numa_64.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855
  1. /*
  2. * Generic VM initialization for x86-64 NUMA setups.
  3. * Copyright 2002,2003 Andi Kleen, SuSE Labs.
  4. */
  5. #include <linux/kernel.h>
  6. #include <linux/mm.h>
  7. #include <linux/string.h>
  8. #include <linux/init.h>
  9. #include <linux/bootmem.h>
  10. #include <linux/memblock.h>
  11. #include <linux/mmzone.h>
  12. #include <linux/ctype.h>
  13. #include <linux/module.h>
  14. #include <linux/nodemask.h>
  15. #include <linux/sched.h>
  16. #include <asm/e820.h>
  17. #include <asm/proto.h>
  18. #include <asm/dma.h>
  19. #include <asm/numa.h>
  20. #include <asm/acpi.h>
  21. #include <asm/amd_nb.h>
  22. struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
  23. EXPORT_SYMBOL(node_data);
  24. struct memnode memnode;
  25. s16 apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
  26. [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
  27. };
  28. int numa_off __initdata;
  29. static unsigned long __initdata nodemap_addr;
  30. static unsigned long __initdata nodemap_size;
  31. /*
  32. * Map cpu index to node index
  33. */
  34. DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
  35. EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
  36. /*
  37. * Given a shift value, try to populate memnodemap[]
  38. * Returns :
  39. * 1 if OK
  40. * 0 if memnodmap[] too small (of shift too small)
  41. * -1 if node overlap or lost ram (shift too big)
  42. */
  43. static int __init populate_memnodemap(const struct bootnode *nodes,
  44. int numnodes, int shift, int *nodeids)
  45. {
  46. unsigned long addr, end;
  47. int i, res = -1;
  48. memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize);
  49. for (i = 0; i < numnodes; i++) {
  50. addr = nodes[i].start;
  51. end = nodes[i].end;
  52. if (addr >= end)
  53. continue;
  54. if ((end >> shift) >= memnodemapsize)
  55. return 0;
  56. do {
  57. if (memnodemap[addr >> shift] != NUMA_NO_NODE)
  58. return -1;
  59. if (!nodeids)
  60. memnodemap[addr >> shift] = i;
  61. else
  62. memnodemap[addr >> shift] = nodeids[i];
  63. addr += (1UL << shift);
  64. } while (addr < end);
  65. res = 1;
  66. }
  67. return res;
  68. }
  69. static int __init allocate_cachealigned_memnodemap(void)
  70. {
  71. unsigned long addr;
  72. memnodemap = memnode.embedded_map;
  73. if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map))
  74. return 0;
  75. addr = 0x8000;
  76. nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES);
  77. nodemap_addr = memblock_find_in_range(addr, max_pfn<<PAGE_SHIFT,
  78. nodemap_size, L1_CACHE_BYTES);
  79. if (nodemap_addr == MEMBLOCK_ERROR) {
  80. printk(KERN_ERR
  81. "NUMA: Unable to allocate Memory to Node hash map\n");
  82. nodemap_addr = nodemap_size = 0;
  83. return -1;
  84. }
  85. memnodemap = phys_to_virt(nodemap_addr);
  86. memblock_x86_reserve_range(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP");
  87. printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
  88. nodemap_addr, nodemap_addr + nodemap_size);
  89. return 0;
  90. }
  91. /*
  92. * The LSB of all start and end addresses in the node map is the value of the
  93. * maximum possible shift.
