
  493. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  494. DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
  495. "count %d clock %d\n",
  496. intel_dp->link_bw, intel_dp->lane_count,
  497. adjusted_mode->clock);
  498. return true;
  499. }
  500. return false;
  501. }
  502. struct intel_dp_m_n {
  503. uint32_t tu;
  504. uint32_t gmch_m;
  505. uint32_t gmch_n;
  506. uint32_t link_m;
  507. uint32_t link_n;
  508. };
  509. static void
  510. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  511. {
  512. while (*num > 0xffffff || *den > 0xffffff) {
  513. *num >>= 1;
  514. *den >>= 1;
  515. }
  516. }
  517. static void
  518. intel_dp_compute_m_n(int bpp,
  519. int nlanes,
  520. int pixel_clock,
  521. int link_clock,
  522. struct intel_dp_m_n *m_n)
  523. {
  524. m_n->tu = 64;
  525. m_n->gmch_m = (pixel_clock * bpp) >> 3;
  526. m_n->gmch_n = link_clock * nlanes;
  527. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  528. m_n->link_m = pixel_clock;
  529. m_n->link_n = link_clock;
  530. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  531. }
  532. bool intel_pch_has_edp(struct drm_crtc *crtc)
  533. {
  534. struct drm_device *dev = crtc->dev;
  535. struct drm_mode_config *mode_config = &dev->mode_config;
  536. struct drm_encoder *encoder;
  537. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  538. struct intel_dp *intel_dp;
  539. if (encoder->crtc != crtc)
  540. continue;
  541. intel_dp = enc_to_intel_dp(encoder);
  542. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  543. return intel_dp->is_pch_edp;
  544. }
  545. return false;
  546. }
  547. void
  548. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  549. struct drm_display_mode *adjusted_mode)
  550. {
  551. struct drm_device *dev = crtc->dev;
  552. struct drm_mode_config *mode_config = &dev->mode_config;
  553. struct drm_encoder *encoder;
  554. struct drm_i915_private *dev_priv = dev->dev_private;
  555. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  556. int lane_count = 4, bpp = 24;
  557. struct intel_dp_m_n m_n;
  558. /*
  559. * Find the lane count in the intel_encoder private
  560. */
  561. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  562. struct intel_dp *intel_dp;
  563. if (encoder->crtc != crtc)
  564. continue;
  565. intel_dp = enc_to_intel_dp(encoder);
  566. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
  567. lane_count = intel_dp->lane_count;
  568. if (IS_PCH_eDP(intel_dp))
  569. bpp = dev_priv->edp_bpp;
  570. break;
  571. }
  572. }
  573. /*
  574. * Compute the GMCH and Link ratios. The '3' here is
  575. * the number of bytes_per_pixel post-LUT, which we always
  576. * set up for 8-bits of R/G/B, or 3 bytes total.
  577. */
  578. intel_dp_compute_m_n(bpp, lane_count,
  579. mode->clock, adjusted_mode->clock, &m_n);
  580. if (HAS_PCH_SPLIT(dev)) {
  581. if (intel_crtc->pipe == 0) {
  582. I915_WRITE(TRANSA_DATA_M1,
  583. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  584. m_n.gmch_m);
  585. I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
  586. I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
  587. I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
  588. } else {
  589. I915_WRITE(TRANSB_DATA_M1,
  590. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  591. m_n.gmch_m);
  592. I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
  593. I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
  594. I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
  595. }
  596. } else {
  597. if (intel_crtc->pipe == 0) {
  598. I915_WRITE(PIPEA_GMCH_DATA_M,
  599. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  600. m_n.gmch_m);
  601. I915_WRITE(PIPEA_GMCH_DATA_N,
  602. m_n.gmch_n);
  603. I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
  604. I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
  605. } else {
  606. I915_WRITE(PIPEB_GMCH_DATA_M,
  607. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  608. m_n.gmch_m);
  609. I915_WRITE(PIPEB_GMCH_DATA_N,
  610. m_n.gmch_n);
  611. I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
  612. I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
