ieee80211_sta.c 100 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607
  1. /*
  2. * BSS client mode implementation
  3. * Copyright 2003, Jouni Malinen <jkmaline@cc.hut.fi>
  4. * Copyright 2004, Instant802 Networks, Inc.
  5. * Copyright 2005, Devicescape Software, Inc.
  6. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
  7. * Copyright 2007, Michael Wu <flamingice@sourmilk.net>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. /* TODO:
  14. * order BSS list by RSSI(?) ("quality of AP")
  15. * scan result table filtering (by capability (privacy, IBSS/BSS, WPA/RSN IE,
  16. * SSID)
  17. */
  18. #include <linux/delay.h>
  19. #include <linux/if_ether.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/netdevice.h>
  22. #include <linux/if_arp.h>
  23. #include <linux/wireless.h>
  24. #include <linux/random.h>
  25. #include <linux/etherdevice.h>
  26. #include <net/iw_handler.h>
  27. #include <asm/types.h>
  28. #include <net/mac80211.h>
  29. #include "ieee80211_i.h"
  30. #include "ieee80211_rate.h"
  31. #include "ieee80211_led.h"
  32. #define IEEE80211_AUTH_TIMEOUT (HZ / 5)
  33. #define IEEE80211_AUTH_MAX_TRIES 3
  34. #define IEEE80211_ASSOC_TIMEOUT (HZ / 5)
  35. #define IEEE80211_ASSOC_MAX_TRIES 3
  36. #define IEEE80211_MONITORING_INTERVAL (2 * HZ)
  37. #define IEEE80211_PROBE_INTERVAL (60 * HZ)
  38. #define IEEE80211_RETRY_AUTH_INTERVAL (1 * HZ)
  39. #define IEEE80211_SCAN_INTERVAL (2 * HZ)
  40. #define IEEE80211_SCAN_INTERVAL_SLOW (15 * HZ)
  41. #define IEEE80211_IBSS_JOIN_TIMEOUT (20 * HZ)
  42. #define IEEE80211_PROBE_DELAY (HZ / 33)
  43. #define IEEE80211_CHANNEL_TIME (HZ / 33)
  44. #define IEEE80211_PASSIVE_CHANNEL_TIME (HZ / 5)
  45. #define IEEE80211_SCAN_RESULT_EXPIRE (10 * HZ)
  46. #define IEEE80211_IBSS_MERGE_INTERVAL (30 * HZ)
  47. #define IEEE80211_IBSS_INACTIVITY_LIMIT (60 * HZ)
  48. #define IEEE80211_IBSS_MAX_STA_ENTRIES 128
  49. #define IEEE80211_FC(type, stype) cpu_to_le16(type | stype)
  50. #define ERP_INFO_USE_PROTECTION BIT(1)
  51. /* mgmt header + 1 byte action code */
  52. #define IEEE80211_MIN_ACTION_SIZE (24 + 1)
  53. #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
  54. #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
  55. #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFA0
  56. #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
  57. #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
  58. /* next values represent the buffer size for A-MPDU frame.
  59. * According to IEEE802.11n spec size varies from 8K to 64K (in powers of 2) */
  60. #define IEEE80211_MIN_AMPDU_BUF 0x8
  61. #define IEEE80211_MAX_AMPDU_BUF 0x40
  62. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  63. u8 *ssid, size_t ssid_len);
  64. static struct ieee80211_sta_bss *
  65. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int channel,
  66. u8 *ssid, u8 ssid_len);
  67. static void ieee80211_rx_bss_put(struct net_device *dev,
  68. struct ieee80211_sta_bss *bss);
  69. static int ieee80211_sta_find_ibss(struct net_device *dev,
  70. struct ieee80211_if_sta *ifsta);
  71. static int ieee80211_sta_wep_configured(struct net_device *dev);
  72. static int ieee80211_sta_start_scan(struct net_device *dev,
  73. u8 *ssid, size_t ssid_len);
  74. static int ieee80211_sta_config_auth(struct net_device *dev,
  75. struct ieee80211_if_sta *ifsta);
  76. /* Parsed Information Elements */
  77. struct ieee802_11_elems {
  78. /* pointers to IEs */
  79. u8 *ssid;
  80. u8 *supp_rates;
  81. u8 *fh_params;
  82. u8 *ds_params;
  83. u8 *cf_params;
  84. u8 *tim;
  85. u8 *ibss_params;
  86. u8 *challenge;
  87. u8 *wpa;
  88. u8 *rsn;
  89. u8 *erp_info;
  90. u8 *ext_supp_rates;
  91. u8 *wmm_info;
  92. u8 *wmm_param;
  93. u8 *ht_cap_elem;
  94. u8 *ht_info_elem;
  95. /* length of them, respectively */
  96. u8 ssid_len;
  97. u8 supp_rates_len;
  98. u8 fh_params_len;
  99. u8 ds_params_len;
  100. u8 cf_params_len;
  101. u8 tim_len;
  102. u8 ibss_params_len;
  103. u8 challenge_len;
  104. u8 wpa_len;
  105. u8 rsn_len;
  106. u8 erp_info_len;
  107. u8 ext_supp_rates_len;
  108. u8 wmm_info_len;
  109. u8 wmm_param_len;
  110. u8 ht_cap_elem_len;
  111. u8 ht_info_elem_len;
  112. };
  113. static void ieee802_11_parse_elems(u8 *start, size_t len,
  114. struct ieee802_11_elems *elems)
  115. {
  116. size_t left = len;
  117. u8 *pos = start;
  118. memset(elems, 0, sizeof(*elems));
  119. while (left >= 2) {
  120. u8 id, elen;
  121. id = *pos++;
  122. elen = *pos++;
  123. left -= 2;
  124. if (elen > left)
  125. return;
  126. switch (id) {
  127. case WLAN_EID_SSID:
  128. elems->ssid = pos;
  129. elems->ssid_len = elen;
  130. break;
  131. case WLAN_EID_SUPP_RATES:
  132. elems->supp_rates = pos;
  133. elems->supp_rates_len = elen;
  134. break;
  135. case WLAN_EID_FH_PARAMS:
  136. elems->fh_params = pos;
  137. elems->fh_params_len = elen;
  138. break;
  139. case WLAN_EID_DS_PARAMS:
  140. elems->ds_params = pos;
  141. elems->ds_params_len = elen;
  142. break;
  143. case WLAN_EID_CF_PARAMS:
  144. elems->cf_params = pos;
  145. elems->cf_params_len = elen;
  146. break;
  147. case WLAN_EID_TIM:
  148. elems->tim = pos;
  149. elems->tim_len = elen;
  150. break;
  151. case WLAN_EID_IBSS_PARAMS:
  152. elems->ibss_params = pos;
  153. elems->ibss_params_len = elen;
  154. break;
  155. case WLAN_EID_CHALLENGE:
  156. elems->challenge = pos;
  157. elems->challenge_len = elen;
  158. break;
  159. case WLAN_EID_WPA:
  160. if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
  161. pos[2] == 0xf2) {
  162. /* Microsoft OUI (00:50:F2) */
  163. if (pos[3] == 1) {
  164. /* OUI Type 1 - WPA IE */
  165. elems->wpa = pos;
  166. elems->wpa_len = elen;
  167. } else if (elen >= 5 && pos[3] == 2) {
  168. if (pos[4] == 0) {
  169. elems->wmm_info = pos;
  170. elems->wmm_info_len = elen;
  171. } else if (pos[4] == 1) {
  172. elems->wmm_param = pos;
  173. elems->wmm_param_len = elen;
  174. }
  175. }
  176. }
  177. break;
  178. case WLAN_EID_RSN:
  179. elems->rsn = pos;
  180. elems->rsn_len = elen;
  181. break;
  182. case WLAN_EID_ERP_INFO:
  183. elems->erp_info = pos;
  184. elems->erp_info_len = elen;
  185. break;
  186. case WLAN_EID_EXT_SUPP_RATES:
  187. elems->ext_supp_rates = pos;
  188. elems->ext_supp_rates_len = elen;
  189. break;
  190. case WLAN_EID_HT_CAPABILITY:
  191. elems->ht_cap_elem = pos;
  192. elems->ht_cap_elem_len = elen;
  193. break;
  194. case WLAN_EID_HT_EXTRA_INFO:
  195. elems->ht_info_elem = pos;
  196. elems->ht_info_elem_len = elen;
  197. break;
  198. default:
  199. break;
  200. }
  201. left -= elen;
  202. pos += elen;
  203. }
  204. }
  205. static int ecw2cw(int ecw)
  206. {
  207. int cw = 1;
  208. while (ecw > 0) {
  209. cw <<= 1;
  210. ecw--;
  211. }
  212. return cw - 1;
  213. }
  214. static void ieee80211_sta_wmm_params(struct net_device *dev,
  215. struct ieee80211_if_sta *ifsta,
  216. u8 *wmm_param, size_t wmm_param_len)
  217. {
  218. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  219. struct ieee80211_tx_queue_params params;
  220. size_t left;
  221. int count;
  222. u8 *pos;
  223. if (wmm_param_len < 8 || wmm_param[5] /* version */ != 1)
  224. return;
  225. count = wmm_param[6] & 0x0f;
  226. if (count == ifsta->wmm_last_param_set)
  227. return;
  228. ifsta->wmm_last_param_set = count;
  229. pos = wmm_param + 8;
  230. left = wmm_param_len - 8;
  231. memset(&params, 0, sizeof(params));
  232. if (!local->ops->conf_tx)
  233. return;
  234. local->wmm_acm = 0;
  235. for (; left >= 4; left -= 4, pos += 4) {
  236. int aci = (pos[0] >> 5) & 0x03;
  237. int acm = (pos[0] >> 4) & 0x01;
  238. int queue;
  239. switch (aci) {
  240. case 1:
  241. queue = IEEE80211_TX_QUEUE_DATA3;
  242. if (acm) {
  243. local->wmm_acm |= BIT(0) | BIT(3);
  244. }
  245. break;
  246. case 2:
  247. queue = IEEE80211_TX_QUEUE_DATA1;
  248. if (acm) {
  249. local->wmm_acm |= BIT(4) | BIT(5);
  250. }
  251. break;
  252. case 3:
  253. queue = IEEE80211_TX_QUEUE_DATA0;
  254. if (acm) {
  255. local->wmm_acm |= BIT(6) | BIT(7);
  256. }
  257. break;
  258. case 0:
  259. default:
  260. queue = IEEE80211_TX_QUEUE_DATA2;
  261. if (acm) {
  262. local->wmm_acm |= BIT(1) | BIT(2);
  263. }
  264. break;
  265. }
  266. params.aifs = pos[0] & 0x0f;
  267. params.cw_max = ecw2cw((pos[1] & 0xf0) >> 4);
  268. params.cw_min = ecw2cw(pos[1] & 0x0f);
  269. /* TXOP is in units of 32 usec; burst_time in 0.1 ms */
  270. params.burst_time = (pos[2] | (pos[3] << 8)) * 32 / 100;
  271. printk(KERN_DEBUG "%s: WMM queue=%d aci=%d acm=%d aifs=%d "
  272. "cWmin=%d cWmax=%d burst=%d\n",
  273. dev->name, queue, aci, acm, params.aifs, params.cw_min,
  274. params.cw_max, params.burst_time);
  275. /* TODO: handle ACM (block TX, fallback to next lowest allowed
  276. * AC for now) */
  277. if (local->ops->conf_tx(local_to_hw(local), queue, &params)) {
  278. printk(KERN_DEBUG "%s: failed to set TX queue "
  279. "parameters for queue %d\n", dev->name, queue);
  280. }
  281. }
  282. }
  283. static u32 ieee80211_handle_erp_ie(struct ieee80211_sub_if_data *sdata,
  284. u8 erp_value)
  285. {
  286. struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
  287. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  288. bool use_protection = (erp_value & WLAN_ERP_USE_PROTECTION) != 0;
  289. bool preamble_mode = (erp_value & WLAN_ERP_BARKER_PREAMBLE) != 0;
  290. DECLARE_MAC_BUF(mac);
  291. u32 changed = 0;
  292. if (use_protection != bss_conf->use_cts_prot) {
  293. if (net_ratelimit()) {
  294. printk(KERN_DEBUG "%s: CTS protection %s (BSSID="
  295. "%s)\n",
  296. sdata->dev->name,
  297. use_protection ? "enabled" : "disabled",
  298. print_mac(mac, ifsta->bssid));
  299. }
  300. bss_conf->use_cts_prot = use_protection;
  301. changed |= BSS_CHANGED_ERP_CTS_PROT;
  302. }
  303. if (preamble_mode != bss_conf->use_short_preamble) {
  304. if (net_ratelimit()) {
  305. printk(KERN_DEBUG "%s: switched to %s barker preamble"
  306. " (BSSID=%s)\n",
  307. sdata->dev->name,
  308. (preamble_mode == WLAN_ERP_PREAMBLE_SHORT) ?