  94. */
  95. static int __init extract_lsb_from_nodes(const struct bootnode *nodes,
  96. int numnodes)
  97. {
  98. int i, nodes_used = 0;
  99. unsigned long start, end;
  100. unsigned long bitfield = 0, memtop = 0;
  101. for (i = 0; i < numnodes; i++) {
  102. start = nodes[i].start;
  103. end = nodes[i].end;
  104. if (start >= end)
  105. continue;
  106. bitfield |= start;
  107. nodes_used++;
  108. if (end > memtop)
  109. memtop = end;
  110. }
  111. if (nodes_used <= 1)
  112. i = 63;
  113. else
  114. i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
  115. memnodemapsize = (memtop >> i)+1;
  116. return i;
  117. }
  118. int __init compute_hash_shift(struct bootnode *nodes, int numnodes,
  119. int *nodeids)
  120. {
  121. int shift;
  122. shift = extract_lsb_from_nodes(nodes, numnodes);
  123. if (allocate_cachealigned_memnodemap())
  124. return -1;
  125. printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
  126. shift);
  127. if (populate_memnodemap(nodes, numnodes, shift, nodeids) != 1) {
  128. printk(KERN_INFO "Your memory is not aligned you need to "
  129. "rebuild your kernel with a bigger NODEMAPSIZE "
  130. "shift=%d\n", shift);
  131. return -1;
  132. }
  133. return shift;
  134. }
  135. int __meminit __early_pfn_to_nid(unsigned long pfn)
  136. {
  137. return phys_to_nid(pfn << PAGE_SHIFT);
  138. }
  139. static void * __init early_node_mem(int nodeid, unsigned long start,
  140. unsigned long end, unsigned long size,
  141. unsigned long align)
  142. {
  143. unsigned long mem;
  144. /*
  145. * put it on high as possible
  146. * something will go with NODE_DATA
  147. */
  148. if (start < (MAX_DMA_PFN<<PAGE_SHIFT))
  149. start = MAX_DMA_PFN<<PAGE_SHIFT;
  150. if (start < (MAX_DMA32_PFN<<PAGE_SHIFT) &&
  151. end > (MAX_DMA32_PFN<<PAGE_SHIFT))
  152. start = MAX_DMA32_PFN<<PAGE_SHIFT;
  153. mem = memblock_x86_find_in_range_node(nodeid, start, end, size, align);
  154. if (mem != MEMBLOCK_ERROR)
  155. return __va(mem);
  156. /* extend the search scope */
  157. end = max_pfn_mapped << PAGE_SHIFT;
  158. if (end > (MAX_DMA32_PFN<<PAGE_SHIFT))
  159. start = MAX_DMA32_PFN<<PAGE_SHIFT;
  160. else
  161. start = MAX_DMA_PFN<<PAGE_SHIFT;
  162. mem = memblock_x86_find_in_range_node(nodeid, start, end, size, align);
  163. if (mem != MEMBLOCK_ERROR)
  164. return __va(mem);
  165. printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
  166. size, nodeid);
  167. return NULL;
  168. }
  169. /* Initialize bootmem allocator for a node */
  170. void __init
  171. setup_node_bootmem(int nodeid, unsigned long start, unsigned long end)
  172. {
  173. unsigned long start_pfn, last_pfn, nodedata_phys;
  174. const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
  175. int nid;
  176. if (!end)
  177. return;
  178. /*
  179. * Don't confuse VM with a node that doesn't have the
  180. * minimum amount of memory:
  181. */
  182. if (end && (end - start) < NODE_MIN_SIZE)
  183. return;
  184. start = roundup(start, ZONE_ALIGN);
  185. printk(KERN_INFO "Initmem setup node %d %016lx-%016lx\n", nodeid,
  186. start, end);
  187. start_pfn = start >> PAGE_SHIFT;
  188. last_pfn = end >> PAGE_SHIFT;
  189. node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size,
  190. SMP_CACHE_BYTES);
  191. if (node_data[nodeid] == NULL)
  192. return;
  193. nodedata_phys = __pa(node_data[nodeid]);
  194. memblock_x86_reserve_range(nodedata_phys, nodedata_phys + pgdat_size, "NODE_DATA");
  195. printk(KERN_INFO " NODE_DATA [%016lx - %016lx]\n", nodedata_phys,
  196. nodedata_phys + pgdat_size - 1);
  197. nid = phys_to_nid(nodedata_phys);
  198. if (nid != nodeid)
  199. printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nodeid, nid);
  200. memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
  201. NODE_DATA(nodeid)->node_id = nodeid;
  202. NODE_DATA(nodeid)->node_start_pfn = start_pfn;
  203. NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn;
  204. node_set_online(nodeid);
  205. }
  206. /*
  207. * There are unfortunately some poorly designed mainboards around that
  208. * only connect memory to a single CPU. This breaks the 1:1 cpu->node
  209. * mapping. To avoid this fill in the mapping for all possible CPUs,
  210. * as the number of CPUs is not known yet. We round robin the existing
  211. * nodes.
