fault.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875
  1. /*
  2. * Copyright 2010 Tilera Corporation. All Rights Reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation, version 2.
  7. *
  8. * This program is distributed in the hope that it will be useful, but
  9. * WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11. * NON INFRINGEMENT. See the GNU General Public License for
  12. * more details.
  13. *
  14. * From i386 code copyright (C) 1995 Linus Torvalds
  15. */
  16. #include <linux/signal.h>
  17. #include <linux/sched.h>
  18. #include <linux/kernel.h>
  19. #include <linux/errno.h>
  20. #include <linux/string.h>
  21. #include <linux/types.h>
  22. #include <linux/ptrace.h>
  23. #include <linux/mman.h>
  24. #include <linux/mm.h>
  25. #include <linux/smp.h>
  26. #include <linux/smp_lock.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/init.h>
  29. #include <linux/tty.h>
  30. #include <linux/vt_kern.h> /* For unblank_screen() */
  31. #include <linux/highmem.h>
  32. #include <linux/module.h>
  33. #include <linux/kprobes.h>
  34. #include <linux/hugetlb.h>
  35. #include <linux/syscalls.h>
  36. #include <linux/uaccess.h>
  37. #include <asm/system.h>
  38. #include <asm/pgalloc.h>
  39. #include <asm/sections.h>
  40. #include <asm/traps.h>
  41. #include <asm/syscalls.h>
  42. #include <arch/interrupts.h>
  43. static noinline void force_sig_info_fault(int si_signo, int si_code,
  44. unsigned long address, int fault_num, struct task_struct *tsk)
  45. {
  46. siginfo_t info;
  47. if (unlikely(tsk->pid < 2)) {
  48. panic("Signal %d (code %d) at %#lx sent to %s!",
  49. si_signo, si_code & 0xffff, address,
  50. tsk->pid ? "init" : "the idle task");
  51. }
  52. info.si_signo = si_signo;
  53. info.si_errno = 0;
  54. info.si_code = si_code;
  55. info.si_addr = (void __user *)address;
  56. info.si_trapno = fault_num;
  57. force_sig_info(si_signo, &info, tsk);
  58. }
  59. #ifndef __tilegx__
  60. /*
  61. * Synthesize the fault a PL0 process would get by doing a word-load of
  62. * an unaligned address or a high kernel address. Called indirectly
  63. * from sys_cmpxchg() in kernel/intvec.S.
  64. */
  65. int _sys_cmpxchg_badaddr(unsigned long address, struct pt_regs *regs)
  66. {
  67. if (address >= PAGE_OFFSET)
  68. force_sig_info_fault(SIGSEGV, SEGV_MAPERR, address,
  69. INT_DTLB_MISS, current);
  70. else
  71. force_sig_info_fault(SIGBUS, BUS_ADRALN, address,
  72. INT_UNALIGN_DATA, current);
  73. /*
  74. * Adjust pc to point at the actual instruction, which is unusual
  75. * for syscalls normally, but is appropriate when we are claiming
  76. * that a syscall swint1 caused a page fault or bus error.
  77. */
  78. regs->pc -= 8;
  79. /*
  80. * Mark this as a caller-save interrupt, like a normal page fault,
  81. * so that when we go through the signal handler path we will
  82. * properly restore r0, r1, and r2 for the signal handler arguments.