  613. }
  614. }
  615. }
  616. static void
  617. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  618. struct drm_display_mode *adjusted_mode)
  619. {
  620. struct drm_device *dev = encoder->dev;
  621. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  622. struct drm_crtc *crtc = intel_dp->base.enc.crtc;
  623. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  624. intel_dp->DP = (DP_VOLTAGE_0_4 |
  625. DP_PRE_EMPHASIS_0);
  626. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  627. intel_dp->DP |= DP_SYNC_HS_HIGH;
  628. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  629. intel_dp->DP |= DP_SYNC_VS_HIGH;
  630. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  631. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  632. else
  633. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  634. switch (intel_dp->lane_count) {
  635. case 1:
  636. intel_dp->DP |= DP_PORT_WIDTH_1;
  637. break;
  638. case 2:
  639. intel_dp->DP |= DP_PORT_WIDTH_2;
  640. break;
  641. case 4:
  642. intel_dp->DP |= DP_PORT_WIDTH_4;
  643. break;
  644. }
  645. if (intel_dp->has_audio)
  646. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  647. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  648. intel_dp->link_configuration[0] = intel_dp->link_bw;
  649. intel_dp->link_configuration[1] = intel_dp->lane_count;
  650. /*
  651. * Check for DPCD version > 1.1 and enhanced framing support
  652. */
  653. if (intel_dp->dpcd[0] >= 0x11 && (intel_dp->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
  654. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  655. intel_dp->DP |= DP_ENHANCED_FRAMING;
  656. }
  657. /* CPT DP's pipe select is decided in TRANS_DP_CTL */
  658. if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
  659. intel_dp->DP |= DP_PIPEB_SELECT;
  660. if (IS_eDP(intel_dp)) {
  661. /* don't miss out required setting for eDP */
  662. intel_dp->DP |= DP_PLL_ENABLE;
  663. if (adjusted_mode->clock < 200000)
  664. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  665. else
  666. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  667. }
  668. }
  669. static void ironlake_edp_panel_on (struct drm_device *dev)
  670. {
  671. struct drm_i915_private *dev_priv = dev->dev_private;
  672. u32 pp;
  673. if (I915_READ(PCH_PP_STATUS) & PP_ON)
  674. return;
  675. pp = I915_READ(PCH_PP_CONTROL);
  676. /* ILK workaround: disable reset around power sequence */
  677. pp &= ~PANEL_POWER_RESET;
  678. I915_WRITE(PCH_PP_CONTROL, pp);
  679. POSTING_READ(PCH_PP_CONTROL);
  680. pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
  681. I915_WRITE(PCH_PP_CONTROL, pp);
  682. if (wait_for(I915_READ(PCH_PP_STATUS) & PP_ON, 5000, 10))
  683. DRM_ERROR("panel on wait timed out: 0x%08x\n",
  684. I915_READ(PCH_PP_STATUS));
  685. pp &= ~(PANEL_UNLOCK_REGS | EDP_FORCE_VDD);
  686. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  687. I915_WRITE(PCH_PP_CONTROL, pp);
  688. POSTING_READ(PCH_PP_CONTROL);
  689. }
  690. static void ironlake_edp_panel_off (struct drm_device *dev)
  691. {
  692. struct drm_i915_private *dev_priv = dev->dev_private;
  693. u32 pp;
  694. pp = I915_READ(PCH_PP_CONTROL);
  695. /* ILK workaround: disable reset around power sequence */
  696. pp &= ~PANEL_POWER_RESET;
  697. I915_WRITE(PCH_PP_CONTROL, pp);
  698. POSTING_READ(PCH_PP_CONTROL);
  699. pp &= ~POWER_TARGET_ON;
  700. I915_WRITE(PCH_PP_CONTROL, pp);
  701. if (wait_for((I915_READ(PCH_PP_STATUS) & PP_ON) == 0, 5000, 10))
  702. DRM_ERROR("panel off wait timed out: 0x%08x\n",
  703. I915_READ(PCH_PP_STATUS));
  704. /* Make sure VDD is enabled so DP AUX will work */
  705. pp |= EDP_FORCE_VDD | PANEL_POWER_RESET; /* restore panel reset bit */
  706. I915_WRITE(PCH_PP_CONTROL, pp);
  707. POSTING_READ(PCH_PP_CONTROL);
  708. }
  709. static void ironlake_edp_backlight_on (struct drm_device *dev)
  710. {
  711. struct drm_i915_private *dev_priv = dev->dev_private;
  712. u32 pp;
  713. DRM_DEBUG_KMS("\n");
  714. pp = I915_READ(PCH_PP_CONTROL);
  715. pp |= EDP_BLC_ENABLE;
  716. I915_WRITE(PCH_PP_CONTROL, pp);
  717. }
  718. static void ironlake_edp_backlight_off (struct drm_device *dev)
  719. {