  309. "short" : "long",
  310. print_mac(mac, ifsta->bssid));
  311. }
  312. bss_conf->use_short_preamble = preamble_mode;
  313. changed |= BSS_CHANGED_ERP_PREAMBLE;
  314. }
  315. return changed;
  316. }
  317. int ieee80211_ht_cap_ie_to_ht_info(struct ieee80211_ht_cap *ht_cap_ie,
  318. struct ieee80211_ht_info *ht_info)
  319. {
  320. if (ht_info == NULL)
  321. return -EINVAL;
  322. memset(ht_info, 0, sizeof(*ht_info));
  323. if (ht_cap_ie) {
  324. u8 ampdu_info = ht_cap_ie->ampdu_params_info;
  325. ht_info->ht_supported = 1;
  326. ht_info->cap = le16_to_cpu(ht_cap_ie->cap_info);
  327. ht_info->ampdu_factor =
  328. ampdu_info & IEEE80211_HT_CAP_AMPDU_FACTOR;
  329. ht_info->ampdu_density =
  330. (ampdu_info & IEEE80211_HT_CAP_AMPDU_DENSITY) >> 2;
  331. memcpy(ht_info->supp_mcs_set, ht_cap_ie->supp_mcs_set, 16);
  332. } else
  333. ht_info->ht_supported = 0;
  334. return 0;
  335. }
  336. int ieee80211_ht_addt_info_ie_to_ht_bss_info(
  337. struct ieee80211_ht_addt_info *ht_add_info_ie,
  338. struct ieee80211_ht_bss_info *bss_info)
  339. {
  340. if (bss_info == NULL)
  341. return -EINVAL;
  342. memset(bss_info, 0, sizeof(*bss_info));
  343. if (ht_add_info_ie) {
  344. u16 op_mode;
  345. op_mode = le16_to_cpu(ht_add_info_ie->operation_mode);
  346. bss_info->primary_channel = ht_add_info_ie->control_chan;
  347. bss_info->bss_cap = ht_add_info_ie->ht_param;
  348. bss_info->bss_op_mode = (u8)(op_mode & 0xff);
  349. }
  350. return 0;
  351. }
  352. static void ieee80211_sta_send_associnfo(struct net_device *dev,
  353. struct ieee80211_if_sta *ifsta)
  354. {
  355. char *buf;
  356. size_t len;
  357. int i;
  358. union iwreq_data wrqu;
  359. if (!ifsta->assocreq_ies && !ifsta->assocresp_ies)
  360. return;
  361. buf = kmalloc(50 + 2 * (ifsta->assocreq_ies_len +
  362. ifsta->assocresp_ies_len), GFP_KERNEL);
  363. if (!buf)
  364. return;
  365. len = sprintf(buf, "ASSOCINFO(");
  366. if (ifsta->assocreq_ies) {
  367. len += sprintf(buf + len, "ReqIEs=");
  368. for (i = 0; i < ifsta->assocreq_ies_len; i++) {
  369. len += sprintf(buf + len, "%02x",
  370. ifsta->assocreq_ies[i]);
  371. }
  372. }
  373. if (ifsta->assocresp_ies) {
  374. if (ifsta->assocreq_ies)
  375. len += sprintf(buf + len, " ");
  376. len += sprintf(buf + len, "RespIEs=");
  377. for (i = 0; i < ifsta->assocresp_ies_len; i++) {
  378. len += sprintf(buf + len, "%02x",
  379. ifsta->assocresp_ies[i]);
  380. }
  381. }
  382. len += sprintf(buf + len, ")");
  383. if (len > IW_CUSTOM_MAX) {
  384. len = sprintf(buf, "ASSOCRESPIE=");
  385. for (i = 0; i < ifsta->assocresp_ies_len; i++) {
  386. len += sprintf(buf + len, "%02x",
  387. ifsta->assocresp_ies[i]);
  388. }
  389. }
  390. memset(&wrqu, 0, sizeof(wrqu));
  391. wrqu.data.length = len;
  392. wireless_send_event(dev, IWEVCUSTOM, &wrqu, buf);
  393. kfree(buf);
  394. }
  395. static void ieee80211_set_associated(struct net_device *dev,
  396. struct ieee80211_if_sta *ifsta,
  397. bool assoc)
  398. {
  399. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  400. struct ieee80211_local *local = sdata->local;
  401. union iwreq_data wrqu;
  402. u32 changed = BSS_CHANGED_ASSOC;
  403. if (assoc) {
  404. struct ieee80211_sta_bss *bss;
  405. ifsta->flags |= IEEE80211_STA_ASSOCIATED;
  406. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  407. return;
  408. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  409. local->hw.conf.channel,
  410. ifsta->ssid, ifsta->ssid_len);
  411. if (bss) {
  412. if (bss->has_erp_value)
  413. changed |= ieee80211_handle_erp_ie(
  414. sdata, bss->erp_value);
  415. ieee80211_rx_bss_put(dev, bss);
  416. }
  417. netif_carrier_on(dev);
  418. ifsta->flags |= IEEE80211_STA_PREV_BSSID_SET;
  419. memcpy(ifsta->prev_bssid, sdata->u.sta.bssid, ETH_ALEN);
  420. memcpy(wrqu.ap_addr.sa_data, sdata->u.sta.bssid, ETH_ALEN);
  421. ieee80211_sta_send_associnfo(dev, ifsta);
  422. } else {
  423. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  424. netif_carrier_off(dev);
  425. ieee80211_reset_erp_info(dev);
  426. memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
  427. }
  428. wrqu.ap_addr.sa_family = ARPHRD_ETHER;
  429. wireless_send_event(dev, SIOCGIWAP, &wrqu, NULL);
  430. ifsta->last_probe = jiffies;
  431. ieee80211_led_assoc(local, assoc);
  432. sdata->bss_conf.assoc = assoc;
  433. ieee80211_bss_info_change_notify(sdata, changed);
  434. }
  435. static void ieee80211_set_disassoc(struct net_device *dev,
  436. struct ieee80211_if_sta *ifsta, int deauth)
  437. {
  438. if (deauth)
  439. ifsta->auth_tries = 0;
  440. ifsta->assoc_tries = 0;
  441. ieee80211_set_associated(dev, ifsta, 0);
  442. }
  443. static void ieee80211_sta_tx(struct net_device *dev, struct sk_buff *skb,
  444. int encrypt)
  445. {
  446. struct ieee80211_sub_if_data *sdata;
  447. struct ieee80211_tx_packet_data *pkt_data;
  448. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  449. skb->dev = sdata->local->mdev;
  450. skb_set_mac_header(skb, 0);
  451. skb_set_network_header(skb, 0);
  452. skb_set_transport_header(skb, 0);
  453. pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
  454. memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data));
  455. pkt_data->ifindex = sdata->dev->ifindex;
  456. if (!encrypt)
  457. pkt_data->flags |= IEEE80211_TXPD_DO_NOT_ENCRYPT;
  458. dev_queue_xmit(skb);
  459. }
  460. static void ieee80211_send_auth(struct net_device *dev,
  461. struct ieee80211_if_sta *ifsta,
  462. int transaction, u8 *extra, size_t extra_len,
  463. int encrypt)
  464. {
  465. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  466. struct sk_buff *skb;
  467. struct ieee80211_mgmt *mgmt;
  468. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  469. sizeof(*mgmt) + 6 + extra_len);
  470. if (!skb) {
  471. printk(KERN_DEBUG "%s: failed to allocate buffer for auth "
  472. "frame\n", dev->name);
  473. return;
  474. }
  475. skb_reserve(skb, local->hw.extra_tx_headroom);
  476. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
  477. memset(mgmt, 0, 24 + 6);
  478. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  479. IEEE80211_STYPE_AUTH);
  480. if (encrypt)
  481. mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
  482. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  483. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  484. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  485. mgmt->u.auth.auth_alg = cpu_to_le16(ifsta->auth_alg);
  486. mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
  487. ifsta->auth_transaction = transaction + 1;
  488. mgmt->u.auth.status_code = cpu_to_le16(0);
  489. if (extra)
  490. memcpy(skb_put(skb, extra_len), extra, extra_len);
  491. ieee80211_sta_tx(dev, skb, encrypt);
  492. }
  493. static void ieee80211_authenticate(struct net_device *dev,
  494. struct ieee80211_if_sta *ifsta)
  495. {
  496. DECLARE_MAC_BUF(mac);
  497. ifsta->auth_tries++;
  498. if (ifsta->auth_tries > IEEE80211_AUTH_MAX_TRIES) {
  499. printk(KERN_DEBUG "%s: authentication with AP %s"
  500. " timed out\n",
  501. dev->name, print_mac(mac, ifsta->bssid));
  502. ifsta->state = IEEE80211_DISABLED;
  503. return;
  504. }
  505. ifsta->state = IEEE80211_AUTHENTICATE;
  506. printk(KERN_DEBUG "%s: authenticate with AP %s\n",
  507. dev->name, print_mac(mac, ifsta->bssid));
  508. ieee80211_send_auth(dev, ifsta, 1, NULL, 0, 0);
  509. mod_timer(&ifsta->timer, jiffies + IEEE80211_AUTH_TIMEOUT);
  510. }
  511. static void ieee80211_send_assoc(struct net_device *dev,
  512. struct ieee80211_if_sta *ifsta)
  513. {
  514. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  515. struct ieee80211_hw_mode *mode;
  516. struct sk_buff *skb;
  517. struct ieee80211_mgmt *mgmt;
  518. u8 *pos, *ies;
  519. int i, len;
  520. u16 capab;
  521. struct ieee80211_sta_bss *bss;
  522. int wmm = 0;
  523. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  524. sizeof(*mgmt) + 200 + ifsta->extra_ie_len +
  525. ifsta->ssid_len);
  526. if (!skb) {
  527. printk(KERN_DEBUG "%s: failed to allocate buffer for assoc "
  528. "frame\n", dev->name);
  529. return;
  530. }
  531. skb_reserve(skb, local->hw.extra_tx_headroom);
  532. mode = local->oper_hw_mode;
  533. capab = ifsta->capab;
  534. if (mode->mode == MODE_IEEE80211G) {
  535. capab |= WLAN_CAPABILITY_SHORT_SLOT_TIME |
  536. WLAN_CAPABILITY_SHORT_PREAMBLE;
  537. }
  538. bss = ieee80211_rx_bss_get(dev, ifsta->bssid, local->hw.conf.channel,
  539. ifsta->ssid, ifsta->ssid_len);
  540. if (bss) {
  541. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  542. capab |= WLAN_CAPABILITY_PRIVACY;
  543. if (bss->wmm_ie) {
  544. wmm = 1;
  545. }
  546. ieee80211_rx_bss_put(dev, bss);
  547. }
  548. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  549. memset(mgmt, 0, 24);
  550. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  551. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  552. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  553. if (ifsta->flags & IEEE80211_STA_PREV_BSSID_SET) {
  554. skb_put(skb, 10);
  555. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  556. IEEE80211_STYPE_REASSOC_REQ);
  557. mgmt->u.reassoc_req.capab_info = cpu_to_le16(capab);
  558. mgmt->u.reassoc_req.listen_interval = cpu_to_le16(1);
  559. memcpy(mgmt->u.reassoc_req.current_ap, ifsta->prev_bssid,
  560. ETH_ALEN);
  561. } else {
  562. skb_put(skb, 4);
  563. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  564. IEEE80211_STYPE_ASSOC_REQ);
  565. mgmt->u.assoc_req.capab_info = cpu_to_le16(capab);
  566. mgmt->u.assoc_req.listen_interval = cpu_to_le16(1);
  567. }
  568. /* SSID */
  569. ies = pos = skb_put(skb, 2 + ifsta->ssid_len);
  570. *pos++ = WLAN_EID_SSID;
  571. *pos++ = ifsta->ssid_len;
  572. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  573. len = mode->num_rates;
  574. if (len > 8)
  575. len = 8;
  576. pos = skb_put(skb, len + 2);
  577. *pos++ = WLAN_EID_SUPP_RATES;
  578. *pos++ = len;
  579. for (i = 0; i < len; i++) {
  580. int rate = mode->rates[i].rate;
  581. *pos++ = (u8) (rate / 5);
  582. }
  583. if (mode->num_rates > len) {
  584. pos = skb_put(skb, mode->num_rates - len + 2);
  585. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  586. *pos++ = mode->num_rates - len;
  587. for (i = len; i < mode->num_rates; i++) {
  588. int rate = mode->rates[i].rate;
  589. *pos++ = (u8) (rate / 5);
  590. }
  591. }
  592. if (ifsta->extra_ie) {
  593. pos = skb_put(skb, ifsta->extra_ie_len);
  594. memcpy(pos, ifsta->extra_ie, ifsta->extra_ie_len);
  595. }
  596. if (wmm && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  597. pos = skb_put(skb, 9);
  598. *pos++ = WLAN_EID_VENDOR_SPECIFIC;
  599. *pos++ = 7; /* len */
  600. *pos++ = 0x00; /* Microsoft OUI 00:50:F2 */
  601. *pos++ = 0x50;
  602. *pos++ = 0xf2;
  603. *pos++ = 2; /* WME */
  604. *pos++ = 0; /* WME info */
  605. *pos++ = 1; /* WME ver */
  606. *pos++ = 0;
  607. }
  608. /* wmm support is a must to HT */
  609. if (wmm && mode->ht_info.ht_supported) {
  610. __le16 tmp = cpu_to_le16(mode->ht_info.cap);
  611. pos = skb_put(skb, sizeof(struct ieee80211_ht_cap)+2);
  612. *pos++ = WLAN_EID_HT_CAPABILITY;
  613. *pos++ = sizeof(struct ieee80211_ht_cap);
  614. memset(pos, 0, sizeof(struct ieee80211_ht_cap));
  615. memcpy(pos, &tmp, sizeof(u16));
  616. pos += sizeof(u16);
  617. *pos++ = (mode->ht_info.ampdu_factor |
  618. (mode->ht_info.ampdu_density << 2));
  619. memcpy(pos, mode->ht_info.supp_mcs_set, 16);
  620. }
  621. kfree(ifsta->assocreq_ies);
  622. ifsta->assocreq_ies_len = (skb->data + skb->len) - ies;
  623. ifsta->assocreq_ies = kmalloc(ifsta->assocreq_ies_len, GFP_KERNEL);
  624. if (ifsta->assocreq_ies)
  625. memcpy(ifsta->assocreq_ies, ies, ifsta->assocreq_ies_len);
  626. ieee80211_sta_tx(dev, skb, 0);
  627. }
  628. static void ieee80211_send_deauth(struct net_device *dev,
  629. struct ieee80211_if_sta *ifsta, u16 reason)
  630. {
  631. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  632. struct sk_buff *skb;
  633. struct ieee80211_mgmt *mgmt;
  634. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  635. if (!skb) {
  636. printk(KERN_DEBUG "%s: failed to allocate buffer for deauth "
  637. "frame\n", dev->name);
  638. return;
  639. }
  640. skb_reserve(skb, local->hw.extra_tx_headroom);
  641. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  642. memset(mgmt, 0, 24);
  643. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  644. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  645. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  646. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  647. IEEE80211_STYPE_DEAUTH);
  648. skb_put(skb, 2);
  649. mgmt->u.deauth.reason_code = cpu_to_le16(reason);
  650. ieee80211_sta_tx(dev, skb, 0);
  651. }
  652. static void ieee80211_send_disassoc(struct net_device *dev,
  653. struct ieee80211_if_sta *ifsta, u16 reason)
  654. {
  655. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  656. struct sk_buff *skb;
  657. struct ieee80211_mgmt *mgmt;
  658. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  659. if (!skb) {
  660. printk(KERN_DEBUG "%s: failed to allocate buffer for disassoc "
  661. "frame\n", dev->name);
  662. return;
  663. }
  664. skb_reserve(skb, local->hw.extra_tx_headroom);
  665. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  666. memset(mgmt, 0, 24);
  667. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  668. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  669. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  670. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  671. IEEE80211_STYPE_DISASSOC);
  672. skb_put(skb, 2);
  673. mgmt->u.disassoc.reason_code = cpu_to_le16(reason);
  674. ieee80211_sta_tx(dev, skb, 0);
  675. }
  676. static int ieee80211_privacy_mismatch(struct net_device *dev,
  677. struct ieee80211_if_sta *ifsta)
  678. {
  679. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  680. struct ieee80211_sta_bss *bss;
  681. int bss_privacy;
  682. int wep_privacy;
  683. int privacy_invoked;
  684. if (!ifsta || (ifsta->flags & IEEE80211_STA_MIXED_CELL))
  685. return 0;
  686. bss = ieee80211_rx_bss_get(dev, ifsta->bssid, local->hw.conf.channel,
  687. ifsta->ssid, ifsta->ssid_len);
  688. if (!bss)
  689. return 0;
  690. bss_privacy = !!(bss->capability & WLAN_CAPABILITY_PRIVACY);
  691. wep_privacy = !!ieee80211_sta_wep_configured(dev);
  692. privacy_invoked = !!(ifsta->flags & IEEE80211_STA_PRIVACY_INVOKED);
  693. ieee80211_rx_bss_put(dev, bss);
  694. if ((bss_privacy == wep_privacy) || (bss_privacy == privacy_invoked))
  695. return 0;
  696. return 1;
  697. }
  698. static void ieee80211_associate(struct net_device *dev,
  699. struct ieee80211_if_sta *ifsta)
  700. {
  701. DECLARE_MAC_BUF(mac);
  702. ifsta->assoc_tries++;
  703. if (ifsta->assoc_tries > IEEE80211_ASSOC_MAX_TRIES) {
  704. printk(KERN_DEBUG "%s: association with AP %s"
  705. " timed out\n",
  706. dev->name, print_mac(mac, ifsta->bssid));
  707. ifsta->state = IEEE80211_DISABLED;
  708. return;
  709. }
  710. ifsta->state = IEEE80211_ASSOCIATE;
  711. printk(KERN_DEBUG "%s: associate with AP %s\n",
  712. dev->name, print_mac(mac, ifsta->bssid));
  713. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  714. printk(KERN_DEBUG "%s: mismatch in privacy configuration and "
  715. "mixed-cell disabled - abort association\n", dev->name);
  716. ifsta->state = IEEE80211_DISABLED;
  717. return;
  718. }
  719. ieee80211_send_assoc(dev, ifsta);
  720. mod_timer(&ifsta->timer, jiffies + IEEE80211_ASSOC_TIMEOUT);
  721. }
  722. static void ieee80211_associated(struct net_device *dev,