  212. */
  213. void __init numa_init_array(void)
  214. {
  215. int rr, i;
  216. rr = first_node(node_online_map);
  217. for (i = 0; i < nr_cpu_ids; i++) {
  218. if (early_cpu_to_node(i) != NUMA_NO_NODE)
  219. continue;
  220. numa_set_node(i, rr);
  221. rr = next_node(rr, node_online_map);
  222. if (rr == MAX_NUMNODES)
  223. rr = first_node(node_online_map);
  224. }
  225. }
  226. #ifdef CONFIG_NUMA_EMU
  227. /* Numa emulation */
  228. static struct bootnode nodes[MAX_NUMNODES] __initdata;
  229. static struct bootnode physnodes[MAX_NUMNODES] __initdata;
  230. static char *cmdline __initdata;
  231. static int __init setup_physnodes(unsigned long start, unsigned long end,
  232. int acpi, int k8)
  233. {
  234. int nr_nodes = 0;
  235. int ret = 0;
  236. int i;
  237. #ifdef CONFIG_ACPI_NUMA
  238. if (acpi)
  239. nr_nodes = acpi_get_nodes(physnodes);
  240. #endif
  241. #ifdef CONFIG_K8_NUMA
  242. if (k8)
  243. nr_nodes = k8_get_nodes(physnodes);
  244. #endif
  245. /*
  246. * Basic sanity checking on the physical node map: there may be errors
  247. * if the SRAT or K8 incorrectly reported the topology or the mem=
  248. * kernel parameter is used.
  249. */
  250. for (i = 0; i < nr_nodes; i++) {
  251. if (physnodes[i].start == physnodes[i].end)
  252. continue;
  253. if (physnodes[i].start > end) {
  254. physnodes[i].end = physnodes[i].start;
  255. continue;
  256. }
  257. if (physnodes[i].end < start) {
  258. physnodes[i].start = physnodes[i].end;
  259. continue;
  260. }
  261. if (physnodes[i].start < start)
  262. physnodes[i].start = start;
  263. if (physnodes[i].end > end)
  264. physnodes[i].end = end;
  265. }
  266. /*
  267. * Remove all nodes that have no memory or were truncated because of the
  268. * limited address range.
  269. */
  270. for (i = 0; i < nr_nodes; i++) {
  271. if (physnodes[i].start == physnodes[i].end)
  272. continue;
  273. physnodes[ret].start = physnodes[i].start;
  274. physnodes[ret].end = physnodes[i].end;
  275. ret++;
  276. }
  277. /*
  278. * If no physical topology was detected, a single node is faked to cover
  279. * the entire address space.
  280. */
  281. if (!ret) {
  282. physnodes[ret].start = start;
  283. physnodes[ret].end = end;
  284. ret = 1;
  285. }
  286. return ret;
  287. }
  288. /*
  289. * Setups up nid to range from addr to addr + size. If the end
  290. * boundary is greater than max_addr, then max_addr is used instead.
  291. * The return value is 0 if there is additional memory left for
  292. * allocation past addr and -1 otherwise. addr is adjusted to be at
  293. * the end of the node.
  294. */
  295. static int __init setup_node_range(int nid, u64 *addr, u64 size, u64 max_addr)
  296. {
  297. int ret = 0;
  298. nodes[nid].start = *addr;
  299. *addr += size;
  300. if (*addr >= max_addr) {
  301. *addr = max_addr;
  302. ret = -1;
  303. }
  304. nodes[nid].end = *addr;
  305. node_set(nid, node_possible_map);
  306. printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
  307. nodes[nid].start, nodes[nid].end,
  308. (nodes[nid].end - nodes[nid].start) >> 20);
  309. return ret;
  310. }
  311. /*
  312. * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr
  313. * to max_addr. The return value is the number of nodes allocated.