  83. */
  84. regs->flags |= PT_FLAGS_CALLER_SAVES;
  85. return 0;
  86. }
  87. #endif
  88. static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
  89. {
  90. unsigned index = pgd_index(address);
  91. pgd_t *pgd_k;
  92. pud_t *pud, *pud_k;
  93. pmd_t *pmd, *pmd_k;
  94. pgd += index;
  95. pgd_k = init_mm.pgd + index;
  96. if (!pgd_present(*pgd_k))
  97. return NULL;
  98. pud = pud_offset(pgd, address);
  99. pud_k = pud_offset(pgd_k, address);
  100. if (!pud_present(*pud_k))
  101. return NULL;
  102. pmd = pmd_offset(pud, address);
  103. pmd_k = pmd_offset(pud_k, address);
  104. if (!pmd_present(*pmd_k))
  105. return NULL;
  106. if (!pmd_present(*pmd)) {
  107. set_pmd(pmd, *pmd_k);
  108. arch_flush_lazy_mmu_mode();
  109. } else
  110. BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k));
  111. return pmd_k;
  112. }
  113. /*
  114. * Handle a fault on the vmalloc or module mapping area
  115. */
  116. static inline int vmalloc_fault(pgd_t *pgd, unsigned long address)
  117. {
  118. pmd_t *pmd_k;
  119. pte_t *pte_k;
  120. /* Make sure we are in vmalloc area */
  121. if (!(address >= VMALLOC_START && address < VMALLOC_END))
  122. return -1;
  123. /*
  124. * Synchronize this task's top level page-table
  125. * with the 'reference' page table.
  126. */
  127. pmd_k = vmalloc_sync_one(pgd, address);
  128. if (!pmd_k)
  129. return -1;
  130. if (pmd_huge(*pmd_k))
  131. return 0; /* support TILE huge_vmap() API */
  132. pte_k = pte_offset_kernel(pmd_k, address);
  133. if (!pte_present(*pte_k))
  134. return -1;
  135. return 0;
  136. }
  137. /* Wait until this PTE has completed migration. */
  138. static void wait_for_migration(pte_t *pte)
  139. {
  140. if (pte_migrating(*pte)) {
  141. /*
  142. * Wait until the migrater fixes up this pte.
  143. * We scale the loop count by the clock rate so we'll wait for
  144. * a few seconds here.
  145. */
  146. int retries = 0;
  147. int bound = get_clock_rate();
  148. while (pte_migrating(*pte)) {
  149. barrier();
  150. if (++retries > bound)
  151. panic("Hit migrating PTE (%#llx) and"
  152. " page PFN %#lx still migrating",
  153. pte->val, pte_pfn(*pte));
  154. }
  155. }
  156. }
  157. /*
  158. * It's not generally safe to use "current" to get the page table pointer,
  159. * since we might be running an oprofile interrupt in the middle of a
  160. * task switch.
  161. */
  162. static pgd_t *get_current_pgd(void)
  163. {
  164. HV_Context ctx = hv_inquire_context();
  165. unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT;
  166. struct page *pgd_page = pfn_to_page(pgd_pfn);
  167. BUG_ON(PageHighMem(pgd_page)); /* oops, HIGHPTE? */
  168. return (pgd_t *) __va(ctx.page_table);
  169. }
  170. /*
  171. * We can receive a page fault from a migrating PTE at any time.
  172. * Handle it by just waiting until the fault resolves.
  173. *
  174. * It's also possible to get a migrating kernel PTE that resolves
  175. * itself during the downcall from hypervisor to Linux. We just check
  176. * here to see if the PTE seems valid, and if so we retry it.
  177. *
  178. * NOTE! We MUST NOT take any locks for this case. We may be in an
  179. * interrupt or a critical region, and must do as little as possible.
  180. * Similarly, we can't use atomic ops here, since we may be handling a
  181. * fault caused by an atomic op access.
  182. */
  183. static int handle_migrating_pte(pgd_t *pgd, int fault_num,
  184. unsigned long address,
  185. int is_kernel_mode, int write)
  186. {
  187. pud_t *pud;
  188. pmd_t *pmd;
  189. pte_t *pte;
  190. pte_t pteval;
  191. if (pgd_addr_invalid(address))
  192. return 0;
  193. pgd += pgd_index(address);
  194. pud = pud_offset(pgd, address);
  195. if (!pud || !pud_present(*pud))
  196. return 0;
  197. pmd = pmd_offset(pud, address);
  198. if (!pmd || !pmd_present(*pmd))
  199. return 0;
  200. pte = pmd_huge_page(*pmd) ? ((pte_t *)pmd) :
  201. pte_offset_kernel(pmd, address);
  202. pteval = *pte;
  203. if (pte_migrating(pteval)) {
  204. wait_for_migration(pte);
  205. return 1;
  206. }
  207. if (!is_kernel_mode || !pte_present(pteval))
  208. return 0;
  209. if (fault_num == INT_ITLB_MISS) {
  210. if (pte_exec(pteval))
  211. return 1;
  212. } else if (write) {
  213. if (pte_write(pteval))
  214. return 1;
  215. } else {
  216. if (pte_read(pteval))
  217. return 1;
  218. }
  219. return 0;
  220. }
  221. /*
  222. * This routine is responsible for faulting in user pages.