  723. struct ieee80211_if_sta *ifsta)
  724. {
  725. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  726. struct sta_info *sta;
  727. int disassoc;
  728. DECLARE_MAC_BUF(mac);
  729. /* TODO: start monitoring current AP signal quality and number of
  730. * missed beacons. Scan other channels every now and then and search
  731. * for better APs. */
  732. /* TODO: remove expired BSSes */
  733. ifsta->state = IEEE80211_ASSOCIATED;
  734. sta = sta_info_get(local, ifsta->bssid);
  735. if (!sta) {
  736. printk(KERN_DEBUG "%s: No STA entry for own AP %s\n",
  737. dev->name, print_mac(mac, ifsta->bssid));
  738. disassoc = 1;
  739. } else {
  740. disassoc = 0;
  741. if (time_after(jiffies,
  742. sta->last_rx + IEEE80211_MONITORING_INTERVAL)) {
  743. if (ifsta->flags & IEEE80211_STA_PROBEREQ_POLL) {
  744. printk(KERN_DEBUG "%s: No ProbeResp from "
  745. "current AP %s - assume out of "
  746. "range\n",
  747. dev->name, print_mac(mac, ifsta->bssid));
  748. disassoc = 1;
  749. sta_info_free(sta);
  750. } else
  751. ieee80211_send_probe_req(dev, ifsta->bssid,
  752. local->scan_ssid,
  753. local->scan_ssid_len);
  754. ifsta->flags ^= IEEE80211_STA_PROBEREQ_POLL;
  755. } else {
  756. ifsta->flags &= ~IEEE80211_STA_PROBEREQ_POLL;
  757. if (time_after(jiffies, ifsta->last_probe +
  758. IEEE80211_PROBE_INTERVAL)) {
  759. ifsta->last_probe = jiffies;
  760. ieee80211_send_probe_req(dev, ifsta->bssid,
  761. ifsta->ssid,
  762. ifsta->ssid_len);
  763. }
  764. }
  765. sta_info_put(sta);
  766. }
  767. if (disassoc) {
  768. ifsta->state = IEEE80211_DISABLED;
  769. ieee80211_set_associated(dev, ifsta, 0);
  770. } else {
  771. mod_timer(&ifsta->timer, jiffies +
  772. IEEE80211_MONITORING_INTERVAL);
  773. }
  774. }
  775. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  776. u8 *ssid, size_t ssid_len)
  777. {
  778. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  779. struct ieee80211_hw_mode *mode;
  780. struct sk_buff *skb;
  781. struct ieee80211_mgmt *mgmt;
  782. u8 *pos, *supp_rates, *esupp_rates = NULL;
  783. int i;
  784. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt) + 200);
  785. if (!skb) {
  786. printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
  787. "request\n", dev->name);
  788. return;
  789. }
  790. skb_reserve(skb, local->hw.extra_tx_headroom);
  791. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  792. memset(mgmt, 0, 24);
  793. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  794. IEEE80211_STYPE_PROBE_REQ);
  795. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  796. if (dst) {
  797. memcpy(mgmt->da, dst, ETH_ALEN);
  798. memcpy(mgmt->bssid, dst, ETH_ALEN);
  799. } else {
  800. memset(mgmt->da, 0xff, ETH_ALEN);
  801. memset(mgmt->bssid, 0xff, ETH_ALEN);
  802. }
  803. pos = skb_put(skb, 2 + ssid_len);
  804. *pos++ = WLAN_EID_SSID;
  805. *pos++ = ssid_len;
  806. memcpy(pos, ssid, ssid_len);
  807. supp_rates = skb_put(skb, 2);
  808. supp_rates[0] = WLAN_EID_SUPP_RATES;
  809. supp_rates[1] = 0;
  810. mode = local->oper_hw_mode;
  811. for (i = 0; i < mode->num_rates; i++) {
  812. struct ieee80211_rate *rate = &mode->rates[i];
  813. if (!(rate->flags & IEEE80211_RATE_SUPPORTED))
  814. continue;
  815. if (esupp_rates) {
  816. pos = skb_put(skb, 1);
  817. esupp_rates[1]++;
  818. } else if (supp_rates[1] == 8) {
  819. esupp_rates = skb_put(skb, 3);
  820. esupp_rates[0] = WLAN_EID_EXT_SUPP_RATES;
  821. esupp_rates[1] = 1;
  822. pos = &esupp_rates[2];
  823. } else {
  824. pos = skb_put(skb, 1);
  825. supp_rates[1]++;
  826. }
  827. *pos = rate->rate / 5;
  828. }
  829. ieee80211_sta_tx(dev, skb, 0);
  830. }
  831. static int ieee80211_sta_wep_configured(struct net_device *dev)
  832. {
  833. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  834. if (!sdata || !sdata->default_key ||
  835. sdata->default_key->conf.alg != ALG_WEP)
  836. return 0;
  837. return 1;
  838. }
  839. static void ieee80211_auth_completed(struct net_device *dev,
  840. struct ieee80211_if_sta *ifsta)
  841. {
  842. printk(KERN_DEBUG "%s: authenticated\n", dev->name);
  843. ifsta->flags |= IEEE80211_STA_AUTHENTICATED;
  844. ieee80211_associate(dev, ifsta);
  845. }
  846. static void ieee80211_auth_challenge(struct net_device *dev,
  847. struct ieee80211_if_sta *ifsta,
  848. struct ieee80211_mgmt *mgmt,
  849. size_t len)
  850. {
  851. u8 *pos;
  852. struct ieee802_11_elems elems;
  853. printk(KERN_DEBUG "%s: replying to auth challenge\n", dev->name);
  854. pos = mgmt->u.auth.variable;
  855. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  856. if (!elems.challenge) {
  857. printk(KERN_DEBUG "%s: no challenge IE in shared key auth "
  858. "frame\n", dev->name);
  859. return;
  860. }
  861. ieee80211_send_auth(dev, ifsta, 3, elems.challenge - 2,
  862. elems.challenge_len + 2, 1);
  863. }
  864. static void ieee80211_send_addba_resp(struct net_device *dev, u8 *da, u16 tid,
  865. u8 dialog_token, u16 status, u16 policy,
  866. u16 buf_size, u16 timeout)
  867. {
  868. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  869. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  870. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  871. struct sk_buff *skb;
  872. struct ieee80211_mgmt *mgmt;
  873. u16 capab;
  874. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  875. sizeof(mgmt->u.action.u.addba_resp));
  876. if (!skb) {
  877. printk(KERN_DEBUG "%s: failed to allocate buffer "
  878. "for addba resp frame\n", dev->name);
  879. return;
  880. }
  881. skb_reserve(skb, local->hw.extra_tx_headroom);
  882. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  883. memset(mgmt, 0, 24);
  884. memcpy(mgmt->da, da, ETH_ALEN);
  885. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  886. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  887. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  888. else
  889. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  890. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  891. IEEE80211_STYPE_ACTION);
  892. skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_resp));
  893. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  894. mgmt->u.action.u.addba_resp.action_code = WLAN_ACTION_ADDBA_RESP;
  895. mgmt->u.action.u.addba_resp.dialog_token = dialog_token;
  896. capab = (u16)(policy << 1); /* bit 1 aggregation policy */
  897. capab |= (u16)(tid << 2); /* bit 5:2 TID number */
  898. capab |= (u16)(buf_size << 6); /* bit 15:6 max size of aggregation */
  899. mgmt->u.action.u.addba_resp.capab = cpu_to_le16(capab);
  900. mgmt->u.action.u.addba_resp.timeout = cpu_to_le16(timeout);
  901. mgmt->u.action.u.addba_resp.status = cpu_to_le16(status);
  902. ieee80211_sta_tx(dev, skb, 0);
  903. return;
  904. }
  905. static void ieee80211_sta_process_addba_request(struct net_device *dev,
  906. struct ieee80211_mgmt *mgmt,
  907. size_t len)
  908. {
  909. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  910. struct ieee80211_hw *hw = &local->hw;
  911. struct ieee80211_conf *conf = &hw->conf;
  912. struct sta_info *sta;
  913. struct tid_ampdu_rx *tid_agg_rx;
  914. u16 capab, tid, timeout, ba_policy, buf_size, start_seq_num, status;
  915. u8 dialog_token;
  916. int ret = -EOPNOTSUPP;
  917. DECLARE_MAC_BUF(mac);
  918. sta = sta_info_get(local, mgmt->sa);
  919. if (!sta)
  920. return;
  921. /* extract session parameters from addba request frame */
  922. dialog_token = mgmt->u.action.u.addba_req.dialog_token;
  923. timeout = le16_to_cpu(mgmt->u.action.u.addba_req.timeout);
  924. start_seq_num =
  925. le16_to_cpu(mgmt->u.action.u.addba_req.start_seq_num) >> 4;
  926. capab = le16_to_cpu(mgmt->u.action.u.addba_req.capab);
  927. ba_policy = (capab & IEEE80211_ADDBA_PARAM_POLICY_MASK) >> 1;
  928. tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
  929. buf_size = (capab & IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK) >> 6;
  930. status = WLAN_STATUS_REQUEST_DECLINED;
  931. /* sanity check for incoming parameters:
  932. * check if configuration can support the BA policy
  933. * and if buffer size does not exceeds max value */
  934. if (((ba_policy != 1)
  935. && (!(conf->ht_conf.cap & IEEE80211_HT_CAP_DELAY_BA)))
  936. || (buf_size > IEEE80211_MAX_AMPDU_BUF)) {
  937. status = WLAN_STATUS_INVALID_QOS_PARAM;
  938. #ifdef CONFIG_MAC80211_HT_DEBUG
  939. if (net_ratelimit())
  940. printk(KERN_DEBUG "Block Ack Req with bad params from "
  941. "%s on tid %u. policy %d, buffer size %d\n",
  942. print_mac(mac, mgmt->sa), tid, ba_policy,
  943. buf_size);
  944. #endif /* CONFIG_MAC80211_HT_DEBUG */
  945. goto end_no_lock;
  946. }
  947. /* determine default buffer size */
  948. if (buf_size == 0) {
  949. struct ieee80211_hw_mode *mode = conf->mode;
  950. buf_size = IEEE80211_MIN_AMPDU_BUF;
  951. buf_size = buf_size << mode->ht_info.ampdu_factor;
  952. }
  953. tid_agg_rx = &sta->ampdu_mlme.tid_rx[tid];
  954. /* examine state machine */
  955. spin_lock_bh(&sta->ampdu_mlme.ampdu_rx);
  956. if (tid_agg_rx->state != HT_AGG_STATE_IDLE) {
  957. #ifdef CONFIG_MAC80211_HT_DEBUG
  958. if (net_ratelimit())
  959. printk(KERN_DEBUG "unexpected Block Ack Req from "
  960. "%s on tid %u\n",
  961. print_mac(mac, mgmt->sa), tid);
  962. #endif /* CONFIG_MAC80211_HT_DEBUG */
  963. goto end;
  964. }
  965. /* prepare reordering buffer */
  966. tid_agg_rx->reorder_buf =
  967. kmalloc(buf_size * sizeof(struct sk_buf *), GFP_ATOMIC);
  968. if (!tid_agg_rx->reorder_buf) {
  969. if (net_ratelimit())
  970. printk(KERN_ERR "can not allocate reordering buffer "
  971. "to tid %d\n", tid);
  972. goto end;
  973. }
  974. memset(tid_agg_rx->reorder_buf, 0,
  975. buf_size * sizeof(struct sk_buf *));
  976. if (local->ops->ampdu_action)
  977. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_START,
  978. sta->addr, tid, &start_seq_num);
  979. #ifdef CONFIG_MAC80211_HT_DEBUG
  980. printk(KERN_DEBUG "Rx A-MPDU on tid %d result %d", tid, ret);
  981. #endif /* CONFIG_MAC80211_HT_DEBUG */
  982. if (ret) {
  983. kfree(tid_agg_rx->reorder_buf);
  984. goto end;
  985. }
  986. /* change state and send addba resp */
  987. tid_agg_rx->state = HT_AGG_STATE_OPERATIONAL;
  988. tid_agg_rx->dialog_token = dialog_token;
  989. tid_agg_rx->ssn = start_seq_num;
  990. tid_agg_rx->head_seq_num = start_seq_num;
  991. tid_agg_rx->buf_size = buf_size;
  992. tid_agg_rx->timeout = timeout;
  993. tid_agg_rx->stored_mpdu_num = 0;
  994. status = WLAN_STATUS_SUCCESS;
  995. end:
  996. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  997. end_no_lock:
  998. ieee80211_send_addba_resp(sta->dev, sta->addr, tid, dialog_token,
  999. status, 1, buf_size, timeout);
  1000. sta_info_put(sta);
  1001. }
  1002. static void ieee80211_send_delba(struct net_device *dev, const u8 *da, u16 tid,
  1003. u16 initiator, u16 reason_code)
  1004. {
  1005. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1006. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1007. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  1008. struct sk_buff *skb;
  1009. struct ieee80211_mgmt *mgmt;
  1010. u16 params;
  1011. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  1012. sizeof(mgmt->u.action.u.delba));
  1013. if (!skb) {
  1014. printk(KERN_ERR "%s: failed to allocate buffer "
  1015. "for delba frame\n", dev->name);
  1016. return;
  1017. }
  1018. skb_reserve(skb, local->hw.extra_tx_headroom);
  1019. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  1020. memset(mgmt, 0, 24);
  1021. memcpy(mgmt->da, da, ETH_ALEN);
  1022. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  1023. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  1024. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  1025. else
  1026. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  1027. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1028. IEEE80211_STYPE_ACTION);
  1029. skb_put(skb, 1 + sizeof(mgmt->u.action.u.delba));
  1030. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  1031. mgmt->u.action.u.delba.action_code = WLAN_ACTION_DELBA;
  1032. params = (u16)(initiator << 11); /* bit 11 initiator */
  1033. params |= (u16)(tid << 12); /* bit 15:12 TID number */
  1034. mgmt->u.action.u.delba.params = cpu_to_le16(params);
  1035. mgmt->u.action.u.delba.reason_code = cpu_to_le16(reason_code);
  1036. ieee80211_sta_tx(dev, skb, 0);
  1037. }
  1038. void ieee80211_sta_stop_rx_ba_session(struct net_device *dev, u8 *ra, u16 tid,
  1039. u16 initiator, u16 reason)
  1040. {
  1041. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1042. struct ieee80211_hw *hw = &local->hw;
  1043. struct sta_info *sta;
  1044. int ret, i;
  1045. sta = sta_info_get(local, ra);
  1046. if (!sta)
  1047. return;
  1048. /* check if TID is in operational state */
  1049. spin_lock_bh(&sta->ampdu_mlme.ampdu_rx);
  1050. if (sta->ampdu_mlme.tid_rx[tid].state
  1051. != HT_AGG_STATE_OPERATIONAL) {
  1052. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1053. sta_info_put(sta);
  1054. return;
  1055. }
  1056. sta->ampdu_mlme.tid_rx[tid].state =
  1057. HT_AGG_STATE_REQ_STOP_BA_MSK |
  1058. (initiator << HT_AGG_STATE_INITIATOR_SHIFT);
  1059. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1060. /* stop HW Rx aggregation. ampdu_action existence
  1061. * already verified in session init so we add the BUG_ON */
  1062. BUG_ON(!local->ops->ampdu_action);
  1063. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_STOP,
  1064. ra, tid, NULL);
  1065. if (ret)
  1066. printk(KERN_DEBUG "HW problem - can not stop rx "
  1067. "aggergation for tid %d\n", tid);
  1068. /* shutdown timer has not expired */
  1069. if (initiator != WLAN_BACK_TIMER)
  1070. del_timer_sync(&sta->ampdu_mlme.tid_rx[tid].
  1071. session_timer);
  1072. /* check if this is a self generated aggregation halt */
  1073. if (initiator == WLAN_BACK_RECIPIENT || initiator == WLAN_BACK_TIMER)
  1074. ieee80211_send_delba(dev, ra, tid, 0, reason);
  1075. /* free the reordering buffer */
  1076. for (i = 0; i < sta->ampdu_mlme.tid_rx[tid].buf_size; i++) {
  1077. if (sta->ampdu_mlme.tid_rx[tid].reorder_buf[i]) {
  1078. /* release the reordered frames */
  1079. dev_kfree_skb(sta->ampdu_mlme.tid_rx[tid].reorder_buf[i]);
  1080. sta->ampdu_mlme.tid_rx[tid].stored_mpdu_num--;
  1081. sta->ampdu_mlme.tid_rx[tid].reorder_buf[i] = NULL;
  1082. }
  1083. }
  1084. kfree(sta->ampdu_mlme.tid_rx[tid].reorder_buf);
  1085. sta->ampdu_mlme.tid_rx[tid].state = HT_AGG_STATE_IDLE;
  1086. sta_info_put(sta);
  1087. }
  1088. static void ieee80211_sta_process_delba(struct net_device *dev,
  1089. struct ieee80211_mgmt *mgmt, size_t len)
  1090. {
  1091. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1092. struct sta_info *sta;
  1093. u16 tid, params;
  1094. u16 initiator;
  1095. DECLARE_MAC_BUF(mac);
  1096. sta = sta_info_get(local, mgmt->sa);
  1097. if (!sta)
  1098. return;
  1099. params = le16_to_cpu(mgmt->u.action.u.delba.params);
  1100. tid = (params & IEEE80211_DELBA_PARAM_TID_MASK) >> 12;
  1101. initiator = (params & IEEE80211_DELBA_PARAM_INITIATOR_MASK) >> 11;
  1102. #ifdef CONFIG_MAC80211_HT_DEBUG
  1103. if (net_ratelimit())
  1104. printk(KERN_DEBUG "delba from %s on tid %d reason code %d\n",
  1105. print_mac(mac, mgmt->sa), tid,
  1106. mgmt->u.action.u.delba.reason_code);
  1107. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1108. if (initiator == WLAN_BACK_INITIATOR)
  1109. ieee80211_sta_stop_rx_ba_session(dev, sta->addr, tid,
  1110. WLAN_BACK_INITIATOR, 0);
  1111. sta_info_put(sta);
  1112. }
  1113. /*
  1114. * After receiving Block Ack Request (BAR) we activated a
  1115. * timer after each frame arrives from the originator.