  720. struct drm_i915_private *dev_priv = dev->dev_private;
  721. u32 pp;
  722. DRM_DEBUG_KMS("\n");
  723. pp = I915_READ(PCH_PP_CONTROL);
  724. pp &= ~EDP_BLC_ENABLE;
  725. I915_WRITE(PCH_PP_CONTROL, pp);
  726. }
  727. static void ironlake_edp_pll_on(struct drm_encoder *encoder)
  728. {
  729. struct drm_device *dev = encoder->dev;
  730. struct drm_i915_private *dev_priv = dev->dev_private;
  731. u32 dpa_ctl;
  732. DRM_DEBUG_KMS("\n");
  733. dpa_ctl = I915_READ(DP_A);
  734. dpa_ctl &= ~DP_PLL_ENABLE;
  735. I915_WRITE(DP_A, dpa_ctl);
  736. }
  737. static void ironlake_edp_pll_off(struct drm_encoder *encoder)
  738. {
  739. struct drm_device *dev = encoder->dev;
  740. struct drm_i915_private *dev_priv = dev->dev_private;
  741. u32 dpa_ctl;
  742. dpa_ctl = I915_READ(DP_A);
  743. dpa_ctl |= DP_PLL_ENABLE;
  744. I915_WRITE(DP_A, dpa_ctl);
  745. udelay(200);
  746. }
  747. static void intel_dp_prepare(struct drm_encoder *encoder)
  748. {
  749. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  750. struct drm_device *dev = encoder->dev;
  751. struct drm_i915_private *dev_priv = dev->dev_private;
  752. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  753. if (IS_eDP(intel_dp)) {
  754. ironlake_edp_backlight_off(dev);
  755. ironlake_edp_panel_on(dev);
  756. ironlake_edp_pll_on(encoder);
  757. }
  758. if (dp_reg & DP_PORT_EN)
  759. intel_dp_link_down(intel_dp);
  760. }
  761. static void intel_dp_commit(struct drm_encoder *encoder)
  762. {
  763. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  764. struct drm_device *dev = encoder->dev;
  765. struct drm_i915_private *dev_priv = dev->dev_private;
  766. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  767. if (!(dp_reg & DP_PORT_EN)) {
  768. intel_dp_link_train(intel_dp);
  769. }
  770. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  771. ironlake_edp_backlight_on(dev);
  772. }
  773. static void
  774. intel_dp_dpms(struct drm_encoder *encoder, int mode)
  775. {
  776. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  777. struct drm_device *dev = encoder->dev;
  778. struct drm_i915_private *dev_priv = dev->dev_private;
  779. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  780. if (mode != DRM_MODE_DPMS_ON) {
  781. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
  782. ironlake_edp_backlight_off(dev);
  783. ironlake_edp_panel_off(dev);
  784. }
  785. if (dp_reg & DP_PORT_EN)
  786. intel_dp_link_down(intel_dp);
  787. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  788. ironlake_edp_pll_off(encoder);
  789. } else {
  790. if (!(dp_reg & DP_PORT_EN)) {
  791. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  792. ironlake_edp_panel_on(dev);
  793. intel_dp_link_train(intel_dp);
  794. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  795. ironlake_edp_backlight_on(dev);
  796. }
  797. }
  798. intel_dp->dpms_mode = mode;
  799. }
  800. /*
  801. * Fetch AUX CH registers 0x202 - 0x207 which contain
  802. * link status information
  803. */
  804. static bool
  805. intel_dp_get_link_status(struct intel_dp *intel_dp,
  806. uint8_t link_status[DP_LINK_STATUS_SIZE])
  807. {
  808. int ret;
  809. ret = intel_dp_aux_native_read(intel_dp,
  810. DP_LANE0_1_STATUS,
  811. link_status, DP_LINK_STATUS_SIZE);
  812. if (ret != DP_LINK_STATUS_SIZE)
  813. return false;
  814. return true;
  815. }
  816. static uint8_t
  817. intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  818. int r)
  819. {
  820. return link_status[r - DP_LANE0_1_STATUS];
  821. }
  822. static uint8_t
  823. intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
  824. int lane)
  825. {
  826. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  827. int s = ((lane & 1) ?
  828. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  829. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  830. uint8_t l = intel_dp_link_status(link_status, i);
  831. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  832. }
  833. static uint8_t
  834. intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
  835. int lane)
  836. {
  837. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  838. int s = ((lane & 1) ?
