x86.c 137 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. * Copyright 2010 Red Hat, Inc. and/or its affilates.
  10. *
  11. * Authors:
  12. * Avi Kivity <avi@qumranet.com>
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Amit Shah <amit.shah@qumranet.com>
  15. * Ben-Ami Yassour <benami@il.ibm.com>
  16. *
  17. * This work is licensed under the terms of the GNU GPL, version 2. See
  18. * the COPYING file in the top-level directory.
  19. *
  20. */
  21. #include <linux/kvm_host.h>
  22. #include "irq.h"
  23. #include "mmu.h"
  24. #include "i8254.h"
  25. #include "tss.h"
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <linux/clocksource.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/kvm.h>
  31. #include <linux/fs.h>
  32. #include <linux/vmalloc.h>
  33. #include <linux/module.h>
  34. #include <linux/mman.h>
  35. #include <linux/highmem.h>
  36. #include <linux/iommu.h>
  37. #include <linux/intel-iommu.h>
  38. #include <linux/cpufreq.h>
  39. #include <linux/user-return-notifier.h>
  40. #include <linux/srcu.h>
  41. #include <linux/slab.h>
  42. #include <linux/perf_event.h>
  43. #include <linux/uaccess.h>
  44. #include <trace/events/kvm.h>
  45. #define CREATE_TRACE_POINTS
  46. #include "trace.h"
  47. #include <asm/debugreg.h>
  48. #include <asm/msr.h>
  49. #include <asm/desc.h>
  50. #include <asm/mtrr.h>
  51. #include <asm/mce.h>
  52. #include <asm/i387.h>
  53. #include <asm/xcr.h>
  54. #define MAX_IO_MSRS 256
  55. #define CR0_RESERVED_BITS \
  56. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  57. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  58. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  59. #define CR4_RESERVED_BITS \
  60. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  61. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  62. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  63. | X86_CR4_OSXSAVE \
  64. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  65. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  66. #define KVM_MAX_MCE_BANKS 32
  67. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  68. /* EFER defaults:
  69. * - enable syscall per default because its emulated by KVM
  70. * - enable LME and LMA per default on 64 bit KVM
  71. */
  72. #ifdef CONFIG_X86_64
  73. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  74. #else
  75. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  76. #endif
  77. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  78. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  79. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  80. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  81. struct kvm_cpuid_entry2 __user *entries);
  82. struct kvm_x86_ops *kvm_x86_ops;
  83. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  84. int ignore_msrs = 0;
  85. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  86. #define KVM_NR_SHARED_MSRS 16
  87. struct kvm_shared_msrs_global {
  88. int nr;
  89. u32 msrs[KVM_NR_SHARED_MSRS];
  90. };
  91. struct kvm_shared_msrs {
  92. struct user_return_notifier urn;
  93. bool registered;
  94. struct kvm_shared_msr_values {
  95. u64 host;
  96. u64 curr;
  97. } values[KVM_NR_SHARED_MSRS];
  98. };
  99. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  100. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  101. struct kvm_stats_debugfs_item debugfs_entries[] = {
  102. { "pf_fixed", VCPU_STAT(pf_fixed) },
  103. { "pf_guest", VCPU_STAT(pf_guest) },
  104. { "tlb_flush", VCPU_STAT(tlb_flush) },
  105. { "invlpg", VCPU_STAT(invlpg) },
  106. { "exits", VCPU_STAT(exits) },
  107. { "io_exits", VCPU_STAT(io_exits) },
  108. { "mmio_exits", VCPU_STAT(mmio_exits) },
  109. { "signal_exits", VCPU_STAT(signal_exits) },
  110. { "irq_window", VCPU_STAT(irq_window_exits) },
  111. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  112. { "halt_exits", VCPU_STAT(halt_exits) },
  113. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  114. { "hypercalls", VCPU_STAT(hypercalls) },
  115. { "request_irq", VCPU_STAT(request_irq_exits) },
  116. { "irq_exits", VCPU_STAT(irq_exits) },
  117. { "host_state_reload", VCPU_STAT(host_state_reload) },
  118. { "efer_reload", VCPU_STAT(efer_reload) },
  119. { "fpu_reload", VCPU_STAT(fpu_reload) },
  120. { "insn_emulation", VCPU_STAT(insn_emulation) },
  121. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  122. { "irq_injections", VCPU_STAT(irq_injections) },
  123. { "nmi_injections", VCPU_STAT(nmi_injections) },
  124. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  125. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  126. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  127. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  128. { "mmu_flooded", VM_STAT(mmu_flooded) },
  129. { "mmu_recycled", VM_STAT(mmu_recycled) },
  130. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  131. { "mmu_unsync", VM_STAT(mmu_unsync) },
  132. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  133. { "largepages", VM_STAT(lpages) },
  134. { NULL }
  135. };
  136. u64 __read_mostly host_xcr0;
  137. static inline u32 bit(int bitno)
  138. {
  139. return 1 << (bitno & 31);
  140. }
  141. static void kvm_on_user_return(struct user_return_notifier *urn)
  142. {
  143. unsigned slot;
  144. struct kvm_shared_msrs *locals
  145. = container_of(urn, struct kvm_shared_msrs, urn);
  146. struct kvm_shared_msr_values *values;
  147. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  148. values = &locals->values[slot];
  149. if (values->host != values->curr) {
  150. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  151. values->curr = values->host;
  152. }
  153. }
  154. locals->registered = false;
  155. user_return_notifier_unregister(urn);
  156. }
  157. static void shared_msr_update(unsigned slot, u32 msr)
  158. {
  159. struct kvm_shared_msrs *smsr;
  160. u64 value;
  161. smsr = &__get_cpu_var(shared_msrs);
  162. /* only read, and nobody should modify it at this time,
  163. * so don't need lock */
  164. if (slot >= shared_msrs_global.nr) {
  165. printk(KERN_ERR "kvm: invalid MSR slot!");
  166. return;
  167. }
  168. rdmsrl_safe(msr, &value);
  169. smsr->values[slot].host = value;
  170. smsr->values[slot].curr = value;
  171. }
  172. void kvm_define_shared_msr(unsigned slot, u32 msr)
  173. {
  174. if (slot >= shared_msrs_global.nr)
  175. shared_msrs_global.nr = slot + 1;
  176. shared_msrs_global.msrs[slot] = msr;
  177. /* we need ensured the shared_msr_global have been updated */
  178. smp_wmb();
  179. }
  180. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  181. static void kvm_shared_msr_cpu_online(void)
  182. {
  183. unsigned i;
  184. for (i = 0; i < shared_msrs_global.nr; ++i)
  185. shared_msr_update(i, shared_msrs_global.msrs[i]);
  186. }
  187. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  188. {
  189. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  190. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  191. return;
  192. smsr->values[slot].curr = value;
  193. wrmsrl(shared_msrs_global.msrs[slot], value);
  194. if (!smsr->registered) {
  195. smsr->urn.on_user_return = kvm_on_user_return;
  196. user_return_notifier_register(&smsr->urn);
  197. smsr->registered = true;
  198. }
  199. }
  200. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  201. static void drop_user_return_notifiers(void *ignore)
  202. {
  203. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  204. if (smsr->registered)
  205. kvm_on_user_return(&smsr->urn);
  206. }
  207. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  208. {
  209. if (irqchip_in_kernel(vcpu->kvm))
  210. return vcpu->arch.apic_base;
  211. else
  212. return vcpu->arch.apic_base;
  213. }
  214. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  215. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  216. {
  217. /* TODO: reserve bits check */
  218. if (irqchip_in_kernel(vcpu->kvm))
  219. kvm_lapic_set_base(vcpu, data);
  220. else
  221. vcpu->arch.apic_base = data;
  222. }
  223. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  224. #define EXCPT_BENIGN 0
  225. #define EXCPT_CONTRIBUTORY 1
  226. #define EXCPT_PF 2
  227. static int exception_class(int vector)
  228. {
  229. switch (vector) {
  230. case PF_VECTOR:
  231. return EXCPT_PF;
  232. case DE_VECTOR:
  233. case TS_VECTOR:
  234. case NP_VECTOR:
  235. case SS_VECTOR:
  236. case GP_VECTOR:
  237. return EXCPT_CONTRIBUTORY;
  238. default:
  239. break;
  240. }
  241. return EXCPT_BENIGN;
  242. }
  243. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  244. unsigned nr, bool has_error, u32 error_code,
  245. bool reinject)
  246. {
  247. u32 prev_nr;
  248. int class1, class2;
  249. if (!vcpu->arch.exception.pending) {
  250. queue:
  251. vcpu->arch.exception.pending = true;
  252. vcpu->arch.exception.has_error_code = has_error;
  253. vcpu->arch.exception.nr = nr;
  254. vcpu->arch.exception.error_code = error_code;
  255. vcpu->arch.exception.reinject = reinject;
  256. return;
  257. }
  258. /* to check exception */
  259. prev_nr = vcpu->arch.exception.nr;
  260. if (prev_nr == DF_VECTOR) {
  261. /* triple fault -> shutdown */
  262. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  263. return;
  264. }
  265. class1 = exception_class(prev_nr);
  266. class2 = exception_class(nr);
  267. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  268. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  269. /* generate double fault per SDM Table 5-5 */
  270. vcpu->arch.exception.pending = true;
  271. vcpu->arch.exception.has_error_code = true;
  272. vcpu->arch.exception.nr = DF_VECTOR;
  273. vcpu->arch.exception.error_code = 0;
  274. } else
  275. /* replace previous exception with a new one in a hope
  276. that instruction re-execution will regenerate lost
  277. exception */
  278. goto queue;
  279. }
  280. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  281. {
  282. kvm_multiple_exception(vcpu, nr, false, 0, false);
  283. }
  284. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  285. void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  286. {
  287. kvm_multiple_exception(vcpu, nr, false, 0, true);
  288. }
  289. EXPORT_SYMBOL_GPL(kvm_requeue_exception);
  290. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  291. u32 error_code)
  292. {
  293. ++vcpu->stat.pf_guest;
  294. vcpu->arch.cr2 = addr;
  295. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  296. }
  297. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  298. {
  299. vcpu->arch.nmi_pending = 1;
  300. }
  301. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  302. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  303. {
  304. kvm_multiple_exception(vcpu, nr, true, error_code, false);
  305. }
  306. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  307. void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  308. {
  309. kvm_multiple_exception(vcpu, nr, true, error_code, true);
  310. }
  311. EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
  312. /*
  313. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  314. * a #GP and return false.
  315. */
  316. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  317. {
  318. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  319. return true;
  320. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  321. return false;
  322. }
  323. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  324. /*
  325. * Load the pae pdptrs. Return true is they are all valid.
  326. */
  327. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  328. {
  329. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  330. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  331. int i;
  332. int ret;
  333. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  334. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  335. offset * sizeof(u64), sizeof(pdpte));
  336. if (ret < 0) {
  337. ret = 0;
  338. goto out;
  339. }
  340. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  341. if (is_present_gpte(pdpte[i]) &&
  342. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  343. ret = 0;
  344. goto out;
  345. }
  346. }
  347. ret = 1;
  348. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  349. __set_bit(VCPU_EXREG_PDPTR,
  350. (unsigned long *)&vcpu->arch.regs_avail);
  351. __set_bit(VCPU_EXREG_PDPTR,
  352. (unsigned long *)&vcpu->arch.regs_dirty);
  353. out:
  354. return ret;
  355. }
  356. EXPORT_SYMBOL_GPL(load_pdptrs);
  357. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  358. {
  359. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  360. bool changed = true;
  361. int r;
  362. if (is_long_mode(vcpu) || !is_pae(vcpu))
  363. return false;
  364. if (!test_bit(VCPU_EXREG_PDPTR,
  365. (unsigned long *)&vcpu->arch.regs_avail))
  366. return true;
  367. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  368. if (r < 0)
  369. goto out;
  370. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  371. out:
  372. return changed;
  373. }
  374. int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  375. {
  376. unsigned long old_cr0 = kvm_read_cr0(vcpu);
  377. unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
  378. X86_CR0_CD | X86_CR0_NW;
  379. cr0 |= X86_CR0_ET;
  380. #ifdef CONFIG_X86_64
  381. if (cr0 & 0xffffffff00000000UL)
  382. return 1;
  383. #endif
  384. cr0 &= ~CR0_RESERVED_BITS;
  385. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
  386. return 1;
  387. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
  388. return 1;
  389. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  390. #ifdef CONFIG_X86_64
  391. if ((vcpu->arch.efer & EFER_LME)) {
  392. int cs_db, cs_l;
  393. if (!is_pae(vcpu))
  394. return 1;
  395. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  396. if (cs_l)
  397. return 1;
  398. } else
  399. #endif
  400. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3))
  401. return 1;
  402. }
  403. kvm_x86_ops->set_cr0(vcpu, cr0);
  404. if ((cr0 ^ old_cr0) & update_bits)
  405. kvm_mmu_reset_context(vcpu);
  406. return 0;
  407. }
  408. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  409. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  410. {
  411. (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
  412. }
  413. EXPORT_SYMBOL_GPL(kvm_lmsw);
  414. int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  415. {
  416. u64 xcr0;
  417. /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
  418. if (index != XCR_XFEATURE_ENABLED_MASK)
  419. return 1;
  420. xcr0 = xcr;
  421. if (kvm_x86_ops->get_cpl(vcpu) != 0)
  422. return 1;
  423. if (!(xcr0 & XSTATE_FP))
  424. return 1;
  425. if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
  426. return 1;
  427. if (xcr0 & ~host_xcr0)
  428. return 1;
  429. vcpu->arch.xcr0 = xcr0;
  430. vcpu->guest_xcr0_loaded = 0;
  431. return 0;
  432. }
  433. int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  434. {
  435. if (__kvm_set_xcr(vcpu, index, xcr)) {
  436. kvm_inject_gp(vcpu, 0);
  437. return 1;
  438. }
  439. return 0;
  440. }
  441. EXPORT_SYMBOL_GPL(kvm_set_xcr);
  442. static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
  443. {
  444. struct kvm_cpuid_entry2 *best;
  445. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  446. return best && (best->ecx & bit(X86_FEATURE_XSAVE));
  447. }
  448. static void update_cpuid(struct kvm_vcpu *vcpu)
  449. {
  450. struct kvm_cpuid_entry2 *best;
  451. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  452. if (!best)
  453. return;
  454. /* Update OSXSAVE bit */
  455. if (cpu_has_xsave && best->function == 0x1) {
  456. best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
  457. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
  458. best->ecx |= bit(X86_FEATURE_OSXSAVE);
  459. }
  460. }
  461. int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  462. {
  463. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  464. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  465. if (cr4 & CR4_RESERVED_BITS)
  466. return 1;
  467. if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
  468. return 1;
  469. if (is_long_mode(vcpu)) {
  470. if (!(cr4 & X86_CR4_PAE))
  471. return 1;
  472. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  473. && ((cr4 ^ old_cr4) & pdptr_bits)
  474. && !load_pdptrs(vcpu, vcpu->arch.cr3))
  475. return 1;
  476. if (cr4 & X86_CR4_VMXE)
  477. return 1;
  478. kvm_x86_ops->set_cr4(vcpu, cr4);
  479. if ((cr4 ^ old_cr4) & pdptr_bits)
  480. kvm_mmu_reset_context(vcpu);
  481. if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
  482. update_cpuid(vcpu);
  483. return 0;
  484. }
  485. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  486. int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  487. {
  488. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  489. kvm_mmu_sync_roots(vcpu);
  490. kvm_mmu_flush_tlb(vcpu);
  491. return 0;
  492. }
  493. if (is_long_mode(vcpu)) {
  494. if (cr3 & CR3_L_MODE_RESERVED_BITS)
  495. return 1;
  496. } else {
  497. if (is_pae(vcpu)) {
  498. if (cr3 & CR3_PAE_RESERVED_BITS)
  499. return 1;
  500. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3))
  501. return 1;
  502. }
  503. /*
  504. * We don't check reserved bits in nonpae mode, because
  505. * this isn't enforced, and VMware depends on this.
  506. */
  507. }
  508. /*
  509. * Does the new cr3 value map to physical memory? (Note, we
  510. * catch an invalid cr3 even in real-mode, because it would
  511. * cause trouble later on when we turn on paging anyway.)
  512. *
  513. * A real CPU would silently accept an invalid cr3 and would
  514. * attempt to use it - with largely undefined (and often hard
  515. * to debug) behavior on the guest side.
  516. */
  517. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  518. return 1;
  519. vcpu->arch.cr3 = cr3;
  520. vcpu->arch.mmu.new_cr3(vcpu);
  521. return 0;
  522. }
  523. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  524. int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  525. {
  526. if (cr8 & CR8_RESERVED_BITS)
  527. return 1;
  528. if (irqchip_in_kernel(vcpu->kvm))
  529. kvm_lapic_set_tpr(vcpu, cr8);
  530. else
  531. vcpu->arch.cr8 = cr8;
  532. return 0;
  533. }
  534. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  535. {
  536. if (__kvm_set_cr8(vcpu, cr8))
  537. kvm_inject_gp(vcpu, 0);
  538. }
  539. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  540. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  541. {
  542. if (irqchip_in_kernel(vcpu->kvm))
  543. return kvm_lapic_get_cr8(vcpu);
  544. else
  545. return vcpu->arch.cr8;
  546. }
  547. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  548. static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  549. {
  550. switch (dr) {
  551. case 0 ... 3:
  552. vcpu->arch.db[dr] = val;
  553. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  554. vcpu->arch.eff_db[dr] = val;
  555. break;
  556. case 4:
  557. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  558. return 1; /* #UD */
  559. /* fall through */
  560. case 6:
  561. if (val & 0xffffffff00000000ULL)
  562. return -1; /* #GP */
  563. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  564. break;
  565. case 5:
  566. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  567. return 1; /* #UD */
  568. /* fall through */
  569. default: /* 7 */
  570. if (val & 0xffffffff00000000ULL)
  571. return -1; /* #GP */
  572. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  573. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  574. kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
  575. vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
  576. }
  577. break;
  578. }
  579. return 0;
  580. }
  581. int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  582. {
  583. int res;
  584. res = __kvm_set_dr(vcpu, dr, val);
  585. if (res > 0)
  586. kvm_queue_exception(vcpu, UD_VECTOR);
  587. else if (res < 0)
  588. kvm_inject_gp(vcpu, 0);
  589. return res;
  590. }
  591. EXPORT_SYMBOL_GPL(kvm_set_dr);
  592. static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  593. {
  594. switch (dr) {
  595. case 0 ... 3:
  596. *val = vcpu->arch.db[dr];
  597. break;
  598. case 4:
  599. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  600. return 1;
  601. /* fall through */
  602. case 6:
  603. *val = vcpu->arch.dr6;
  604. break;
  605. case 5:
  606. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  607. return 1;
  608. /* fall through */
  609. default: /* 7 */
  610. *val = vcpu->arch.dr7;
  611. break;
  612. }
  613. return 0;
  614. }
  615. int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  616. {
  617. if (_kvm_get_dr(vcpu, dr, val)) {
  618. kvm_queue_exception(vcpu, UD_VECTOR);
  619. return 1;
  620. }
  621. return 0;
  622. }
  623. EXPORT_SYMBOL_GPL(kvm_get_dr);
  624. /*
  625. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  626. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  627. *
  628. * This list is modified at module load time to reflect the
  629. * capabilities of the host cpu. This capabilities test skips MSRs that are
  630. * kvm-specific. Those are put in the beginning of the list.