  1116. * if this timer expires ieee80211_sta_stop_rx_ba_session will be executed.
  1117. */
  1118. void sta_rx_agg_session_timer_expired(unsigned long data)
  1119. {
  1120. /* not an elegant detour, but there is no choice as the timer passes
  1121. * only one argument, and verious sta_info are needed here, so init
  1122. * flow in sta_info_add gives the TID as data, while the timer_to_id
  1123. * array gives the sta through container_of */
  1124. u8 *ptid = (u8 *)data;
  1125. u8 *timer_to_id = ptid - *ptid;
  1126. struct sta_info *sta = container_of(timer_to_id, struct sta_info,
  1127. timer_to_tid[0]);
  1128. printk(KERN_DEBUG "rx session timer expired on tid %d\n", (u16)*ptid);
  1129. ieee80211_sta_stop_rx_ba_session(sta->dev, sta->addr, (u16)*ptid,
  1130. WLAN_BACK_TIMER,
  1131. WLAN_REASON_QSTA_TIMEOUT);
  1132. }
  1133. static void ieee80211_rx_mgmt_auth(struct net_device *dev,
  1134. struct ieee80211_if_sta *ifsta,
  1135. struct ieee80211_mgmt *mgmt,
  1136. size_t len)
  1137. {
  1138. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1139. u16 auth_alg, auth_transaction, status_code;
  1140. DECLARE_MAC_BUF(mac);
  1141. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  1142. sdata->vif.type != IEEE80211_IF_TYPE_IBSS) {
  1143. printk(KERN_DEBUG "%s: authentication frame received from "
  1144. "%s, but not in authenticate state - ignored\n",
  1145. dev->name, print_mac(mac, mgmt->sa));
  1146. return;
  1147. }
  1148. if (len < 24 + 6) {
  1149. printk(KERN_DEBUG "%s: too short (%zd) authentication frame "
  1150. "received from %s - ignored\n",
  1151. dev->name, len, print_mac(mac, mgmt->sa));
  1152. return;
  1153. }
  1154. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1155. memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1156. printk(KERN_DEBUG "%s: authentication frame received from "
  1157. "unknown AP (SA=%s BSSID=%s) - "
  1158. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1159. print_mac(mac, mgmt->bssid));
  1160. return;
  1161. }
  1162. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1163. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0) {
  1164. printk(KERN_DEBUG "%s: authentication frame received from "
  1165. "unknown BSSID (SA=%s BSSID=%s) - "
  1166. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1167. print_mac(mac, mgmt->bssid));
  1168. return;
  1169. }
  1170. auth_alg = le16_to_cpu(mgmt->u.auth.auth_alg);
  1171. auth_transaction = le16_to_cpu(mgmt->u.auth.auth_transaction);
  1172. status_code = le16_to_cpu(mgmt->u.auth.status_code);
  1173. printk(KERN_DEBUG "%s: RX authentication from %s (alg=%d "
  1174. "transaction=%d status=%d)\n",
  1175. dev->name, print_mac(mac, mgmt->sa), auth_alg,
  1176. auth_transaction, status_code);
  1177. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  1178. /* IEEE 802.11 standard does not require authentication in IBSS
  1179. * networks and most implementations do not seem to use it.
  1180. * However, try to reply to authentication attempts if someone
  1181. * has actually implemented this.
  1182. * TODO: Could implement shared key authentication. */
  1183. if (auth_alg != WLAN_AUTH_OPEN || auth_transaction != 1) {
  1184. printk(KERN_DEBUG "%s: unexpected IBSS authentication "
  1185. "frame (alg=%d transaction=%d)\n",
  1186. dev->name, auth_alg, auth_transaction);
  1187. return;
  1188. }
  1189. ieee80211_send_auth(dev, ifsta, 2, NULL, 0, 0);
  1190. }
  1191. if (auth_alg != ifsta->auth_alg ||
  1192. auth_transaction != ifsta->auth_transaction) {
  1193. printk(KERN_DEBUG "%s: unexpected authentication frame "
  1194. "(alg=%d transaction=%d)\n",
  1195. dev->name, auth_alg, auth_transaction);
  1196. return;
  1197. }
  1198. if (status_code != WLAN_STATUS_SUCCESS) {
  1199. printk(KERN_DEBUG "%s: AP denied authentication (auth_alg=%d "
  1200. "code=%d)\n", dev->name, ifsta->auth_alg, status_code);
  1201. if (status_code == WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG) {
  1202. u8 algs[3];
  1203. const int num_algs = ARRAY_SIZE(algs);
  1204. int i, pos;
  1205. algs[0] = algs[1] = algs[2] = 0xff;
  1206. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  1207. algs[0] = WLAN_AUTH_OPEN;
  1208. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  1209. algs[1] = WLAN_AUTH_SHARED_KEY;
  1210. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  1211. algs[2] = WLAN_AUTH_LEAP;
  1212. if (ifsta->auth_alg == WLAN_AUTH_OPEN)
  1213. pos = 0;
  1214. else if (ifsta->auth_alg == WLAN_AUTH_SHARED_KEY)
  1215. pos = 1;
  1216. else
  1217. pos = 2;
  1218. for (i = 0; i < num_algs; i++) {
  1219. pos++;
  1220. if (pos >= num_algs)
  1221. pos = 0;
  1222. if (algs[pos] == ifsta->auth_alg ||
  1223. algs[pos] == 0xff)
  1224. continue;
  1225. if (algs[pos] == WLAN_AUTH_SHARED_KEY &&
  1226. !ieee80211_sta_wep_configured(dev))
  1227. continue;
  1228. ifsta->auth_alg = algs[pos];
  1229. printk(KERN_DEBUG "%s: set auth_alg=%d for "
  1230. "next try\n",
  1231. dev->name, ifsta->auth_alg);
  1232. break;
  1233. }
  1234. }
  1235. return;
  1236. }
  1237. switch (ifsta->auth_alg) {
  1238. case WLAN_AUTH_OPEN:
  1239. case WLAN_AUTH_LEAP:
  1240. ieee80211_auth_completed(dev, ifsta);
  1241. break;
  1242. case WLAN_AUTH_SHARED_KEY:
  1243. if (ifsta->auth_transaction == 4)
  1244. ieee80211_auth_completed(dev, ifsta);
  1245. else
  1246. ieee80211_auth_challenge(dev, ifsta, mgmt, len);
  1247. break;
  1248. }
  1249. }
  1250. static void ieee80211_rx_mgmt_deauth(struct net_device *dev,
  1251. struct ieee80211_if_sta *ifsta,
  1252. struct ieee80211_mgmt *mgmt,
  1253. size_t len)
  1254. {
  1255. u16 reason_code;
  1256. DECLARE_MAC_BUF(mac);
  1257. if (len < 24 + 2) {
  1258. printk(KERN_DEBUG "%s: too short (%zd) deauthentication frame "
  1259. "received from %s - ignored\n",
  1260. dev->name, len, print_mac(mac, mgmt->sa));
  1261. return;
  1262. }
  1263. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1264. printk(KERN_DEBUG "%s: deauthentication frame received from "
  1265. "unknown AP (SA=%s BSSID=%s) - "
  1266. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1267. print_mac(mac, mgmt->bssid));
  1268. return;
  1269. }
  1270. reason_code = le16_to_cpu(mgmt->u.deauth.reason_code);
  1271. printk(KERN_DEBUG "%s: RX deauthentication from %s"
  1272. " (reason=%d)\n",
  1273. dev->name, print_mac(mac, mgmt->sa), reason_code);
  1274. if (ifsta->flags & IEEE80211_STA_AUTHENTICATED) {
  1275. printk(KERN_DEBUG "%s: deauthenticated\n", dev->name);
  1276. }
  1277. if (ifsta->state == IEEE80211_AUTHENTICATE ||
  1278. ifsta->state == IEEE80211_ASSOCIATE ||
  1279. ifsta->state == IEEE80211_ASSOCIATED) {
  1280. ifsta->state = IEEE80211_AUTHENTICATE;
  1281. mod_timer(&ifsta->timer, jiffies +
  1282. IEEE80211_RETRY_AUTH_INTERVAL);
  1283. }
  1284. ieee80211_set_disassoc(dev, ifsta, 1);
  1285. ifsta->flags &= ~IEEE80211_STA_AUTHENTICATED;
  1286. }
  1287. static void ieee80211_rx_mgmt_disassoc(struct net_device *dev,
  1288. struct ieee80211_if_sta *ifsta,
  1289. struct ieee80211_mgmt *mgmt,
  1290. size_t len)
  1291. {
  1292. u16 reason_code;
  1293. DECLARE_MAC_BUF(mac);
  1294. if (len < 24 + 2) {
  1295. printk(KERN_DEBUG "%s: too short (%zd) disassociation frame "
  1296. "received from %s - ignored\n",
  1297. dev->name, len, print_mac(mac, mgmt->sa));
  1298. return;
  1299. }
  1300. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1301. printk(KERN_DEBUG "%s: disassociation frame received from "
  1302. "unknown AP (SA=%s BSSID=%s) - "
  1303. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1304. print_mac(mac, mgmt->bssid));
  1305. return;
  1306. }
  1307. reason_code = le16_to_cpu(mgmt->u.disassoc.reason_code);
  1308. printk(KERN_DEBUG "%s: RX disassociation from %s"
  1309. " (reason=%d)\n",
  1310. dev->name, print_mac(mac, mgmt->sa), reason_code);
  1311. if (ifsta->flags & IEEE80211_STA_ASSOCIATED)
  1312. printk(KERN_DEBUG "%s: disassociated\n", dev->name);
  1313. if (ifsta->state == IEEE80211_ASSOCIATED) {
  1314. ifsta->state = IEEE80211_ASSOCIATE;
  1315. mod_timer(&ifsta->timer, jiffies +
  1316. IEEE80211_RETRY_AUTH_INTERVAL);
  1317. }
  1318. ieee80211_set_disassoc(dev, ifsta, 0);
  1319. }
  1320. static void ieee80211_rx_mgmt_assoc_resp(struct ieee80211_sub_if_data *sdata,
  1321. struct ieee80211_if_sta *ifsta,
  1322. struct ieee80211_mgmt *mgmt,
  1323. size_t len,
  1324. int reassoc)
  1325. {
  1326. struct ieee80211_local *local = sdata->local;
  1327. struct net_device *dev = sdata->dev;
  1328. struct ieee80211_hw_mode *mode;
  1329. struct sta_info *sta;
  1330. u32 rates;
  1331. u16 capab_info, status_code, aid;
  1332. struct ieee802_11_elems elems;
  1333. struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
  1334. u8 *pos;
  1335. int i, j;
  1336. DECLARE_MAC_BUF(mac);
  1337. /* AssocResp and ReassocResp have identical structure, so process both
  1338. * of them in this function. */
  1339. if (ifsta->state != IEEE80211_ASSOCIATE) {
  1340. printk(KERN_DEBUG "%s: association frame received from "
  1341. "%s, but not in associate state - ignored\n",
  1342. dev->name, print_mac(mac, mgmt->sa));
  1343. return;
  1344. }
  1345. if (len < 24 + 6) {
  1346. printk(KERN_DEBUG "%s: too short (%zd) association frame "
  1347. "received from %s - ignored\n",
  1348. dev->name, len, print_mac(mac, mgmt->sa));
  1349. return;
  1350. }
  1351. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1352. printk(KERN_DEBUG "%s: association frame received from "
  1353. "unknown AP (SA=%s BSSID=%s) - "
  1354. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1355. print_mac(mac, mgmt->bssid));
  1356. return;
  1357. }
  1358. capab_info = le16_to_cpu(mgmt->u.assoc_resp.capab_info);
  1359. status_code = le16_to_cpu(mgmt->u.assoc_resp.status_code);
  1360. aid = le16_to_cpu(mgmt->u.assoc_resp.aid);
  1361. printk(KERN_DEBUG "%s: RX %sssocResp from %s (capab=0x%x "
  1362. "status=%d aid=%d)\n",
  1363. dev->name, reassoc ? "Rea" : "A", print_mac(mac, mgmt->sa),
  1364. capab_info, status_code, (u16)(aid & ~(BIT(15) | BIT(14))));
  1365. if (status_code != WLAN_STATUS_SUCCESS) {
  1366. printk(KERN_DEBUG "%s: AP denied association (code=%d)\n",
  1367. dev->name, status_code);
  1368. /* if this was a reassociation, ensure we try a "full"
  1369. * association next time. This works around some broken APs
  1370. * which do not correctly reject reassociation requests. */
  1371. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  1372. return;
  1373. }
  1374. if ((aid & (BIT(15) | BIT(14))) != (BIT(15) | BIT(14)))
  1375. printk(KERN_DEBUG "%s: invalid aid value %d; bits 15:14 not "
  1376. "set\n", dev->name, aid);
  1377. aid &= ~(BIT(15) | BIT(14));
  1378. pos = mgmt->u.assoc_resp.variable;
  1379. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  1380. if (!elems.supp_rates) {
  1381. printk(KERN_DEBUG "%s: no SuppRates element in AssocResp\n",
  1382. dev->name);
  1383. return;
  1384. }
  1385. printk(KERN_DEBUG "%s: associated\n", dev->name);
  1386. ifsta->aid = aid;
  1387. ifsta->ap_capab = capab_info;
  1388. kfree(ifsta->assocresp_ies);
  1389. ifsta->assocresp_ies_len = len - (pos - (u8 *) mgmt);
  1390. ifsta->assocresp_ies = kmalloc(ifsta->assocresp_ies_len, GFP_KERNEL);
  1391. if (ifsta->assocresp_ies)
  1392. memcpy(ifsta->assocresp_ies, pos, ifsta->assocresp_ies_len);
  1393. /* set AID, ieee80211_set_associated() will tell the driver */
  1394. bss_conf->aid = aid;
  1395. ieee80211_set_associated(dev, ifsta, 1);
  1396. /* Add STA entry for the AP */
  1397. sta = sta_info_get(local, ifsta->bssid);
  1398. if (!sta) {
  1399. struct ieee80211_sta_bss *bss;
  1400. sta = sta_info_add(local, dev, ifsta->bssid, GFP_KERNEL);
  1401. if (!sta) {
  1402. printk(KERN_DEBUG "%s: failed to add STA entry for the"
  1403. " AP\n", dev->name);
  1404. return;
  1405. }
  1406. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  1407. local->hw.conf.channel,
  1408. ifsta->ssid, ifsta->ssid_len);
  1409. if (bss) {
  1410. sta->last_rssi = bss->rssi;
  1411. sta->last_signal = bss->signal;
  1412. sta->last_noise = bss->noise;
  1413. ieee80211_rx_bss_put(dev, bss);
  1414. }
  1415. }
  1416. sta->dev = dev;
  1417. sta->flags |= WLAN_STA_AUTH | WLAN_STA_ASSOC | WLAN_STA_ASSOC_AP;
  1418. rates = 0;
  1419. mode = local->oper_hw_mode;
  1420. for (i = 0; i < elems.supp_rates_len; i++) {
  1421. int rate = (elems.supp_rates[i] & 0x7f) * 5;
  1422. for (j = 0; j < mode->num_rates; j++)
  1423. if (mode->rates[j].rate == rate)
  1424. rates |= BIT(j);
  1425. }
  1426. for (i = 0; i < elems.ext_supp_rates_len; i++) {
  1427. int rate = (elems.ext_supp_rates[i] & 0x7f) * 5;
  1428. for (j = 0; j < mode->num_rates; j++)
  1429. if (mode->rates[j].rate == rate)
  1430. rates |= BIT(j);
  1431. }
  1432. sta->supp_rates = rates;
  1433. if (elems.ht_cap_elem && elems.ht_info_elem && elems.wmm_param &&
  1434. local->ops->conf_ht) {
  1435. struct ieee80211_ht_bss_info bss_info;
  1436. ieee80211_ht_cap_ie_to_ht_info(
  1437. (struct ieee80211_ht_cap *)
  1438. elems.ht_cap_elem, &sta->ht_info);
  1439. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  1440. (struct ieee80211_ht_addt_info *)
  1441. elems.ht_info_elem, &bss_info);
  1442. ieee80211_hw_config_ht(local, 1, &sta->ht_info, &bss_info);
  1443. }
  1444. rate_control_rate_init(sta, local);
  1445. if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  1446. sta->flags |= WLAN_STA_WME;
  1447. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  1448. elems.wmm_param_len);
  1449. }
  1450. sta_info_put(sta);