  314. */
  315. static int __init split_nodes_interleave(u64 addr, u64 max_addr,
  316. int nr_phys_nodes, int nr_nodes)
  317. {
  318. nodemask_t physnode_mask = NODE_MASK_NONE;
  319. u64 size;
  320. int big;
  321. int ret = 0;
  322. int i;
  323. if (nr_nodes <= 0)
  324. return -1;
  325. if (nr_nodes > MAX_NUMNODES) {
  326. pr_info("numa=fake=%d too large, reducing to %d\n",
  327. nr_nodes, MAX_NUMNODES);
  328. nr_nodes = MAX_NUMNODES;
  329. }
  330. size = (max_addr - addr - memblock_x86_hole_size(addr, max_addr)) / nr_nodes;
  331. /*
  332. * Calculate the number of big nodes that can be allocated as a result
  333. * of consolidating the remainder.
  334. */
  335. big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) /
  336. FAKE_NODE_MIN_SIZE;
  337. size &= FAKE_NODE_MIN_HASH_MASK;
  338. if (!size) {
  339. pr_err("Not enough memory for each node. "
  340. "NUMA emulation disabled.\n");
  341. return -1;
  342. }
  343. for (i = 0; i < nr_phys_nodes; i++)
  344. if (physnodes[i].start != physnodes[i].end)
  345. node_set(i, physnode_mask);
  346. /*
  347. * Continue to fill physical nodes with fake nodes until there is no
  348. * memory left on any of them.
  349. */
  350. while (nodes_weight(physnode_mask)) {
  351. for_each_node_mask(i, physnode_mask) {
  352. u64 end = physnodes[i].start + size;
  353. u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
  354. if (ret < big)
  355. end += FAKE_NODE_MIN_SIZE;
  356. /*
  357. * Continue to add memory to this fake node if its
  358. * non-reserved memory is less than the per-node size.
  359. */
  360. while (end - physnodes[i].start -
  361. memblock_x86_hole_size(physnodes[i].start, end) < size) {
  362. end += FAKE_NODE_MIN_SIZE;
  363. if (end > physnodes[i].end) {
  364. end = physnodes[i].end;
  365. break;
  366. }
  367. }
  368. /*
  369. * If there won't be at least FAKE_NODE_MIN_SIZE of
  370. * non-reserved memory in ZONE_DMA32 for the next node,
  371. * this one must extend to the boundary.
  372. */
  373. if (end < dma32_end && dma32_end - end -
  374. memblock_x86_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
  375. end = dma32_end;
  376. /*
  377. * If there won't be enough non-reserved memory for the
  378. * next node, this one must extend to the end of the
  379. * physical node.
  380. */
  381. if (physnodes[i].end - end -
  382. memblock_x86_hole_size(end, physnodes[i].end) < size)
  383. end = physnodes[i].end;
  384. /*
  385. * Avoid allocating more nodes than requested, which can
  386. * happen as a result of rounding down each node's size
  387. * to FAKE_NODE_MIN_SIZE.
  388. */
  389. if (nodes_weight(physnode_mask) + ret >= nr_nodes)
  390. end = physnodes[i].end;
  391. if (setup_node_range(ret++, &physnodes[i].start,
  392. end - physnodes[i].start,
  393. physnodes[i].end) < 0)
  394. node_clear(i, physnode_mask);
  395. }
  396. }
  397. return ret;
  398. }
  399. /*
  400. * Returns the end address of a node so that there is at least `size' amount of
  401. * non-reserved memory or `max_addr' is reached.
  402. */
  403. static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size)
  404. {
  405. u64 end = start + size;
  406. while (end - start - memblock_x86_hole_size(start, end) < size) {
  407. end += FAKE_NODE_MIN_SIZE;
  408. if (end > max_addr) {
  409. end = max_addr;
  410. break;
  411. }
  412. }
  413. return end;
  414. }
  415. /*
  416. * Sets up fake nodes of `size' interleaved over physical nodes ranging from
  417. * `addr' to `max_addr'. The return value is the number of nodes allocated.
  418. */
  419. static int __init split_nodes_size_interleave(u64 addr, u64 max_addr, u64 size)
  420. {
  421. nodemask_t physnode_mask = NODE_MASK_NONE;
  422. u64 min_size;
  423. int ret = 0;
  424. int i;
  425. if (!size)
  426. return -1;
  427. /*
  428. * The limit on emulated nodes is MAX_NUMNODES, so the size per node is
  429. * increased accordingly if the requested size is too small. This
  430. * creates a uniform distribution of node sizes across the entire
  431. * machine (but not necessarily over physical nodes).