  631. */
  632. #define KVM_SAVE_MSRS_BEGIN 7
  633. static u32 msrs_to_save[] = {
  634. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  635. MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
  636. HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
  637. HV_X64_MSR_APIC_ASSIST_PAGE,
  638. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  639. MSR_STAR,
  640. #ifdef CONFIG_X86_64
  641. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  642. #endif
  643. MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  644. };
  645. static unsigned num_msrs_to_save;
  646. static u32 emulated_msrs[] = {
  647. MSR_IA32_MISC_ENABLE,
  648. MSR_IA32_MCG_STATUS,
  649. MSR_IA32_MCG_CTL,
  650. };
  651. static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
  652. {
  653. u64 old_efer = vcpu->arch.efer;
  654. if (efer & efer_reserved_bits)
  655. return 1;
  656. if (is_paging(vcpu)
  657. && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
  658. return 1;
  659. if (efer & EFER_FFXSR) {
  660. struct kvm_cpuid_entry2 *feat;
  661. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  662. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
  663. return 1;
  664. }
  665. if (efer & EFER_SVME) {
  666. struct kvm_cpuid_entry2 *feat;
  667. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  668. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
  669. return 1;
  670. }
  671. efer &= ~EFER_LMA;
  672. efer |= vcpu->arch.efer & EFER_LMA;
  673. kvm_x86_ops->set_efer(vcpu, efer);
  674. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  675. kvm_mmu_reset_context(vcpu);
  676. /* Update reserved bits */
  677. if ((efer ^ old_efer) & EFER_NX)
  678. kvm_mmu_reset_context(vcpu);
  679. return 0;
  680. }
  681. void kvm_enable_efer_bits(u64 mask)
  682. {
  683. efer_reserved_bits &= ~mask;
  684. }
  685. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  686. /*
  687. * Writes msr value into into the appropriate "register".
  688. * Returns 0 on success, non-0 otherwise.
  689. * Assumes vcpu_load() was already called.
  690. */
  691. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  692. {
  693. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  694. }
  695. /*
  696. * Adapt set_msr() to msr_io()'s calling convention
  697. */
  698. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  699. {
  700. return kvm_set_msr(vcpu, index, *data);
  701. }
  702. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  703. {
  704. int version;
  705. int r;
  706. struct pvclock_wall_clock wc;
  707. struct timespec boot;
  708. if (!wall_clock)
  709. return;
  710. r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
  711. if (r)
  712. return;
  713. if (version & 1)
  714. ++version; /* first time write, random junk */
  715. ++version;
  716. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  717. /*
  718. * The guest calculates current wall clock time by adding
  719. * system time (updated by kvm_write_guest_time below) to the
  720. * wall clock specified here. guest system time equals host
  721. * system time for us, thus we must fill in host boot time here.
  722. */
  723. getboottime(&boot);
  724. wc.sec = boot.tv_sec;
  725. wc.nsec = boot.tv_nsec;
  726. wc.version = version;
  727. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  728. version++;
  729. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  730. }
  731. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  732. {
  733. uint32_t quotient, remainder;
  734. /* Don't try to replace with do_div(), this one calculates
  735. * "(dividend << 32) / divisor" */
  736. __asm__ ( "divl %4"
  737. : "=a" (quotient), "=d" (remainder)
  738. : "0" (0), "1" (dividend), "r" (divisor) );
  739. return quotient;
  740. }
  741. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  742. {
  743. uint64_t nsecs = 1000000000LL;
  744. int32_t shift = 0;
  745. uint64_t tps64;
  746. uint32_t tps32;
  747. tps64 = tsc_khz * 1000LL;
  748. while (tps64 > nsecs*2) {
  749. tps64 >>= 1;
  750. shift--;
  751. }
  752. tps32 = (uint32_t)tps64;
  753. while (tps32 <= (uint32_t)nsecs) {
  754. tps32 <<= 1;
  755. shift++;
  756. }
  757. hv_clock->tsc_shift = shift;
  758. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  759. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  760. __func__, tsc_khz, hv_clock->tsc_shift,
  761. hv_clock->tsc_to_system_mul);
  762. }
  763. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  764. static void kvm_write_guest_time(struct kvm_vcpu *v)
  765. {
  766. struct timespec ts;
  767. unsigned long flags;
  768. struct kvm_vcpu_arch *vcpu = &v->arch;
  769. void *shared_kaddr;
  770. unsigned long this_tsc_khz;
  771. if ((!vcpu->time_page))
  772. return;
  773. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  774. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  775. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  776. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  777. }
  778. put_cpu_var(cpu_tsc_khz);
  779. /* Keep irq disabled to prevent changes to the clock */
  780. local_irq_save(flags);
  781. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  782. ktime_get_ts(&ts);
  783. monotonic_to_bootbased(&ts);
  784. local_irq_restore(flags);
  785. /* With all the info we got, fill in the values */
  786. vcpu->hv_clock.system_time = ts.tv_nsec +
  787. (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
  788. vcpu->hv_clock.flags = 0;
  789. /*
  790. * The interface expects us to write an even number signaling that the
  791. * update is finished. Since the guest won't see the intermediate
  792. * state, we just increase by 2 at the end.
  793. */
  794. vcpu->hv_clock.version += 2;
  795. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  796. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  797. sizeof(vcpu->hv_clock));
  798. kunmap_atomic(shared_kaddr, KM_USER0);
  799. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  800. }
  801. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  802. {
  803. struct kvm_vcpu_arch *vcpu = &v->arch;
  804. if (!vcpu->time_page)
  805. return 0;
  806. kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v);
  807. return 1;
  808. }
  809. static bool msr_mtrr_valid(unsigned msr)
  810. {
  811. switch (msr) {
  812. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  813. case MSR_MTRRfix64K_00000:
  814. case MSR_MTRRfix16K_80000:
  815. case MSR_MTRRfix16K_A0000:
  816. case MSR_MTRRfix4K_C0000:
  817. case MSR_MTRRfix4K_C8000:
  818. case MSR_MTRRfix4K_D0000:
  819. case MSR_MTRRfix4K_D8000:
  820. case MSR_MTRRfix4K_E0000:
  821. case MSR_MTRRfix4K_E8000:
  822. case MSR_MTRRfix4K_F0000:
  823. case MSR_MTRRfix4K_F8000:
  824. case MSR_MTRRdefType:
  825. case MSR_IA32_CR_PAT:
  826. return true;
  827. case 0x2f8:
  828. return true;
  829. }
  830. return false;
  831. }
  832. static bool valid_pat_type(unsigned t)
  833. {
  834. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  835. }
  836. static bool valid_mtrr_type(unsigned t)
  837. {
  838. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  839. }
  840. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  841. {
  842. int i;
  843. if (!msr_mtrr_valid(msr))
  844. return false;
  845. if (msr == MSR_IA32_CR_PAT) {
  846. for (i = 0; i < 8; i++)
  847. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  848. return false;
  849. return true;
  850. } else if (msr == MSR_MTRRdefType) {
  851. if (data & ~0xcff)
  852. return false;
  853. return valid_mtrr_type(data & 0xff);
  854. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  855. for (i = 0; i < 8 ; i++)
  856. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  857. return false;
  858. return true;
  859. }
  860. /* variable MTRRs */
  861. return valid_mtrr_type(data & 0xff);
  862. }
  863. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  864. {
  865. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  866. if (!mtrr_valid(vcpu, msr, data))
  867. return 1;
  868. if (msr == MSR_MTRRdefType) {
  869. vcpu->arch.mtrr_state.def_type = data;
  870. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  871. } else if (msr == MSR_MTRRfix64K_00000)
  872. p[0] = data;
  873. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  874. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  875. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  876. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  877. else if (msr == MSR_IA32_CR_PAT)
  878. vcpu->arch.pat = data;
  879. else { /* Variable MTRRs */
  880. int idx, is_mtrr_mask;
  881. u64 *pt;
  882. idx = (msr - 0x200) / 2;
  883. is_mtrr_mask = msr - 0x200 - 2 * idx;
  884. if (!is_mtrr_mask)
  885. pt =
  886. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  887. else
  888. pt =
  889. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  890. *pt = data;
  891. }
  892. kvm_mmu_reset_context(vcpu);
  893. return 0;
  894. }
  895. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  896. {
  897. u64 mcg_cap = vcpu->arch.mcg_cap;
  898. unsigned bank_num = mcg_cap & 0xff;
  899. switch (msr) {
  900. case MSR_IA32_MCG_STATUS:
  901. vcpu->arch.mcg_status = data;
  902. break;
  903. case MSR_IA32_MCG_CTL:
  904. if (!(mcg_cap & MCG_CTL_P))
  905. return 1;
  906. if (data != 0 && data != ~(u64)0)
  907. return -1;
  908. vcpu->arch.mcg_ctl = data;
  909. break;
  910. default:
  911. if (msr >= MSR_IA32_MC0_CTL &&
  912. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  913. u32 offset = msr - MSR_IA32_MC0_CTL;
  914. /* only 0 or all 1s can be written to IA32_MCi_CTL
  915. * some Linux kernels though clear bit 10 in bank 4 to
  916. * workaround a BIOS/GART TBL issue on AMD K8s, ignore
  917. * this to avoid an uncatched #GP in the guest
  918. */
  919. if ((offset & 0x3) == 0 &&
  920. data != 0 && (data | (1 << 10)) != ~(u64)0)
  921. return -1;
  922. vcpu->arch.mce_banks[offset] = data;
  923. break;
  924. }
  925. return 1;
  926. }
  927. return 0;
  928. }
  929. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  930. {
  931. struct kvm *kvm = vcpu->kvm;
  932. int lm = is_long_mode(vcpu);
  933. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  934. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  935. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  936. : kvm->arch.xen_hvm_config.blob_size_32;
  937. u32 page_num = data & ~PAGE_MASK;
  938. u64 page_addr = data & PAGE_MASK;
  939. u8 *page;
  940. int r;
  941. r = -E2BIG;
  942. if (page_num >= blob_size)
  943. goto out;
  944. r = -ENOMEM;
  945. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  946. if (!page)
  947. goto out;
  948. r = -EFAULT;
  949. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  950. goto out_free;
  951. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  952. goto out_free;
  953. r = 0;
  954. out_free:
  955. kfree(page);
  956. out:
  957. return r;
  958. }
  959. static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
  960. {
  961. return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
  962. }
  963. static bool kvm_hv_msr_partition_wide(u32 msr)
  964. {
  965. bool r = false;
  966. switch (msr) {
  967. case HV_X64_MSR_GUEST_OS_ID:
  968. case HV_X64_MSR_HYPERCALL:
  969. r = true;
  970. break;
  971. }
  972. return r;
  973. }
  974. static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  975. {
  976. struct kvm *kvm = vcpu->kvm;
  977. switch (msr) {
  978. case HV_X64_MSR_GUEST_OS_ID:
  979. kvm->arch.hv_guest_os_id = data;
  980. /* setting guest os id to zero disables hypercall page */
  981. if (!kvm->arch.hv_guest_os_id)
  982. kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
  983. break;
  984. case HV_X64_MSR_HYPERCALL: {
  985. u64 gfn;
  986. unsigned long addr;
  987. u8 instructions[4];
  988. /* if guest os id is not set hypercall should remain disabled */
  989. if (!kvm->arch.hv_guest_os_id)
  990. break;
  991. if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
  992. kvm->arch.hv_hypercall = data;
  993. break;
  994. }
  995. gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
  996. addr = gfn_to_hva(kvm, gfn);
  997. if (kvm_is_error_hva(addr))
  998. return 1;
  999. kvm_x86_ops->patch_hypercall(vcpu, instructions);
  1000. ((unsigned char *)instructions)[3] = 0xc3; /* ret */
  1001. if (copy_to_user((void __user *)addr, instructions, 4))
  1002. return 1;
  1003. kvm->arch.hv_hypercall = data;
  1004. break;
  1005. }
  1006. default:
  1007. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1008. "data 0x%llx\n", msr, data);
  1009. return 1;
  1010. }
  1011. return 0;
  1012. }
  1013. static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1014. {
  1015. switch (msr) {
  1016. case HV_X64_MSR_APIC_ASSIST_PAGE: {
  1017. unsigned long addr;
  1018. if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
  1019. vcpu->arch.hv_vapic = data;
  1020. break;
  1021. }
  1022. addr = gfn_to_hva(vcpu->kvm, data >>
  1023. HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
  1024. if (kvm_is_error_hva(addr))
  1025. return 1;
  1026. if (clear_user((void __user *)addr, PAGE_SIZE))
  1027. return 1;
  1028. vcpu->arch.hv_vapic = data;
  1029. break;
  1030. }
  1031. case HV_X64_MSR_EOI:
  1032. return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
  1033. case HV_X64_MSR_ICR:
  1034. return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
  1035. case HV_X64_MSR_TPR:
  1036. return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
  1037. default:
  1038. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1039. "data 0x%llx\n", msr, data);
  1040. return 1;
  1041. }
  1042. return 0;
  1043. }
  1044. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1045. {
  1046. switch (msr) {
  1047. case MSR_EFER:
  1048. return set_efer(vcpu, data);
  1049. case MSR_K7_HWCR:
  1050. data &= ~(u64)0x40; /* ignore flush filter disable */
  1051. data &= ~(u64)0x100; /* ignore ignne emulation enable */
  1052. if (data != 0) {
  1053. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  1054. data);
  1055. return 1;
  1056. }
  1057. break;
  1058. case MSR_FAM10H_MMIO_CONF_BASE:
  1059. if (data != 0) {
  1060. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  1061. "0x%llx\n", data);
  1062. return 1;
  1063. }
  1064. break;
  1065. case MSR_AMD64_NB_CFG:
  1066. break;
  1067. case MSR_IA32_DEBUGCTLMSR:
  1068. if (!data) {
  1069. /* We support the non-activated case already */
  1070. break;
  1071. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  1072. /* Values other than LBR and BTF are vendor-specific,
  1073. thus reserved and should throw a #GP */
  1074. return 1;
  1075. }
  1076. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  1077. __func__, data);
  1078. break;
  1079. case MSR_IA32_UCODE_REV:
  1080. case MSR_IA32_UCODE_WRITE:
  1081. case MSR_VM_HSAVE_PA:
  1082. case MSR_AMD64_PATCH_LOADER:
  1083. break;
  1084. case 0x200 ... 0x2ff:
  1085. return set_msr_mtrr(vcpu, msr, data);
  1086. case MSR_IA32_APICBASE:
  1087. kvm_set_apic_base(vcpu, data);
  1088. break;
  1089. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1090. return kvm_x2apic_msr_write(vcpu, msr, data);
  1091. case MSR_IA32_MISC_ENABLE:
  1092. vcpu->arch.ia32_misc_enable_msr = data;
  1093. break;
  1094. case MSR_KVM_WALL_CLOCK_NEW:
  1095. case MSR_KVM_WALL_CLOCK:
  1096. vcpu->kvm->arch.wall_clock = data;
  1097. kvm_write_wall_clock(vcpu->kvm, data);
  1098. break;
  1099. case MSR_KVM_SYSTEM_TIME_NEW:
  1100. case MSR_KVM_SYSTEM_TIME: {
  1101. if (vcpu->arch.time_page) {
  1102. kvm_release_page_dirty(vcpu->arch.time_page);
  1103. vcpu->arch.time_page = NULL;
  1104. }
  1105. vcpu->arch.time = data;
  1106. /* we verify if the enable bit is set... */
  1107. if (!(data & 1))
  1108. break;
  1109. /* ...but clean it before doing the actual write */
  1110. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  1111. vcpu->arch.time_page =
  1112. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  1113. if (is_error_page(vcpu->arch.time_page)) {
  1114. kvm_release_page_clean(vcpu->arch.time_page);
  1115. vcpu->arch.time_page = NULL;
  1116. }
  1117. kvm_request_guest_time_update(vcpu);
  1118. break;
  1119. }
  1120. case MSR_IA32_MCG_CTL:
  1121. case MSR_IA32_MCG_STATUS:
  1122. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1123. return set_msr_mce(vcpu, msr, data);
  1124. /* Performance counters are not protected by a CPUID bit,
  1125. * so we should check all of them in the generic path for the sake of
  1126. * cross vendor migration.
  1127. * Writing a zero into the event select MSRs disables them,
  1128. * which we perfectly emulate ;-). Any other value should be at least
  1129. * reported, some guests depend on them.
  1130. */
  1131. case MSR_P6_EVNTSEL0:
  1132. case MSR_P6_EVNTSEL1:
  1133. case MSR_K7_EVNTSEL0:
  1134. case MSR_K7_EVNTSEL1:
  1135. case MSR_K7_EVNTSEL2:
  1136. case MSR_K7_EVNTSEL3:
  1137. if (data != 0)
  1138. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1139. "0x%x data 0x%llx\n", msr, data);
  1140. break;
  1141. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  1142. * so we ignore writes to make it happy.
  1143. */
  1144. case MSR_P6_PERFCTR0:
  1145. case MSR_P6_PERFCTR1:
  1146. case MSR_K7_PERFCTR0:
  1147. case MSR_K7_PERFCTR1:
  1148. case MSR_K7_PERFCTR2:
  1149. case MSR_K7_PERFCTR3:
  1150. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1151. "0x%x data 0x%llx\n", msr, data);
  1152. break;
  1153. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1154. if (kvm_hv_msr_partition_wide(msr)) {
  1155. int r;
  1156. mutex_lock(&vcpu->kvm->lock);
  1157. r = set_msr_hyperv_pw(vcpu, msr, data);
  1158. mutex_unlock(&vcpu->kvm->lock);
  1159. return r;
  1160. } else
  1161. return set_msr_hyperv(vcpu, msr, data);
  1162. break;
  1163. default:
  1164. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  1165. return xen_hvm_config(vcpu, data);
  1166. if (!ignore_msrs) {
  1167. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  1168. msr, data);
  1169. return 1;
  1170. } else {
  1171. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  1172. msr, data);
  1173. break;
  1174. }
  1175. }
  1176. return 0;
  1177. }
  1178. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1179. /*
  1180. * Reads an msr value (of 'msr_index') into 'pdata'.
  1181. * Returns 0 on success, non-0 otherwise.
  1182. * Assumes vcpu_load() was already called.