  839. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  840. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  841. uint8_t l = intel_dp_link_status(link_status, i);
  842. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  843. }
  844. #if 0
  845. static char *voltage_names[] = {
  846. "0.4V", "0.6V", "0.8V", "1.2V"
  847. };
  848. static char *pre_emph_names[] = {
  849. "0dB", "3.5dB", "6dB", "9.5dB"
  850. };
  851. static char *link_train_names[] = {
  852. "pattern 1", "pattern 2", "idle", "off"
  853. };
  854. #endif
  855. /*
  856. * These are source-specific values; current Intel hardware supports
  857. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  858. */
  859. #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
  860. static uint8_t
  861. intel_dp_pre_emphasis_max(uint8_t voltage_swing)
  862. {
  863. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  864. case DP_TRAIN_VOLTAGE_SWING_400:
  865. return DP_TRAIN_PRE_EMPHASIS_6;
  866. case DP_TRAIN_VOLTAGE_SWING_600:
  867. return DP_TRAIN_PRE_EMPHASIS_6;
  868. case DP_TRAIN_VOLTAGE_SWING_800:
  869. return DP_TRAIN_PRE_EMPHASIS_3_5;
  870. case DP_TRAIN_VOLTAGE_SWING_1200:
  871. default:
  872. return DP_TRAIN_PRE_EMPHASIS_0;
  873. }
  874. }
  875. static void
  876. intel_get_adjust_train(struct intel_dp *intel_dp,
  877. uint8_t link_status[DP_LINK_STATUS_SIZE],
  878. int lane_count,
  879. uint8_t train_set[4])
  880. {
  881. uint8_t v = 0;
  882. uint8_t p = 0;
  883. int lane;
  884. for (lane = 0; lane < lane_count; lane++) {
  885. uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
  886. uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);
  887. if (this_v > v)
  888. v = this_v;
  889. if (this_p > p)
  890. p = this_p;
  891. }
  892. if (v >= I830_DP_VOLTAGE_MAX)
  893. v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
  894. if (p >= intel_dp_pre_emphasis_max(v))
  895. p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  896. for (lane = 0; lane < 4; lane++)
  897. train_set[lane] = v | p;
  898. }
  899. static uint32_t
  900. intel_dp_signal_levels(uint8_t train_set, int lane_count)
  901. {
  902. uint32_t signal_levels = 0;
  903. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  904. case DP_TRAIN_VOLTAGE_SWING_400:
  905. default:
  906. signal_levels |= DP_VOLTAGE_0_4;
  907. break;
  908. case DP_TRAIN_VOLTAGE_SWING_600:
  909. signal_levels |= DP_VOLTAGE_0_6;
  910. break;
  911. case DP_TRAIN_VOLTAGE_SWING_800:
  912. signal_levels |= DP_VOLTAGE_0_8;
  913. break;
  914. case DP_TRAIN_VOLTAGE_SWING_1200:
  915. signal_levels |= DP_VOLTAGE_1_2;
  916. break;
  917. }
  918. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  919. case DP_TRAIN_PRE_EMPHASIS_0:
  920. default:
  921. signal_levels |= DP_PRE_EMPHASIS_0;
  922. break;
  923. case DP_TRAIN_PRE_EMPHASIS_3_5:
  924. signal_levels |= DP_PRE_EMPHASIS_3_5;
  925. break;
  926. case DP_TRAIN_PRE_EMPHASIS_6:
  927. signal_levels |= DP_PRE_EMPHASIS_6;
  928. break;
  929. case DP_TRAIN_PRE_EMPHASIS_9_5:
  930. signal_levels |= DP_PRE_EMPHASIS_9_5;
  931. break;
  932. }
  933. return signal_levels;
  934. }
  935. /* Gen6's DP voltage swing and pre-emphasis control */
  936. static uint32_t
  937. intel_gen6_edp_signal_levels(uint8_t train_set)
  938. {
  939. switch (train_set & (DP_TRAIN_VOLTAGE_SWING_MASK|DP_TRAIN_PRE_EMPHASIS_MASK)) {
  940. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  941. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  942. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  943. return EDP_LINK_TRAIN_400MV_6DB_SNB_B;
  944. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  945. return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B;
  946. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  947. return EDP_LINK_TRAIN_800MV_0DB_SNB_B;
  948. default:
  949. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
  950. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  951. }
  952. }
  953. static uint8_t
  954. intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  955. int lane)
  956. {
  957. int i = DP_LANE0_1_STATUS + (lane >> 1);
  958. int s = (lane & 1) * 4;
  959. uint8_t l = intel_dp_link_status(link_status, i);
  960. return (l >> s) & 0xf;
  961. }
  962. /* Check for clock recovery is done on all channels */
  963. static bool
  964. intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  965. {
  966. int lane;
  967. uint8_t lane_status;