  432. */
  433. min_size = (max_addr - addr - memblock_x86_hole_size(addr, max_addr)) /
  434. MAX_NUMNODES;
  435. min_size = max(min_size, FAKE_NODE_MIN_SIZE);
  436. if ((min_size & FAKE_NODE_MIN_HASH_MASK) < min_size)
  437. min_size = (min_size + FAKE_NODE_MIN_SIZE) &
  438. FAKE_NODE_MIN_HASH_MASK;
  439. if (size < min_size) {
  440. pr_err("Fake node size %LuMB too small, increasing to %LuMB\n",
  441. size >> 20, min_size >> 20);
  442. size = min_size;
  443. }
  444. size &= FAKE_NODE_MIN_HASH_MASK;
  445. for (i = 0; i < MAX_NUMNODES; i++)
  446. if (physnodes[i].start != physnodes[i].end)
  447. node_set(i, physnode_mask);
  448. /*
  449. * Fill physical nodes with fake nodes of size until there is no memory
  450. * left on any of them.
  451. */
  452. while (nodes_weight(physnode_mask)) {
  453. for_each_node_mask(i, physnode_mask) {
  454. u64 dma32_end = MAX_DMA32_PFN << PAGE_SHIFT;
  455. u64 end;
  456. end = find_end_of_node(physnodes[i].start,
  457. physnodes[i].end, size);
  458. /*
  459. * If there won't be at least FAKE_NODE_MIN_SIZE of
  460. * non-reserved memory in ZONE_DMA32 for the next node,
  461. * this one must extend to the boundary.
  462. */
  463. if (end < dma32_end && dma32_end - end -
  464. memblock_x86_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
  465. end = dma32_end;
  466. /*
  467. * If there won't be enough non-reserved memory for the
  468. * next node, this one must extend to the end of the
  469. * physical node.
  470. */
  471. if (physnodes[i].end - end -
  472. memblock_x86_hole_size(end, physnodes[i].end) < size)
  473. end = physnodes[i].end;
  474. /*
  475. * Setup the fake node that will be allocated as bootmem
  476. * later. If setup_node_range() returns non-zero, there
  477. * is no more memory available on this physical node.
  478. */
  479. if (setup_node_range(ret++, &physnodes[i].start,
  480. end - physnodes[i].start,
  481. physnodes[i].end) < 0)
  482. node_clear(i, physnode_mask);
  483. }
  484. }
  485. return ret;
  486. }
  487. /*
  488. * Sets up the system RAM area from start_pfn to last_pfn according to the
  489. * numa=fake command-line option.
  490. */
  491. static int __init numa_emulation(unsigned long start_pfn,
  492. unsigned long last_pfn, int acpi, int k8)
  493. {
  494. u64 addr = start_pfn << PAGE_SHIFT;
  495. u64 max_addr = last_pfn << PAGE_SHIFT;
  496. int num_phys_nodes;
  497. int num_nodes;
  498. int i;
  499. num_phys_nodes = setup_physnodes(addr, max_addr, acpi, k8);
  500. /*
  501. * If the numa=fake command-line contains a 'M' or 'G', it represents
  502. * the fixed node size. Otherwise, if it is just a single number N,
  503. * split the system RAM into N fake nodes.
  504. */
  505. if (strchr(cmdline, 'M') || strchr(cmdline, 'G')) {
  506. u64 size;
  507. size = memparse(cmdline, &cmdline);
  508. num_nodes = split_nodes_size_interleave(addr, max_addr, size);
  509. } else {
  510. unsigned long n;
  511. n = simple_strtoul(cmdline, NULL, 0);
  512. num_nodes = split_nodes_interleave(addr, max_addr, num_phys_nodes, n);
  513. }
  514. if (num_nodes < 0)
  515. return num_nodes;
  516. memnode_shift = compute_hash_shift(nodes, num_nodes, NULL);
  517. if (memnode_shift < 0) {
  518. memnode_shift = 0;
  519. printk(KERN_ERR "No NUMA hash function found. NUMA emulation "
  520. "disabled.\n");
  521. return -1;
  522. }
  523. /*
  524. * We need to vacate all active ranges that may have been registered for
  525. * the e820 memory map.