  1183. */
  1184. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1185. {
  1186. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1187. }
  1188. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1189. {
  1190. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1191. if (!msr_mtrr_valid(msr))
  1192. return 1;
  1193. if (msr == MSR_MTRRdefType)
  1194. *pdata = vcpu->arch.mtrr_state.def_type +
  1195. (vcpu->arch.mtrr_state.enabled << 10);
  1196. else if (msr == MSR_MTRRfix64K_00000)
  1197. *pdata = p[0];
  1198. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1199. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1200. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1201. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1202. else if (msr == MSR_IA32_CR_PAT)
  1203. *pdata = vcpu->arch.pat;
  1204. else { /* Variable MTRRs */
  1205. int idx, is_mtrr_mask;
  1206. u64 *pt;
  1207. idx = (msr - 0x200) / 2;
  1208. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1209. if (!is_mtrr_mask)
  1210. pt =
  1211. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1212. else
  1213. pt =
  1214. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1215. *pdata = *pt;
  1216. }
  1217. return 0;
  1218. }
  1219. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1220. {
  1221. u64 data;
  1222. u64 mcg_cap = vcpu->arch.mcg_cap;
  1223. unsigned bank_num = mcg_cap & 0xff;
  1224. switch (msr) {
  1225. case MSR_IA32_P5_MC_ADDR:
  1226. case MSR_IA32_P5_MC_TYPE:
  1227. data = 0;
  1228. break;
  1229. case MSR_IA32_MCG_CAP:
  1230. data = vcpu->arch.mcg_cap;
  1231. break;
  1232. case MSR_IA32_MCG_CTL:
  1233. if (!(mcg_cap & MCG_CTL_P))
  1234. return 1;
  1235. data = vcpu->arch.mcg_ctl;
  1236. break;
  1237. case MSR_IA32_MCG_STATUS:
  1238. data = vcpu->arch.mcg_status;
  1239. break;
  1240. default:
  1241. if (msr >= MSR_IA32_MC0_CTL &&
  1242. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1243. u32 offset = msr - MSR_IA32_MC0_CTL;
  1244. data = vcpu->arch.mce_banks[offset];
  1245. break;
  1246. }
  1247. return 1;
  1248. }
  1249. *pdata = data;
  1250. return 0;
  1251. }
  1252. static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1253. {
  1254. u64 data = 0;
  1255. struct kvm *kvm = vcpu->kvm;
  1256. switch (msr) {
  1257. case HV_X64_MSR_GUEST_OS_ID:
  1258. data = kvm->arch.hv_guest_os_id;
  1259. break;
  1260. case HV_X64_MSR_HYPERCALL:
  1261. data = kvm->arch.hv_hypercall;
  1262. break;
  1263. default:
  1264. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1265. return 1;
  1266. }
  1267. *pdata = data;
  1268. return 0;
  1269. }
  1270. static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1271. {
  1272. u64 data = 0;
  1273. switch (msr) {
  1274. case HV_X64_MSR_VP_INDEX: {
  1275. int r;
  1276. struct kvm_vcpu *v;
  1277. kvm_for_each_vcpu(r, v, vcpu->kvm)
  1278. if (v == vcpu)
  1279. data = r;
  1280. break;
  1281. }
  1282. case HV_X64_MSR_EOI:
  1283. return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
  1284. case HV_X64_MSR_ICR:
  1285. return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
  1286. case HV_X64_MSR_TPR:
  1287. return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
  1288. default:
  1289. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1290. return 1;
  1291. }
  1292. *pdata = data;
  1293. return 0;
  1294. }
  1295. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1296. {
  1297. u64 data;
  1298. switch (msr) {
  1299. case MSR_IA32_PLATFORM_ID:
  1300. case MSR_IA32_UCODE_REV:
  1301. case MSR_IA32_EBL_CR_POWERON:
  1302. case MSR_IA32_DEBUGCTLMSR:
  1303. case MSR_IA32_LASTBRANCHFROMIP:
  1304. case MSR_IA32_LASTBRANCHTOIP:
  1305. case MSR_IA32_LASTINTFROMIP:
  1306. case MSR_IA32_LASTINTTOIP:
  1307. case MSR_K8_SYSCFG:
  1308. case MSR_K7_HWCR:
  1309. case MSR_VM_HSAVE_PA:
  1310. case MSR_P6_PERFCTR0:
  1311. case MSR_P6_PERFCTR1:
  1312. case MSR_P6_EVNTSEL0:
  1313. case MSR_P6_EVNTSEL1:
  1314. case MSR_K7_EVNTSEL0:
  1315. case MSR_K7_PERFCTR0:
  1316. case MSR_K8_INT_PENDING_MSG:
  1317. case MSR_AMD64_NB_CFG:
  1318. case MSR_FAM10H_MMIO_CONF_BASE:
  1319. data = 0;
  1320. break;
  1321. case MSR_MTRRcap:
  1322. data = 0x500 | KVM_NR_VAR_MTRR;
  1323. break;
  1324. case 0x200 ... 0x2ff:
  1325. return get_msr_mtrr(vcpu, msr, pdata);
  1326. case 0xcd: /* fsb frequency */
  1327. data = 3;
  1328. break;
  1329. case MSR_IA32_APICBASE:
  1330. data = kvm_get_apic_base(vcpu);
  1331. break;
  1332. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1333. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1334. break;
  1335. case MSR_IA32_MISC_ENABLE:
  1336. data = vcpu->arch.ia32_misc_enable_msr;
  1337. break;
  1338. case MSR_IA32_PERF_STATUS:
  1339. /* TSC increment by tick */
  1340. data = 1000ULL;
  1341. /* CPU multiplier */
  1342. data |= (((uint64_t)4ULL) << 40);
  1343. break;
  1344. case MSR_EFER:
  1345. data = vcpu->arch.efer;
  1346. break;
  1347. case MSR_KVM_WALL_CLOCK:
  1348. case MSR_KVM_WALL_CLOCK_NEW:
  1349. data = vcpu->kvm->arch.wall_clock;
  1350. break;
  1351. case MSR_KVM_SYSTEM_TIME:
  1352. case MSR_KVM_SYSTEM_TIME_NEW:
  1353. data = vcpu->arch.time;
  1354. break;
  1355. case MSR_IA32_P5_MC_ADDR:
  1356. case MSR_IA32_P5_MC_TYPE:
  1357. case MSR_IA32_MCG_CAP:
  1358. case MSR_IA32_MCG_CTL:
  1359. case MSR_IA32_MCG_STATUS:
  1360. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1361. return get_msr_mce(vcpu, msr, pdata);
  1362. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1363. if (kvm_hv_msr_partition_wide(msr)) {
  1364. int r;
  1365. mutex_lock(&vcpu->kvm->lock);
  1366. r = get_msr_hyperv_pw(vcpu, msr, pdata);
  1367. mutex_unlock(&vcpu->kvm->lock);
  1368. return r;
  1369. } else
  1370. return get_msr_hyperv(vcpu, msr, pdata);
  1371. break;
  1372. default:
  1373. if (!ignore_msrs) {
  1374. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1375. return 1;
  1376. } else {
  1377. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1378. data = 0;
  1379. }
  1380. break;
  1381. }
  1382. *pdata = data;
  1383. return 0;
  1384. }
  1385. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1386. /*
  1387. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1388. *
  1389. * @return number of msrs set successfully.
  1390. */
  1391. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1392. struct kvm_msr_entry *entries,
  1393. int (*do_msr)(struct kvm_vcpu *vcpu,
  1394. unsigned index, u64 *data))
  1395. {
  1396. int i, idx;
  1397. idx = srcu_read_lock(&vcpu->kvm->srcu);
  1398. for (i = 0; i < msrs->nmsrs; ++i)
  1399. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1400. break;
  1401. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  1402. return i;
  1403. }
  1404. /*
  1405. * Read or write a bunch of msrs. Parameters are user addresses.
  1406. *
  1407. * @return number of msrs set successfully.
  1408. */
  1409. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1410. int (*do_msr)(struct kvm_vcpu *vcpu,
  1411. unsigned index, u64 *data),
  1412. int writeback)
  1413. {
  1414. struct kvm_msrs msrs;
  1415. struct kvm_msr_entry *entries;
  1416. int r, n;
  1417. unsigned size;
  1418. r = -EFAULT;
  1419. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1420. goto out;
  1421. r = -E2BIG;
  1422. if (msrs.nmsrs >= MAX_IO_MSRS)
  1423. goto out;
  1424. r = -ENOMEM;
  1425. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1426. entries = kmalloc(size, GFP_KERNEL);
  1427. if (!entries)
  1428. goto out;
  1429. r = -EFAULT;
  1430. if (copy_from_user(entries, user_msrs->entries, size))
  1431. goto out_free;
  1432. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1433. if (r < 0)
  1434. goto out_free;
  1435. r = -EFAULT;
  1436. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1437. goto out_free;
  1438. r = n;
  1439. out_free:
  1440. kfree(entries);
  1441. out:
  1442. return r;
  1443. }
  1444. int kvm_dev_ioctl_check_extension(long ext)
  1445. {
  1446. int r;
  1447. switch (ext) {
  1448. case KVM_CAP_IRQCHIP:
  1449. case KVM_CAP_HLT:
  1450. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1451. case KVM_CAP_SET_TSS_ADDR:
  1452. case KVM_CAP_EXT_CPUID:
  1453. case KVM_CAP_CLOCKSOURCE:
  1454. case KVM_CAP_PIT:
  1455. case KVM_CAP_NOP_IO_DELAY:
  1456. case KVM_CAP_MP_STATE:
  1457. case KVM_CAP_SYNC_MMU:
  1458. case KVM_CAP_REINJECT_CONTROL:
  1459. case KVM_CAP_IRQ_INJECT_STATUS:
  1460. case KVM_CAP_ASSIGN_DEV_IRQ:
  1461. case KVM_CAP_IRQFD:
  1462. case KVM_CAP_IOEVENTFD:
  1463. case KVM_CAP_PIT2:
  1464. case KVM_CAP_PIT_STATE2:
  1465. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1466. case KVM_CAP_XEN_HVM:
  1467. case KVM_CAP_ADJUST_CLOCK:
  1468. case KVM_CAP_VCPU_EVENTS:
  1469. case KVM_CAP_HYPERV:
  1470. case KVM_CAP_HYPERV_VAPIC:
  1471. case KVM_CAP_HYPERV_SPIN:
  1472. case KVM_CAP_PCI_SEGMENT:
  1473. case KVM_CAP_DEBUGREGS:
  1474. case KVM_CAP_X86_ROBUST_SINGLESTEP:
  1475. case KVM_CAP_XSAVE:
  1476. r = 1;
  1477. break;
  1478. case KVM_CAP_COALESCED_MMIO:
  1479. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1480. break;
  1481. case KVM_CAP_VAPIC:
  1482. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1483. break;
  1484. case KVM_CAP_NR_VCPUS:
  1485. r = KVM_MAX_VCPUS;
  1486. break;
  1487. case KVM_CAP_NR_MEMSLOTS:
  1488. r = KVM_MEMORY_SLOTS;
  1489. break;
  1490. case KVM_CAP_PV_MMU: /* obsolete */
  1491. r = 0;
  1492. break;
  1493. case KVM_CAP_IOMMU:
  1494. r = iommu_found();
  1495. break;
  1496. case KVM_CAP_MCE:
  1497. r = KVM_MAX_MCE_BANKS;
  1498. break;
  1499. case KVM_CAP_XCRS:
  1500. r = cpu_has_xsave;
  1501. break;
  1502. default:
  1503. r = 0;
  1504. break;
  1505. }
  1506. return r;
  1507. }
  1508. long kvm_arch_dev_ioctl(struct file *filp,
  1509. unsigned int ioctl, unsigned long arg)
  1510. {
  1511. void __user *argp = (void __user *)arg;
  1512. long r;
  1513. switch (ioctl) {
  1514. case KVM_GET_MSR_INDEX_LIST: {
  1515. struct kvm_msr_list __user *user_msr_list = argp;
  1516. struct kvm_msr_list msr_list;
  1517. unsigned n;
  1518. r = -EFAULT;
  1519. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1520. goto out;
  1521. n = msr_list.nmsrs;
  1522. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1523. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1524. goto out;
  1525. r = -E2BIG;
  1526. if (n < msr_list.nmsrs)
  1527. goto out;
  1528. r = -EFAULT;
  1529. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1530. num_msrs_to_save * sizeof(u32)))
  1531. goto out;
  1532. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1533. &emulated_msrs,
  1534. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1535. goto out;
  1536. r = 0;
  1537. break;
  1538. }
  1539. case KVM_GET_SUPPORTED_CPUID: {
  1540. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1541. struct kvm_cpuid2 cpuid;
  1542. r = -EFAULT;
  1543. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1544. goto out;
  1545. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1546. cpuid_arg->entries);
  1547. if (r)
  1548. goto out;
  1549. r = -EFAULT;
  1550. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1551. goto out;
  1552. r = 0;
  1553. break;
  1554. }
  1555. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1556. u64 mce_cap;
  1557. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1558. r = -EFAULT;
  1559. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1560. goto out;
  1561. r = 0;
  1562. break;
  1563. }
  1564. default:
  1565. r = -EINVAL;
  1566. }
  1567. out:
  1568. return r;
  1569. }
  1570. static void wbinvd_ipi(void *garbage)
  1571. {
  1572. wbinvd();
  1573. }
  1574. static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
  1575. {
  1576. return vcpu->kvm->arch.iommu_domain &&
  1577. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
  1578. }
  1579. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1580. {
  1581. /* Address WBINVD may be executed by guest */
  1582. if (need_emulate_wbinvd(vcpu)) {
  1583. if (kvm_x86_ops->has_wbinvd_exit())
  1584. cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
  1585. else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
  1586. smp_call_function_single(vcpu->cpu,
  1587. wbinvd_ipi, NULL, 1);
  1588. }
  1589. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1590. if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
  1591. unsigned long khz = cpufreq_quick_get(cpu);
  1592. if (!khz)
  1593. khz = tsc_khz;
  1594. per_cpu(cpu_tsc_khz, cpu) = khz;
  1595. }
  1596. kvm_request_guest_time_update(vcpu);
  1597. }
  1598. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1599. {
  1600. kvm_x86_ops->vcpu_put(vcpu);
  1601. kvm_put_guest_fpu(vcpu);
  1602. }
  1603. static int is_efer_nx(void)
  1604. {
  1605. unsigned long long efer = 0;
  1606. rdmsrl_safe(MSR_EFER, &efer);
  1607. return efer & EFER_NX;
  1608. }
  1609. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1610. {
  1611. int i;
  1612. struct kvm_cpuid_entry2 *e, *entry;
  1613. entry = NULL;
  1614. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1615. e = &vcpu->arch.cpuid_entries[i];
  1616. if (e->function == 0x80000001) {
  1617. entry = e;
  1618. break;
  1619. }
  1620. }
  1621. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1622. entry->edx &= ~(1 << 20);
  1623. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1624. }
  1625. }
  1626. /* when an old userspace process fills a new kernel module */
  1627. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1628. struct kvm_cpuid *cpuid,
  1629. struct kvm_cpuid_entry __user *entries)
  1630. {
  1631. int r, i;
  1632. struct kvm_cpuid_entry *cpuid_entries;
  1633. r = -E2BIG;
  1634. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1635. goto out;
  1636. r = -ENOMEM;
  1637. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1638. if (!cpuid_entries)
  1639. goto out;
  1640. r = -EFAULT;
  1641. if (copy_from_user(cpuid_entries, entries,
  1642. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1643. goto out_free;
  1644. for (i = 0; i < cpuid->nent; i++) {
  1645. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1646. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1647. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1648. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1649. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1650. vcpu->arch.cpuid_entries[i].index = 0;
  1651. vcpu->arch.cpuid_entries[i].flags = 0;
  1652. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1653. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1654. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1655. }
  1656. vcpu->arch.cpuid_nent = cpuid->nent;
  1657. cpuid_fix_nx_cap(vcpu);
  1658. r = 0;
  1659. kvm_apic_set_version(vcpu);
  1660. kvm_x86_ops->cpuid_update(vcpu);
  1661. update_cpuid(vcpu);
  1662. out_free:
  1663. vfree(cpuid_entries);
  1664. out:
  1665. return r;
  1666. }
  1667. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1668. struct kvm_cpuid2 *cpuid,
  1669. struct kvm_cpuid_entry2 __user *entries)
  1670. {
  1671. int r;
  1672. r = -E2BIG;
  1673. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1674. goto out;
  1675. r = -EFAULT;
  1676. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1677. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1678. goto out;
  1679. vcpu->arch.cpuid_nent = cpuid->nent;
  1680. kvm_apic_set_version(vcpu);
  1681. kvm_x86_ops->cpuid_update(vcpu);
  1682. update_cpuid(vcpu);
  1683. return 0;
  1684. out:
  1685. return r;
  1686. }
  1687. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1688. struct kvm_cpuid2 *cpuid,
  1689. struct kvm_cpuid_entry2 __user *entries)
  1690. {
  1691. int r;
  1692. r = -E2BIG;
  1693. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1694. goto out;
  1695. r = -EFAULT;
  1696. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1697. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1698. goto out;
  1699. return 0;
  1700. out:
  1701. cpuid->nent = vcpu->arch.cpuid_nent;
  1702. return r;
  1703. }
  1704. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1705. u32 index)
  1706. {
  1707. entry->function = function;
  1708. entry->index = index;
  1709. cpuid_count(entry->function, entry->index,
  1710. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1711. entry->flags = 0;
  1712. }
  1713. #define F(x) bit(X86_FEATURE_##x)
  1714. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1715. u32 index, int *nent, int maxnent)
  1716. {
  1717. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1718. #ifdef CONFIG_X86_64
  1719. unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
  1720. ? F(GBPAGES) : 0;
  1721. unsigned f_lm = F(LM);
  1722. #else
  1723. unsigned f_gbpages = 0;
  1724. unsigned f_lm = 0;
  1725. #endif
  1726. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  1727. /* cpuid 1.edx */
  1728. const u32 kvm_supported_word0_x86_features =
  1729. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1730. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1731. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1732. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1733. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1734. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1735. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1736. 0 /* HTT, TM, Reserved, PBE */;
  1737. /* cpuid 0x80000001.edx */
  1738. const u32 kvm_supported_word1_x86_features =
  1739. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1740. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1741. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1742. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1743. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1744. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1745. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  1746. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1747. /* cpuid 1.ecx */
  1748. const u32 kvm_supported_word4_x86_features =
  1749. F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
  1750. 0 /* DS-CPL, VMX, SMX, EST */ |
  1751. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1752. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1753. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1754. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1755. 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
  1756. F(F16C);
  1757. /* cpuid 0x80000001.ecx */
  1758. const u32 kvm_supported_word6_x86_features =
  1759. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1760. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1761. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
  1762. 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
  1763. /* all calls to cpuid_count() should be made on the same cpu */
  1764. get_cpu();
  1765. do_cpuid_1_ent(entry, function, index);
  1766. ++*nent;
  1767. switch (function) {
  1768. case 0:
  1769. entry->eax = min(entry->eax, (u32)0xd);
  1770. break;
  1771. case 1:
  1772. entry->edx &= kvm_supported_word0_x86_features;
  1773. entry->ecx &= kvm_supported_word4_x86_features;
  1774. /* we support x2apic emulation even if host does not support
  1775. * it since we emulate x2apic in software */
  1776. entry->ecx |= F(X2APIC);
  1777. break;
  1778. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1779. * may return different values. This forces us to get_cpu() before
  1780. * issuing the first command, and also to emulate this annoying behavior
  1781. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1782. case 2: {
  1783. int t, times = entry->eax & 0xff;
  1784. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1785. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1786. for (t = 1; t < times && *nent < maxnent; ++t) {
  1787. do_cpuid_1_ent(&entry[t], function, 0);
  1788. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1789. ++*nent;
  1790. }
  1791. break;
  1792. }
  1793. /* function 4 and 0xb have additional index. */
  1794. case 4: {
  1795. int i, cache_type;
  1796. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1797. /* read more entries until cache_type is zero */
  1798. for (i = 1; *nent < maxnent; ++i) {
  1799. cache_type = entry[i - 1].eax & 0x1f;
  1800. if (!cache_type)
  1801. break;
  1802. do_cpuid_1_ent(&entry[i], function, i);
  1803. entry[i].flags |=
  1804. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1805. ++*nent;
  1806. }
  1807. break;
  1808. }
  1809. case 0xb: {
  1810. int i, level_type;
  1811. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1812. /* read more entries until level_type is zero */
  1813. for (i = 1; *nent < maxnent; ++i) {
  1814. level_type = entry[i - 1].ecx & 0xff00;
  1815. if (!level_type)
  1816. break;
  1817. do_cpuid_1_ent(&entry[i], function, i);
  1818. entry[i].flags |=
  1819. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1820. ++*nent;
  1821. }
  1822. break;
  1823. }
  1824. case 0xd: {
  1825. int i;
  1826. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1827. for (i = 1; *nent < maxnent; ++i) {
  1828. if (entry[i - 1].eax == 0 && i != 2)
  1829. break;
  1830. do_cpuid_1_ent(&entry[i], function, i);
  1831. entry[i].flags |=
  1832. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1833. ++*nent;
  1834. }
  1835. break;
  1836. }
  1837. case KVM_CPUID_SIGNATURE: {
  1838. char signature[12] = "KVMKVMKVM\0\0";
  1839. u32 *sigptr = (u32 *)signature;
  1840. entry->eax = 0;
  1841. entry->ebx = sigptr[0];
  1842. entry->ecx = sigptr[1];
  1843. entry->edx = sigptr[2];
  1844. break;
  1845. }
  1846. case KVM_CPUID_FEATURES:
  1847. entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
  1848. (1 << KVM_FEATURE_NOP_IO_DELAY) |
  1849. (1 << KVM_FEATURE_CLOCKSOURCE2) |
  1850. (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
  1851. entry->ebx = 0;
  1852. entry->ecx = 0;
  1853. entry->edx = 0;
  1854. break;
  1855. case 0x80000000:
  1856. entry->eax = min(entry->eax, 0x8000001a);
  1857. break;
  1858. case 0x80000001:
  1859. entry->edx &= kvm_supported_word1_x86_features;