  1451. ieee80211_associated(dev, ifsta);
  1452. }
  1453. /* Caller must hold local->sta_bss_lock */
  1454. static void __ieee80211_rx_bss_hash_add(struct net_device *dev,
  1455. struct ieee80211_sta_bss *bss)
  1456. {
  1457. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1458. bss->hnext = local->sta_bss_hash[STA_HASH(bss->bssid)];
  1459. local->sta_bss_hash[STA_HASH(bss->bssid)] = bss;
  1460. }
  1461. /* Caller must hold local->sta_bss_lock */
  1462. static void __ieee80211_rx_bss_hash_del(struct net_device *dev,
  1463. struct ieee80211_sta_bss *bss)
  1464. {
  1465. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1466. struct ieee80211_sta_bss *b, *prev = NULL;
  1467. b = local->sta_bss_hash[STA_HASH(bss->bssid)];
  1468. while (b) {
  1469. if (b == bss) {
  1470. if (!prev)
  1471. local->sta_bss_hash[STA_HASH(bss->bssid)] =
  1472. bss->hnext;
  1473. else
  1474. prev->hnext = bss->hnext;
  1475. break;
  1476. }
  1477. prev = b;
  1478. b = b->hnext;
  1479. }
  1480. }
  1481. static struct ieee80211_sta_bss *
  1482. ieee80211_rx_bss_add(struct net_device *dev, u8 *bssid, int channel,
  1483. u8 *ssid, u8 ssid_len)
  1484. {
  1485. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1486. struct ieee80211_sta_bss *bss;
  1487. bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
  1488. if (!bss)
  1489. return NULL;
  1490. atomic_inc(&bss->users);
  1491. atomic_inc(&bss->users);
  1492. memcpy(bss->bssid, bssid, ETH_ALEN);
  1493. bss->channel = channel;
  1494. if (ssid && ssid_len <= IEEE80211_MAX_SSID_LEN) {
  1495. memcpy(bss->ssid, ssid, ssid_len);
  1496. bss->ssid_len = ssid_len;
  1497. }
  1498. spin_lock_bh(&local->sta_bss_lock);
  1499. /* TODO: order by RSSI? */
  1500. list_add_tail(&bss->list, &local->sta_bss_list);
  1501. __ieee80211_rx_bss_hash_add(dev, bss);
  1502. spin_unlock_bh(&local->sta_bss_lock);
  1503. return bss;
  1504. }
  1505. static struct ieee80211_sta_bss *
  1506. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int channel,
  1507. u8 *ssid, u8 ssid_len)
  1508. {
  1509. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1510. struct ieee80211_sta_bss *bss;
  1511. spin_lock_bh(&local->sta_bss_lock);
  1512. bss = local->sta_bss_hash[STA_HASH(bssid)];
  1513. while (bss) {
  1514. if (!memcmp(bss->bssid, bssid, ETH_ALEN) &&
  1515. bss->channel == channel &&
  1516. bss->ssid_len == ssid_len &&
  1517. (ssid_len == 0 || !memcmp(bss->ssid, ssid, ssid_len))) {
  1518. atomic_inc(&bss->users);
  1519. break;
  1520. }
  1521. bss = bss->hnext;
  1522. }
  1523. spin_unlock_bh(&local->sta_bss_lock);
  1524. return bss;
  1525. }
  1526. static void ieee80211_rx_bss_free(struct ieee80211_sta_bss *bss)
  1527. {
  1528. kfree(bss->wpa_ie);
  1529. kfree(bss->rsn_ie);
  1530. kfree(bss->wmm_ie);
  1531. kfree(bss->ht_ie);
  1532. kfree(bss);
  1533. }
  1534. static void ieee80211_rx_bss_put(struct net_device *dev,
  1535. struct ieee80211_sta_bss *bss)
  1536. {
  1537. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1538. if (!atomic_dec_and_test(&bss->users))
  1539. return;
  1540. spin_lock_bh(&local->sta_bss_lock);
  1541. __ieee80211_rx_bss_hash_del(dev, bss);
  1542. list_del(&bss->list);
  1543. spin_unlock_bh(&local->sta_bss_lock);
  1544. ieee80211_rx_bss_free(bss);
  1545. }
  1546. void ieee80211_rx_bss_list_init(struct net_device *dev)
  1547. {
  1548. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1549. spin_lock_init(&local->sta_bss_lock);
  1550. INIT_LIST_HEAD(&local->sta_bss_list);
  1551. }
  1552. void ieee80211_rx_bss_list_deinit(struct net_device *dev)
  1553. {
  1554. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1555. struct ieee80211_sta_bss *bss, *tmp;
  1556. list_for_each_entry_safe(bss, tmp, &local->sta_bss_list, list)
  1557. ieee80211_rx_bss_put(dev, bss);
  1558. }
  1559. static void ieee80211_rx_bss_info(struct net_device *dev,
  1560. struct ieee80211_mgmt *mgmt,
  1561. size_t len,
  1562. struct ieee80211_rx_status *rx_status,
  1563. int beacon)
  1564. {
  1565. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1566. struct ieee802_11_elems elems;
  1567. size_t baselen;
  1568. int channel, clen;
  1569. struct ieee80211_sta_bss *bss;
  1570. struct sta_info *sta;
  1571. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1572. u64 timestamp;
  1573. DECLARE_MAC_BUF(mac);
  1574. DECLARE_MAC_BUF(mac2);
  1575. if (!beacon && memcmp(mgmt->da, dev->dev_addr, ETH_ALEN))
  1576. return; /* ignore ProbeResp to foreign address */
  1577. #if 0
  1578. printk(KERN_DEBUG "%s: RX %s from %s to %s\n",
  1579. dev->name, beacon ? "Beacon" : "Probe Response",
  1580. print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da));
  1581. #endif
  1582. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  1583. if (baselen > len)
  1584. return;
  1585. timestamp = le64_to_cpu(mgmt->u.beacon.timestamp);
  1586. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && beacon &&
  1587. memcmp(mgmt->bssid, sdata->u.sta.bssid, ETH_ALEN) == 0) {
  1588. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  1589. static unsigned long last_tsf_debug = 0;
  1590. u64 tsf;
  1591. if (local->ops->get_tsf)
  1592. tsf = local->ops->get_tsf(local_to_hw(local));
  1593. else
  1594. tsf = -1LLU;
  1595. if (time_after(jiffies, last_tsf_debug + 5 * HZ)) {
  1596. printk(KERN_DEBUG "RX beacon SA=%s BSSID="
  1597. "%s TSF=0x%llx BCN=0x%llx diff=%lld "
  1598. "@%lu\n",
  1599. print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->bssid),
  1600. (unsigned long long)tsf,
  1601. (unsigned long long)timestamp,
  1602. (unsigned long long)(tsf - timestamp),
  1603. jiffies);
  1604. last_tsf_debug = jiffies;
  1605. }
  1606. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  1607. }
  1608. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  1609. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && elems.supp_rates &&
  1610. memcmp(mgmt->bssid, sdata->u.sta.bssid, ETH_ALEN) == 0 &&
  1611. (sta = sta_info_get(local, mgmt->sa))) {
  1612. struct ieee80211_hw_mode *mode;
  1613. struct ieee80211_rate *rates;
  1614. size_t num_rates;
  1615. u32 supp_rates, prev_rates;
  1616. int i, j;
  1617. mode = local->sta_sw_scanning ?
  1618. local->scan_hw_mode : local->oper_hw_mode;
  1619. if (local->sta_hw_scanning) {
  1620. /* search for the correct mode matches the beacon */
  1621. list_for_each_entry(mode, &local->modes_list, list)
  1622. if (mode->mode == rx_status->phymode)
  1623. break;
  1624. if (mode == NULL)
  1625. mode = local->oper_hw_mode;
  1626. }
  1627. rates = mode->rates;
  1628. num_rates = mode->num_rates;
  1629. supp_rates = 0;
  1630. for (i = 0; i < elems.supp_rates_len +
  1631. elems.ext_supp_rates_len; i++) {
  1632. u8 rate = 0;
  1633. int own_rate;
  1634. if (i < elems.supp_rates_len)
  1635. rate = elems.supp_rates[i];
  1636. else if (elems.ext_supp_rates)
  1637. rate = elems.ext_supp_rates
  1638. [i - elems.supp_rates_len];
  1639. own_rate = 5 * (rate & 0x7f);
  1640. for (j = 0; j < num_rates; j++)
  1641. if (rates[j].rate == own_rate)
  1642. supp_rates |= BIT(j);
  1643. }
  1644. prev_rates = sta->supp_rates;
  1645. sta->supp_rates &= supp_rates;
  1646. if (sta->supp_rates == 0) {
  1647. /* No matching rates - this should not really happen.
  1648. * Make sure that at least one rate is marked
  1649. * supported to avoid issues with TX rate ctrl. */
  1650. sta->supp_rates = sdata->u.sta.supp_rates_bits;
  1651. }
  1652. if (sta->supp_rates != prev_rates) {
  1653. printk(KERN_DEBUG "%s: updated supp_rates set for "
  1654. "%s based on beacon info (0x%x & 0x%x -> "
  1655. "0x%x)\n",
  1656. dev->name, print_mac(mac, sta->addr), prev_rates,
  1657. supp_rates, sta->supp_rates);
  1658. }
  1659. sta_info_put(sta);
  1660. }
  1661. if (!elems.ssid)
  1662. return;
  1663. if (elems.ds_params && elems.ds_params_len == 1)
  1664. channel = elems.ds_params[0];
  1665. else
  1666. channel = rx_status->channel;
  1667. bss = ieee80211_rx_bss_get(dev, mgmt->bssid, channel,
  1668. elems.ssid, elems.ssid_len);
  1669. if (!bss) {
  1670. bss = ieee80211_rx_bss_add(dev, mgmt->bssid, channel,
  1671. elems.ssid, elems.ssid_len);
  1672. if (!bss)
  1673. return;
  1674. } else {
  1675. #if 0
  1676. /* TODO: order by RSSI? */
  1677. spin_lock_bh(&local->sta_bss_lock);
  1678. list_move_tail(&bss->list, &local->sta_bss_list);
  1679. spin_unlock_bh(&local->sta_bss_lock);
  1680. #endif
  1681. }
  1682. if (bss->probe_resp && beacon) {
  1683. /* Do not allow beacon to override data from Probe Response. */
  1684. ieee80211_rx_bss_put(dev, bss);
  1685. return;
  1686. }
  1687. /* save the ERP value so that it is available at association time */
  1688. if (elems.erp_info && elems.erp_info_len >= 1) {
  1689. bss->erp_value = elems.erp_info[0];
  1690. bss->has_erp_value = 1;
  1691. }
  1692. bss->beacon_int = le16_to_cpu(mgmt->u.beacon.beacon_int);
  1693. bss->capability = le16_to_cpu(mgmt->u.beacon.capab_info);
  1694. bss->supp_rates_len = 0;
  1695. if (elems.supp_rates) {
  1696. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  1697. if (clen > elems.supp_rates_len)
  1698. clen = elems.supp_rates_len;
  1699. memcpy(&bss->supp_rates[bss->supp_rates_len], elems.supp_rates,
  1700. clen);
  1701. bss->supp_rates_len += clen;
  1702. }
  1703. if (elems.ext_supp_rates) {
  1704. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  1705. if (clen > elems.ext_supp_rates_len)
  1706. clen = elems.ext_supp_rates_len;
  1707. memcpy(&bss->supp_rates[bss->supp_rates_len],
  1708. elems.ext_supp_rates, clen);
  1709. bss->supp_rates_len += clen;
  1710. }
  1711. if (elems.wpa &&
  1712. (!bss->wpa_ie || bss->wpa_ie_len != elems.wpa_len ||
  1713. memcmp(bss->wpa_ie, elems.wpa, elems.wpa_len))) {
  1714. kfree(bss->wpa_ie);
  1715. bss->wpa_ie = kmalloc(elems.wpa_len + 2, GFP_ATOMIC);
  1716. if (bss->wpa_ie) {
  1717. memcpy(bss->wpa_ie, elems.wpa - 2, elems.wpa_len + 2);
  1718. bss->wpa_ie_len = elems.wpa_len + 2;
  1719. } else
  1720. bss->wpa_ie_len = 0;
  1721. } else if (!elems.wpa && bss->wpa_ie) {
  1722. kfree(bss->wpa_ie);
  1723. bss->wpa_ie = NULL;
  1724. bss->wpa_ie_len = 0;
  1725. }
  1726. if (elems.rsn &&
  1727. (!bss->rsn_ie || bss->rsn_ie_len != elems.rsn_len ||
  1728. memcmp(bss->rsn_ie, elems.rsn, elems.rsn_len))) {
  1729. kfree(bss->rsn_ie);
  1730. bss->rsn_ie = kmalloc(elems.rsn_len + 2, GFP_ATOMIC);
  1731. if (bss->rsn_ie) {
  1732. memcpy(bss->rsn_ie, elems.rsn - 2, elems.rsn_len + 2);
  1733. bss->rsn_ie_len = elems.rsn_len + 2;
  1734. } else
  1735. bss->rsn_ie_len = 0;
  1736. } else if (!elems.rsn && bss->rsn_ie) {
  1737. kfree(bss->rsn_ie);
  1738. bss->rsn_ie = NULL;
  1739. bss->rsn_ie_len = 0;
  1740. }
  1741. if (elems.wmm_param &&
  1742. (!bss->wmm_ie || bss->wmm_ie_len != elems.wmm_param_len ||
  1743. memcmp(bss->wmm_ie, elems.wmm_param, elems.wmm_param_len))) {
  1744. kfree(bss->wmm_ie);
  1745. bss->wmm_ie = kmalloc(elems.wmm_param_len + 2, GFP_ATOMIC);
  1746. if (bss->wmm_ie) {
  1747. memcpy(bss->wmm_ie, elems.wmm_param - 2,
  1748. elems.wmm_param_len + 2);
  1749. bss->wmm_ie_len = elems.wmm_param_len + 2;
  1750. } else
  1751. bss->wmm_ie_len = 0;
  1752. } else if (!elems.wmm_param && bss->wmm_ie) {
  1753. kfree(bss->wmm_ie);
  1754. bss->wmm_ie = NULL;
  1755. bss->wmm_ie_len = 0;
  1756. }
  1757. if (elems.ht_cap_elem &&
  1758. (!bss->ht_ie || bss->ht_ie_len != elems.ht_cap_elem_len ||
  1759. memcmp(bss->ht_ie, elems.ht_cap_elem, elems.ht_cap_elem_len))) {
  1760. kfree(bss->ht_ie);
  1761. bss->ht_ie = kmalloc(elems.ht_cap_elem_len + 2, GFP_ATOMIC);
  1762. if (bss->ht_ie) {
  1763. memcpy(bss->ht_ie, elems.ht_cap_elem - 2,
  1764. elems.ht_cap_elem_len + 2);
  1765. bss->ht_ie_len = elems.ht_cap_elem_len + 2;
  1766. } else
  1767. bss->ht_ie_len = 0;
  1768. } else if (!elems.ht_cap_elem && bss->ht_ie) {
  1769. kfree(bss->ht_ie);
  1770. bss->ht_ie = NULL;
  1771. bss->ht_ie_len = 0;
  1772. }
  1773. bss->hw_mode = rx_status->phymode;
  1774. bss->freq = rx_status->freq;
  1775. if (channel != rx_status->channel &&
  1776. (bss->hw_mode == MODE_IEEE80211G ||
  1777. bss->hw_mode == MODE_IEEE80211B) &&
  1778. channel >= 1 && channel <= 14) {
  1779. static const int freq_list[] = {
  1780. 2412, 2417, 2422, 2427, 2432, 2437, 2442,
  1781. 2447, 2452, 2457, 2462, 2467, 2472, 2484
  1782. };
  1783. /* IEEE 802.11g/b mode can receive packets from neighboring
  1784. * channels, so map the channel into frequency. */
  1785. bss->freq = freq_list[channel - 1];
  1786. }
  1787. bss->timestamp = timestamp;
  1788. bss->last_update = jiffies;
  1789. bss->rssi = rx_status->ssi;
  1790. bss->signal = rx_status->signal;
  1791. bss->noise = rx_status->noise;
  1792. if (!beacon)
  1793. bss->probe_resp++;
  1794. ieee80211_rx_bss_put(dev, bss);
  1795. }
  1796. static void ieee80211_rx_mgmt_probe_resp(struct net_device *dev,
  1797. struct ieee80211_mgmt *mgmt,
  1798. size_t len,
  1799. struct ieee80211_rx_status *rx_status)
  1800. {
  1801. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 0);
  1802. }
  1803. static void ieee80211_rx_mgmt_beacon(struct net_device *dev,
  1804. struct ieee80211_mgmt *mgmt,
  1805. size_t len,
  1806. struct ieee80211_rx_status *rx_status)
  1807. {
  1808. struct ieee80211_sub_if_data *sdata;
  1809. struct ieee80211_if_sta *ifsta;
  1810. size_t baselen;
  1811. struct ieee802_11_elems elems;
  1812. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1813. struct ieee80211_conf *conf = &local->hw.conf;
  1814. u32 changed = 0;
  1815. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 1);