  223. * It passes the work off to one of the appropriate routines.
  224. * It returns true if the fault was successfully handled.
  225. */
  226. static int handle_page_fault(struct pt_regs *regs,
  227. int fault_num,
  228. int is_page_fault,
  229. unsigned long address,
  230. int write)
  231. {
  232. struct task_struct *tsk;
  233. struct mm_struct *mm;
  234. struct vm_area_struct *vma;
  235. unsigned long stack_offset;
  236. int fault;
  237. int si_code;
  238. int is_kernel_mode;
  239. pgd_t *pgd;
  240. /* on TILE, protection faults are always writes */
  241. if (!is_page_fault)
  242. write = 1;
  243. is_kernel_mode = (EX1_PL(regs->ex1) != USER_PL);
  244. tsk = validate_current();
  245. /*
  246. * Check to see if we might be overwriting the stack, and bail
  247. * out if so. The page fault code is a relatively likely
  248. * place to get trapped in an infinite regress, and once we
  249. * overwrite the whole stack, it becomes very hard to recover.
  250. */
  251. stack_offset = stack_pointer & (THREAD_SIZE-1);
  252. if (stack_offset < THREAD_SIZE / 8) {
  253. pr_alert("Potential stack overrun: sp %#lx\n",
  254. stack_pointer);
  255. show_regs(regs);
  256. pr_alert("Killing current process %d/%s\n",
  257. tsk->pid, tsk->comm);
  258. do_group_exit(SIGKILL);
  259. }
  260. /*
  261. * Early on, we need to check for migrating PTE entries;
  262. * see homecache.c. If we find a migrating PTE, we wait until
  263. * the backing page claims to be done migrating, then we procede.
  264. * For kernel PTEs, we rewrite the PTE and return and retry.
  265. * Otherwise, we treat the fault like a normal "no PTE" fault,
  266. * rather than trying to patch up the existing PTE.
  267. */
  268. pgd = get_current_pgd();
  269. if (handle_migrating_pte(pgd, fault_num, address,
  270. is_kernel_mode, write))
  271. return 1;
  272. si_code = SEGV_MAPERR;
  273. /*
  274. * We fault-in kernel-space virtual memory on-demand. The
  275. * 'reference' page table is init_mm.pgd.
  276. *
  277. * NOTE! We MUST NOT take any locks for this case. We may
  278. * be in an interrupt or a critical region, and should
  279. * only copy the information from the master page table,
  280. * nothing more.
  281. *
  282. * This verifies that the fault happens in kernel space
  283. * and that the fault was not a protection fault.
  284. */
  285. if (unlikely(address >= TASK_SIZE &&
  286. !is_arch_mappable_range(address, 0))) {
  287. if (is_kernel_mode && is_page_fault &&
  288. vmalloc_fault(pgd, address) >= 0)
  289. return 1;
  290. /*
  291. * Don't take the mm semaphore here. If we fixup a prefetch
  292. * fault we could otherwise deadlock.
  293. */
  294. mm = NULL; /* happy compiler */
  295. vma = NULL;
  296. goto bad_area_nosemaphore;
  297. }
  298. /*
  299. * If we're trying to touch user-space addresses, we must
  300. * be either at PL0, or else with interrupts enabled in the
  301. * kernel, so either way we can re-enable interrupts here.