  1860. entry->ecx &= kvm_supported_word6_x86_features;
  1861. break;
  1862. }
  1863. kvm_x86_ops->set_supported_cpuid(function, entry);
  1864. put_cpu();
  1865. }
  1866. #undef F
  1867. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1868. struct kvm_cpuid_entry2 __user *entries)
  1869. {
  1870. struct kvm_cpuid_entry2 *cpuid_entries;
  1871. int limit, nent = 0, r = -E2BIG;
  1872. u32 func;
  1873. if (cpuid->nent < 1)
  1874. goto out;
  1875. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1876. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  1877. r = -ENOMEM;
  1878. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1879. if (!cpuid_entries)
  1880. goto out;
  1881. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1882. limit = cpuid_entries[0].eax;
  1883. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1884. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1885. &nent, cpuid->nent);
  1886. r = -E2BIG;
  1887. if (nent >= cpuid->nent)
  1888. goto out_free;
  1889. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1890. limit = cpuid_entries[nent - 1].eax;
  1891. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1892. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1893. &nent, cpuid->nent);
  1894. r = -E2BIG;
  1895. if (nent >= cpuid->nent)
  1896. goto out_free;
  1897. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
  1898. cpuid->nent);
  1899. r = -E2BIG;
  1900. if (nent >= cpuid->nent)
  1901. goto out_free;
  1902. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
  1903. cpuid->nent);
  1904. r = -E2BIG;
  1905. if (nent >= cpuid->nent)
  1906. goto out_free;
  1907. r = -EFAULT;
  1908. if (copy_to_user(entries, cpuid_entries,
  1909. nent * sizeof(struct kvm_cpuid_entry2)))
  1910. goto out_free;
  1911. cpuid->nent = nent;
  1912. r = 0;
  1913. out_free:
  1914. vfree(cpuid_entries);
  1915. out:
  1916. return r;
  1917. }
  1918. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1919. struct kvm_lapic_state *s)
  1920. {
  1921. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1922. return 0;
  1923. }
  1924. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1925. struct kvm_lapic_state *s)
  1926. {
  1927. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1928. kvm_apic_post_state_restore(vcpu);
  1929. update_cr8_intercept(vcpu);
  1930. return 0;
  1931. }
  1932. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1933. struct kvm_interrupt *irq)
  1934. {
  1935. if (irq->irq < 0 || irq->irq >= 256)
  1936. return -EINVAL;
  1937. if (irqchip_in_kernel(vcpu->kvm))
  1938. return -ENXIO;
  1939. kvm_queue_interrupt(vcpu, irq->irq, false);
  1940. return 0;
  1941. }
  1942. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1943. {
  1944. kvm_inject_nmi(vcpu);
  1945. return 0;
  1946. }
  1947. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1948. struct kvm_tpr_access_ctl *tac)
  1949. {
  1950. if (tac->flags)
  1951. return -EINVAL;
  1952. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1953. return 0;
  1954. }
  1955. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  1956. u64 mcg_cap)
  1957. {
  1958. int r;
  1959. unsigned bank_num = mcg_cap & 0xff, bank;
  1960. r = -EINVAL;
  1961. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  1962. goto out;
  1963. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  1964. goto out;
  1965. r = 0;
  1966. vcpu->arch.mcg_cap = mcg_cap;
  1967. /* Init IA32_MCG_CTL to all 1s */
  1968. if (mcg_cap & MCG_CTL_P)
  1969. vcpu->arch.mcg_ctl = ~(u64)0;
  1970. /* Init IA32_MCi_CTL to all 1s */
  1971. for (bank = 0; bank < bank_num; bank++)
  1972. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  1973. out:
  1974. return r;
  1975. }
  1976. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  1977. struct kvm_x86_mce *mce)
  1978. {
  1979. u64 mcg_cap = vcpu->arch.mcg_cap;
  1980. unsigned bank_num = mcg_cap & 0xff;
  1981. u64 *banks = vcpu->arch.mce_banks;
  1982. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  1983. return -EINVAL;
  1984. /*
  1985. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  1986. * reporting is disabled
  1987. */
  1988. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  1989. vcpu->arch.mcg_ctl != ~(u64)0)
  1990. return 0;
  1991. banks += 4 * mce->bank;
  1992. /*
  1993. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  1994. * reporting is disabled for the bank
  1995. */
  1996. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  1997. return 0;
  1998. if (mce->status & MCI_STATUS_UC) {
  1999. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  2000. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  2001. printk(KERN_DEBUG "kvm: set_mce: "
  2002. "injects mce exception while "
  2003. "previous one is in progress!\n");
  2004. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2005. return 0;
  2006. }
  2007. if (banks[1] & MCI_STATUS_VAL)
  2008. mce->status |= MCI_STATUS_OVER;
  2009. banks[2] = mce->addr;
  2010. banks[3] = mce->misc;
  2011. vcpu->arch.mcg_status = mce->mcg_status;
  2012. banks[1] = mce->status;
  2013. kvm_queue_exception(vcpu, MC_VECTOR);
  2014. } else if (!(banks[1] & MCI_STATUS_VAL)
  2015. || !(banks[1] & MCI_STATUS_UC)) {
  2016. if (banks[1] & MCI_STATUS_VAL)
  2017. mce->status |= MCI_STATUS_OVER;
  2018. banks[2] = mce->addr;
  2019. banks[3] = mce->misc;
  2020. banks[1] = mce->status;
  2021. } else
  2022. banks[1] |= MCI_STATUS_OVER;
  2023. return 0;
  2024. }
  2025. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  2026. struct kvm_vcpu_events *events)
  2027. {
  2028. events->exception.injected =
  2029. vcpu->arch.exception.pending &&
  2030. !kvm_exception_is_soft(vcpu->arch.exception.nr);
  2031. events->exception.nr = vcpu->arch.exception.nr;
  2032. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  2033. events->exception.error_code = vcpu->arch.exception.error_code;
  2034. events->interrupt.injected =
  2035. vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
  2036. events->interrupt.nr = vcpu->arch.interrupt.nr;
  2037. events->interrupt.soft = 0;
  2038. events->interrupt.shadow =
  2039. kvm_x86_ops->get_interrupt_shadow(vcpu,
  2040. KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
  2041. events->nmi.injected = vcpu->arch.nmi_injected;
  2042. events->nmi.pending = vcpu->arch.nmi_pending;
  2043. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  2044. events->sipi_vector = vcpu->arch.sipi_vector;
  2045. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  2046. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2047. | KVM_VCPUEVENT_VALID_SHADOW);
  2048. }
  2049. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  2050. struct kvm_vcpu_events *events)
  2051. {
  2052. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  2053. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2054. | KVM_VCPUEVENT_VALID_SHADOW))
  2055. return -EINVAL;
  2056. vcpu->arch.exception.pending = events->exception.injected;
  2057. vcpu->arch.exception.nr = events->exception.nr;
  2058. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  2059. vcpu->arch.exception.error_code = events->exception.error_code;
  2060. vcpu->arch.interrupt.pending = events->interrupt.injected;
  2061. vcpu->arch.interrupt.nr = events->interrupt.nr;
  2062. vcpu->arch.interrupt.soft = events->interrupt.soft;
  2063. if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
  2064. kvm_pic_clear_isr_ack(vcpu->kvm);
  2065. if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
  2066. kvm_x86_ops->set_interrupt_shadow(vcpu,
  2067. events->interrupt.shadow);
  2068. vcpu->arch.nmi_injected = events->nmi.injected;
  2069. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  2070. vcpu->arch.nmi_pending = events->nmi.pending;
  2071. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  2072. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  2073. vcpu->arch.sipi_vector = events->sipi_vector;
  2074. return 0;
  2075. }
  2076. static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
  2077. struct kvm_debugregs *dbgregs)
  2078. {
  2079. memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
  2080. dbgregs->dr6 = vcpu->arch.dr6;
  2081. dbgregs->dr7 = vcpu->arch.dr7;
  2082. dbgregs->flags = 0;
  2083. }
  2084. static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
  2085. struct kvm_debugregs *dbgregs)
  2086. {
  2087. if (dbgregs->flags)
  2088. return -EINVAL;
  2089. memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
  2090. vcpu->arch.dr6 = dbgregs->dr6;
  2091. vcpu->arch.dr7 = dbgregs->dr7;
  2092. return 0;
  2093. }
  2094. static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
  2095. struct kvm_xsave *guest_xsave)
  2096. {
  2097. if (cpu_has_xsave)
  2098. memcpy(guest_xsave->region,
  2099. &vcpu->arch.guest_fpu.state->xsave,
  2100. xstate_size);
  2101. else {
  2102. memcpy(guest_xsave->region,
  2103. &vcpu->arch.guest_fpu.state->fxsave,
  2104. sizeof(struct i387_fxsave_struct));
  2105. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
  2106. XSTATE_FPSSE;
  2107. }
  2108. }
  2109. static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
  2110. struct kvm_xsave *guest_xsave)
  2111. {
  2112. u64 xstate_bv =
  2113. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
  2114. if (cpu_has_xsave)
  2115. memcpy(&vcpu->arch.guest_fpu.state->xsave,
  2116. guest_xsave->region, xstate_size);
  2117. else {
  2118. if (xstate_bv & ~XSTATE_FPSSE)
  2119. return -EINVAL;
  2120. memcpy(&vcpu->arch.guest_fpu.state->fxsave,
  2121. guest_xsave->region, sizeof(struct i387_fxsave_struct));
  2122. }
  2123. return 0;
  2124. }
  2125. static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
  2126. struct kvm_xcrs *guest_xcrs)
  2127. {
  2128. if (!cpu_has_xsave) {
  2129. guest_xcrs->nr_xcrs = 0;
  2130. return;
  2131. }
  2132. guest_xcrs->nr_xcrs = 1;
  2133. guest_xcrs->flags = 0;
  2134. guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
  2135. guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
  2136. }
  2137. static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
  2138. struct kvm_xcrs *guest_xcrs)
  2139. {
  2140. int i, r = 0;
  2141. if (!cpu_has_xsave)
  2142. return -EINVAL;
  2143. if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
  2144. return -EINVAL;
  2145. for (i = 0; i < guest_xcrs->nr_xcrs; i++)
  2146. /* Only support XCR0 currently */
  2147. if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
  2148. r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
  2149. guest_xcrs->xcrs[0].value);
  2150. break;
  2151. }
  2152. if (r)
  2153. r = -EINVAL;
  2154. return r;
  2155. }
  2156. long kvm_arch_vcpu_ioctl(struct file *filp,
  2157. unsigned int ioctl, unsigned long arg)
  2158. {
  2159. struct kvm_vcpu *vcpu = filp->private_data;
  2160. void __user *argp = (void __user *)arg;
  2161. int r;
  2162. union {
  2163. struct kvm_lapic_state *lapic;
  2164. struct kvm_xsave *xsave;
  2165. struct kvm_xcrs *xcrs;
  2166. void *buffer;
  2167. } u;
  2168. u.buffer = NULL;
  2169. switch (ioctl) {
  2170. case KVM_GET_LAPIC: {
  2171. r = -EINVAL;
  2172. if (!vcpu->arch.apic)
  2173. goto out;
  2174. u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2175. r = -ENOMEM;
  2176. if (!u.lapic)
  2177. goto out;
  2178. r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
  2179. if (r)
  2180. goto out;
  2181. r = -EFAULT;
  2182. if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
  2183. goto out;
  2184. r = 0;
  2185. break;
  2186. }
  2187. case KVM_SET_LAPIC: {
  2188. r = -EINVAL;
  2189. if (!vcpu->arch.apic)
  2190. goto out;
  2191. u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2192. r = -ENOMEM;
  2193. if (!u.lapic)
  2194. goto out;
  2195. r = -EFAULT;
  2196. if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
  2197. goto out;
  2198. r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
  2199. if (r)
  2200. goto out;
  2201. r = 0;
  2202. break;
  2203. }
  2204. case KVM_INTERRUPT: {
  2205. struct kvm_interrupt irq;
  2206. r = -EFAULT;
  2207. if (copy_from_user(&irq, argp, sizeof irq))
  2208. goto out;
  2209. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2210. if (r)
  2211. goto out;
  2212. r = 0;
  2213. break;
  2214. }
  2215. case KVM_NMI: {
  2216. r = kvm_vcpu_ioctl_nmi(vcpu);
  2217. if (r)
  2218. goto out;
  2219. r = 0;
  2220. break;
  2221. }
  2222. case KVM_SET_CPUID: {
  2223. struct kvm_cpuid __user *cpuid_arg = argp;
  2224. struct kvm_cpuid cpuid;
  2225. r = -EFAULT;
  2226. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2227. goto out;
  2228. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2229. if (r)
  2230. goto out;
  2231. break;
  2232. }
  2233. case KVM_SET_CPUID2: {
  2234. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2235. struct kvm_cpuid2 cpuid;
  2236. r = -EFAULT;
  2237. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2238. goto out;
  2239. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  2240. cpuid_arg->entries);
  2241. if (r)
  2242. goto out;
  2243. break;
  2244. }
  2245. case KVM_GET_CPUID2: {
  2246. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2247. struct kvm_cpuid2 cpuid;
  2248. r = -EFAULT;
  2249. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2250. goto out;
  2251. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  2252. cpuid_arg->entries);
  2253. if (r)
  2254. goto out;
  2255. r = -EFAULT;
  2256. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2257. goto out;
  2258. r = 0;
  2259. break;
  2260. }
  2261. case KVM_GET_MSRS:
  2262. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2263. break;
  2264. case KVM_SET_MSRS:
  2265. r = msr_io(vcpu, argp, do_set_msr, 0);
  2266. break;
  2267. case KVM_TPR_ACCESS_REPORTING: {
  2268. struct kvm_tpr_access_ctl tac;
  2269. r = -EFAULT;
  2270. if (copy_from_user(&tac, argp, sizeof tac))
  2271. goto out;
  2272. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  2273. if (r)
  2274. goto out;
  2275. r = -EFAULT;
  2276. if (copy_to_user(argp, &tac, sizeof tac))
  2277. goto out;
  2278. r = 0;
  2279. break;
  2280. };
  2281. case KVM_SET_VAPIC_ADDR: {
  2282. struct kvm_vapic_addr va;
  2283. r = -EINVAL;
  2284. if (!irqchip_in_kernel(vcpu->kvm))
  2285. goto out;
  2286. r = -EFAULT;
  2287. if (copy_from_user(&va, argp, sizeof va))
  2288. goto out;
  2289. r = 0;
  2290. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  2291. break;
  2292. }
  2293. case KVM_X86_SETUP_MCE: {
  2294. u64 mcg_cap;
  2295. r = -EFAULT;
  2296. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  2297. goto out;
  2298. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  2299. break;
  2300. }
  2301. case KVM_X86_SET_MCE: {
  2302. struct kvm_x86_mce mce;
  2303. r = -EFAULT;
  2304. if (copy_from_user(&mce, argp, sizeof mce))
  2305. goto out;
  2306. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  2307. break;
  2308. }
  2309. case KVM_GET_VCPU_EVENTS: {
  2310. struct kvm_vcpu_events events;
  2311. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  2312. r = -EFAULT;
  2313. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  2314. break;
  2315. r = 0;
  2316. break;
  2317. }
  2318. case KVM_SET_VCPU_EVENTS: {
  2319. struct kvm_vcpu_events events;
  2320. r = -EFAULT;
  2321. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  2322. break;
  2323. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  2324. break;
  2325. }
  2326. case KVM_GET_DEBUGREGS: {
  2327. struct kvm_debugregs dbgregs;
  2328. kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
  2329. r = -EFAULT;
  2330. if (copy_to_user(argp, &dbgregs,
  2331. sizeof(struct kvm_debugregs)))
  2332. break;
  2333. r = 0;
  2334. break;
  2335. }
  2336. case KVM_SET_DEBUGREGS: {
  2337. struct kvm_debugregs dbgregs;
  2338. r = -EFAULT;
  2339. if (copy_from_user(&dbgregs, argp,
  2340. sizeof(struct kvm_debugregs)))
  2341. break;
  2342. r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
  2343. break;
  2344. }
  2345. case KVM_GET_XSAVE: {
  2346. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2347. r = -ENOMEM;
  2348. if (!u.xsave)
  2349. break;
  2350. kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
  2351. r = -EFAULT;
  2352. if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
  2353. break;
  2354. r = 0;
  2355. break;
  2356. }
  2357. case KVM_SET_XSAVE: {
  2358. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2359. r = -ENOMEM;
  2360. if (!u.xsave)
  2361. break;
  2362. r = -EFAULT;
  2363. if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
  2364. break;
  2365. r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
  2366. break;
  2367. }
  2368. case KVM_GET_XCRS: {
  2369. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2370. r = -ENOMEM;
  2371. if (!u.xcrs)
  2372. break;
  2373. kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
  2374. r = -EFAULT;
  2375. if (copy_to_user(argp, u.xcrs,
  2376. sizeof(struct kvm_xcrs)))
  2377. break;
  2378. r = 0;
  2379. break;
  2380. }
  2381. case KVM_SET_XCRS: {
  2382. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2383. r = -ENOMEM;
  2384. if (!u.xcrs)
  2385. break;
  2386. r = -EFAULT;
  2387. if (copy_from_user(u.xcrs, argp,
  2388. sizeof(struct kvm_xcrs)))
  2389. break;
  2390. r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
  2391. break;
  2392. }
  2393. default:
  2394. r = -EINVAL;
  2395. }
  2396. out:
  2397. kfree(u.buffer);
  2398. return r;
  2399. }
  2400. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  2401. {
  2402. int ret;
  2403. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  2404. return -1;
  2405. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  2406. return ret;
  2407. }
  2408. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  2409. u64 ident_addr)
  2410. {
  2411. kvm->arch.ept_identity_map_addr = ident_addr;
  2412. return 0;
  2413. }
  2414. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  2415. u32 kvm_nr_mmu_pages)
  2416. {
  2417. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  2418. return -EINVAL;
  2419. mutex_lock(&kvm->slots_lock);
  2420. spin_lock(&kvm->mmu_lock);
  2421. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  2422. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  2423. spin_unlock(&kvm->mmu_lock);
  2424. mutex_unlock(&kvm->slots_lock);
  2425. return 0;
  2426. }
  2427. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  2428. {
  2429. return kvm->arch.n_alloc_mmu_pages;
  2430. }
  2431. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2432. {
  2433. int r;
  2434. r = 0;
  2435. switch (chip->chip_id) {
  2436. case KVM_IRQCHIP_PIC_MASTER:
  2437. memcpy(&chip->chip.pic,
  2438. &pic_irqchip(kvm)->pics[0],
  2439. sizeof(struct kvm_pic_state));
  2440. break;
  2441. case KVM_IRQCHIP_PIC_SLAVE:
  2442. memcpy(&chip->chip.pic,
  2443. &pic_irqchip(kvm)->pics[1],
  2444. sizeof(struct kvm_pic_state));
  2445. break;
  2446. case KVM_IRQCHIP_IOAPIC:
  2447. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2448. break;
  2449. default:
  2450. r = -EINVAL;
  2451. break;
  2452. }
  2453. return r;
  2454. }
  2455. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2456. {
  2457. int r;
  2458. r = 0;
  2459. switch (chip->chip_id) {
  2460. case KVM_IRQCHIP_PIC_MASTER:
  2461. raw_spin_lock(&pic_irqchip(kvm)->lock);
  2462. memcpy(&pic_irqchip(kvm)->pics[0],
  2463. &chip->chip.pic,
  2464. sizeof(struct kvm_pic_state));
  2465. raw_spin_unlock(&pic_irqchip(kvm)->lock);
  2466. break;
  2467. case KVM_IRQCHIP_PIC_SLAVE:
  2468. raw_spin_lock(&pic_irqchip(kvm)->lock);
  2469. memcpy(&pic_irqchip(kvm)->pics[1],
  2470. &chip->chip.pic,
  2471. sizeof(struct kvm_pic_state));
  2472. raw_spin_unlock(&pic_irqchip(kvm)->lock);
  2473. break;
  2474. case KVM_IRQCHIP_IOAPIC:
  2475. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2476. break;
  2477. default:
  2478. r = -EINVAL;
  2479. break;
  2480. }
  2481. kvm_pic_update_irq(pic_irqchip(kvm));
  2482. return r;
  2483. }
  2484. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2485. {
  2486. int r = 0;
  2487. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2488. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2489. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2490. return r;
  2491. }
  2492. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2493. {
  2494. int r = 0;
  2495. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2496. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2497. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2498. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2499. return r;
  2500. }
  2501. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2502. {
  2503. int r = 0;
  2504. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2505. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2506. sizeof(ps->channels));
  2507. ps->flags = kvm->arch.vpit->pit_state.flags;
  2508. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2509. return r;
  2510. }
  2511. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2512. {
  2513. int r = 0, start = 0;
  2514. u32 prev_legacy, cur_legacy;
  2515. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2516. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2517. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2518. if (!prev_legacy && cur_legacy)
  2519. start = 1;
  2520. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2521. sizeof(kvm->arch.vpit->pit_state.channels));
  2522. kvm->arch.vpit->pit_state.flags = ps->flags;
  2523. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2524. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2525. return r;
  2526. }
  2527. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2528. struct kvm_reinject_control *control)
  2529. {
  2530. if (!kvm->arch.vpit)
  2531. return -ENXIO;
  2532. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2533. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2534. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2535. return 0;
  2536. }
  2537. /*
  2538. * Get (and clear) the dirty memory log for a memory slot.