  1816. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1817. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  1818. return;
  1819. ifsta = &sdata->u.sta;
  1820. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED) ||
  1821. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0)
  1822. return;
  1823. /* Process beacon from the current BSS */
  1824. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  1825. if (baselen > len)
  1826. return;
  1827. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  1828. if (elems.erp_info && elems.erp_info_len >= 1)
  1829. changed |= ieee80211_handle_erp_ie(sdata, elems.erp_info[0]);
  1830. if (elems.ht_cap_elem && elems.ht_info_elem &&
  1831. elems.wmm_param && local->ops->conf_ht &&
  1832. conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
  1833. struct ieee80211_ht_bss_info bss_info;
  1834. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  1835. (struct ieee80211_ht_addt_info *)
  1836. elems.ht_info_elem, &bss_info);
  1837. /* check if AP changed bss inforamation */
  1838. if ((conf->ht_bss_conf.primary_channel !=
  1839. bss_info.primary_channel) ||
  1840. (conf->ht_bss_conf.bss_cap != bss_info.bss_cap) ||
  1841. (conf->ht_bss_conf.bss_op_mode != bss_info.bss_op_mode))
  1842. ieee80211_hw_config_ht(local, 1, &conf->ht_conf,
  1843. &bss_info);
  1844. }
  1845. if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  1846. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  1847. elems.wmm_param_len);
  1848. }
  1849. ieee80211_bss_info_change_notify(sdata, changed);
  1850. }
  1851. static void ieee80211_rx_mgmt_probe_req(struct net_device *dev,
  1852. struct ieee80211_if_sta *ifsta,
  1853. struct ieee80211_mgmt *mgmt,
  1854. size_t len,
  1855. struct ieee80211_rx_status *rx_status)
  1856. {
  1857. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1858. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1859. int tx_last_beacon;
  1860. struct sk_buff *skb;
  1861. struct ieee80211_mgmt *resp;
  1862. u8 *pos, *end;
  1863. DECLARE_MAC_BUF(mac);
  1864. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  1865. DECLARE_MAC_BUF(mac2);
  1866. DECLARE_MAC_BUF(mac3);
  1867. #endif
  1868. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS ||
  1869. ifsta->state != IEEE80211_IBSS_JOINED ||
  1870. len < 24 + 2 || !ifsta->probe_resp)
  1871. return;
  1872. if (local->ops->tx_last_beacon)
  1873. tx_last_beacon = local->ops->tx_last_beacon(local_to_hw(local));
  1874. else
  1875. tx_last_beacon = 1;
  1876. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  1877. printk(KERN_DEBUG "%s: RX ProbeReq SA=%s DA=%s BSSID="
  1878. "%s (tx_last_beacon=%d)\n",
  1879. dev->name, print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da),
  1880. print_mac(mac3, mgmt->bssid), tx_last_beacon);
  1881. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  1882. if (!tx_last_beacon)
  1883. return;
  1884. if (memcmp(mgmt->bssid, ifsta->bssid, ETH_ALEN) != 0 &&
  1885. memcmp(mgmt->bssid, "\xff\xff\xff\xff\xff\xff", ETH_ALEN) != 0)
  1886. return;
  1887. end = ((u8 *) mgmt) + len;
  1888. pos = mgmt->u.probe_req.variable;
  1889. if (pos[0] != WLAN_EID_SSID ||
  1890. pos + 2 + pos[1] > end) {
  1891. if (net_ratelimit()) {
  1892. printk(KERN_DEBUG "%s: Invalid SSID IE in ProbeReq "
  1893. "from %s\n",
  1894. dev->name, print_mac(mac, mgmt->sa));
  1895. }
  1896. return;
  1897. }
  1898. if (pos[1] != 0 &&
  1899. (pos[1] != ifsta->ssid_len ||
  1900. memcmp(pos + 2, ifsta->ssid, ifsta->ssid_len) != 0)) {
  1901. /* Ignore ProbeReq for foreign SSID */
  1902. return;
  1903. }
  1904. /* Reply with ProbeResp */
  1905. skb = skb_copy(ifsta->probe_resp, GFP_KERNEL);
  1906. if (!skb)
  1907. return;
  1908. resp = (struct ieee80211_mgmt *) skb->data;
  1909. memcpy(resp->da, mgmt->sa, ETH_ALEN);
  1910. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  1911. printk(KERN_DEBUG "%s: Sending ProbeResp to %s\n",
  1912. dev->name, print_mac(mac, resp->da));
  1913. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  1914. ieee80211_sta_tx(dev, skb, 0);
  1915. }
  1916. static void ieee80211_rx_mgmt_action(struct net_device *dev,
  1917. struct ieee80211_if_sta *ifsta,
  1918. struct ieee80211_mgmt *mgmt,
  1919. size_t len)
  1920. {
  1921. if (len < IEEE80211_MIN_ACTION_SIZE)
  1922. return;
  1923. switch (mgmt->u.action.category) {
  1924. case WLAN_CATEGORY_BACK:
  1925. switch (mgmt->u.action.u.addba_req.action_code) {
  1926. case WLAN_ACTION_ADDBA_REQ:
  1927. if (len < (IEEE80211_MIN_ACTION_SIZE +
  1928. sizeof(mgmt->u.action.u.addba_req)))
  1929. break;
  1930. ieee80211_sta_process_addba_request(dev, mgmt, len);
  1931. break;
  1932. case WLAN_ACTION_DELBA:
  1933. if (len < (IEEE80211_MIN_ACTION_SIZE +
  1934. sizeof(mgmt->u.action.u.delba)))
  1935. break;
  1936. ieee80211_sta_process_delba(dev, mgmt, len);
  1937. break;
  1938. default:
  1939. if (net_ratelimit())
  1940. printk(KERN_DEBUG "%s: Rx unknown A-MPDU action\n",
  1941. dev->name);
  1942. break;
  1943. }
  1944. break;
  1945. default:
  1946. break;
  1947. }
  1948. }
  1949. void ieee80211_sta_rx_mgmt(struct net_device *dev, struct sk_buff *skb,
  1950. struct ieee80211_rx_status *rx_status)
  1951. {
  1952. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1953. struct ieee80211_sub_if_data *sdata;
  1954. struct ieee80211_if_sta *ifsta;
  1955. struct ieee80211_mgmt *mgmt;
  1956. u16 fc;
  1957. if (skb->len < 24)
  1958. goto fail;
  1959. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1960. ifsta = &sdata->u.sta;
  1961. mgmt = (struct ieee80211_mgmt *) skb->data;
  1962. fc = le16_to_cpu(mgmt->frame_control);
  1963. switch (fc & IEEE80211_FCTL_STYPE) {
  1964. case IEEE80211_STYPE_PROBE_REQ:
  1965. case IEEE80211_STYPE_PROBE_RESP:
  1966. case IEEE80211_STYPE_BEACON:
  1967. memcpy(skb->cb, rx_status, sizeof(*rx_status));
  1968. case IEEE80211_STYPE_AUTH:
  1969. case IEEE80211_STYPE_ASSOC_RESP:
  1970. case IEEE80211_STYPE_REASSOC_RESP:
  1971. case IEEE80211_STYPE_DEAUTH:
  1972. case IEEE80211_STYPE_DISASSOC:
  1973. case IEEE80211_STYPE_ACTION:
  1974. skb_queue_tail(&ifsta->skb_queue, skb);
  1975. queue_work(local->hw.workqueue, &ifsta->work);
  1976. return;
  1977. default:
  1978. printk(KERN_DEBUG "%s: received unknown management frame - "
  1979. "stype=%d\n", dev->name,
  1980. (fc & IEEE80211_FCTL_STYPE) >> 4);
  1981. break;
  1982. }
  1983. fail:
  1984. kfree_skb(skb);
  1985. }
  1986. static void ieee80211_sta_rx_queued_mgmt(struct net_device *dev,
  1987. struct sk_buff *skb)
  1988. {
  1989. struct ieee80211_rx_status *rx_status;
  1990. struct ieee80211_sub_if_data *sdata;
  1991. struct ieee80211_if_sta *ifsta;
  1992. struct ieee80211_mgmt *mgmt;
  1993. u16 fc;
  1994. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1995. ifsta = &sdata->u.sta;
  1996. rx_status = (struct ieee80211_rx_status *) skb->cb;
  1997. mgmt = (struct ieee80211_mgmt *) skb->data;
  1998. fc = le16_to_cpu(mgmt->frame_control);
  1999. switch (fc & IEEE80211_FCTL_STYPE) {
  2000. case IEEE80211_STYPE_PROBE_REQ:
  2001. ieee80211_rx_mgmt_probe_req(dev, ifsta, mgmt, skb->len,
  2002. rx_status);
  2003. break;
  2004. case IEEE80211_STYPE_PROBE_RESP:
  2005. ieee80211_rx_mgmt_probe_resp(dev, mgmt, skb->len, rx_status);
  2006. break;
  2007. case IEEE80211_STYPE_BEACON:
  2008. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len, rx_status);
  2009. break;
  2010. case IEEE80211_STYPE_AUTH:
  2011. ieee80211_rx_mgmt_auth(dev, ifsta, mgmt, skb->len);
  2012. break;
  2013. case IEEE80211_STYPE_ASSOC_RESP:
  2014. ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 0);
  2015. break;
  2016. case IEEE80211_STYPE_REASSOC_RESP:
  2017. ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 1);
  2018. break;
  2019. case IEEE80211_STYPE_DEAUTH:
  2020. ieee80211_rx_mgmt_deauth(dev, ifsta, mgmt, skb->len);
  2021. break;
  2022. case IEEE80211_STYPE_DISASSOC:
  2023. ieee80211_rx_mgmt_disassoc(dev, ifsta, mgmt, skb->len);
  2024. break;
  2025. case IEEE80211_STYPE_ACTION:
  2026. ieee80211_rx_mgmt_action(dev, ifsta, mgmt, skb->len);
  2027. break;
  2028. }
  2029. kfree_skb(skb);
  2030. }
  2031. ieee80211_txrx_result
  2032. ieee80211_sta_rx_scan(struct net_device *dev, struct sk_buff *skb,
  2033. struct ieee80211_rx_status *rx_status)
  2034. {
  2035. struct ieee80211_mgmt *mgmt;
  2036. u16 fc;
  2037. if (skb->len < 2)
  2038. return TXRX_DROP;
  2039. mgmt = (struct ieee80211_mgmt *) skb->data;
  2040. fc = le16_to_cpu(mgmt->frame_control);
  2041. if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
  2042. return TXRX_CONTINUE;
  2043. if (skb->len < 24)
  2044. return TXRX_DROP;
  2045. if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) {
  2046. if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP) {
  2047. ieee80211_rx_mgmt_probe_resp(dev, mgmt,
  2048. skb->len, rx_status);
  2049. dev_kfree_skb(skb);
  2050. return TXRX_QUEUED;
  2051. } else if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BEACON) {
  2052. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len,
  2053. rx_status);
  2054. dev_kfree_skb(skb);
  2055. return TXRX_QUEUED;
  2056. }
  2057. }
  2058. return TXRX_CONTINUE;
  2059. }
  2060. static int ieee80211_sta_active_ibss(struct net_device *dev)
  2061. {
  2062. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2063. int active = 0;
  2064. struct sta_info *sta;
  2065. read_lock_bh(&local->sta_lock);
  2066. list_for_each_entry(sta, &local->sta_list, list) {
  2067. if (sta->dev == dev &&
  2068. time_after(sta->last_rx + IEEE80211_IBSS_MERGE_INTERVAL,
  2069. jiffies)) {
  2070. active++;
  2071. break;
  2072. }
  2073. }
  2074. read_unlock_bh(&local->sta_lock);
  2075. return active;
  2076. }
  2077. static void ieee80211_sta_expire(struct net_device *dev)
  2078. {
  2079. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2080. struct sta_info *sta, *tmp;
  2081. LIST_HEAD(tmp_list);
  2082. DECLARE_MAC_BUF(mac);
  2083. write_lock_bh(&local->sta_lock);
  2084. list_for_each_entry_safe(sta, tmp, &local->sta_list, list)
  2085. if (time_after(jiffies, sta->last_rx +
  2086. IEEE80211_IBSS_INACTIVITY_LIMIT)) {
  2087. printk(KERN_DEBUG "%s: expiring inactive STA %s\n",
  2088. dev->name, print_mac(mac, sta->addr));
  2089. __sta_info_get(sta);
  2090. sta_info_remove(sta);
  2091. list_add(&sta->list, &tmp_list);
  2092. }
  2093. write_unlock_bh(&local->sta_lock);
  2094. list_for_each_entry_safe(sta, tmp, &tmp_list, list) {
  2095. sta_info_free(sta);
  2096. sta_info_put(sta);
  2097. }
  2098. }
  2099. static void ieee80211_sta_merge_ibss(struct net_device *dev,
  2100. struct ieee80211_if_sta *ifsta)
  2101. {
  2102. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  2103. ieee80211_sta_expire(dev);
  2104. if (ieee80211_sta_active_ibss(dev))
  2105. return;
  2106. printk(KERN_DEBUG "%s: No active IBSS STAs - trying to scan for other "
  2107. "IBSS networks with same SSID (merge)\n", dev->name);
  2108. ieee80211_sta_req_scan(dev, ifsta->ssid, ifsta->ssid_len);
  2109. }
  2110. void ieee80211_sta_timer(unsigned long data)
  2111. {
  2112. struct ieee80211_sub_if_data *sdata =
  2113. (struct ieee80211_sub_if_data *) data;
  2114. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2115. struct ieee80211_local *local = wdev_priv(&sdata->wdev);
  2116. set_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2117. queue_work(local->hw.workqueue, &ifsta->work);
  2118. }
  2119. void ieee80211_sta_work(struct work_struct *work)
  2120. {
  2121. struct ieee80211_sub_if_data *sdata =
  2122. container_of(work, struct ieee80211_sub_if_data, u.sta.work);
  2123. struct net_device *dev = sdata->dev;
  2124. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2125. struct ieee80211_if_sta *ifsta;
  2126. struct sk_buff *skb;
  2127. if (!netif_running(dev))
  2128. return;
  2129. if (local->sta_sw_scanning || local->sta_hw_scanning)
  2130. return;
  2131. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  2132. sdata->vif.type != IEEE80211_IF_TYPE_IBSS) {
  2133. printk(KERN_DEBUG "%s: ieee80211_sta_work: non-STA interface "
  2134. "(type=%d)\n", dev->name, sdata->vif.type);
  2135. return;
  2136. }
  2137. ifsta = &sdata->u.sta;
  2138. while ((skb = skb_dequeue(&ifsta->skb_queue)))
  2139. ieee80211_sta_rx_queued_mgmt(dev, skb);
  2140. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  2141. ifsta->state != IEEE80211_ASSOCIATE &&
  2142. test_and_clear_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request)) {
  2143. if (ifsta->scan_ssid_len)
  2144. ieee80211_sta_start_scan(dev, ifsta->scan_ssid, ifsta->scan_ssid_len);
  2145. else
  2146. ieee80211_sta_start_scan(dev, NULL, 0);
  2147. return;
  2148. }
  2149. if (test_and_clear_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request)) {
  2150. if (ieee80211_sta_config_auth(dev, ifsta))
  2151. return;
  2152. clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2153. } else if (!test_and_clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request))
  2154. return;
  2155. switch (ifsta->state) {
  2156. case IEEE80211_DISABLED:
  2157. break;
  2158. case IEEE80211_AUTHENTICATE:
  2159. ieee80211_authenticate(dev, ifsta);
  2160. break;
  2161. case IEEE80211_ASSOCIATE:
  2162. ieee80211_associate(dev, ifsta);
  2163. break;
  2164. case IEEE80211_ASSOCIATED:
  2165. ieee80211_associated(dev, ifsta);
  2166. break;
  2167. case IEEE80211_IBSS_SEARCH:
  2168. ieee80211_sta_find_ibss(dev, ifsta);
  2169. break;
  2170. case IEEE80211_IBSS_JOINED:
  2171. ieee80211_sta_merge_ibss(dev, ifsta);
  2172. break;
  2173. default:
  2174. printk(KERN_DEBUG "ieee80211_sta_work: Unknown state %d\n",
  2175. ifsta->state);
  2176. break;
  2177. }
  2178. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  2179. printk(KERN_DEBUG "%s: privacy configuration mismatch and "
  2180. "mixed-cell disabled - disassociate\n", dev->name);
  2181. ieee80211_send_disassoc(dev, ifsta, WLAN_REASON_UNSPECIFIED);
  2182. ieee80211_set_disassoc(dev, ifsta, 0);
  2183. }
  2184. }
  2185. static void ieee80211_sta_reset_auth(struct net_device *dev,
  2186. struct ieee80211_if_sta *ifsta)
  2187. {
  2188. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2189. if (local->ops->reset_tsf) {
  2190. /* Reset own TSF to allow time synchronization work. */
  2191. local->ops->reset_tsf(local_to_hw(local));
  2192. }
  2193. ifsta->wmm_last_param_set = -1; /* allow any WMM update */
  2194. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  2195. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2196. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  2197. ifsta->auth_alg = WLAN_AUTH_SHARED_KEY;
  2198. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  2199. ifsta->auth_alg = WLAN_AUTH_LEAP;
  2200. else
  2201. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2202. printk(KERN_DEBUG "%s: Initial auth_alg=%d\n", dev->name,
  2203. ifsta->auth_alg);
  2204. ifsta->auth_transaction = -1;
  2205. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  2206. ifsta->auth_tries = ifsta->assoc_tries = 0;
  2207. netif_carrier_off(dev);
  2208. }
  2209. void ieee80211_sta_req_auth(struct net_device *dev,
  2210. struct ieee80211_if_sta *ifsta)
  2211. {
  2212. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2213. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2214. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  2215. return;
  2216. if ((ifsta->flags & (IEEE80211_STA_BSSID_SET |
  2217. IEEE80211_STA_AUTO_BSSID_SEL)) &&
  2218. (ifsta->flags & (IEEE80211_STA_SSID_SET |
  2219. IEEE80211_STA_AUTO_SSID_SEL))) {
  2220. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2221. queue_work(local->hw.workqueue, &ifsta->work);
  2222. }
  2223. }
  2224. static int ieee80211_sta_match_ssid(struct ieee80211_if_sta *ifsta,
  2225. const char *ssid, int ssid_len)
  2226. {
  2227. int tmp, hidden_ssid;
  2228. if (ssid_len == ifsta->ssid_len &&
  2229. !memcmp(ifsta->ssid, ssid, ssid_len))
  2230. return 1;
  2231. if (ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL)
  2232. return 0;
  2233. hidden_ssid = 1;
  2234. tmp = ssid_len;
  2235. while (tmp--) {
  2236. if (ssid[tmp] != '\0') {
  2237. hidden_ssid = 0;
  2238. break;
  2239. }
  2240. }
  2241. if (hidden_ssid && ifsta->ssid_len == ssid_len)
  2242. return 1;
  2243. if (ssid_len == 1 && ssid[0] == ' ')
  2244. return 1;
  2245. return 0;
  2246. }
  2247. static int ieee80211_sta_config_auth(struct net_device *dev,
  2248. struct ieee80211_if_sta *ifsta)
  2249. {
  2250. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2251. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2252. struct ieee80211_sta_bss *bss, *selected = NULL;
  2253. int top_rssi = 0, freq;
  2254. if (!(ifsta->flags & (IEEE80211_STA_AUTO_SSID_SEL |
  2255. IEEE80211_STA_AUTO_BSSID_SEL | IEEE80211_STA_AUTO_CHANNEL_SEL))) {
  2256. ifsta->state = IEEE80211_AUTHENTICATE;
  2257. ieee80211_sta_reset_auth(dev, ifsta);
  2258. return 0;
  2259. }
  2260. spin_lock_bh(&local->sta_bss_lock);
  2261. freq = local->oper_channel->freq;
  2262. list_for_each_entry(bss, &local->sta_bss_list, list) {
  2263. if (!(bss->capability & WLAN_CAPABILITY_ESS))
  2264. continue;
  2265. if (!!(bss->capability & WLAN_CAPABILITY_PRIVACY) ^
  2266. !!sdata->default_key)
  2267. continue;
  2268. if (!(ifsta->flags & IEEE80211_STA_AUTO_CHANNEL_SEL) &&
  2269. bss->freq != freq)
  2270. continue;
  2271. if (!(ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL) &&
  2272. memcmp(bss->bssid, ifsta->bssid, ETH_ALEN))
  2273. continue;
  2274. if (!(ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL) &&
  2275. !ieee80211_sta_match_ssid(ifsta, bss->ssid, bss->ssid_len))
  2276. continue;
  2277. if (!selected || top_rssi < bss->rssi) {
  2278. selected = bss;
  2279. top_rssi = bss->rssi;
  2280. }
  2281. }
  2282. if (selected)
  2283. atomic_inc(&selected->users);
  2284. spin_unlock_bh(&local->sta_bss_lock);
  2285. if (selected) {
  2286. ieee80211_set_channel(local, -1, selected->freq);
  2287. if (!(ifsta->flags & IEEE80211_STA_SSID_SET))
  2288. ieee80211_sta_set_ssid(dev, selected->ssid,
  2289. selected->ssid_len);
  2290. ieee80211_sta_set_bssid(dev, selected->bssid);
  2291. ieee80211_rx_bss_put(dev, selected);
  2292. ifsta->state = IEEE80211_AUTHENTICATE;
  2293. ieee80211_sta_reset_auth(dev, ifsta);
  2294. return 0;
  2295. } else {
  2296. if (ifsta->state != IEEE80211_AUTHENTICATE) {
  2297. if (ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL)
  2298. ieee80211_sta_start_scan(dev, NULL, 0);
  2299. else
  2300. ieee80211_sta_start_scan(dev, ifsta->ssid,
  2301. ifsta->ssid_len);
  2302. ifsta->state = IEEE80211_AUTHENTICATE;
  2303. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2304. } else
  2305. ifsta->state = IEEE80211_DISABLED;
  2306. }
  2307. return -1;
  2308. }
  2309. static int ieee80211_sta_join_ibss(struct net_device *dev,
  2310. struct ieee80211_if_sta *ifsta,
  2311. struct ieee80211_sta_bss *bss)
  2312. {
  2313. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2314. int res, rates, i, j;
  2315. struct sk_buff *skb;
  2316. struct ieee80211_mgmt *mgmt;
  2317. struct ieee80211_tx_control control;
  2318. struct ieee80211_hw_mode *mode;
  2319. struct rate_selection ratesel;
  2320. u8 *pos;
  2321. struct ieee80211_sub_if_data *sdata;
  2322. /* Remove possible STA entries from other IBSS networks. */
  2323. sta_info_flush(local, NULL);
  2324. if (local->ops->reset_tsf) {
  2325. /* Reset own TSF to allow time synchronization work. */
  2326. local->ops->reset_tsf(local_to_hw(local));
  2327. }
  2328. memcpy(ifsta->bssid, bss->bssid, ETH_ALEN);
  2329. res = ieee80211_if_config(dev);
  2330. if (res)
  2331. return res;
  2332. local->hw.conf.beacon_int = bss->beacon_int >= 10 ? bss->beacon_int : 10;
  2333. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2334. sdata->drop_unencrypted = bss->capability &
  2335. WLAN_CAPABILITY_PRIVACY ? 1 : 0;
  2336. res = ieee80211_set_channel(local, -1, bss->freq);
  2337. if (!(local->oper_channel->flag & IEEE80211_CHAN_W_IBSS)) {
  2338. printk(KERN_DEBUG "%s: IBSS not allowed on channel %d "
  2339. "(%d MHz)\n", dev->name, local->hw.conf.channel,
  2340. local->hw.conf.freq);
  2341. return -1;
  2342. }
  2343. /* Set beacon template based on scan results */
  2344. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 400);
  2345. do {
  2346. if (!skb)
  2347. break;
  2348. skb_reserve(skb, local->hw.extra_tx_headroom);
  2349. mgmt = (struct ieee80211_mgmt *)
  2350. skb_put(skb, 24 + sizeof(mgmt->u.beacon));
  2351. memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
  2352. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  2353. IEEE80211_STYPE_BEACON);
  2354. memset(mgmt->da, 0xff, ETH_ALEN);
  2355. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  2356. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  2357. mgmt->u.beacon.beacon_int =
  2358. cpu_to_le16(local->hw.conf.beacon_int);
  2359. mgmt->u.beacon.capab_info = cpu_to_le16(bss->capability);
  2360. pos = skb_put(skb, 2 + ifsta->ssid_len);
  2361. *pos++ = WLAN_EID_SSID;
  2362. *pos++ = ifsta->ssid_len;
  2363. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  2364. rates = bss->supp_rates_len;
  2365. if (rates > 8)
  2366. rates = 8;
  2367. pos = skb_put(skb, 2 + rates);
  2368. *pos++ = WLAN_EID_SUPP_RATES;
  2369. *pos++ = rates;
  2370. memcpy(pos, bss->supp_rates, rates);
  2371. pos = skb_put(skb, 2 + 1);
  2372. *pos++ = WLAN_EID_DS_PARAMS;
  2373. *pos++ = 1;
  2374. *pos++ = bss->channel;
  2375. pos = skb_put(skb, 2 + 2);
  2376. *pos++ = WLAN_EID_IBSS_PARAMS;
  2377. *pos++ = 2;
  2378. /* FIX: set ATIM window based on scan results */
  2379. *pos++ = 0;
  2380. *pos++ = 0;
  2381. if (bss->supp_rates_len > 8) {
  2382. rates = bss->supp_rates_len - 8;
  2383. pos = skb_put(skb, 2 + rates);
  2384. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  2385. *pos++ = rates;
  2386. memcpy(pos, &bss->supp_rates[8], rates);
  2387. }
  2388. memset(&control, 0, sizeof(control));
  2389. rate_control_get_rate(dev, local->oper_hw_mode, skb, &ratesel);
  2390. if (!ratesel.rate) {
  2391. printk(KERN_DEBUG "%s: Failed to determine TX rate "
  2392. "for IBSS beacon\n", dev->name);
  2393. break;
  2394. }
  2395. control.vif = &sdata->vif;
  2396. control.tx_rate =
  2397. (sdata->bss_conf.use_short_preamble &&
  2398. (ratesel.rate->flags & IEEE80211_RATE_PREAMBLE2)) ?
  2399. ratesel.rate->val2 : ratesel.rate->val;
  2400. control.antenna_sel_tx = local->hw.conf.antenna_sel_tx;
  2401. control.power_level = local->hw.conf.power_level;
  2402. control.flags |= IEEE80211_TXCTL_NO_ACK;
  2403. control.retry_limit = 1;
  2404. ifsta->probe_resp = skb_copy(skb, GFP_ATOMIC);
  2405. if (ifsta->probe_resp) {
  2406. mgmt = (struct ieee80211_mgmt *)
  2407. ifsta->probe_resp->data;
  2408. mgmt->frame_control =
  2409. IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  2410. IEEE80211_STYPE_PROBE_RESP);
  2411. } else {
  2412. printk(KERN_DEBUG "%s: Could not allocate ProbeResp "
  2413. "template for IBSS\n", dev->name);
  2414. }
  2415. if (local->ops->beacon_update &&
  2416. local->ops->beacon_update(local_to_hw(local),
  2417. skb, &control) == 0) {
  2418. printk(KERN_DEBUG "%s: Configured IBSS beacon "
  2419. "template based on scan results\n", dev->name);
  2420. skb = NULL;
  2421. }
  2422. rates = 0;
  2423. mode = local->oper_hw_mode;
  2424. for (i = 0; i < bss->supp_rates_len; i++) {
  2425. int bitrate = (bss->supp_rates[i] & 0x7f) * 5;
  2426. for (j = 0; j < mode->num_rates; j++)
  2427. if (mode->rates[j].rate == bitrate)
  2428. rates |= BIT(j);
  2429. }
  2430. ifsta->supp_rates_bits = rates;
  2431. } while (0);
  2432. if (skb) {
  2433. printk(KERN_DEBUG "%s: Failed to configure IBSS beacon "
  2434. "template\n", dev->name);
  2435. dev_kfree_skb(skb);
  2436. }
  2437. ifsta->state = IEEE80211_IBSS_JOINED;
  2438. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  2439. ieee80211_rx_bss_put(dev, bss);
  2440. return res;
  2441. }
  2442. static int ieee80211_sta_create_ibss(struct net_device *dev,
  2443. struct ieee80211_if_sta *ifsta)
  2444. {
  2445. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2446. struct ieee80211_sta_bss *bss;
  2447. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2448. struct ieee80211_hw_mode *mode;
  2449. u8 bssid[ETH_ALEN], *pos;
  2450. int i;
  2451. DECLARE_MAC_BUF(mac);
  2452. #if 0
  2453. /* Easier testing, use fixed BSSID. */
  2454. memset(bssid, 0xfe, ETH_ALEN);
  2455. #else
  2456. /* Generate random, not broadcast, locally administered BSSID. Mix in
  2457. * own MAC address to make sure that devices that do not have proper
  2458. * random number generator get different BSSID. */
  2459. get_random_bytes(bssid, ETH_ALEN);
  2460. for (i = 0; i < ETH_ALEN; i++)
  2461. bssid[i] ^= dev->dev_addr[i];
  2462. bssid[0] &= ~0x01;
  2463. bssid[0] |= 0x02;
  2464. #endif
  2465. printk(KERN_DEBUG "%s: Creating new IBSS network, BSSID %s\n",
  2466. dev->name, print_mac(mac, bssid));
  2467. bss = ieee80211_rx_bss_add(dev, bssid, local->hw.conf.channel,
  2468. sdata->u.sta.ssid, sdata->u.sta.ssid_len);
  2469. if (!bss)
  2470. return -ENOMEM;
  2471. mode = local->oper_hw_mode;
  2472. if (local->hw.conf.beacon_int == 0)
  2473. local->hw.conf.beacon_int = 100;
  2474. bss->beacon_int = local->hw.conf.beacon_int;
  2475. bss->hw_mode = local->hw.conf.phymode;
  2476. bss->freq = local->hw.conf.freq;
  2477. bss->last_update = jiffies;
  2478. bss->capability = WLAN_CAPABILITY_IBSS;
  2479. if (sdata->default_key) {
  2480. bss->capability |= WLAN_CAPABILITY_PRIVACY;
  2481. } else
  2482. sdata->drop_unencrypted = 0;
  2483. bss->supp_rates_len = mode->num_rates;
  2484. pos = bss->supp_rates;
  2485. for (i = 0; i < mode->num_rates; i++) {
  2486. int rate = mode->rates[i].rate;
  2487. *pos++ = (u8) (rate / 5);
  2488. }
  2489. return ieee80211_sta_join_ibss(dev, ifsta, bss);
  2490. }
  2491. static int ieee80211_sta_find_ibss(struct net_device *dev,
  2492. struct ieee80211_if_sta *ifsta)
  2493. {
  2494. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2495. struct ieee80211_sta_bss *bss;
  2496. int found = 0;
  2497. u8 bssid[ETH_ALEN];
  2498. int active_ibss;
  2499. DECLARE_MAC_BUF(mac);
  2500. DECLARE_MAC_BUF(mac2);
  2501. if (ifsta->ssid_len == 0)
  2502. return -EINVAL;
  2503. active_ibss = ieee80211_sta_active_ibss(dev);
  2504. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2505. printk(KERN_DEBUG "%s: sta_find_ibss (active_ibss=%d)\n",
  2506. dev->name, active_ibss);
  2507. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2508. spin_lock_bh(&local->sta_bss_lock);
  2509. list_for_each_entry(bss, &local->sta_bss_list, list) {
  2510. if (ifsta->ssid_len != bss->ssid_len ||
  2511. memcmp(ifsta->ssid, bss->ssid, bss->ssid_len) != 0
  2512. || !(bss->capability & WLAN_CAPABILITY_IBSS))
  2513. continue;
  2514. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2515. printk(KERN_DEBUG " bssid=%s found\n",
  2516. print_mac(mac, bss->bssid));