  968. for (lane = 0; lane < lane_count; lane++) {
  969. lane_status = intel_get_lane_status(link_status, lane);
  970. if ((lane_status & DP_LANE_CR_DONE) == 0)
  971. return false;
  972. }
  973. return true;
  974. }
  975. /* Check to see if channel eq is done on all channels */
  976. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  977. DP_LANE_CHANNEL_EQ_DONE|\
  978. DP_LANE_SYMBOL_LOCKED)
  979. static bool
  980. intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  981. {
  982. uint8_t lane_align;
  983. uint8_t lane_status;
  984. int lane;
  985. lane_align = intel_dp_link_status(link_status,
  986. DP_LANE_ALIGN_STATUS_UPDATED);
  987. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  988. return false;
  989. for (lane = 0; lane < lane_count; lane++) {
  990. lane_status = intel_get_lane_status(link_status, lane);
  991. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  992. return false;
  993. }
  994. return true;
  995. }
  996. static bool
  997. intel_dp_set_link_train(struct intel_dp *intel_dp,
  998. uint32_t dp_reg_value,
  999. uint8_t dp_train_pat,
  1000. uint8_t train_set[4])
  1001. {
  1002. struct drm_device *dev = intel_dp->base.enc.dev;
  1003. struct drm_i915_private *dev_priv = dev->dev_private;
  1004. int ret;
  1005. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  1006. POSTING_READ(intel_dp->output_reg);
  1007. intel_dp_aux_native_write_1(intel_dp,
  1008. DP_TRAINING_PATTERN_SET,
  1009. dp_train_pat);
  1010. ret = intel_dp_aux_native_write(intel_dp,
  1011. DP_TRAINING_LANE0_SET, train_set, 4);
  1012. if (ret != 4)
  1013. return false;
  1014. return true;
  1015. }
  1016. static void
  1017. intel_dp_link_train(struct intel_dp *intel_dp)
  1018. {
  1019. struct drm_device *dev = intel_dp->base.enc.dev;
  1020. struct drm_i915_private *dev_priv = dev->dev_private;
  1021. uint8_t train_set[4];
  1022. uint8_t link_status[DP_LINK_STATUS_SIZE];
  1023. int i;
  1024. uint8_t voltage;
  1025. bool clock_recovery = false;
  1026. bool channel_eq = false;
  1027. int tries;
  1028. u32 reg;
  1029. uint32_t DP = intel_dp->DP;
  1030. struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.enc.crtc);
  1031. /* Enable output, wait for it to become active */
  1032. I915_WRITE(intel_dp->output_reg, intel_dp->DP);
  1033. POSTING_READ(intel_dp->output_reg);
  1034. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1035. /* Write the link configuration data */
  1036. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  1037. intel_dp->link_configuration,
  1038. DP_LINK_CONFIGURATION_SIZE);
  1039. DP |= DP_PORT_EN;
  1040. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  1041. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1042. else
  1043. DP &= ~DP_LINK_TRAIN_MASK;
  1044. memset(train_set, 0, 4);
  1045. voltage = 0xff;
  1046. tries = 0;
  1047. clock_recovery = false;
  1048. for (;;) {
  1049. /* Use train_set[0] to set the voltage and pre emphasis values */
  1050. uint32_t signal_levels;
  1051. if (IS_GEN6(dev) && IS_eDP(intel_dp)) {
  1052. signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
  1053. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1054. } else {
  1055. signal_levels = intel_dp_signal_levels(train_set[0], intel_dp->lane_count);
  1056. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1057. }
  1058. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  1059. reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
  1060. else
  1061. reg = DP | DP_LINK_TRAIN_PAT_1;
  1062. if (!intel_dp_set_link_train(intel_dp, reg,
  1063. DP_TRAINING_PATTERN_1, train_set))
  1064. break;
  1065. /* Set training pattern 1 */
  1066. udelay(100);
  1067. if (!intel_dp_get_link_status(intel_dp, link_status))
  1068. break;
  1069. if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  1070. clock_recovery = true;
  1071. break;
  1072. }
  1073. /* Check to see if we've tried the max voltage */
  1074. for (i = 0; i < intel_dp->lane_count; i++)
  1075. if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1076. break;
  1077. if (i == intel_dp->lane_count)
  1078. break;
  1079. /* Check to see if we've tried the same voltage 5 times */
  1080. if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1081. ++tries;
  1082. if (tries == 5)
  1083. break;
  1084. } else
  1085. tries = 0;
  1086. voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1087. /* Compute new train_set as requested by target */