  526. */
  527. remove_all_active_ranges();
  528. for_each_node_mask(i, node_possible_map) {
  529. memblock_x86_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
  530. nodes[i].end >> PAGE_SHIFT);
  531. setup_node_bootmem(i, nodes[i].start, nodes[i].end);
  532. }
  533. acpi_fake_nodes(nodes, num_nodes);
  534. numa_init_array();
  535. return 0;
  536. }
  537. #endif /* CONFIG_NUMA_EMU */
  538. void __init initmem_init(unsigned long start_pfn, unsigned long last_pfn,
  539. int acpi, int k8)
  540. {
  541. int i;
  542. nodes_clear(node_possible_map);
  543. nodes_clear(node_online_map);
  544. #ifdef CONFIG_NUMA_EMU
  545. if (cmdline && !numa_emulation(start_pfn, last_pfn, acpi, k8))
  546. return;
  547. nodes_clear(node_possible_map);
  548. nodes_clear(node_online_map);
  549. #endif
  550. #ifdef CONFIG_ACPI_NUMA
  551. if (!numa_off && acpi && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
  552. last_pfn << PAGE_SHIFT))
  553. return;
  554. nodes_clear(node_possible_map);
  555. nodes_clear(node_online_map);
  556. #endif
  557. #ifdef CONFIG_K8_NUMA
  558. if (!numa_off && k8 && !k8_scan_nodes())
  559. return;
  560. nodes_clear(node_possible_map);
  561. nodes_clear(node_online_map);
  562. #endif
  563. printk(KERN_INFO "%s\n",
  564. numa_off ? "NUMA turned off" : "No NUMA configuration found");
  565. printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
  566. start_pfn << PAGE_SHIFT,
  567. last_pfn << PAGE_SHIFT);
  568. /* setup dummy node covering all memory */
  569. memnode_shift = 63;
  570. memnodemap = memnode.embedded_map;
  571. memnodemap[0] = 0;
  572. node_set_online(0);
  573. node_set(0, node_possible_map);
  574. for (i = 0; i < nr_cpu_ids; i++)
  575. numa_set_node(i, 0);
  576. memblock_x86_register_active_regions(0, start_pfn, last_pfn);
  577. setup_node_bootmem(0, start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT);
  578. }
  579. unsigned long __init numa_free_all_bootmem(void)
  580. {
  581. unsigned long pages = 0;
  582. int i;
  583. for_each_online_node(i)
  584. pages += free_all_bootmem_node(NODE_DATA(i));
  585. pages += free_all_memory_core_early(MAX_NUMNODES);
  586. return pages;
  587. }
  588. static __init int numa_setup(char *opt)
  589. {
  590. if (!opt)
  591. return -EINVAL;
  592. if (!strncmp(opt, "off", 3))
  593. numa_off = 1;
  594. #ifdef CONFIG_NUMA_EMU
  595. if (!strncmp(opt, "fake=", 5))
  596. cmdline = opt + 5;
  597. #endif
  598. #ifdef CONFIG_ACPI_NUMA
  599. if (!strncmp(opt, "noacpi", 6))
  600. acpi_numa = -1;
  601. #endif
  602. return 0;
  603. }
  604. early_param("numa", numa_setup);
  605. #ifdef CONFIG_NUMA
  606. static __init int find_near_online_node(int node)
  607. {
  608. int n, val;
  609. int min_val = INT_MAX;
  610. int best_node = -1;
  611. for_each_online_node(n) {
  612. val = node_distance(node, n);
  613. if (val < min_val) {
  614. min_val = val;
  615. best_node = n;
  616. }
  617. }
  618. return best_node;
  619. }
  620. /*
  621. * Setup early cpu_to_node.
  622. *
  623. * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
  624. * and apicid_to_node[] tables have valid entries for a CPU.
  625. * This means we skip cpu_to_node[] initialisation for NUMA
  626. * emulation and faking node case (when running a kernel compiled
  627. * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
  628. * is already initialized in a round robin manner at numa_init_array,
  629. * prior to this call, and this initialization is good enough
  630. * for the fake NUMA cases.
  631. *
  632. * Called before the per_cpu areas are setup.