  302. */
  303. local_irq_enable();
  304. mm = tsk->mm;
  305. /*
  306. * If we're in an interrupt, have no user context or are running in an
  307. * atomic region then we must not take the fault.
  308. */
  309. if (in_atomic() || !mm) {
  310. vma = NULL; /* happy compiler */
  311. goto bad_area_nosemaphore;
  312. }
  313. /*
  314. * When running in the kernel we expect faults to occur only to
  315. * addresses in user space. All other faults represent errors in the
  316. * kernel and should generate an OOPS. Unfortunately, in the case of an
  317. * erroneous fault occurring in a code path which already holds mmap_sem
  318. * we will deadlock attempting to validate the fault against the
  319. * address space. Luckily the kernel only validly references user
  320. * space from well defined areas of code, which are listed in the
  321. * exceptions table.
  322. *
  323. * As the vast majority of faults will be valid we will only perform
  324. * the source reference check when there is a possibility of a deadlock.
  325. * Attempt to lock the address space, if we cannot we then validate the
  326. * source. If this is invalid we can skip the address space check,
  327. * thus avoiding the deadlock.
  328. */
  329. if (!down_read_trylock(&mm->mmap_sem)) {
  330. if (is_kernel_mode &&
  331. !search_exception_tables(regs->pc)) {
  332. vma = NULL; /* happy compiler */
  333. goto bad_area_nosemaphore;
  334. }
  335. down_read(&mm->mmap_sem);
  336. }
  337. vma = find_vma(mm, address);
  338. if (!vma)
  339. goto bad_area;
  340. if (vma->vm_start <= address)
  341. goto good_area;
  342. if (!(vma->vm_flags & VM_GROWSDOWN))
  343. goto bad_area;
  344. if (regs->sp < PAGE_OFFSET) {
  345. /*
  346. * accessing the stack below sp is always a bug.
  347. */
  348. if (address < regs->sp)
  349. goto bad_area;
  350. }
  351. if (expand_stack(vma, address))
  352. goto bad_area;
  353. /*
  354. * Ok, we have a good vm_area for this memory access, so
  355. * we can handle it..
  356. */
  357. good_area:
  358. si_code = SEGV_ACCERR;
  359. if (fault_num == INT_ITLB_MISS) {
  360. if (!(vma->vm_flags & VM_EXEC))
  361. goto bad_area;
  362. } else if (write) {
  363. #ifdef TEST_VERIFY_AREA
  364. if (!is_page_fault && regs->cs == KERNEL_CS)
  365. pr_err("WP fault at "REGFMT"\n", regs->eip);
  366. #endif
  367. if (!(vma->vm_flags & VM_WRITE))
  368. goto bad_area;
  369. } else {
  370. if (!is_page_fault || !(vma->vm_flags & VM_READ))
  371. goto bad_area;
  372. }
  373. survive:
  374. /*
  375. * If for any reason at all we couldn't handle the fault,
  376. * make sure we exit gracefully rather than endlessly redo
  377. * the fault.
  378. */
  379. fault = handle_mm_fault(mm, vma, address, write);
  380. if (unlikely(fault & VM_FAULT_ERROR)) {
  381. if (fault & VM_FAULT_OOM)
  382. goto out_of_memory;
  383. else if (fault & VM_FAULT_SIGBUS)
  384. goto do_sigbus;
  385. BUG();
  386. }
  387. if (fault & VM_FAULT_MAJOR)
  388. tsk->maj_flt++;
  389. else
  390. tsk->min_flt++;
  391. #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
  392. /*
  393. * If this was an asynchronous fault,
  394. * restart the appropriate engine.