  1088. intel_get_adjust_train(intel_dp, link_status, intel_dp->lane_count, train_set);
  1089. }
  1090. /* channel equalization */
  1091. tries = 0;
  1092. channel_eq = false;
  1093. for (;;) {
  1094. /* Use train_set[0] to set the voltage and pre emphasis values */
  1095. uint32_t signal_levels;
  1096. if (IS_GEN6(dev) && IS_eDP(intel_dp)) {
  1097. signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
  1098. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1099. } else {
  1100. signal_levels = intel_dp_signal_levels(train_set[0], intel_dp->lane_count);
  1101. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1102. }
  1103. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  1104. reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
  1105. else
  1106. reg = DP | DP_LINK_TRAIN_PAT_2;
  1107. /* channel eq pattern */
  1108. if (!intel_dp_set_link_train(intel_dp, reg,
  1109. DP_TRAINING_PATTERN_2, train_set))
  1110. break;
  1111. udelay(400);
  1112. if (!intel_dp_get_link_status(intel_dp, link_status))
  1113. break;
  1114. if (intel_channel_eq_ok(link_status, intel_dp->lane_count)) {
  1115. channel_eq = true;
  1116. break;
  1117. }
  1118. /* Try 5 times */
  1119. if (tries > 5)
  1120. break;
  1121. /* Compute new train_set as requested by target */
  1122. intel_get_adjust_train(intel_dp, link_status, intel_dp->lane_count, train_set);
  1123. ++tries;
  1124. }
  1125. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  1126. reg = DP | DP_LINK_TRAIN_OFF_CPT;
  1127. else
  1128. reg = DP | DP_LINK_TRAIN_OFF;
  1129. I915_WRITE(intel_dp->output_reg, reg);
  1130. POSTING_READ(intel_dp->output_reg);
  1131. intel_dp_aux_native_write_1(intel_dp,
  1132. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  1133. }
  1134. static void
  1135. intel_dp_link_down(struct intel_dp *intel_dp)
  1136. {
  1137. struct drm_device *dev = intel_dp->base.enc.dev;
  1138. struct drm_i915_private *dev_priv = dev->dev_private;
  1139. uint32_t DP = intel_dp->DP;
  1140. DRM_DEBUG_KMS("\n");
  1141. if (IS_eDP(intel_dp)) {
  1142. DP &= ~DP_PLL_ENABLE;
  1143. I915_WRITE(intel_dp->output_reg, DP);
  1144. POSTING_READ(intel_dp->output_reg);
  1145. udelay(100);
  1146. }
  1147. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp)) {
  1148. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1149. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1150. POSTING_READ(intel_dp->output_reg);
  1151. } else {
  1152. DP &= ~DP_LINK_TRAIN_MASK;
  1153. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1154. POSTING_READ(intel_dp->output_reg);
  1155. }
  1156. udelay(17000);
  1157. if (IS_eDP(intel_dp))
  1158. DP |= DP_LINK_TRAIN_OFF;
  1159. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1160. POSTING_READ(intel_dp->output_reg);
  1161. }
  1162. /*
  1163. * According to DP spec
  1164. * 5.1.2:
  1165. * 1. Read DPCD
  1166. * 2. Configure link according to Receiver Capabilities
  1167. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1168. * 4. Check link status on receipt of hot-plug interrupt
  1169. */
  1170. static void
  1171. intel_dp_check_link_status(struct intel_dp *intel_dp)
  1172. {
  1173. uint8_t link_status[DP_LINK_STATUS_SIZE];
  1174. if (!intel_dp->base.enc.crtc)
  1175. return;
  1176. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  1177. intel_dp_link_down(intel_dp);
  1178. return;
  1179. }
  1180. if (!intel_channel_eq_ok(link_status, intel_dp->lane_count))
  1181. intel_dp_link_train(intel_dp);
  1182. }
  1183. static enum drm_connector_status
  1184. ironlake_dp_detect(struct drm_connector *connector)
  1185. {
  1186. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1187. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1188. enum drm_connector_status status;
  1189. status = connector_status_disconnected;
  1190. if (intel_dp_aux_native_read(intel_dp,
  1191. 0x000, intel_dp->dpcd,
  1192. sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
  1193. {
  1194. if (intel_dp->dpcd[0] != 0)
  1195. status = connector_status_connected;
  1196. }
  1197. DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", intel_dp->dpcd[0],
  1198. intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]);
  1199. return status;
  1200. }
  1201. /**
  1202. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1203. *
  1204. * \return true if DP port is connected.
  1205. * \return false if DP port is disconnected.