  2539. */
  2540. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2541. struct kvm_dirty_log *log)
  2542. {
  2543. int r, i;
  2544. struct kvm_memory_slot *memslot;
  2545. unsigned long n;
  2546. unsigned long is_dirty = 0;
  2547. mutex_lock(&kvm->slots_lock);
  2548. r = -EINVAL;
  2549. if (log->slot >= KVM_MEMORY_SLOTS)
  2550. goto out;
  2551. memslot = &kvm->memslots->memslots[log->slot];
  2552. r = -ENOENT;
  2553. if (!memslot->dirty_bitmap)
  2554. goto out;
  2555. n = kvm_dirty_bitmap_bytes(memslot);
  2556. for (i = 0; !is_dirty && i < n/sizeof(long); i++)
  2557. is_dirty = memslot->dirty_bitmap[i];
  2558. /* If nothing is dirty, don't bother messing with page tables. */
  2559. if (is_dirty) {
  2560. struct kvm_memslots *slots, *old_slots;
  2561. unsigned long *dirty_bitmap;
  2562. spin_lock(&kvm->mmu_lock);
  2563. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2564. spin_unlock(&kvm->mmu_lock);
  2565. r = -ENOMEM;
  2566. dirty_bitmap = vmalloc(n);
  2567. if (!dirty_bitmap)
  2568. goto out;
  2569. memset(dirty_bitmap, 0, n);
  2570. r = -ENOMEM;
  2571. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  2572. if (!slots) {
  2573. vfree(dirty_bitmap);
  2574. goto out;
  2575. }
  2576. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  2577. slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
  2578. old_slots = kvm->memslots;
  2579. rcu_assign_pointer(kvm->memslots, slots);
  2580. synchronize_srcu_expedited(&kvm->srcu);
  2581. dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
  2582. kfree(old_slots);
  2583. r = -EFAULT;
  2584. if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) {
  2585. vfree(dirty_bitmap);
  2586. goto out;
  2587. }
  2588. vfree(dirty_bitmap);
  2589. } else {
  2590. r = -EFAULT;
  2591. if (clear_user(log->dirty_bitmap, n))
  2592. goto out;
  2593. }
  2594. r = 0;
  2595. out:
  2596. mutex_unlock(&kvm->slots_lock);
  2597. return r;
  2598. }
  2599. long kvm_arch_vm_ioctl(struct file *filp,
  2600. unsigned int ioctl, unsigned long arg)
  2601. {
  2602. struct kvm *kvm = filp->private_data;
  2603. void __user *argp = (void __user *)arg;
  2604. int r = -ENOTTY;
  2605. /*
  2606. * This union makes it completely explicit to gcc-3.x
  2607. * that these two variables' stack usage should be
  2608. * combined, not added together.
  2609. */
  2610. union {
  2611. struct kvm_pit_state ps;
  2612. struct kvm_pit_state2 ps2;
  2613. struct kvm_pit_config pit_config;
  2614. } u;
  2615. switch (ioctl) {
  2616. case KVM_SET_TSS_ADDR:
  2617. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2618. if (r < 0)
  2619. goto out;
  2620. break;
  2621. case KVM_SET_IDENTITY_MAP_ADDR: {
  2622. u64 ident_addr;
  2623. r = -EFAULT;
  2624. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2625. goto out;
  2626. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2627. if (r < 0)
  2628. goto out;
  2629. break;
  2630. }
  2631. case KVM_SET_NR_MMU_PAGES:
  2632. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2633. if (r)
  2634. goto out;
  2635. break;
  2636. case KVM_GET_NR_MMU_PAGES:
  2637. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2638. break;
  2639. case KVM_CREATE_IRQCHIP: {
  2640. struct kvm_pic *vpic;
  2641. mutex_lock(&kvm->lock);
  2642. r = -EEXIST;
  2643. if (kvm->arch.vpic)
  2644. goto create_irqchip_unlock;
  2645. r = -ENOMEM;
  2646. vpic = kvm_create_pic(kvm);
  2647. if (vpic) {
  2648. r = kvm_ioapic_init(kvm);
  2649. if (r) {
  2650. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  2651. &vpic->dev);
  2652. kfree(vpic);
  2653. goto create_irqchip_unlock;
  2654. }
  2655. } else
  2656. goto create_irqchip_unlock;
  2657. smp_wmb();
  2658. kvm->arch.vpic = vpic;
  2659. smp_wmb();
  2660. r = kvm_setup_default_irq_routing(kvm);
  2661. if (r) {
  2662. mutex_lock(&kvm->irq_lock);
  2663. kvm_ioapic_destroy(kvm);
  2664. kvm_destroy_pic(kvm);
  2665. mutex_unlock(&kvm->irq_lock);
  2666. }
  2667. create_irqchip_unlock:
  2668. mutex_unlock(&kvm->lock);
  2669. break;
  2670. }
  2671. case KVM_CREATE_PIT:
  2672. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2673. goto create_pit;
  2674. case KVM_CREATE_PIT2:
  2675. r = -EFAULT;
  2676. if (copy_from_user(&u.pit_config, argp,
  2677. sizeof(struct kvm_pit_config)))
  2678. goto out;
  2679. create_pit:
  2680. mutex_lock(&kvm->slots_lock);
  2681. r = -EEXIST;
  2682. if (kvm->arch.vpit)
  2683. goto create_pit_unlock;
  2684. r = -ENOMEM;
  2685. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2686. if (kvm->arch.vpit)
  2687. r = 0;
  2688. create_pit_unlock:
  2689. mutex_unlock(&kvm->slots_lock);
  2690. break;
  2691. case KVM_IRQ_LINE_STATUS:
  2692. case KVM_IRQ_LINE: {
  2693. struct kvm_irq_level irq_event;
  2694. r = -EFAULT;
  2695. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2696. goto out;
  2697. r = -ENXIO;
  2698. if (irqchip_in_kernel(kvm)) {
  2699. __s32 status;
  2700. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2701. irq_event.irq, irq_event.level);
  2702. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2703. r = -EFAULT;
  2704. irq_event.status = status;
  2705. if (copy_to_user(argp, &irq_event,
  2706. sizeof irq_event))
  2707. goto out;
  2708. }
  2709. r = 0;
  2710. }
  2711. break;
  2712. }
  2713. case KVM_GET_IRQCHIP: {
  2714. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2715. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2716. r = -ENOMEM;
  2717. if (!chip)
  2718. goto out;
  2719. r = -EFAULT;
  2720. if (copy_from_user(chip, argp, sizeof *chip))
  2721. goto get_irqchip_out;
  2722. r = -ENXIO;
  2723. if (!irqchip_in_kernel(kvm))
  2724. goto get_irqchip_out;
  2725. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2726. if (r)
  2727. goto get_irqchip_out;
  2728. r = -EFAULT;
  2729. if (copy_to_user(argp, chip, sizeof *chip))
  2730. goto get_irqchip_out;
  2731. r = 0;
  2732. get_irqchip_out:
  2733. kfree(chip);
  2734. if (r)
  2735. goto out;
  2736. break;
  2737. }
  2738. case KVM_SET_IRQCHIP: {
  2739. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2740. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2741. r = -ENOMEM;
  2742. if (!chip)
  2743. goto out;
  2744. r = -EFAULT;
  2745. if (copy_from_user(chip, argp, sizeof *chip))
  2746. goto set_irqchip_out;
  2747. r = -ENXIO;
  2748. if (!irqchip_in_kernel(kvm))
  2749. goto set_irqchip_out;
  2750. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2751. if (r)
  2752. goto set_irqchip_out;
  2753. r = 0;
  2754. set_irqchip_out:
  2755. kfree(chip);
  2756. if (r)
  2757. goto out;
  2758. break;
  2759. }
  2760. case KVM_GET_PIT: {
  2761. r = -EFAULT;
  2762. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2763. goto out;
  2764. r = -ENXIO;
  2765. if (!kvm->arch.vpit)
  2766. goto out;
  2767. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2768. if (r)
  2769. goto out;
  2770. r = -EFAULT;
  2771. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2772. goto out;
  2773. r = 0;
  2774. break;
  2775. }
  2776. case KVM_SET_PIT: {
  2777. r = -EFAULT;
  2778. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2779. goto out;
  2780. r = -ENXIO;
  2781. if (!kvm->arch.vpit)
  2782. goto out;
  2783. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2784. if (r)
  2785. goto out;
  2786. r = 0;
  2787. break;
  2788. }
  2789. case KVM_GET_PIT2: {
  2790. r = -ENXIO;
  2791. if (!kvm->arch.vpit)
  2792. goto out;
  2793. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  2794. if (r)
  2795. goto out;
  2796. r = -EFAULT;
  2797. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  2798. goto out;
  2799. r = 0;
  2800. break;
  2801. }
  2802. case KVM_SET_PIT2: {
  2803. r = -EFAULT;
  2804. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  2805. goto out;
  2806. r = -ENXIO;
  2807. if (!kvm->arch.vpit)
  2808. goto out;
  2809. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  2810. if (r)
  2811. goto out;
  2812. r = 0;
  2813. break;
  2814. }
  2815. case KVM_REINJECT_CONTROL: {
  2816. struct kvm_reinject_control control;
  2817. r = -EFAULT;
  2818. if (copy_from_user(&control, argp, sizeof(control)))
  2819. goto out;
  2820. r = kvm_vm_ioctl_reinject(kvm, &control);
  2821. if (r)
  2822. goto out;
  2823. r = 0;
  2824. break;
  2825. }
  2826. case KVM_XEN_HVM_CONFIG: {
  2827. r = -EFAULT;
  2828. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  2829. sizeof(struct kvm_xen_hvm_config)))
  2830. goto out;
  2831. r = -EINVAL;
  2832. if (kvm->arch.xen_hvm_config.flags)
  2833. goto out;
  2834. r = 0;
  2835. break;
  2836. }
  2837. case KVM_SET_CLOCK: {
  2838. struct timespec now;
  2839. struct kvm_clock_data user_ns;
  2840. u64 now_ns;
  2841. s64 delta;
  2842. r = -EFAULT;
  2843. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  2844. goto out;
  2845. r = -EINVAL;
  2846. if (user_ns.flags)
  2847. goto out;
  2848. r = 0;
  2849. ktime_get_ts(&now);
  2850. now_ns = timespec_to_ns(&now);
  2851. delta = user_ns.clock - now_ns;
  2852. kvm->arch.kvmclock_offset = delta;
  2853. break;
  2854. }
  2855. case KVM_GET_CLOCK: {
  2856. struct timespec now;
  2857. struct kvm_clock_data user_ns;
  2858. u64 now_ns;
  2859. ktime_get_ts(&now);
  2860. now_ns = timespec_to_ns(&now);
  2861. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  2862. user_ns.flags = 0;
  2863. r = -EFAULT;
  2864. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  2865. goto out;
  2866. r = 0;
  2867. break;
  2868. }
  2869. default:
  2870. ;
  2871. }
  2872. out:
  2873. return r;
  2874. }
  2875. static void kvm_init_msr_list(void)
  2876. {
  2877. u32 dummy[2];
  2878. unsigned i, j;
  2879. /* skip the first msrs in the list. KVM-specific */
  2880. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  2881. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2882. continue;
  2883. if (j < i)
  2884. msrs_to_save[j] = msrs_to_save[i];
  2885. j++;
  2886. }
  2887. num_msrs_to_save = j;
  2888. }
  2889. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  2890. const void *v)
  2891. {
  2892. if (vcpu->arch.apic &&
  2893. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  2894. return 0;
  2895. return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  2896. }
  2897. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  2898. {
  2899. if (vcpu->arch.apic &&
  2900. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  2901. return 0;
  2902. return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  2903. }
  2904. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  2905. struct kvm_segment *var, int seg)
  2906. {
  2907. kvm_x86_ops->set_segment(vcpu, var, seg);
  2908. }
  2909. void kvm_get_segment(struct kvm_vcpu *vcpu,
  2910. struct kvm_segment *var, int seg)
  2911. {
  2912. kvm_x86_ops->get_segment(vcpu, var, seg);
  2913. }
  2914. gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2915. {
  2916. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2917. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2918. }
  2919. gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2920. {
  2921. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2922. access |= PFERR_FETCH_MASK;
  2923. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2924. }
  2925. gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2926. {
  2927. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2928. access |= PFERR_WRITE_MASK;
  2929. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2930. }
  2931. /* uses this to access any guest's mapped memory without checking CPL */
  2932. gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2933. {
  2934. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
  2935. }
  2936. static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
  2937. struct kvm_vcpu *vcpu, u32 access,
  2938. u32 *error)
  2939. {
  2940. void *data = val;
  2941. int r = X86EMUL_CONTINUE;
  2942. while (bytes) {
  2943. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
  2944. unsigned offset = addr & (PAGE_SIZE-1);
  2945. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  2946. int ret;
  2947. if (gpa == UNMAPPED_GVA) {
  2948. r = X86EMUL_PROPAGATE_FAULT;
  2949. goto out;
  2950. }
  2951. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  2952. if (ret < 0) {
  2953. r = X86EMUL_IO_NEEDED;
  2954. goto out;
  2955. }
  2956. bytes -= toread;
  2957. data += toread;
  2958. addr += toread;
  2959. }
  2960. out:
  2961. return r;
  2962. }
  2963. /* used for instruction fetching */
  2964. static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2965. struct kvm_vcpu *vcpu, u32 *error)
  2966. {
  2967. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2968. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
  2969. access | PFERR_FETCH_MASK, error);
  2970. }
  2971. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2972. struct kvm_vcpu *vcpu, u32 *error)
  2973. {
  2974. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2975. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
  2976. error);
  2977. }
  2978. static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
  2979. struct kvm_vcpu *vcpu, u32 *error)
  2980. {
  2981. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
  2982. }
  2983. static int kvm_write_guest_virt_system(gva_t addr, void *val,
  2984. unsigned int bytes,
  2985. struct kvm_vcpu *vcpu,
  2986. u32 *error)
  2987. {
  2988. void *data = val;
  2989. int r = X86EMUL_CONTINUE;
  2990. while (bytes) {
  2991. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr,
  2992. PFERR_WRITE_MASK, error);
  2993. unsigned offset = addr & (PAGE_SIZE-1);
  2994. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  2995. int ret;
  2996. if (gpa == UNMAPPED_GVA) {
  2997. r = X86EMUL_PROPAGATE_FAULT;
  2998. goto out;
  2999. }
  3000. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  3001. if (ret < 0) {
  3002. r = X86EMUL_IO_NEEDED;
  3003. goto out;
  3004. }
  3005. bytes -= towrite;
  3006. data += towrite;
  3007. addr += towrite;
  3008. }
  3009. out:
  3010. return r;
  3011. }
  3012. static int emulator_read_emulated(unsigned long addr,
  3013. void *val,
  3014. unsigned int bytes,
  3015. unsigned int *error_code,
  3016. struct kvm_vcpu *vcpu)
  3017. {
  3018. gpa_t gpa;
  3019. if (vcpu->mmio_read_completed) {
  3020. memcpy(val, vcpu->mmio_data, bytes);
  3021. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  3022. vcpu->mmio_phys_addr, *(u64 *)val);
  3023. vcpu->mmio_read_completed = 0;
  3024. return X86EMUL_CONTINUE;
  3025. }
  3026. gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
  3027. if (gpa == UNMAPPED_GVA)
  3028. return X86EMUL_PROPAGATE_FAULT;
  3029. /* For APIC access vmexit */
  3030. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3031. goto mmio;
  3032. if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
  3033. == X86EMUL_CONTINUE)
  3034. return X86EMUL_CONTINUE;
  3035. mmio:
  3036. /*
  3037. * Is this MMIO handled locally?
  3038. */
  3039. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  3040. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  3041. return X86EMUL_CONTINUE;
  3042. }
  3043. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  3044. vcpu->mmio_needed = 1;
  3045. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3046. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3047. vcpu->run->mmio.len = vcpu->mmio_size = bytes;
  3048. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
  3049. return X86EMUL_IO_NEEDED;
  3050. }
  3051. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  3052. const void *val, int bytes)
  3053. {
  3054. int ret;
  3055. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  3056. if (ret < 0)
  3057. return 0;
  3058. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  3059. return 1;
  3060. }
  3061. static int emulator_write_emulated_onepage(unsigned long addr,
  3062. const void *val,
  3063. unsigned int bytes,
  3064. unsigned int *error_code,
  3065. struct kvm_vcpu *vcpu)
  3066. {
  3067. gpa_t gpa;
  3068. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
  3069. if (gpa == UNMAPPED_GVA)
  3070. return X86EMUL_PROPAGATE_FAULT;
  3071. /* For APIC access vmexit */
  3072. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3073. goto mmio;
  3074. if (emulator_write_phys(vcpu, gpa, val, bytes))
  3075. return X86EMUL_CONTINUE;
  3076. mmio:
  3077. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  3078. /*
  3079. * Is this MMIO handled locally?