  395. */
  396. switch (fault_num) {
  397. #if CHIP_HAS_TILE_DMA()
  398. case INT_DMATLB_MISS:
  399. case INT_DMATLB_MISS_DWNCL:
  400. case INT_DMATLB_ACCESS:
  401. case INT_DMATLB_ACCESS_DWNCL:
  402. __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
  403. break;
  404. #endif
  405. #if CHIP_HAS_SN_PROC()
  406. case INT_SNITLB_MISS:
  407. case INT_SNITLB_MISS_DWNCL:
  408. __insn_mtspr(SPR_SNCTL,
  409. __insn_mfspr(SPR_SNCTL) &
  410. ~SPR_SNCTL__FRZPROC_MASK);
  411. break;
  412. #endif
  413. }
  414. #endif
  415. up_read(&mm->mmap_sem);
  416. return 1;
  417. /*
  418. * Something tried to access memory that isn't in our memory map..
  419. * Fix it, but check if it's kernel or user first..
  420. */
  421. bad_area:
  422. up_read(&mm->mmap_sem);
  423. bad_area_nosemaphore:
  424. /* User mode accesses just cause a SIGSEGV */
  425. if (!is_kernel_mode) {
  426. /*
  427. * It's possible to have interrupts off here.
  428. */
  429. local_irq_enable();
  430. force_sig_info_fault(SIGSEGV, si_code, address,
  431. fault_num, tsk);
  432. return 0;
  433. }
  434. no_context:
  435. /* Are we prepared to handle this kernel fault? */
  436. if (fixup_exception(regs))
  437. return 0;
  438. /*
  439. * Oops. The kernel tried to access some bad page. We'll have to
  440. * terminate things with extreme prejudice.
  441. */
  442. bust_spinlocks(1);
  443. /* FIXME: no lookup_address() yet */
  444. #ifdef SUPPORT_LOOKUP_ADDRESS
  445. if (fault_num == INT_ITLB_MISS) {
  446. pte_t *pte = lookup_address(address);
  447. if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
  448. pr_crit("kernel tried to execute"
  449. " non-executable page - exploit attempt?"
  450. " (uid: %d)\n", current->uid);
  451. }
  452. #endif
  453. if (address < PAGE_SIZE)
  454. pr_alert("Unable to handle kernel NULL pointer dereference\n");
  455. else
  456. pr_alert("Unable to handle kernel paging request\n");
  457. pr_alert(" at virtual address "REGFMT", pc "REGFMT"\n",
  458. address, regs->pc);
  459. show_regs(regs);
  460. if (unlikely(tsk->pid < 2)) {
  461. panic("Kernel page fault running %s!",
  462. tsk->pid ? "init" : "the idle task");
  463. }
  464. /*
  465. * More FIXME: we should probably copy the i386 here and
  466. * implement a generic die() routine. Not today.
  467. */
  468. #ifdef SUPPORT_DIE
  469. die("Oops", regs);
  470. #endif
  471. bust_spinlocks(1);
  472. do_group_exit(SIGKILL);
  473. /*
  474. * We ran out of memory, or some other thing happened to us that made
  475. * us unable to handle the page fault gracefully.
  476. */
  477. out_of_memory:
  478. up_read(&mm->mmap_sem);
  479. if (is_global_init(tsk)) {
  480. yield();
  481. down_read(&mm->mmap_sem);
  482. goto survive;
  483. }
  484. pr_alert("VM: killing process %s\n", tsk->comm);
  485. if (!is_kernel_mode)
  486. do_group_exit(SIGKILL);
  487. goto no_context;
  488. do_sigbus:
  489. up_read(&mm->mmap_sem);
  490. /* Kernel mode? Handle exceptions or die */
  491. if (is_kernel_mode)
  492. goto no_context;
  493. force_sig_info_fault(SIGBUS, BUS_ADRERR, address, fault_num, tsk);
  494. return 0;
  495. }
  496. #ifndef __tilegx__
  497. /* We must release ICS before panicking or we won't get anywhere. */
  498. #define ics_panic(fmt, ...) do { \
  499. __insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0); \
  500. panic(fmt, __VA_ARGS__); \
  501. } while (0)
  502. /*
  503. * When we take an ITLB or DTLB fault or access violation in the
  504. * supervisor while the critical section bit is set, the hypervisor is
  505. * reluctant to write new values into the EX_CONTEXT_1_x registers,
  506. * since that might indicate we have not yet squirreled the SPR
  507. * contents away and can thus safely take a recursive interrupt.