  1206. */
  1207. static enum drm_connector_status
  1208. intel_dp_detect(struct drm_connector *connector, bool force)
  1209. {
  1210. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1211. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1212. struct drm_device *dev = intel_dp->base.enc.dev;
  1213. struct drm_i915_private *dev_priv = dev->dev_private;
  1214. uint32_t temp, bit;
  1215. enum drm_connector_status status;
  1216. intel_dp->has_audio = false;
  1217. if (HAS_PCH_SPLIT(dev))
  1218. return ironlake_dp_detect(connector);
  1219. switch (intel_dp->output_reg) {
  1220. case DP_B:
  1221. bit = DPB_HOTPLUG_INT_STATUS;
  1222. break;
  1223. case DP_C:
  1224. bit = DPC_HOTPLUG_INT_STATUS;
  1225. break;
  1226. case DP_D:
  1227. bit = DPD_HOTPLUG_INT_STATUS;
  1228. break;
  1229. default:
  1230. return connector_status_unknown;
  1231. }
  1232. temp = I915_READ(PORT_HOTPLUG_STAT);
  1233. if ((temp & bit) == 0)
  1234. return connector_status_disconnected;
  1235. status = connector_status_disconnected;
  1236. if (intel_dp_aux_native_read(intel_dp,
  1237. 0x000, intel_dp->dpcd,
  1238. sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
  1239. {
  1240. if (intel_dp->dpcd[0] != 0)
  1241. status = connector_status_connected;
  1242. }
  1243. return status;
  1244. }
  1245. static int intel_dp_get_modes(struct drm_connector *connector)
  1246. {
  1247. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1248. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1249. struct drm_device *dev = intel_dp->base.enc.dev;
  1250. struct drm_i915_private *dev_priv = dev->dev_private;
  1251. int ret;
  1252. /* We should parse the EDID data and find out if it has an audio sink
  1253. */
  1254. ret = intel_ddc_get_modes(connector, intel_dp->base.ddc_bus);
  1255. if (ret) {
  1256. if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
  1257. !dev_priv->panel_fixed_mode) {
  1258. struct drm_display_mode *newmode;
  1259. list_for_each_entry(newmode, &connector->probed_modes,
  1260. head) {
  1261. if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
  1262. dev_priv->panel_fixed_mode =
  1263. drm_mode_duplicate(dev, newmode);
  1264. break;
  1265. }
  1266. }
  1267. }
  1268. return ret;
  1269. }
  1270. /* if eDP has no EDID, try to use fixed panel mode from VBT */
  1271. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
  1272. if (dev_priv->panel_fixed_mode != NULL) {
  1273. struct drm_display_mode *mode;
  1274. mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
  1275. drm_mode_probed_add(connector, mode);
  1276. return 1;
  1277. }
  1278. }
  1279. return 0;
  1280. }
  1281. static void
  1282. intel_dp_destroy (struct drm_connector *connector)
  1283. {
  1284. drm_sysfs_connector_remove(connector);
  1285. drm_connector_cleanup(connector);
  1286. kfree(connector);
  1287. }
  1288. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  1289. .dpms = intel_dp_dpms,
  1290. .mode_fixup = intel_dp_mode_fixup,
  1291. .prepare = intel_dp_prepare,
  1292. .mode_set = intel_dp_mode_set,
  1293. .commit = intel_dp_commit,
  1294. };
  1295. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  1296. .dpms = drm_helper_connector_dpms,
  1297. .detect = intel_dp_detect,
  1298. .fill_modes = drm_helper_probe_single_connector_modes,
  1299. .destroy = intel_dp_destroy,
  1300. };
  1301. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  1302. .get_modes = intel_dp_get_modes,
  1303. .mode_valid = intel_dp_mode_valid,
  1304. .best_encoder = intel_attached_encoder,
  1305. };
  1306. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  1307. .destroy = intel_encoder_destroy,
  1308. };
  1309. void
  1310. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  1311. {
  1312. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  1313. if (intel_dp->dpms_mode == DRM_MODE_DPMS_ON)
  1314. intel_dp_check_link_status(intel_dp);
  1315. }
  1316. /* Return which DP Port should be selected for Transcoder DP control */
  1317. int
  1318. intel_trans_dp_port_sel (struct drm_crtc *crtc)
  1319. {
  1320. struct drm_device *dev = crtc->dev;
  1321. struct drm_mode_config *mode_config = &dev->mode_config;
  1322. struct drm_encoder *encoder;
  1323. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  1324. struct intel_dp *intel_dp;
  1325. if (encoder->crtc != crtc)
  1326. continue;
  1327. intel_dp = enc_to_intel_dp(encoder);
  1328. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  1329. return intel_dp->output_reg;
  1330. }