  3080. */
  3081. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  3082. return X86EMUL_CONTINUE;
  3083. vcpu->mmio_needed = 1;
  3084. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3085. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3086. vcpu->run->mmio.len = vcpu->mmio_size = bytes;
  3087. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
  3088. memcpy(vcpu->run->mmio.data, val, bytes);
  3089. return X86EMUL_CONTINUE;
  3090. }
  3091. int emulator_write_emulated(unsigned long addr,
  3092. const void *val,
  3093. unsigned int bytes,
  3094. unsigned int *error_code,
  3095. struct kvm_vcpu *vcpu)
  3096. {
  3097. /* Crossing a page boundary? */
  3098. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  3099. int rc, now;
  3100. now = -addr & ~PAGE_MASK;
  3101. rc = emulator_write_emulated_onepage(addr, val, now, error_code,
  3102. vcpu);
  3103. if (rc != X86EMUL_CONTINUE)
  3104. return rc;
  3105. addr += now;
  3106. val += now;
  3107. bytes -= now;
  3108. }
  3109. return emulator_write_emulated_onepage(addr, val, bytes, error_code,
  3110. vcpu);
  3111. }
  3112. #define CMPXCHG_TYPE(t, ptr, old, new) \
  3113. (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
  3114. #ifdef CONFIG_X86_64
  3115. # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
  3116. #else
  3117. # define CMPXCHG64(ptr, old, new) \
  3118. (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
  3119. #endif
  3120. static int emulator_cmpxchg_emulated(unsigned long addr,
  3121. const void *old,
  3122. const void *new,
  3123. unsigned int bytes,
  3124. unsigned int *error_code,
  3125. struct kvm_vcpu *vcpu)
  3126. {
  3127. gpa_t gpa;
  3128. struct page *page;
  3129. char *kaddr;
  3130. bool exchanged;
  3131. /* guests cmpxchg8b have to be emulated atomically */
  3132. if (bytes > 8 || (bytes & (bytes - 1)))
  3133. goto emul_write;
  3134. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
  3135. if (gpa == UNMAPPED_GVA ||
  3136. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3137. goto emul_write;
  3138. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  3139. goto emul_write;
  3140. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3141. if (is_error_page(page)) {
  3142. kvm_release_page_clean(page);
  3143. goto emul_write;
  3144. }
  3145. kaddr = kmap_atomic(page, KM_USER0);
  3146. kaddr += offset_in_page(gpa);
  3147. switch (bytes) {
  3148. case 1:
  3149. exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
  3150. break;
  3151. case 2:
  3152. exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
  3153. break;
  3154. case 4:
  3155. exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
  3156. break;
  3157. case 8:
  3158. exchanged = CMPXCHG64(kaddr, old, new);
  3159. break;
  3160. default:
  3161. BUG();
  3162. }
  3163. kunmap_atomic(kaddr, KM_USER0);
  3164. kvm_release_page_dirty(page);
  3165. if (!exchanged)
  3166. return X86EMUL_CMPXCHG_FAILED;
  3167. kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
  3168. return X86EMUL_CONTINUE;
  3169. emul_write:
  3170. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  3171. return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
  3172. }
  3173. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  3174. {
  3175. /* TODO: String I/O for in kernel device */
  3176. int r;
  3177. if (vcpu->arch.pio.in)
  3178. r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
  3179. vcpu->arch.pio.size, pd);
  3180. else
  3181. r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3182. vcpu->arch.pio.port, vcpu->arch.pio.size,
  3183. pd);
  3184. return r;
  3185. }
  3186. static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
  3187. unsigned int count, struct kvm_vcpu *vcpu)
  3188. {
  3189. if (vcpu->arch.pio.count)
  3190. goto data_avail;
  3191. trace_kvm_pio(1, port, size, 1);
  3192. vcpu->arch.pio.port = port;
  3193. vcpu->arch.pio.in = 1;
  3194. vcpu->arch.pio.count = count;
  3195. vcpu->arch.pio.size = size;
  3196. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3197. data_avail:
  3198. memcpy(val, vcpu->arch.pio_data, size * count);
  3199. vcpu->arch.pio.count = 0;
  3200. return 1;
  3201. }
  3202. vcpu->run->exit_reason = KVM_EXIT_IO;
  3203. vcpu->run->io.direction = KVM_EXIT_IO_IN;
  3204. vcpu->run->io.size = size;
  3205. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3206. vcpu->run->io.count = count;
  3207. vcpu->run->io.port = port;
  3208. return 0;
  3209. }
  3210. static int emulator_pio_out_emulated(int size, unsigned short port,
  3211. const void *val, unsigned int count,
  3212. struct kvm_vcpu *vcpu)
  3213. {
  3214. trace_kvm_pio(0, port, size, 1);
  3215. vcpu->arch.pio.port = port;
  3216. vcpu->arch.pio.in = 0;
  3217. vcpu->arch.pio.count = count;
  3218. vcpu->arch.pio.size = size;
  3219. memcpy(vcpu->arch.pio_data, val, size * count);
  3220. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3221. vcpu->arch.pio.count = 0;
  3222. return 1;
  3223. }
  3224. vcpu->run->exit_reason = KVM_EXIT_IO;
  3225. vcpu->run->io.direction = KVM_EXIT_IO_OUT;
  3226. vcpu->run->io.size = size;
  3227. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3228. vcpu->run->io.count = count;
  3229. vcpu->run->io.port = port;
  3230. return 0;
  3231. }
  3232. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  3233. {
  3234. return kvm_x86_ops->get_segment_base(vcpu, seg);
  3235. }
  3236. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  3237. {
  3238. kvm_mmu_invlpg(vcpu, address);
  3239. return X86EMUL_CONTINUE;
  3240. }
  3241. int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
  3242. {
  3243. if (!need_emulate_wbinvd(vcpu))
  3244. return X86EMUL_CONTINUE;
  3245. if (kvm_x86_ops->has_wbinvd_exit()) {
  3246. smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
  3247. wbinvd_ipi, NULL, 1);
  3248. cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
  3249. }
  3250. wbinvd();
  3251. return X86EMUL_CONTINUE;
  3252. }
  3253. EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
  3254. int emulate_clts(struct kvm_vcpu *vcpu)
  3255. {
  3256. kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  3257. kvm_x86_ops->fpu_activate(vcpu);
  3258. return X86EMUL_CONTINUE;
  3259. }
  3260. int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
  3261. {
  3262. return _kvm_get_dr(vcpu, dr, dest);
  3263. }
  3264. int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
  3265. {
  3266. return __kvm_set_dr(vcpu, dr, value);
  3267. }
  3268. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3269. {
  3270. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3271. }
  3272. static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
  3273. {
  3274. unsigned long value;
  3275. switch (cr) {
  3276. case 0:
  3277. value = kvm_read_cr0(vcpu);
  3278. break;
  3279. case 2:
  3280. value = vcpu->arch.cr2;
  3281. break;
  3282. case 3:
  3283. value = vcpu->arch.cr3;
  3284. break;
  3285. case 4:
  3286. value = kvm_read_cr4(vcpu);
  3287. break;
  3288. case 8:
  3289. value = kvm_get_cr8(vcpu);
  3290. break;
  3291. default:
  3292. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3293. return 0;
  3294. }
  3295. return value;
  3296. }
  3297. static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
  3298. {
  3299. int res = 0;
  3300. switch (cr) {
  3301. case 0:
  3302. res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
  3303. break;
  3304. case 2:
  3305. vcpu->arch.cr2 = val;
  3306. break;
  3307. case 3:
  3308. res = kvm_set_cr3(vcpu, val);
  3309. break;
  3310. case 4:
  3311. res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  3312. break;
  3313. case 8:
  3314. res = __kvm_set_cr8(vcpu, val & 0xfUL);
  3315. break;
  3316. default:
  3317. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3318. res = -1;
  3319. }
  3320. return res;
  3321. }
  3322. static int emulator_get_cpl(struct kvm_vcpu *vcpu)
  3323. {
  3324. return kvm_x86_ops->get_cpl(vcpu);
  3325. }
  3326. static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
  3327. {
  3328. kvm_x86_ops->get_gdt(vcpu, dt);
  3329. }
  3330. static unsigned long emulator_get_cached_segment_base(int seg,
  3331. struct kvm_vcpu *vcpu)
  3332. {
  3333. return get_segment_base(vcpu, seg);
  3334. }
  3335. static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
  3336. struct kvm_vcpu *vcpu)
  3337. {
  3338. struct kvm_segment var;
  3339. kvm_get_segment(vcpu, &var, seg);
  3340. if (var.unusable)
  3341. return false;
  3342. if (var.g)
  3343. var.limit >>= 12;
  3344. set_desc_limit(desc, var.limit);
  3345. set_desc_base(desc, (unsigned long)var.base);
  3346. desc->type = var.type;
  3347. desc->s = var.s;
  3348. desc->dpl = var.dpl;
  3349. desc->p = var.present;
  3350. desc->avl = var.avl;
  3351. desc->l = var.l;
  3352. desc->d = var.db;
  3353. desc->g = var.g;
  3354. return true;
  3355. }
  3356. static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
  3357. struct kvm_vcpu *vcpu)
  3358. {
  3359. struct kvm_segment var;
  3360. /* needed to preserve selector */
  3361. kvm_get_segment(vcpu, &var, seg);
  3362. var.base = get_desc_base(desc);
  3363. var.limit = get_desc_limit(desc);
  3364. if (desc->g)
  3365. var.limit = (var.limit << 12) | 0xfff;
  3366. var.type = desc->type;
  3367. var.present = desc->p;
  3368. var.dpl = desc->dpl;
  3369. var.db = desc->d;
  3370. var.s = desc->s;
  3371. var.l = desc->l;
  3372. var.g = desc->g;
  3373. var.avl = desc->avl;
  3374. var.present = desc->p;
  3375. var.unusable = !var.present;
  3376. var.padding = 0;
  3377. kvm_set_segment(vcpu, &var, seg);
  3378. return;
  3379. }
  3380. static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
  3381. {
  3382. struct kvm_segment kvm_seg;
  3383. kvm_get_segment(vcpu, &kvm_seg, seg);
  3384. return kvm_seg.selector;
  3385. }
  3386. static void emulator_set_segment_selector(u16 sel, int seg,
  3387. struct kvm_vcpu *vcpu)
  3388. {
  3389. struct kvm_segment kvm_seg;
  3390. kvm_get_segment(vcpu, &kvm_seg, seg);
  3391. kvm_seg.selector = sel;
  3392. kvm_set_segment(vcpu, &kvm_seg, seg);
  3393. }
  3394. static struct x86_emulate_ops emulate_ops = {
  3395. .read_std = kvm_read_guest_virt_system,
  3396. .write_std = kvm_write_guest_virt_system,
  3397. .fetch = kvm_fetch_guest_virt,
  3398. .read_emulated = emulator_read_emulated,
  3399. .write_emulated = emulator_write_emulated,
  3400. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  3401. .pio_in_emulated = emulator_pio_in_emulated,
  3402. .pio_out_emulated = emulator_pio_out_emulated,
  3403. .get_cached_descriptor = emulator_get_cached_descriptor,
  3404. .set_cached_descriptor = emulator_set_cached_descriptor,
  3405. .get_segment_selector = emulator_get_segment_selector,
  3406. .set_segment_selector = emulator_set_segment_selector,
  3407. .get_cached_segment_base = emulator_get_cached_segment_base,
  3408. .get_gdt = emulator_get_gdt,
  3409. .get_cr = emulator_get_cr,
  3410. .set_cr = emulator_set_cr,
  3411. .cpl = emulator_get_cpl,
  3412. .get_dr = emulator_get_dr,
  3413. .set_dr = emulator_set_dr,
  3414. .set_msr = kvm_set_msr,
  3415. .get_msr = kvm_get_msr,
  3416. };
  3417. static void cache_all_regs(struct kvm_vcpu *vcpu)
  3418. {
  3419. kvm_register_read(vcpu, VCPU_REGS_RAX);
  3420. kvm_register_read(vcpu, VCPU_REGS_RSP);
  3421. kvm_register_read(vcpu, VCPU_REGS_RIP);
  3422. vcpu->arch.regs_dirty = ~0;
  3423. }
  3424. static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
  3425. {
  3426. u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
  3427. /*
  3428. * an sti; sti; sequence only disable interrupts for the first
  3429. * instruction. So, if the last instruction, be it emulated or
  3430. * not, left the system with the INT_STI flag enabled, it
  3431. * means that the last instruction is an sti. We should not
  3432. * leave the flag on in this case. The same goes for mov ss
  3433. */
  3434. if (!(int_shadow & mask))
  3435. kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
  3436. }
  3437. static void inject_emulated_exception(struct kvm_vcpu *vcpu)
  3438. {
  3439. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  3440. if (ctxt->exception == PF_VECTOR)
  3441. kvm_inject_page_fault(vcpu, ctxt->cr2, ctxt->error_code);
  3442. else if (ctxt->error_code_valid)
  3443. kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
  3444. else
  3445. kvm_queue_exception(vcpu, ctxt->exception);
  3446. }
  3447. static int handle_emulation_failure(struct kvm_vcpu *vcpu)
  3448. {
  3449. ++vcpu->stat.insn_emulation_fail;
  3450. trace_kvm_emulate_insn_failed(vcpu);
  3451. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3452. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  3453. vcpu->run->internal.ndata = 0;
  3454. kvm_queue_exception(vcpu, UD_VECTOR);
  3455. return EMULATE_FAIL;
  3456. }
  3457. static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
  3458. {
  3459. gpa_t gpa;
  3460. if (tdp_enabled)
  3461. return false;
  3462. /*
  3463. * if emulation was due to access to shadowed page table
  3464. * and it failed try to unshadow page and re-entetr the
  3465. * guest to let CPU execute the instruction.
  3466. */
  3467. if (kvm_mmu_unprotect_page_virt(vcpu, gva))
  3468. return true;
  3469. gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
  3470. if (gpa == UNMAPPED_GVA)
  3471. return true; /* let cpu generate fault */
  3472. if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
  3473. return true;
  3474. return false;
  3475. }
  3476. int emulate_instruction(struct kvm_vcpu *vcpu,
  3477. unsigned long cr2,
  3478. u16 error_code,
  3479. int emulation_type)
  3480. {
  3481. int r;
  3482. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3483. kvm_clear_exception_queue(vcpu);
  3484. vcpu->arch.mmio_fault_cr2 = cr2;
  3485. /*
  3486. * TODO: fix emulate.c to use guest_read/write_register
  3487. * instead of direct ->regs accesses, can save hundred cycles
  3488. * on Intel for instructions that don't read/change RSP, for
  3489. * for example.
  3490. */
  3491. cache_all_regs(vcpu);
  3492. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  3493. int cs_db, cs_l;
  3494. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3495. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  3496. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  3497. vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
  3498. vcpu->arch.emulate_ctxt.mode =
  3499. (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  3500. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  3501. ? X86EMUL_MODE_VM86 : cs_l
  3502. ? X86EMUL_MODE_PROT64 : cs_db
  3503. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  3504. memset(c, 0, sizeof(struct decode_cache));
  3505. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3506. vcpu->arch.emulate_ctxt.interruptibility = 0;
  3507. vcpu->arch.emulate_ctxt.exception = -1;
  3508. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  3509. trace_kvm_emulate_insn_start(vcpu);
  3510. /* Only allow emulation of specific instructions on #UD
  3511. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  3512. if (emulation_type & EMULTYPE_TRAP_UD) {
  3513. if (!c->twobyte)
  3514. return EMULATE_FAIL;
  3515. switch (c->b) {
  3516. case 0x01: /* VMMCALL */
  3517. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  3518. return EMULATE_FAIL;
  3519. break;
  3520. case 0x34: /* sysenter */
  3521. case 0x35: /* sysexit */
  3522. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3523. return EMULATE_FAIL;
  3524. break;
  3525. case 0x05: /* syscall */
  3526. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3527. return EMULATE_FAIL;
  3528. break;
  3529. default:
  3530. return EMULATE_FAIL;
  3531. }
  3532. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  3533. return EMULATE_FAIL;
  3534. }
  3535. ++vcpu->stat.insn_emulation;
  3536. if (r) {
  3537. if (reexecute_instruction(vcpu, cr2))
  3538. return EMULATE_DONE;
  3539. if (emulation_type & EMULTYPE_SKIP)
  3540. return EMULATE_FAIL;
  3541. return handle_emulation_failure(vcpu);
  3542. }
  3543. }
  3544. if (emulation_type & EMULTYPE_SKIP) {
  3545. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  3546. return EMULATE_DONE;
  3547. }
  3548. /* this is needed for vmware backdor interface to work since it
  3549. changes registers values during IO operation */
  3550. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3551. restart:
  3552. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  3553. if (r) { /* emulation failed */
  3554. if (reexecute_instruction(vcpu, cr2))
  3555. return EMULATE_DONE;
  3556. return handle_emulation_failure(vcpu);
  3557. }
  3558. toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
  3559. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  3560. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  3561. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  3562. if (vcpu->arch.emulate_ctxt.exception >= 0) {
  3563. inject_emulated_exception(vcpu);
  3564. return EMULATE_DONE;
  3565. }
  3566. if (vcpu->arch.pio.count) {
  3567. if (!vcpu->arch.pio.in)
  3568. vcpu->arch.pio.count = 0;
  3569. return EMULATE_DO_MMIO;
  3570. }
  3571. if (vcpu->mmio_needed) {
  3572. if (vcpu->mmio_is_write)
  3573. vcpu->mmio_needed = 0;
  3574. return EMULATE_DO_MMIO;
  3575. }
  3576. if (vcpu->arch.emulate_ctxt.restart)
  3577. goto restart;
  3578. return EMULATE_DONE;
  3579. }
  3580. EXPORT_SYMBOL_GPL(emulate_instruction);
  3581. int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
  3582. {
  3583. unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3584. int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
  3585. /* do not return to emulator after return from userspace */
  3586. vcpu->arch.pio.count = 0;
  3587. return ret;
  3588. }
  3589. EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
  3590. static void bounce_off(void *info)
  3591. {
  3592. /* nothing */
  3593. }
  3594. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  3595. void *data)
  3596. {
  3597. struct cpufreq_freqs *freq = data;
  3598. struct kvm *kvm;
  3599. struct kvm_vcpu *vcpu;
  3600. int i, send_ipi = 0;
  3601. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  3602. return 0;
  3603. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  3604. return 0;
  3605. per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
  3606. spin_lock(&kvm_lock);
  3607. list_for_each_entry(kvm, &vm_list, vm_list) {
  3608. kvm_for_each_vcpu(i, vcpu, kvm) {
  3609. if (vcpu->cpu != freq->cpu)
  3610. continue;
  3611. if (!kvm_request_guest_time_update(vcpu))
  3612. continue;
  3613. if (vcpu->cpu != smp_processor_id())
  3614. send_ipi++;
  3615. }
  3616. }
  3617. spin_unlock(&kvm_lock);
  3618. if (freq->old < freq->new && send_ipi) {
  3619. /*
  3620. * We upscale the frequency. Must make the guest
  3621. * doesn't see old kvmclock values while running with
  3622. * the new frequency, otherwise we risk the guest sees
  3623. * time go backwards.
  3624. *
  3625. * In case we update the frequency for another cpu
  3626. * (which might be in guest context) send an interrupt
  3627. * to kick the cpu out of guest context. Next time
  3628. * guest context is entered kvmclock will be updated,
  3629. * so the guest will not see stale values.