  633. */
  634. void __init init_cpu_to_node(void)
  635. {
  636. int cpu;
  637. u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
  638. BUG_ON(cpu_to_apicid == NULL);
  639. for_each_possible_cpu(cpu) {
  640. int node;
  641. u16 apicid = cpu_to_apicid[cpu];
  642. if (apicid == BAD_APICID)
  643. continue;
  644. node = apicid_to_node[apicid];
  645. if (node == NUMA_NO_NODE)
  646. continue;
  647. if (!node_online(node))
  648. node = find_near_online_node(node);
  649. numa_set_node(cpu, node);
  650. }
  651. }
  652. #endif
  653. void __cpuinit numa_set_node(int cpu, int node)
  654. {
  655. int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
  656. /* early setting, no percpu area yet */
  657. if (cpu_to_node_map) {
  658. cpu_to_node_map[cpu] = node;
  659. return;
  660. }
  661. #ifdef CONFIG_DEBUG_PER_CPU_MAPS
  662. if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
  663. printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
  664. dump_stack();
  665. return;
  666. }
  667. #endif
  668. per_cpu(x86_cpu_to_node_map, cpu) = node;
  669. if (node != NUMA_NO_NODE)
  670. set_cpu_numa_node(cpu, node);
  671. }
  672. void __cpuinit numa_clear_node(int cpu)
  673. {
  674. numa_set_node(cpu, NUMA_NO_NODE);
  675. }
  676. #ifndef CONFIG_DEBUG_PER_CPU_MAPS
  677. void __cpuinit numa_add_cpu(int cpu)
  678. {
  679. cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
  680. }
  681. void __cpuinit numa_remove_cpu(int cpu)
  682. {
  683. cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
  684. }
  685. #else /* CONFIG_DEBUG_PER_CPU_MAPS */
  686. /*
  687. * --------- debug versions of the numa functions ---------
  688. */
  689. static void __cpuinit numa_set_cpumask(int cpu, int enable)
  690. {
  691. int node = early_cpu_to_node(cpu);
  692. struct cpumask *mask;
  693. char buf[64];
  694. mask = node_to_cpumask_map[node];
  695. if (mask == NULL) {
  696. printk(KERN_ERR "node_to_cpumask_map[%i] NULL\n", node);
  697. dump_stack();
  698. return;
  699. }
  700. if (enable)
  701. cpumask_set_cpu(cpu, mask);
  702. else
  703. cpumask_clear_cpu(cpu, mask);
  704. cpulist_scnprintf(buf, sizeof(buf), mask);
  705. printk(KERN_DEBUG "%s cpu %d node %d: mask now %s\n",
  706. enable ? "numa_add_cpu" : "numa_remove_cpu", cpu, node, buf);
  707. }
  708. void __cpuinit numa_add_cpu(int cpu)
  709. {
  710. numa_set_cpumask(cpu, 1);
  711. }
  712. void __cpuinit numa_remove_cpu(int cpu)
  713. {
  714. numa_set_cpumask(cpu, 0);
  715. }
  716. int __cpu_to_node(int cpu)
  717. {
  718. if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
  719. printk(KERN_WARNING
  720. "cpu_to_node(%d): usage too early!\n", cpu);
  721. dump_stack();
  722. return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
  723. }
  724. return per_cpu(x86_cpu_to_node_map, cpu);
  725. }
  726. EXPORT_SYMBOL(__cpu_to_node);
  727. /*
  728. * Same function as cpu_to_node() but used if called before the
  729. * per_cpu areas are setup.
  730. */
  731. int early_cpu_to_node(int cpu)
  732. {
  733. if (early_per_cpu_ptr(x86_cpu_to_node_map))
  734. return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
  735. if (!cpu_possible(cpu)) {
  736. printk(KERN_WARNING
  737. "early_cpu_to_node(%d): no per_cpu area!\n", cpu);
  738. dump_stack();
  739. return NUMA_NO_NODE;
  740. }
  741. return per_cpu(x86_cpu_to_node_map, cpu);
  742. }
  743. /*
  744. * --------- end of debug versions of the numa functions ---------
  745. */
  746. #endif /* CONFIG_DEBUG_PER_CPU_MAPS */