  1331. return -1;
  1332. }
  1333. /* check the VBT to see whether the eDP is on DP-D port */
  1334. bool intel_dpd_is_edp(struct drm_device *dev)
  1335. {
  1336. struct drm_i915_private *dev_priv = dev->dev_private;
  1337. struct child_device_config *p_child;
  1338. int i;
  1339. if (!dev_priv->child_dev_num)
  1340. return false;
  1341. for (i = 0; i < dev_priv->child_dev_num; i++) {
  1342. p_child = dev_priv->child_dev + i;
  1343. if (p_child->dvo_port == PORT_IDPD &&
  1344. p_child->device_type == DEVICE_TYPE_eDP)
  1345. return true;
  1346. }
  1347. return false;
  1348. }
  1349. void
  1350. intel_dp_init(struct drm_device *dev, int output_reg)
  1351. {
  1352. struct drm_i915_private *dev_priv = dev->dev_private;
  1353. struct drm_connector *connector;
  1354. struct intel_dp *intel_dp;
  1355. struct intel_encoder *intel_encoder;
  1356. struct intel_connector *intel_connector;
  1357. const char *name = NULL;
  1358. int type;
  1359. intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
  1360. if (!intel_dp)
  1361. return;
  1362. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  1363. if (!intel_connector) {
  1364. kfree(intel_dp);
  1365. return;
  1366. }
  1367. intel_encoder = &intel_dp->base;
  1368. if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
  1369. if (intel_dpd_is_edp(dev))
  1370. intel_dp->is_pch_edp = true;
  1371. if (output_reg == DP_A || IS_PCH_eDP(intel_dp)) {
  1372. type = DRM_MODE_CONNECTOR_eDP;
  1373. intel_encoder->type = INTEL_OUTPUT_EDP;
  1374. } else {
  1375. type = DRM_MODE_CONNECTOR_DisplayPort;
  1376. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  1377. }
  1378. connector = &intel_connector->base;
  1379. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  1380. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  1381. connector->polled = DRM_CONNECTOR_POLL_HPD;
  1382. if (output_reg == DP_B || output_reg == PCH_DP_B)
  1383. intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
  1384. else if (output_reg == DP_C || output_reg == PCH_DP_C)
  1385. intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
  1386. else if (output_reg == DP_D || output_reg == PCH_DP_D)
  1387. intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
  1388. if (IS_eDP(intel_dp))
  1389. intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
  1390. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1391. connector->interlace_allowed = true;
  1392. connector->doublescan_allowed = 0;
  1393. intel_dp->output_reg = output_reg;
  1394. intel_dp->has_audio = false;
  1395. intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
  1396. drm_encoder_init(dev, &intel_encoder->enc, &intel_dp_enc_funcs,
  1397. DRM_MODE_ENCODER_TMDS);
  1398. drm_encoder_helper_add(&intel_encoder->enc, &intel_dp_helper_funcs);
  1399. drm_mode_connector_attach_encoder(&intel_connector->base,
  1400. &intel_encoder->enc);
  1401. drm_sysfs_connector_add(connector);
  1402. /* Set up the DDC bus. */
  1403. switch (output_reg) {
  1404. case DP_A:
  1405. name = "DPDDC-A";
  1406. break;
  1407. case DP_B:
  1408. case PCH_DP_B:
  1409. dev_priv->hotplug_supported_mask |=
  1410. HDMIB_HOTPLUG_INT_STATUS;
  1411. name = "DPDDC-B";
  1412. break;
  1413. case DP_C:
  1414. case PCH_DP_C:
  1415. dev_priv->hotplug_supported_mask |=
  1416. HDMIC_HOTPLUG_INT_STATUS;
  1417. name = "DPDDC-C";
  1418. break;
  1419. case DP_D:
  1420. case PCH_DP_D:
  1421. dev_priv->hotplug_supported_mask |=
  1422. HDMID_HOTPLUG_INT_STATUS;
  1423. name = "DPDDC-D";
  1424. break;
  1425. }
  1426. intel_dp_i2c_init(intel_dp, intel_connector, name);
  1427. intel_encoder->ddc_bus = &intel_dp->adapter;
  1428. intel_encoder->hot_plug = intel_dp_hot_plug;
  1429. if (output_reg == DP_A || IS_PCH_eDP(intel_dp)) {
  1430. /* initialize panel mode from VBT if available for eDP */
  1431. if (dev_priv->lfp_lvds_vbt_mode) {
  1432. dev_priv->panel_fixed_mode =
  1433. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1434. if (dev_priv->panel_fixed_mode) {
  1435. dev_priv->panel_fixed_mode->type |=
  1436. DRM_MODE_TYPE_PREFERRED;
  1437. }
  1438. }
  1439. }
  1440. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1441. * 0xd. Failure to do so will result in spurious interrupts being
  1442. * generated on the port when a cable is not attached.
  1443. */
  1444. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1445. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1446. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1447. }
  1448. }