  3630. */
  3631. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  3632. }
  3633. return 0;
  3634. }
  3635. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  3636. .notifier_call = kvmclock_cpufreq_notifier
  3637. };
  3638. static void kvm_timer_init(void)
  3639. {
  3640. int cpu;
  3641. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  3642. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  3643. CPUFREQ_TRANSITION_NOTIFIER);
  3644. for_each_online_cpu(cpu) {
  3645. unsigned long khz = cpufreq_get(cpu);
  3646. if (!khz)
  3647. khz = tsc_khz;
  3648. per_cpu(cpu_tsc_khz, cpu) = khz;
  3649. }
  3650. } else {
  3651. for_each_possible_cpu(cpu)
  3652. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  3653. }
  3654. }
  3655. static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
  3656. static int kvm_is_in_guest(void)
  3657. {
  3658. return percpu_read(current_vcpu) != NULL;
  3659. }
  3660. static int kvm_is_user_mode(void)
  3661. {
  3662. int user_mode = 3;
  3663. if (percpu_read(current_vcpu))
  3664. user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
  3665. return user_mode != 0;
  3666. }
  3667. static unsigned long kvm_get_guest_ip(void)
  3668. {
  3669. unsigned long ip = 0;
  3670. if (percpu_read(current_vcpu))
  3671. ip = kvm_rip_read(percpu_read(current_vcpu));
  3672. return ip;
  3673. }
  3674. static struct perf_guest_info_callbacks kvm_guest_cbs = {
  3675. .is_in_guest = kvm_is_in_guest,
  3676. .is_user_mode = kvm_is_user_mode,
  3677. .get_guest_ip = kvm_get_guest_ip,
  3678. };
  3679. void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
  3680. {
  3681. percpu_write(current_vcpu, vcpu);
  3682. }
  3683. EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
  3684. void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
  3685. {
  3686. percpu_write(current_vcpu, NULL);
  3687. }
  3688. EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
  3689. int kvm_arch_init(void *opaque)
  3690. {
  3691. int r;
  3692. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  3693. if (kvm_x86_ops) {
  3694. printk(KERN_ERR "kvm: already loaded the other module\n");
  3695. r = -EEXIST;
  3696. goto out;
  3697. }
  3698. if (!ops->cpu_has_kvm_support()) {
  3699. printk(KERN_ERR "kvm: no hardware support\n");
  3700. r = -EOPNOTSUPP;
  3701. goto out;
  3702. }
  3703. if (ops->disabled_by_bios()) {
  3704. printk(KERN_ERR "kvm: disabled by bios\n");
  3705. r = -EOPNOTSUPP;
  3706. goto out;
  3707. }
  3708. r = kvm_mmu_module_init();
  3709. if (r)
  3710. goto out;
  3711. kvm_init_msr_list();
  3712. kvm_x86_ops = ops;
  3713. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  3714. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  3715. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  3716. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  3717. kvm_timer_init();
  3718. perf_register_guest_info_callbacks(&kvm_guest_cbs);
  3719. if (cpu_has_xsave)
  3720. host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
  3721. return 0;
  3722. out:
  3723. return r;
  3724. }
  3725. void kvm_arch_exit(void)
  3726. {
  3727. perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
  3728. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  3729. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  3730. CPUFREQ_TRANSITION_NOTIFIER);
  3731. kvm_x86_ops = NULL;
  3732. kvm_mmu_module_exit();
  3733. }
  3734. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  3735. {
  3736. ++vcpu->stat.halt_exits;
  3737. if (irqchip_in_kernel(vcpu->kvm)) {
  3738. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  3739. return 1;
  3740. } else {
  3741. vcpu->run->exit_reason = KVM_EXIT_HLT;
  3742. return 0;
  3743. }
  3744. }
  3745. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  3746. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  3747. unsigned long a1)
  3748. {
  3749. if (is_long_mode(vcpu))
  3750. return a0;
  3751. else
  3752. return a0 | ((gpa_t)a1 << 32);
  3753. }
  3754. int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
  3755. {
  3756. u64 param, ingpa, outgpa, ret;
  3757. uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
  3758. bool fast, longmode;
  3759. int cs_db, cs_l;
  3760. /*
  3761. * hypercall generates UD from non zero cpl and real mode
  3762. * per HYPER-V spec
  3763. */
  3764. if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
  3765. kvm_queue_exception(vcpu, UD_VECTOR);
  3766. return 0;
  3767. }
  3768. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3769. longmode = is_long_mode(vcpu) && cs_l == 1;
  3770. if (!longmode) {
  3771. param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
  3772. (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
  3773. ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
  3774. (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
  3775. outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
  3776. (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
  3777. }
  3778. #ifdef CONFIG_X86_64
  3779. else {
  3780. param = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3781. ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3782. outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
  3783. }
  3784. #endif
  3785. code = param & 0xffff;
  3786. fast = (param >> 16) & 0x1;
  3787. rep_cnt = (param >> 32) & 0xfff;
  3788. rep_idx = (param >> 48) & 0xfff;
  3789. trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
  3790. switch (code) {
  3791. case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
  3792. kvm_vcpu_on_spin(vcpu);
  3793. break;
  3794. default:
  3795. res = HV_STATUS_INVALID_HYPERCALL_CODE;
  3796. break;
  3797. }
  3798. ret = res | (((u64)rep_done & 0xfff) << 32);
  3799. if (longmode) {
  3800. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3801. } else {
  3802. kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
  3803. kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
  3804. }
  3805. return 1;
  3806. }
  3807. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  3808. {
  3809. unsigned long nr, a0, a1, a2, a3, ret;
  3810. int r = 1;
  3811. if (kvm_hv_hypercall_enabled(vcpu->kvm))
  3812. return kvm_hv_hypercall(vcpu);
  3813. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3814. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3815. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3816. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3817. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3818. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  3819. if (!is_long_mode(vcpu)) {
  3820. nr &= 0xFFFFFFFF;
  3821. a0 &= 0xFFFFFFFF;
  3822. a1 &= 0xFFFFFFFF;
  3823. a2 &= 0xFFFFFFFF;
  3824. a3 &= 0xFFFFFFFF;
  3825. }
  3826. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  3827. ret = -KVM_EPERM;
  3828. goto out;
  3829. }
  3830. switch (nr) {
  3831. case KVM_HC_VAPIC_POLL_IRQ:
  3832. ret = 0;
  3833. break;
  3834. case KVM_HC_MMU_OP:
  3835. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  3836. break;
  3837. default:
  3838. ret = -KVM_ENOSYS;
  3839. break;
  3840. }
  3841. out:
  3842. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3843. ++vcpu->stat.hypercalls;
  3844. return r;
  3845. }
  3846. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  3847. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  3848. {
  3849. char instruction[3];
  3850. unsigned long rip = kvm_rip_read(vcpu);
  3851. /*
  3852. * Blow out the MMU to ensure that no other VCPU has an active mapping
  3853. * to ensure that the updated hypercall appears atomically across all
  3854. * VCPUs.
  3855. */
  3856. kvm_mmu_zap_all(vcpu->kvm);
  3857. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  3858. return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
  3859. }
  3860. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3861. {
  3862. struct desc_ptr dt = { limit, base };
  3863. kvm_x86_ops->set_gdt(vcpu, &dt);
  3864. }
  3865. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3866. {
  3867. struct desc_ptr dt = { limit, base };
  3868. kvm_x86_ops->set_idt(vcpu, &dt);
  3869. }
  3870. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  3871. {
  3872. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  3873. int j, nent = vcpu->arch.cpuid_nent;
  3874. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  3875. /* when no next entry is found, the current entry[i] is reselected */
  3876. for (j = i + 1; ; j = (j + 1) % nent) {
  3877. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  3878. if (ej->function == e->function) {
  3879. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  3880. return j;
  3881. }
  3882. }
  3883. return 0; /* silence gcc, even though control never reaches here */
  3884. }
  3885. /* find an entry with matching function, matching index (if needed), and that
  3886. * should be read next (if it's stateful) */
  3887. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  3888. u32 function, u32 index)
  3889. {
  3890. if (e->function != function)
  3891. return 0;
  3892. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  3893. return 0;
  3894. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  3895. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  3896. return 0;
  3897. return 1;
  3898. }
  3899. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  3900. u32 function, u32 index)
  3901. {
  3902. int i;
  3903. struct kvm_cpuid_entry2 *best = NULL;
  3904. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  3905. struct kvm_cpuid_entry2 *e;
  3906. e = &vcpu->arch.cpuid_entries[i];
  3907. if (is_matching_cpuid_entry(e, function, index)) {
  3908. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  3909. move_to_next_stateful_cpuid_entry(vcpu, i);
  3910. best = e;
  3911. break;
  3912. }
  3913. /*
  3914. * Both basic or both extended?
  3915. */
  3916. if (((e->function ^ function) & 0x80000000) == 0)
  3917. if (!best || e->function > best->function)
  3918. best = e;
  3919. }
  3920. return best;
  3921. }
  3922. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  3923. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  3924. {
  3925. struct kvm_cpuid_entry2 *best;
  3926. best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
  3927. if (!best || best->eax < 0x80000008)
  3928. goto not_found;
  3929. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  3930. if (best)
  3931. return best->eax & 0xff;
  3932. not_found:
  3933. return 36;
  3934. }
  3935. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  3936. {
  3937. u32 function, index;
  3938. struct kvm_cpuid_entry2 *best;
  3939. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3940. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3941. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  3942. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  3943. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  3944. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  3945. best = kvm_find_cpuid_entry(vcpu, function, index);
  3946. if (best) {
  3947. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  3948. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  3949. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  3950. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  3951. }
  3952. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3953. trace_kvm_cpuid(function,
  3954. kvm_register_read(vcpu, VCPU_REGS_RAX),
  3955. kvm_register_read(vcpu, VCPU_REGS_RBX),
  3956. kvm_register_read(vcpu, VCPU_REGS_RCX),
  3957. kvm_register_read(vcpu, VCPU_REGS_RDX));
  3958. }
  3959. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  3960. /*
  3961. * Check if userspace requested an interrupt window, and that the
  3962. * interrupt window is open.
  3963. *
  3964. * No need to exit to userspace if we already have an interrupt queued.
  3965. */
  3966. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  3967. {
  3968. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  3969. vcpu->run->request_interrupt_window &&
  3970. kvm_arch_interrupt_allowed(vcpu));
  3971. }
  3972. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  3973. {
  3974. struct kvm_run *kvm_run = vcpu->run;
  3975. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  3976. kvm_run->cr8 = kvm_get_cr8(vcpu);
  3977. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  3978. if (irqchip_in_kernel(vcpu->kvm))
  3979. kvm_run->ready_for_interrupt_injection = 1;
  3980. else
  3981. kvm_run->ready_for_interrupt_injection =
  3982. kvm_arch_interrupt_allowed(vcpu) &&
  3983. !kvm_cpu_has_interrupt(vcpu) &&
  3984. !kvm_event_needs_reinjection(vcpu);
  3985. }
  3986. static void vapic_enter(struct kvm_vcpu *vcpu)
  3987. {
  3988. struct kvm_lapic *apic = vcpu->arch.apic;
  3989. struct page *page;
  3990. if (!apic || !apic->vapic_addr)
  3991. return;
  3992. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3993. vcpu->arch.apic->vapic_page = page;
  3994. }
  3995. static void vapic_exit(struct kvm_vcpu *vcpu)
  3996. {
  3997. struct kvm_lapic *apic = vcpu->arch.apic;
  3998. int idx;
  3999. if (!apic || !apic->vapic_addr)
  4000. return;
  4001. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4002. kvm_release_page_dirty(apic->vapic_page);
  4003. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4004. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4005. }
  4006. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  4007. {
  4008. int max_irr, tpr;
  4009. if (!kvm_x86_ops->update_cr8_intercept)
  4010. return;
  4011. if (!vcpu->arch.apic)
  4012. return;
  4013. if (!vcpu->arch.apic->vapic_addr)
  4014. max_irr = kvm_lapic_find_highest_irr(vcpu);
  4015. else
  4016. max_irr = -1;
  4017. if (max_irr != -1)
  4018. max_irr >>= 4;
  4019. tpr = kvm_lapic_get_cr8(vcpu);
  4020. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  4021. }
  4022. static void inject_pending_event(struct kvm_vcpu *vcpu)
  4023. {
  4024. /* try to reinject previous events if any */
  4025. if (vcpu->arch.exception.pending) {
  4026. trace_kvm_inj_exception(vcpu->arch.exception.nr,
  4027. vcpu->arch.exception.has_error_code,
  4028. vcpu->arch.exception.error_code);
  4029. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  4030. vcpu->arch.exception.has_error_code,
  4031. vcpu->arch.exception.error_code,
  4032. vcpu->arch.exception.reinject);
  4033. return;
  4034. }
  4035. if (vcpu->arch.nmi_injected) {
  4036. kvm_x86_ops->set_nmi(vcpu);
  4037. return;
  4038. }
  4039. if (vcpu->arch.interrupt.pending) {
  4040. kvm_x86_ops->set_irq(vcpu);
  4041. return;
  4042. }
  4043. /* try to inject new event if pending */
  4044. if (vcpu->arch.nmi_pending) {
  4045. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  4046. vcpu->arch.nmi_pending = false;
  4047. vcpu->arch.nmi_injected = true;
  4048. kvm_x86_ops->set_nmi(vcpu);
  4049. }
  4050. } else if (kvm_cpu_has_interrupt(vcpu)) {
  4051. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  4052. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  4053. false);
  4054. kvm_x86_ops->set_irq(vcpu);
  4055. }
  4056. }
  4057. }
  4058. static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
  4059. {
  4060. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
  4061. !vcpu->guest_xcr0_loaded) {
  4062. /* kvm_set_xcr() also depends on this */
  4063. xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
  4064. vcpu->guest_xcr0_loaded = 1;
  4065. }
  4066. }
  4067. static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
  4068. {
  4069. if (vcpu->guest_xcr0_loaded) {
  4070. if (vcpu->arch.xcr0 != host_xcr0)
  4071. xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
  4072. vcpu->guest_xcr0_loaded = 0;
  4073. }
  4074. }
  4075. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  4076. {
  4077. int r;
  4078. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  4079. vcpu->run->request_interrupt_window;
  4080. if (vcpu->requests) {
  4081. if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
  4082. kvm_mmu_unload(vcpu);
  4083. if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
  4084. __kvm_migrate_timers(vcpu);
  4085. if (kvm_check_request(KVM_REQ_KVMCLOCK_UPDATE, vcpu))
  4086. kvm_write_guest_time(vcpu);
  4087. if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
  4088. kvm_mmu_sync_roots(vcpu);
  4089. if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
  4090. kvm_x86_ops->tlb_flush(vcpu);
  4091. if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
  4092. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  4093. r = 0;
  4094. goto out;
  4095. }
  4096. if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
  4097. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  4098. r = 0;
  4099. goto out;
  4100. }
  4101. if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
  4102. vcpu->fpu_active = 0;
  4103. kvm_x86_ops->fpu_deactivate(vcpu);
  4104. }
  4105. }
  4106. r = kvm_mmu_reload(vcpu);
  4107. if (unlikely(r))
  4108. goto out;
  4109. preempt_disable();
  4110. kvm_x86_ops->prepare_guest_switch(vcpu);
  4111. if (vcpu->fpu_active)
  4112. kvm_load_guest_fpu(vcpu);
  4113. kvm_load_guest_xcr0(vcpu);
  4114. atomic_set(&vcpu->guest_mode, 1);
  4115. smp_wmb();
  4116. local_irq_disable();
  4117. if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
  4118. || need_resched() || signal_pending(current)) {
  4119. atomic_set(&vcpu->guest_mode, 0);
  4120. smp_wmb();
  4121. local_irq_enable();
  4122. preempt_enable();
  4123. r = 1;
  4124. goto out;
  4125. }
  4126. inject_pending_event(vcpu);
  4127. /* enable NMI/IRQ window open exits if needed */
  4128. if (vcpu->arch.nmi_pending)
  4129. kvm_x86_ops->enable_nmi_window(vcpu);
  4130. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  4131. kvm_x86_ops->enable_irq_window(vcpu);
  4132. if (kvm_lapic_enabled(vcpu)) {
  4133. update_cr8_intercept(vcpu);
  4134. kvm_lapic_sync_to_vapic(vcpu);
  4135. }
  4136. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4137. kvm_guest_enter();
  4138. if (unlikely(vcpu->arch.switch_db_regs)) {
  4139. set_debugreg(0, 7);
  4140. set_debugreg(vcpu->arch.eff_db[0], 0);
  4141. set_debugreg(vcpu->arch.eff_db[1], 1);
  4142. set_debugreg(vcpu->arch.eff_db[2], 2);
  4143. set_debugreg(vcpu->arch.eff_db[3], 3);
  4144. }
  4145. trace_kvm_entry(vcpu->vcpu_id);
  4146. kvm_x86_ops->run(vcpu);
  4147. /*
  4148. * If the guest has used debug registers, at least dr7
  4149. * will be disabled while returning to the host.
  4150. * If we don't have active breakpoints in the host, we don't
  4151. * care about the messed up debug address registers. But if
  4152. * we have some of them active, restore the old state.
  4153. */
  4154. if (hw_breakpoint_active())
  4155. hw_breakpoint_restore();
  4156. atomic_set(&vcpu->guest_mode, 0);
  4157. smp_wmb();
  4158. local_irq_enable();
  4159. ++vcpu->stat.exits;
  4160. /*
  4161. * We must have an instruction between local_irq_enable() and
  4162. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  4163. * the interrupt shadow. The stat.exits increment will do nicely.
  4164. * But we need to prevent reordering, hence this barrier():
  4165. */
  4166. barrier();
  4167. kvm_guest_exit();
  4168. preempt_enable();
  4169. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4170. /*
  4171. * Profile KVM exit RIPs:
  4172. */
  4173. if (unlikely(prof_on == KVM_PROFILING)) {
  4174. unsigned long rip = kvm_rip_read(vcpu);
  4175. profile_hit(KVM_PROFILING, (void *)rip);
  4176. }
  4177. kvm_lapic_sync_from_vapic(vcpu);
  4178. r = kvm_x86_ops->handle_exit(vcpu);
  4179. out:
  4180. return r;
  4181. }
  4182. static int __vcpu_run(struct kvm_vcpu *vcpu)
  4183. {
  4184. int r;
  4185. struct kvm *kvm = vcpu->kvm;
  4186. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  4187. pr_debug("vcpu %d received sipi with vector # %x\n",
  4188. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  4189. kvm_lapic_reset(vcpu);
  4190. r = kvm_arch_vcpu_reset(vcpu);
  4191. if (r)
  4192. return r;
  4193. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4194. }
  4195. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4196. vapic_enter(vcpu);
  4197. r = 1;
  4198. while (r > 0) {
  4199. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  4200. r = vcpu_enter_guest(vcpu);
  4201. else {
  4202. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4203. kvm_vcpu_block(vcpu);
  4204. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4205. if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
  4206. {
  4207. switch(vcpu->arch.mp_state) {
  4208. case KVM_MP_STATE_HALTED:
  4209. vcpu->arch.mp_state =
  4210. KVM_MP_STATE_RUNNABLE;
  4211. case KVM_MP_STATE_RUNNABLE:
  4212. break;
  4213. case KVM_MP_STATE_SIPI_RECEIVED:
  4214. default:
  4215. r = -EINTR;
  4216. break;
  4217. }
  4218. }
  4219. }
  4220. if (r <= 0)
  4221. break;
  4222. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  4223. if (kvm_cpu_has_pending_timer(vcpu))
  4224. kvm_inject_pending_timer_irqs(vcpu);
  4225. if (dm_request_for_irq_injection(vcpu)) {
  4226. r = -EINTR;
  4227. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4228. ++vcpu->stat.request_irq_exits;
  4229. }
  4230. if (signal_pending(current)) {
  4231. r = -EINTR;
  4232. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4233. ++vcpu->stat.signal_exits;
  4234. }
  4235. if (need_resched()) {
  4236. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4237. kvm_resched(vcpu);
  4238. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4239. }
  4240. }
  4241. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4242. vapic_exit(vcpu);
  4243. return r;
  4244. }
  4245. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  4246. {
  4247. int r;
  4248. sigset_t sigsaved;
  4249. if (vcpu->sigset_active)
  4250. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  4251. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  4252. kvm_vcpu_block(vcpu);
  4253. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  4254. r = -EAGAIN;
  4255. goto out;
  4256. }
  4257. /* re-sync apic's tpr */
  4258. if (!irqchip_in_kernel(vcpu->kvm))
  4259. kvm_set_cr8(vcpu, kvm_run->cr8);
  4260. if (vcpu->arch.pio.count || vcpu->mmio_needed ||
  4261. vcpu->arch.emulate_ctxt.restart) {
  4262. if (vcpu->mmio_needed) {
  4263. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  4264. vcpu->mmio_read_completed = 1;
  4265. vcpu->mmio_needed = 0;
  4266. }
  4267. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4268. r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
  4269. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4270. if (r != EMULATE_DONE) {
  4271. r = 0;
  4272. goto out;
  4273. }
  4274. }
  4275. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  4276. kvm_register_write(vcpu, VCPU_REGS_RAX,
  4277. kvm_run->hypercall.ret);
  4278. r = __vcpu_run(vcpu);
  4279. out:
  4280. post_kvm_run_save(vcpu);
  4281. if (vcpu->sigset_active)
  4282. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  4283. return r;
  4284. }
  4285. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4286. {
  4287. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4288. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4289. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4290. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4291. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4292. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4293. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4294. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4295. #ifdef CONFIG_X86_64
  4296. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  4297. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  4298. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  4299. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  4300. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  4301. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  4302. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  4303. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  4304. #endif
  4305. regs->rip = kvm_rip_read(vcpu);
  4306. regs->rflags = kvm_get_rflags(vcpu);
  4307. return 0;
  4308. }
  4309. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4310. {
  4311. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  4312. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  4313. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  4314. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  4315. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  4316. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  4317. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  4318. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  4319. #ifdef CONFIG_X86_64
  4320. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  4321. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  4322. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  4323. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  4324. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  4325. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  4326. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  4327. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  4328. #endif
  4329. kvm_rip_write(vcpu, regs->rip);
  4330. kvm_set_rflags(vcpu, regs->rflags);
  4331. vcpu->arch.exception.pending = false;
  4332. return 0;
  4333. }
  4334. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  4335. {
  4336. struct kvm_segment cs;
  4337. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4338. *db = cs.db;
  4339. *l = cs.l;
  4340. }
  4341. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  4342. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  4343. struct kvm_sregs *sregs)
  4344. {
  4345. struct desc_ptr dt;
  4346. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4347. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4348. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4349. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4350. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4351. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4352. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4353. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4354. kvm_x86_ops->get_idt(vcpu, &dt);
  4355. sregs->idt.limit = dt.size;
  4356. sregs->idt.base = dt.address;
  4357. kvm_x86_ops->get_gdt(vcpu, &dt);
  4358. sregs->gdt.limit = dt.size;
  4359. sregs->gdt.base = dt.address;
  4360. sregs->cr0 = kvm_read_cr0(vcpu);
  4361. sregs->cr2 = vcpu->arch.cr2;
  4362. sregs->cr3 = vcpu->arch.cr3;
  4363. sregs->cr4 = kvm_read_cr4(vcpu);
  4364. sregs->cr8 = kvm_get_cr8(vcpu);
  4365. sregs->efer = vcpu->arch.efer;
  4366. sregs->apic_base = kvm_get_apic_base(vcpu);
  4367. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  4368. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  4369. set_bit(vcpu->arch.interrupt.nr,
  4370. (unsigned long *)sregs->interrupt_bitmap);
  4371. return 0;
  4372. }
  4373. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  4374. struct kvm_mp_state *mp_state)
  4375. {
  4376. mp_state->mp_state = vcpu->arch.mp_state;
  4377. return 0;
  4378. }
  4379. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  4380. struct kvm_mp_state *mp_state)
  4381. {
  4382. vcpu->arch.mp_state = mp_state->mp_state;
  4383. return 0;
  4384. }
  4385. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
  4386. bool has_error_code, u32 error_code)
  4387. {
  4388. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  4389. int cs_db, cs_l, ret;
  4390. cache_all_regs(vcpu);
  4391. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  4392. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  4393. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  4394. vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
  4395. vcpu->arch.emulate_ctxt.mode =
  4396. (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  4397. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  4398. ? X86EMUL_MODE_VM86 : cs_l
  4399. ? X86EMUL_MODE_PROT64 : cs_db
  4400. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  4401. memset(c, 0, sizeof(struct decode_cache));
  4402. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  4403. ret = emulator_task_switch(&vcpu->arch.emulate_ctxt, &emulate_ops,
  4404. tss_selector, reason, has_error_code,
  4405. error_code);
  4406. if (ret)
  4407. return EMULATE_FAIL;
  4408. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  4409. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  4410. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  4411. return EMULATE_DONE;
  4412. }
  4413. EXPORT_SYMBOL_GPL(kvm_task_switch);
  4414. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  4415. struct kvm_sregs *sregs)
  4416. {
  4417. int mmu_reset_needed = 0;
  4418. int pending_vec, max_bits;
  4419. struct desc_ptr dt;
  4420. dt.size = sregs->idt.limit;
  4421. dt.address = sregs->idt.base;
  4422. kvm_x86_ops->set_idt(vcpu, &dt);
  4423. dt.size = sregs->gdt.limit;
  4424. dt.address = sregs->gdt.base;
  4425. kvm_x86_ops->set_gdt(vcpu, &dt);
  4426. vcpu->arch.cr2 = sregs->cr2;
  4427. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  4428. vcpu->arch.cr3 = sregs->cr3;
  4429. kvm_set_cr8(vcpu, sregs->cr8);
  4430. mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
  4431. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  4432. kvm_set_apic_base(vcpu, sregs->apic_base);
  4433. mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
  4434. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  4435. vcpu->arch.cr0 = sregs->cr0;
  4436. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  4437. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  4438. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  4439. load_pdptrs(vcpu, vcpu->arch.cr3);
  4440. mmu_reset_needed = 1;
  4441. }
  4442. if (mmu_reset_needed)
  4443. kvm_mmu_reset_context(vcpu);
  4444. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  4445. pending_vec = find_first_bit(
  4446. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  4447. if (pending_vec < max_bits) {
  4448. kvm_queue_interrupt(vcpu, pending_vec, false);
  4449. pr_debug("Set back pending irq %d\n", pending_vec);
  4450. if (irqchip_in_kernel(vcpu->kvm))
  4451. kvm_pic_clear_isr_ack(vcpu->kvm);
  4452. }
  4453. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4454. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4455. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4456. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4457. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4458. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4459. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4460. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4461. update_cr8_intercept(vcpu);
  4462. /* Older userspace won't unhalt the vcpu on reset. */
  4463. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  4464. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  4465. !is_protmode(vcpu))
  4466. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4467. return 0;
  4468. }
  4469. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  4470. struct kvm_guest_debug *dbg)
  4471. {
  4472. unsigned long rflags;
  4473. int i, r;
  4474. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  4475. r = -EBUSY;
  4476. if (vcpu->arch.exception.pending)
  4477. goto out;
  4478. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  4479. kvm_queue_exception(vcpu, DB_VECTOR);
  4480. else
  4481. kvm_queue_exception(vcpu, BP_VECTOR);
  4482. }
  4483. /*
  4484. * Read rflags as long as potentially injected trace flags are still
  4485. * filtered out.