  508. * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_1_2.
  509. *
  510. * Note that this routine is called before homecache_tlb_defer_enter(),
  511. * which means that we can properly unlock any atomics that might
  512. * be used there (good), but also means we must be very sensitive
  513. * to not touch any data structures that might be located in memory
  514. * that could migrate, as we could be entering the kernel on a dataplane
  515. * cpu that has been deferring kernel TLB updates. This means, for
  516. * example, that we can't migrate init_mm or its pgd.
  517. */
  518. struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num,
  519. unsigned long address,
  520. unsigned long info)
  521. {
  522. unsigned long pc = info & ~1;
  523. int write = info & 1;
  524. pgd_t *pgd = get_current_pgd();
  525. /* Retval is 1 at first since we will handle the fault fully. */
  526. struct intvec_state state = {
  527. do_page_fault, fault_num, address, write, 1
  528. };
  529. /* Validate that we are plausibly in the right routine. */
  530. if ((pc & 0x7) != 0 || pc < PAGE_OFFSET ||
  531. (fault_num != INT_DTLB_MISS &&
  532. fault_num != INT_DTLB_ACCESS)) {
  533. unsigned long old_pc = regs->pc;
  534. regs->pc = pc;
  535. ics_panic("Bad ICS page fault args:"
  536. " old PC %#lx, fault %d/%d at %#lx\n",
  537. old_pc, fault_num, write, address);
  538. }
  539. /* We might be faulting on a vmalloc page, so check that first. */
  540. if (fault_num != INT_DTLB_ACCESS && vmalloc_fault(pgd, address) >= 0)
  541. return state;
  542. /*
  543. * If we faulted with ICS set in sys_cmpxchg, we are providing
  544. * a user syscall service that should generate a signal on
  545. * fault. We didn't set up a kernel stack on initial entry to
  546. * sys_cmpxchg, but instead had one set up by the fault, which
  547. * (because sys_cmpxchg never releases ICS) came to us via the
  548. * SYSTEM_SAVE_1_2 mechanism, and thus EX_CONTEXT_1_[01] are
  549. * still referencing the original user code. We release the
  550. * atomic lock and rewrite pt_regs so that it appears that we
  551. * came from user-space directly, and after we finish the
  552. * fault we'll go back to user space and re-issue the swint.
  553. * This way the backtrace information is correct if we need to
  554. * emit a stack dump at any point while handling this.
  555. *
  556. * Must match register use in sys_cmpxchg().
  557. */
  558. if (pc >= (unsigned long) sys_cmpxchg &&
  559. pc < (unsigned long) __sys_cmpxchg_end) {
  560. #ifdef CONFIG_SMP
  561. /* Don't unlock before we could have locked. */
  562. if (pc >= (unsigned long)__sys_cmpxchg_grab_lock) {
  563. int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
  564. __atomic_fault_unlock(lock_ptr);
  565. }
  566. #endif
  567. regs->sp = regs->regs[27];
  568. }
  569. /*
  570. * We can also fault in the atomic assembly, in which
  571. * case we use the exception table to do the first-level fixup.
  572. * We may re-fixup again in the real fault handler if it
  573. * turns out the faulting address is just bad, and not,
  574. * for example, migrating.
  575. */
  576. else if (pc >= (unsigned long) __start_atomic_asm_code &&
  577. pc < (unsigned long) __end_atomic_asm_code) {
  578. const struct exception_table_entry *fixup;
  579. #ifdef CONFIG_SMP
  580. /* Unlock the atomic lock. */
  581. int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
  582. __atomic_fault_unlock(lock_ptr);
  583. #endif
  584. fixup = search_exception_tables(pc);
  585. if (!fixup)
  586. ics_panic("ICS atomic fault not in table:"
  587. " PC %#lx, fault %d", pc, fault_num);
  588. regs->pc = fixup->fixup;
  589. regs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
  590. }
  591. /*
  592. * NOTE: the one other type of access that might bring us here
  593. * are the memory ops in __tns_atomic_acquire/__tns_atomic_release,
  594. * but we don't have to check specially for them since we can
  595. * always safely return to the address of the fault and retry,
  596. * since no separate atomic locks are involved.
  597. */
  598. /*
  599. * Now that we have released the atomic lock (if necessary),
  600. * it's safe to spin if the PTE that caused the fault was migrating.
  601. */
  602. if (fault_num == INT_DTLB_ACCESS)
  603. write = 1;
  604. if (handle_migrating_pte(pgd, fault_num, address, 1, write))
  605. return state;
  606. /* Return zero so that we continue on with normal fault handling. */
  607. state.retval = 0;
  608. return state;
  609. }
  610. #endif /* !__tilegx__ */
  611. /*
  612. * This routine handles page faults. It determines the address, and the
  613. * problem, and then passes it handle_page_fault() for normal DTLB and
  614. * ITLB issues, and for DMA or SN processor faults when we are in user
  615. * space. For the latter, if we're in kernel mode, we just save the
  616. * interrupt away appropriately and return immediately. We can't do
  617. * page faults for user code while in kernel mode.
  618. */
  619. void do_page_fault(struct pt_regs *regs, int fault_num,
  620. unsigned long address, unsigned long write)
  621. {
  622. int is_page_fault;
  623. /* This case should have been handled by do_page_fault_ics(). */
  624. BUG_ON(write & ~1);
  625. #if CHIP_HAS_TILE_DMA()
  626. /*
  627. * If it's a DMA fault, suspend the transfer while we're
  628. * handling the miss; we'll restart after it's handled. If we
  629. * don't suspend, it's possible that this process could swap
  630. * out and back in, and restart the engine since the DMA is
  631. * still 'running'.
  632. */
  633. if (fault_num == INT_DMATLB_MISS ||
  634. fault_num == INT_DMATLB_ACCESS ||
  635. fault_num == INT_DMATLB_MISS_DWNCL ||
  636. fault_num == INT_DMATLB_ACCESS_DWNCL) {
  637. __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
  638. while (__insn_mfspr(SPR_DMA_USER_STATUS) &
  639. SPR_DMA_STATUS__BUSY_MASK)
  640. ;
  641. }
  642. #endif
  643. /* Validate fault num and decide if this is a first-time page fault. */
  644. switch (fault_num) {
  645. case INT_ITLB_MISS:
  646. case INT_DTLB_MISS:
  647. #if CHIP_HAS_TILE_DMA()
  648. case INT_DMATLB_MISS:
  649. case INT_DMATLB_MISS_DWNCL:
  650. #endif
  651. #if CHIP_HAS_SN_PROC()
  652. case INT_SNITLB_MISS:
  653. case INT_SNITLB_MISS_DWNCL:
  654. #endif
  655. is_page_fault = 1;
  656. break;
  657. case INT_DTLB_ACCESS:
  658. #if CHIP_HAS_TILE_DMA()
  659. case INT_DMATLB_ACCESS:
  660. case INT_DMATLB_ACCESS_DWNCL:
  661. #endif
  662. is_page_fault = 0;
  663. break;
  664. default:
  665. panic("Bad fault number %d in do_page_fault", fault_num);
  666. }
  667. if (EX1_PL(regs->ex1) != USER_PL) {
  668. struct async_tlb *async;
  669. switch (fault_num) {
  670. #if CHIP_HAS_TILE_DMA()
  671. case INT_DMATLB_MISS:
  672. case INT_DMATLB_ACCESS:
  673. case INT_DMATLB_MISS_DWNCL:
  674. case INT_DMATLB_ACCESS_DWNCL:
  675. async = &current->thread.dma_async_tlb;
  676. break;
  677. #endif
  678. #if CHIP_HAS_SN_PROC()
  679. case INT_SNITLB_MISS:
  680. case INT_SNITLB_MISS_DWNCL:
  681. async = &current->thread.sn_async_tlb;
  682. break;
  683. #endif
  684. default:
  685. async = NULL;
  686. }
  687. if (async) {
  688. /*
  689. * No vmalloc check required, so we can allow
  690. * interrupts immediately at this point.