  4486. */
  4487. rflags = kvm_get_rflags(vcpu);
  4488. vcpu->guest_debug = dbg->control;
  4489. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  4490. vcpu->guest_debug = 0;
  4491. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4492. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  4493. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  4494. vcpu->arch.switch_db_regs =
  4495. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  4496. } else {
  4497. for (i = 0; i < KVM_NR_DB_REGS; i++)
  4498. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  4499. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  4500. }
  4501. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4502. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
  4503. get_segment_base(vcpu, VCPU_SREG_CS);
  4504. /*
  4505. * Trigger an rflags update that will inject or remove the trace
  4506. * flags.
  4507. */
  4508. kvm_set_rflags(vcpu, rflags);
  4509. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  4510. r = 0;
  4511. out:
  4512. return r;
  4513. }
  4514. /*
  4515. * Translate a guest virtual address to a guest physical address.
  4516. */
  4517. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  4518. struct kvm_translation *tr)
  4519. {
  4520. unsigned long vaddr = tr->linear_address;
  4521. gpa_t gpa;
  4522. int idx;
  4523. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4524. gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
  4525. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4526. tr->physical_address = gpa;
  4527. tr->valid = gpa != UNMAPPED_GVA;
  4528. tr->writeable = 1;
  4529. tr->usermode = 0;
  4530. return 0;
  4531. }
  4532. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4533. {
  4534. struct i387_fxsave_struct *fxsave =
  4535. &vcpu->arch.guest_fpu.state->fxsave;
  4536. memcpy(fpu->fpr, fxsave->st_space, 128);
  4537. fpu->fcw = fxsave->cwd;
  4538. fpu->fsw = fxsave->swd;
  4539. fpu->ftwx = fxsave->twd;
  4540. fpu->last_opcode = fxsave->fop;
  4541. fpu->last_ip = fxsave->rip;
  4542. fpu->last_dp = fxsave->rdp;
  4543. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  4544. return 0;
  4545. }
  4546. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4547. {
  4548. struct i387_fxsave_struct *fxsave =
  4549. &vcpu->arch.guest_fpu.state->fxsave;
  4550. memcpy(fxsave->st_space, fpu->fpr, 128);
  4551. fxsave->cwd = fpu->fcw;
  4552. fxsave->swd = fpu->fsw;
  4553. fxsave->twd = fpu->ftwx;
  4554. fxsave->fop = fpu->last_opcode;
  4555. fxsave->rip = fpu->last_ip;
  4556. fxsave->rdp = fpu->last_dp;
  4557. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  4558. return 0;
  4559. }
  4560. int fx_init(struct kvm_vcpu *vcpu)
  4561. {
  4562. int err;
  4563. err = fpu_alloc(&vcpu->arch.guest_fpu);
  4564. if (err)
  4565. return err;
  4566. fpu_finit(&vcpu->arch.guest_fpu);
  4567. /*
  4568. * Ensure guest xcr0 is valid for loading
  4569. */
  4570. vcpu->arch.xcr0 = XSTATE_FP;
  4571. vcpu->arch.cr0 |= X86_CR0_ET;
  4572. return 0;
  4573. }
  4574. EXPORT_SYMBOL_GPL(fx_init);
  4575. static void fx_free(struct kvm_vcpu *vcpu)
  4576. {
  4577. fpu_free(&vcpu->arch.guest_fpu);
  4578. }
  4579. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  4580. {
  4581. if (vcpu->guest_fpu_loaded)
  4582. return;
  4583. /*
  4584. * Restore all possible states in the guest,
  4585. * and assume host would use all available bits.
  4586. * Guest xcr0 would be loaded later.
  4587. */
  4588. kvm_put_guest_xcr0(vcpu);
  4589. vcpu->guest_fpu_loaded = 1;
  4590. unlazy_fpu(current);
  4591. fpu_restore_checking(&vcpu->arch.guest_fpu);
  4592. trace_kvm_fpu(1);
  4593. }
  4594. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  4595. {
  4596. kvm_put_guest_xcr0(vcpu);
  4597. if (!vcpu->guest_fpu_loaded)
  4598. return;
  4599. vcpu->guest_fpu_loaded = 0;
  4600. fpu_save_init(&vcpu->arch.guest_fpu);
  4601. ++vcpu->stat.fpu_reload;
  4602. kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
  4603. trace_kvm_fpu(0);
  4604. }
  4605. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  4606. {
  4607. if (vcpu->arch.time_page) {
  4608. kvm_release_page_dirty(vcpu->arch.time_page);
  4609. vcpu->arch.time_page = NULL;
  4610. }
  4611. free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
  4612. fx_free(vcpu);
  4613. kvm_x86_ops->vcpu_free(vcpu);
  4614. }
  4615. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  4616. unsigned int id)
  4617. {
  4618. return kvm_x86_ops->vcpu_create(kvm, id);
  4619. }
  4620. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  4621. {
  4622. int r;
  4623. vcpu->arch.mtrr_state.have_fixed = 1;
  4624. vcpu_load(vcpu);
  4625. r = kvm_arch_vcpu_reset(vcpu);
  4626. if (r == 0)
  4627. r = kvm_mmu_setup(vcpu);
  4628. vcpu_put(vcpu);
  4629. if (r < 0)
  4630. goto free_vcpu;
  4631. return 0;
  4632. free_vcpu:
  4633. kvm_x86_ops->vcpu_free(vcpu);
  4634. return r;
  4635. }
  4636. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  4637. {
  4638. vcpu_load(vcpu);
  4639. kvm_mmu_unload(vcpu);
  4640. vcpu_put(vcpu);
  4641. fx_free(vcpu);
  4642. kvm_x86_ops->vcpu_free(vcpu);
  4643. }
  4644. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  4645. {
  4646. vcpu->arch.nmi_pending = false;
  4647. vcpu->arch.nmi_injected = false;
  4648. vcpu->arch.switch_db_regs = 0;
  4649. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  4650. vcpu->arch.dr6 = DR6_FIXED_1;
  4651. vcpu->arch.dr7 = DR7_FIXED_1;
  4652. return kvm_x86_ops->vcpu_reset(vcpu);
  4653. }
  4654. int kvm_arch_hardware_enable(void *garbage)
  4655. {
  4656. /*
  4657. * Since this may be called from a hotplug notifcation,
  4658. * we can't get the CPU frequency directly.
  4659. */
  4660. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4661. int cpu = raw_smp_processor_id();
  4662. per_cpu(cpu_tsc_khz, cpu) = 0;
  4663. }
  4664. kvm_shared_msr_cpu_online();
  4665. return kvm_x86_ops->hardware_enable(garbage);
  4666. }
  4667. void kvm_arch_hardware_disable(void *garbage)
  4668. {
  4669. kvm_x86_ops->hardware_disable(garbage);
  4670. drop_user_return_notifiers(garbage);
  4671. }
  4672. int kvm_arch_hardware_setup(void)
  4673. {
  4674. return kvm_x86_ops->hardware_setup();
  4675. }
  4676. void kvm_arch_hardware_unsetup(void)
  4677. {
  4678. kvm_x86_ops->hardware_unsetup();
  4679. }
  4680. void kvm_arch_check_processor_compat(void *rtn)
  4681. {
  4682. kvm_x86_ops->check_processor_compatibility(rtn);
  4683. }
  4684. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  4685. {
  4686. struct page *page;
  4687. struct kvm *kvm;
  4688. int r;
  4689. BUG_ON(vcpu->kvm == NULL);
  4690. kvm = vcpu->kvm;
  4691. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  4692. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  4693. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4694. else
  4695. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  4696. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  4697. if (!page) {
  4698. r = -ENOMEM;
  4699. goto fail;
  4700. }
  4701. vcpu->arch.pio_data = page_address(page);
  4702. r = kvm_mmu_create(vcpu);
  4703. if (r < 0)
  4704. goto fail_free_pio_data;
  4705. if (irqchip_in_kernel(kvm)) {
  4706. r = kvm_create_lapic(vcpu);
  4707. if (r < 0)
  4708. goto fail_mmu_destroy;
  4709. }
  4710. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4711. GFP_KERNEL);
  4712. if (!vcpu->arch.mce_banks) {
  4713. r = -ENOMEM;
  4714. goto fail_free_lapic;
  4715. }
  4716. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4717. if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
  4718. goto fail_free_mce_banks;
  4719. return 0;
  4720. fail_free_mce_banks:
  4721. kfree(vcpu->arch.mce_banks);
  4722. fail_free_lapic:
  4723. kvm_free_lapic(vcpu);
  4724. fail_mmu_destroy:
  4725. kvm_mmu_destroy(vcpu);
  4726. fail_free_pio_data:
  4727. free_page((unsigned long)vcpu->arch.pio_data);
  4728. fail:
  4729. return r;
  4730. }
  4731. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4732. {
  4733. int idx;
  4734. kfree(vcpu->arch.mce_banks);
  4735. kvm_free_lapic(vcpu);
  4736. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4737. kvm_mmu_destroy(vcpu);
  4738. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4739. free_page((unsigned long)vcpu->arch.pio_data);
  4740. }
  4741. struct kvm *kvm_arch_create_vm(void)
  4742. {
  4743. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4744. if (!kvm)
  4745. return ERR_PTR(-ENOMEM);
  4746. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4747. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4748. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4749. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4750. rdtscll(kvm->arch.vm_init_tsc);
  4751. return kvm;
  4752. }
  4753. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4754. {
  4755. vcpu_load(vcpu);
  4756. kvm_mmu_unload(vcpu);
  4757. vcpu_put(vcpu);
  4758. }
  4759. static void kvm_free_vcpus(struct kvm *kvm)
  4760. {
  4761. unsigned int i;
  4762. struct kvm_vcpu *vcpu;
  4763. /*
  4764. * Unpin any mmu pages first.
  4765. */
  4766. kvm_for_each_vcpu(i, vcpu, kvm)
  4767. kvm_unload_vcpu_mmu(vcpu);
  4768. kvm_for_each_vcpu(i, vcpu, kvm)
  4769. kvm_arch_vcpu_free(vcpu);
  4770. mutex_lock(&kvm->lock);
  4771. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4772. kvm->vcpus[i] = NULL;
  4773. atomic_set(&kvm->online_vcpus, 0);
  4774. mutex_unlock(&kvm->lock);
  4775. }
  4776. void kvm_arch_sync_events(struct kvm *kvm)
  4777. {
  4778. kvm_free_all_assigned_devices(kvm);
  4779. kvm_free_pit(kvm);
  4780. }
  4781. void kvm_arch_destroy_vm(struct kvm *kvm)
  4782. {
  4783. kvm_iommu_unmap_guest(kvm);
  4784. kfree(kvm->arch.vpic);
  4785. kfree(kvm->arch.vioapic);
  4786. kvm_free_vcpus(kvm);
  4787. kvm_free_physmem(kvm);
  4788. if (kvm->arch.apic_access_page)
  4789. put_page(kvm->arch.apic_access_page);
  4790. if (kvm->arch.ept_identity_pagetable)
  4791. put_page(kvm->arch.ept_identity_pagetable);
  4792. cleanup_srcu_struct(&kvm->srcu);
  4793. kfree(kvm);
  4794. }
  4795. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  4796. struct kvm_memory_slot *memslot,
  4797. struct kvm_memory_slot old,
  4798. struct kvm_userspace_memory_region *mem,
  4799. int user_alloc)
  4800. {
  4801. int npages = memslot->npages;
  4802. int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
  4803. /* Prevent internal slot pages from being moved by fork()/COW. */
  4804. if (memslot->id >= KVM_MEMORY_SLOTS)
  4805. map_flags = MAP_SHARED | MAP_ANONYMOUS;
  4806. /*To keep backward compatibility with older userspace,
  4807. *x86 needs to hanlde !user_alloc case.
  4808. */
  4809. if (!user_alloc) {
  4810. if (npages && !old.rmap) {
  4811. unsigned long userspace_addr;
  4812. down_write(&current->mm->mmap_sem);
  4813. userspace_addr = do_mmap(NULL, 0,
  4814. npages * PAGE_SIZE,
  4815. PROT_READ | PROT_WRITE,
  4816. map_flags,
  4817. 0);
  4818. up_write(&current->mm->mmap_sem);
  4819. if (IS_ERR((void *)userspace_addr))
  4820. return PTR_ERR((void *)userspace_addr);
  4821. memslot->userspace_addr = userspace_addr;
  4822. }
  4823. }
  4824. return 0;
  4825. }
  4826. void kvm_arch_commit_memory_region(struct kvm *kvm,
  4827. struct kvm_userspace_memory_region *mem,
  4828. struct kvm_memory_slot old,
  4829. int user_alloc)
  4830. {
  4831. int npages = mem->memory_size >> PAGE_SHIFT;
  4832. if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
  4833. int ret;
  4834. down_write(&current->mm->mmap_sem);
  4835. ret = do_munmap(current->mm, old.userspace_addr,
  4836. old.npages * PAGE_SIZE);
  4837. up_write(&current->mm->mmap_sem);
  4838. if (ret < 0)
  4839. printk(KERN_WARNING
  4840. "kvm_vm_ioctl_set_memory_region: "
  4841. "failed to munmap memory\n");
  4842. }
  4843. spin_lock(&kvm->mmu_lock);
  4844. if (!kvm->arch.n_requested_mmu_pages) {
  4845. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  4846. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  4847. }
  4848. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  4849. spin_unlock(&kvm->mmu_lock);
  4850. }
  4851. void kvm_arch_flush_shadow(struct kvm *kvm)
  4852. {
  4853. kvm_mmu_zap_all(kvm);
  4854. kvm_reload_remote_mmus(kvm);
  4855. }
  4856. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  4857. {
  4858. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  4859. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  4860. || vcpu->arch.nmi_pending ||
  4861. (kvm_arch_interrupt_allowed(vcpu) &&
  4862. kvm_cpu_has_interrupt(vcpu));
  4863. }
  4864. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  4865. {
  4866. int me;
  4867. int cpu = vcpu->cpu;
  4868. if (waitqueue_active(&vcpu->wq)) {
  4869. wake_up_interruptible(&vcpu->wq);
  4870. ++vcpu->stat.halt_wakeup;
  4871. }
  4872. me = get_cpu();
  4873. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  4874. if (atomic_xchg(&vcpu->guest_mode, 0))
  4875. smp_send_reschedule(cpu);
  4876. put_cpu();
  4877. }
  4878. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  4879. {
  4880. return kvm_x86_ops->interrupt_allowed(vcpu);
  4881. }
  4882. bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
  4883. {
  4884. unsigned long current_rip = kvm_rip_read(vcpu) +
  4885. get_segment_base(vcpu, VCPU_SREG_CS);
  4886. return current_rip == linear_rip;
  4887. }
  4888. EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
  4889. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  4890. {
  4891. unsigned long rflags;
  4892. rflags = kvm_x86_ops->get_rflags(vcpu);
  4893. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4894. rflags &= ~X86_EFLAGS_TF;
  4895. return rflags;
  4896. }
  4897. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  4898. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  4899. {
  4900. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  4901. kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
  4902. rflags |= X86_EFLAGS_TF;
  4903. kvm_x86_ops->set_rflags(vcpu, rflags);
  4904. }
  4905. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  4906. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  4907. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  4908. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  4909. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  4910. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  4911. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  4912. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  4913. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  4914. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  4915. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  4916. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
  4917. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);