  691. */
  692. local_irq_enable();
  693. set_thread_flag(TIF_ASYNC_TLB);
  694. if (async->fault_num != 0) {
  695. panic("Second async fault %d;"
  696. " old fault was %d (%#lx/%ld)",
  697. fault_num, async->fault_num,
  698. address, write);
  699. }
  700. BUG_ON(fault_num == 0);
  701. async->fault_num = fault_num;
  702. async->is_fault = is_page_fault;
  703. async->is_write = write;
  704. async->address = address;
  705. return;
  706. }
  707. }
  708. handle_page_fault(regs, fault_num, is_page_fault, address, write);
  709. }
  710. #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
  711. /*
  712. * Check an async_tlb structure to see if a deferred fault is waiting,
  713. * and if so pass it to the page-fault code.
  714. */
  715. static void handle_async_page_fault(struct pt_regs *regs,
  716. struct async_tlb *async)
  717. {
  718. if (async->fault_num) {
  719. /*
  720. * Clear async->fault_num before calling the page-fault
  721. * handler so that if we re-interrupt before returning
  722. * from the function we have somewhere to put the
  723. * information from the new interrupt.
  724. */
  725. int fault_num = async->fault_num;
  726. async->fault_num = 0;
  727. handle_page_fault(regs, fault_num, async->is_fault,
  728. async->address, async->is_write);
  729. }
  730. }
  731. #endif /* CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() */
  732. /*
  733. * This routine effectively re-issues asynchronous page faults
  734. * when we are returning to user space.
  735. */
  736. void do_async_page_fault(struct pt_regs *regs)
  737. {
  738. /*
  739. * Clear thread flag early. If we re-interrupt while processing
  740. * code here, we will reset it and recall this routine before
  741. * returning to user space.
  742. */
  743. clear_thread_flag(TIF_ASYNC_TLB);
  744. #if CHIP_HAS_TILE_DMA()
  745. handle_async_page_fault(regs, &current->thread.dma_async_tlb);
  746. #endif
  747. #if CHIP_HAS_SN_PROC()
  748. handle_async_page_fault(regs, &current->thread.sn_async_tlb);
  749. #endif
  750. }
  751. void vmalloc_sync_all(void)
  752. {
  753. #ifdef __tilegx__
  754. /* Currently all L1 kernel pmd's are static and shared. */
  755. BUG_ON(pgd_index(VMALLOC_END) != pgd_index(VMALLOC_START));
  756. #else
  757. /*
  758. * Note that races in the updates of insync and start aren't
  759. * problematic: insync can only get set bits added, and updates to
  760. * start are only improving performance (without affecting correctness
  761. * if undone).
  762. */
  763. static DECLARE_BITMAP(insync, PTRS_PER_PGD);
  764. static unsigned long start = PAGE_OFFSET;
  765. unsigned long address;
  766. BUILD_BUG_ON(PAGE_OFFSET & ~PGDIR_MASK);
  767. for (address = start; address >= PAGE_OFFSET; address += PGDIR_SIZE) {
  768. if (!test_bit(pgd_index(address), insync)) {
  769. unsigned long flags;
  770. struct list_head *pos;
  771. spin_lock_irqsave(&pgd_lock, flags);
  772. list_for_each(pos, &pgd_list)
  773. if (!vmalloc_sync_one(list_to_pgd(pos),
  774. address)) {
  775. /* Must be at first entry in list. */
  776. BUG_ON(pos != pgd_list.next);
  777. break;
  778. }
  779. spin_unlock_irqrestore(&pgd_lock, flags);
  780. if (pos != pgd_list.next)
  781. set_bit(pgd_index(address), insync);
  782. }
  783. if (address == start && test_bit(pgd_index(address), insync))
  784. start = address + PGDIR_SIZE;
  785. }
  786. #endif
  787. }