  2517. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2518. memcpy(bssid, bss->bssid, ETH_ALEN);
  2519. found = 1;
  2520. if (active_ibss || memcmp(bssid, ifsta->bssid, ETH_ALEN) != 0)
  2521. break;
  2522. }
  2523. spin_unlock_bh(&local->sta_bss_lock);
  2524. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2525. printk(KERN_DEBUG " sta_find_ibss: selected %s current "
  2526. "%s\n", print_mac(mac, bssid), print_mac(mac2, ifsta->bssid));
  2527. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2528. if (found && memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0 &&
  2529. (bss = ieee80211_rx_bss_get(dev, bssid, local->hw.conf.channel,
  2530. ifsta->ssid, ifsta->ssid_len))) {
  2531. printk(KERN_DEBUG "%s: Selected IBSS BSSID %s"
  2532. " based on configured SSID\n",
  2533. dev->name, print_mac(mac, bssid));
  2534. return ieee80211_sta_join_ibss(dev, ifsta, bss);
  2535. }
  2536. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2537. printk(KERN_DEBUG " did not try to join ibss\n");
  2538. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2539. /* Selected IBSS not found in current scan results - try to scan */
  2540. if (ifsta->state == IEEE80211_IBSS_JOINED &&
  2541. !ieee80211_sta_active_ibss(dev)) {
  2542. mod_timer(&ifsta->timer, jiffies +
  2543. IEEE80211_IBSS_MERGE_INTERVAL);
  2544. } else if (time_after(jiffies, local->last_scan_completed +
  2545. IEEE80211_SCAN_INTERVAL)) {
  2546. printk(KERN_DEBUG "%s: Trigger new scan to find an IBSS to "
  2547. "join\n", dev->name);
  2548. return ieee80211_sta_req_scan(dev, ifsta->ssid,
  2549. ifsta->ssid_len);
  2550. } else if (ifsta->state != IEEE80211_IBSS_JOINED) {
  2551. int interval = IEEE80211_SCAN_INTERVAL;
  2552. if (time_after(jiffies, ifsta->ibss_join_req +
  2553. IEEE80211_IBSS_JOIN_TIMEOUT)) {
  2554. if ((ifsta->flags & IEEE80211_STA_CREATE_IBSS) &&
  2555. local->oper_channel->flag & IEEE80211_CHAN_W_IBSS)
  2556. return ieee80211_sta_create_ibss(dev, ifsta);
  2557. if (ifsta->flags & IEEE80211_STA_CREATE_IBSS) {
  2558. printk(KERN_DEBUG "%s: IBSS not allowed on the"
  2559. " configured channel %d (%d MHz)\n",
  2560. dev->name, local->hw.conf.channel,
  2561. local->hw.conf.freq);
  2562. }
  2563. /* No IBSS found - decrease scan interval and continue
  2564. * scanning. */
  2565. interval = IEEE80211_SCAN_INTERVAL_SLOW;
  2566. }
  2567. ifsta->state = IEEE80211_IBSS_SEARCH;
  2568. mod_timer(&ifsta->timer, jiffies + interval);
  2569. return 0;
  2570. }
  2571. return 0;
  2572. }
  2573. int ieee80211_sta_set_ssid(struct net_device *dev, char *ssid, size_t len)
  2574. {
  2575. struct ieee80211_sub_if_data *sdata;
  2576. struct ieee80211_if_sta *ifsta;
  2577. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2578. if (len > IEEE80211_MAX_SSID_LEN)
  2579. return -EINVAL;
  2580. /* TODO: This should always be done for IBSS, even if IEEE80211_QOS is
  2581. * not defined. */
  2582. if (local->ops->conf_tx) {
  2583. struct ieee80211_tx_queue_params qparam;
  2584. int i;
  2585. memset(&qparam, 0, sizeof(qparam));
  2586. /* TODO: are these ok defaults for all hw_modes? */
  2587. qparam.aifs = 2;
  2588. qparam.cw_min =
  2589. local->hw.conf.phymode == MODE_IEEE80211B ? 31 : 15;
  2590. qparam.cw_max = 1023;
  2591. qparam.burst_time = 0;
  2592. for (i = IEEE80211_TX_QUEUE_DATA0; i < NUM_TX_DATA_QUEUES; i++)
  2593. {
  2594. local->ops->conf_tx(local_to_hw(local),
  2595. i + IEEE80211_TX_QUEUE_DATA0,
  2596. &qparam);
  2597. }
  2598. /* IBSS uses different parameters for Beacon sending */
  2599. qparam.cw_min++;
  2600. qparam.cw_min *= 2;
  2601. qparam.cw_min--;
  2602. local->ops->conf_tx(local_to_hw(local),
  2603. IEEE80211_TX_QUEUE_BEACON, &qparam);
  2604. }
  2605. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2606. ifsta = &sdata->u.sta;
  2607. if (ifsta->ssid_len != len || memcmp(ifsta->ssid, ssid, len) != 0)
  2608. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  2609. memcpy(ifsta->ssid, ssid, len);
  2610. memset(ifsta->ssid + len, 0, IEEE80211_MAX_SSID_LEN - len);
  2611. ifsta->ssid_len = len;
  2612. if (len)
  2613. ifsta->flags |= IEEE80211_STA_SSID_SET;
  2614. else
  2615. ifsta->flags &= ~IEEE80211_STA_SSID_SET;
  2616. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  2617. !(ifsta->flags & IEEE80211_STA_BSSID_SET)) {
  2618. ifsta->ibss_join_req = jiffies;
  2619. ifsta->state = IEEE80211_IBSS_SEARCH;
  2620. return ieee80211_sta_find_ibss(dev, ifsta);
  2621. }
  2622. return 0;
  2623. }
  2624. int ieee80211_sta_get_ssid(struct net_device *dev, char *ssid, size_t *len)
  2625. {
  2626. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2627. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2628. memcpy(ssid, ifsta->ssid, ifsta->ssid_len);
  2629. *len = ifsta->ssid_len;
  2630. return 0;
  2631. }
  2632. int ieee80211_sta_set_bssid(struct net_device *dev, u8 *bssid)
  2633. {
  2634. struct ieee80211_sub_if_data *sdata;
  2635. struct ieee80211_if_sta *ifsta;
  2636. int res;
  2637. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2638. ifsta = &sdata->u.sta;
  2639. if (memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0) {
  2640. memcpy(ifsta->bssid, bssid, ETH_ALEN);
  2641. res = ieee80211_if_config(dev);
  2642. if (res) {
  2643. printk(KERN_DEBUG "%s: Failed to config new BSSID to "
  2644. "the low-level driver\n", dev->name);
  2645. return res;
  2646. }
  2647. }
  2648. if (is_valid_ether_addr(bssid))
  2649. ifsta->flags |= IEEE80211_STA_BSSID_SET;
  2650. else
  2651. ifsta->flags &= ~IEEE80211_STA_BSSID_SET;
  2652. return 0;
  2653. }
  2654. static void ieee80211_send_nullfunc(struct ieee80211_local *local,
  2655. struct ieee80211_sub_if_data *sdata,
  2656. int powersave)
  2657. {
  2658. struct sk_buff *skb;
  2659. struct ieee80211_hdr *nullfunc;
  2660. u16 fc;
  2661. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 24);
  2662. if (!skb) {
  2663. printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc "
  2664. "frame\n", sdata->dev->name);
  2665. return;
  2666. }
  2667. skb_reserve(skb, local->hw.extra_tx_headroom);
  2668. nullfunc = (struct ieee80211_hdr *) skb_put(skb, 24);
  2669. memset(nullfunc, 0, 24);
  2670. fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC |
  2671. IEEE80211_FCTL_TODS;
  2672. if (powersave)
  2673. fc |= IEEE80211_FCTL_PM;
  2674. nullfunc->frame_control = cpu_to_le16(fc);
  2675. memcpy(nullfunc->addr1, sdata->u.sta.bssid, ETH_ALEN);
  2676. memcpy(nullfunc->addr2, sdata->dev->dev_addr, ETH_ALEN);
  2677. memcpy(nullfunc->addr3, sdata->u.sta.bssid, ETH_ALEN);
  2678. ieee80211_sta_tx(sdata->dev, skb, 0);
  2679. }
  2680. void ieee80211_scan_completed(struct ieee80211_hw *hw)
  2681. {
  2682. struct ieee80211_local *local = hw_to_local(hw);
  2683. struct net_device *dev = local->scan_dev;
  2684. struct ieee80211_sub_if_data *sdata;
  2685. union iwreq_data wrqu;
  2686. local->last_scan_completed = jiffies;
  2687. memset(&wrqu, 0, sizeof(wrqu));
  2688. wireless_send_event(dev, SIOCGIWSCAN, &wrqu, NULL);
  2689. if (local->sta_hw_scanning) {
  2690. local->sta_hw_scanning = 0;
  2691. goto done;
  2692. }
  2693. local->sta_sw_scanning = 0;
  2694. if (ieee80211_hw_config(local))
  2695. printk(KERN_DEBUG "%s: failed to restore operational "
  2696. "channel after scan\n", dev->name);
  2697. netif_tx_lock_bh(local->mdev);
  2698. local->filter_flags &= ~FIF_BCN_PRBRESP_PROMISC;
  2699. local->ops->configure_filter(local_to_hw(local),
  2700. FIF_BCN_PRBRESP_PROMISC,
  2701. &local->filter_flags,
  2702. local->mdev->mc_count,
  2703. local->mdev->mc_list);
  2704. netif_tx_unlock_bh(local->mdev);
  2705. rcu_read_lock();
  2706. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  2707. /* No need to wake the master device. */
  2708. if (sdata->dev == local->mdev)
  2709. continue;
  2710. if (sdata->vif.type == IEEE80211_IF_TYPE_STA) {
  2711. if (sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED)
  2712. ieee80211_send_nullfunc(local, sdata, 0);
  2713. ieee80211_sta_timer((unsigned long)sdata);
  2714. }
  2715. netif_wake_queue(sdata->dev);
  2716. }
  2717. rcu_read_unlock();
  2718. done:
  2719. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2720. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  2721. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2722. if (!(ifsta->flags & IEEE80211_STA_BSSID_SET) ||
  2723. (!ifsta->state == IEEE80211_IBSS_JOINED &&
  2724. !ieee80211_sta_active_ibss(dev)))
  2725. ieee80211_sta_find_ibss(dev, ifsta);
  2726. }
  2727. }
  2728. EXPORT_SYMBOL(ieee80211_scan_completed);
  2729. void ieee80211_sta_scan_work(struct work_struct *work)
  2730. {
  2731. struct ieee80211_local *local =
  2732. container_of(work, struct ieee80211_local, scan_work.work);
  2733. struct net_device *dev = local->scan_dev;
  2734. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2735. struct ieee80211_hw_mode *mode;
  2736. struct ieee80211_channel *chan;
  2737. int skip;
  2738. unsigned long next_delay = 0;
  2739. if (!local->sta_sw_scanning)
  2740. return;
  2741. switch (local->scan_state) {
  2742. case SCAN_SET_CHANNEL:
  2743. mode = local->scan_hw_mode;
  2744. if (local->scan_hw_mode->list.next == &local->modes_list &&
  2745. local->scan_channel_idx >= mode->num_channels) {
  2746. ieee80211_scan_completed(local_to_hw(local));
  2747. return;
  2748. }
  2749. skip = !(local->enabled_modes & (1 << mode->mode));
  2750. chan = &mode->channels[local->scan_channel_idx];
  2751. if (!(chan->flag & IEEE80211_CHAN_W_SCAN) ||
  2752. (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  2753. !(chan->flag & IEEE80211_CHAN_W_IBSS)) ||
  2754. (local->hw_modes & local->enabled_modes &
  2755. (1 << MODE_IEEE80211G) && mode->mode == MODE_IEEE80211B))
  2756. skip = 1;
  2757. if (!skip) {
  2758. #if 0
  2759. printk(KERN_DEBUG "%s: scan channel %d (%d MHz)\n",
  2760. dev->name, chan->chan, chan->freq);
  2761. #endif
  2762. local->scan_channel = chan;
  2763. if (ieee80211_hw_config(local)) {
  2764. printk(KERN_DEBUG "%s: failed to set channel "
  2765. "%d (%d MHz) for scan\n", dev->name,
  2766. chan->chan, chan->freq);
  2767. skip = 1;
  2768. }
  2769. }
  2770. local->scan_channel_idx++;
  2771. if (local->scan_channel_idx >= local->scan_hw_mode->num_channels) {
  2772. if (local->scan_hw_mode->list.next != &local->modes_list) {
  2773. local->scan_hw_mode = list_entry(local->scan_hw_mode->list.next,
  2774. struct ieee80211_hw_mode,
  2775. list);
  2776. local->scan_channel_idx = 0;
  2777. }
  2778. }
  2779. if (skip)
  2780. break;
  2781. next_delay = IEEE80211_PROBE_DELAY +
  2782. usecs_to_jiffies(local->hw.channel_change_time);
  2783. local->scan_state = SCAN_SEND_PROBE;
  2784. break;
  2785. case SCAN_SEND_PROBE:
  2786. if (local->scan_channel->flag & IEEE80211_CHAN_W_ACTIVE_SCAN) {
  2787. ieee80211_send_probe_req(dev, NULL, local->scan_ssid,
  2788. local->scan_ssid_len);
  2789. next_delay = IEEE80211_CHANNEL_TIME;
  2790. } else
  2791. next_delay = IEEE80211_PASSIVE_CHANNEL_TIME;
  2792. local->scan_state = SCAN_SET_CHANNEL;
  2793. break;
  2794. }
  2795. if (local->sta_sw_scanning)
  2796. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  2797. next_delay);
  2798. }
  2799. static int ieee80211_sta_start_scan(struct net_device *dev,
  2800. u8 *ssid, size_t ssid_len)
  2801. {
  2802. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2803. struct ieee80211_sub_if_data *sdata;
  2804. if (ssid_len > IEEE80211_MAX_SSID_LEN)
  2805. return -EINVAL;
  2806. /* MLME-SCAN.request (page 118) page 144 (11.1.3.1)
  2807. * BSSType: INFRASTRUCTURE, INDEPENDENT, ANY_BSS
  2808. * BSSID: MACAddress
  2809. * SSID
  2810. * ScanType: ACTIVE, PASSIVE
  2811. * ProbeDelay: delay (in microseconds) to be used prior to transmitting
  2812. * a Probe frame during active scanning
  2813. * ChannelList
  2814. * MinChannelTime (>= ProbeDelay), in TU
  2815. * MaxChannelTime: (>= MinChannelTime), in TU
  2816. */
  2817. /* MLME-SCAN.confirm
  2818. * BSSDescriptionSet
  2819. * ResultCode: SUCCESS, INVALID_PARAMETERS
  2820. */
  2821. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  2822. if (local->scan_dev == dev)
  2823. return 0;
  2824. return -EBUSY;
  2825. }
  2826. if (local->ops->hw_scan) {
  2827. int rc = local->ops->hw_scan(local_to_hw(local),
  2828. ssid, ssid_len);
  2829. if (!rc) {
  2830. local->sta_hw_scanning = 1;
  2831. local->scan_dev = dev;
  2832. }
  2833. return rc;
  2834. }
  2835. local->sta_sw_scanning = 1;
  2836. rcu_read_lock();
  2837. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  2838. /* Don't stop the master interface, otherwise we can't transmit
  2839. * probes! */
  2840. if (sdata->dev == local->mdev)
  2841. continue;
  2842. netif_stop_queue(sdata->dev);
  2843. if (sdata->vif.type == IEEE80211_IF_TYPE_STA &&
  2844. (sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED))
  2845. ieee80211_send_nullfunc(local, sdata, 1);
  2846. }
  2847. rcu_read_unlock();
  2848. if (ssid) {
  2849. local->scan_ssid_len = ssid_len;
  2850. memcpy(local->scan_ssid, ssid, ssid_len);
  2851. } else
  2852. local->scan_ssid_len = 0;
  2853. local->scan_state = SCAN_SET_CHANNEL;
  2854. local->scan_hw_mode = list_entry(local->modes_list.next,
  2855. struct ieee80211_hw_mode,
  2856. list);
  2857. local->scan_channel_idx = 0;
  2858. local->scan_dev = dev;
  2859. netif_tx_lock_bh(local->mdev);
  2860. local->filter_flags |= FIF_BCN_PRBRESP_PROMISC;
  2861. local->ops->configure_filter(local_to_hw(local),
  2862. FIF_BCN_PRBRESP_PROMISC,
  2863. &local->filter_flags,
  2864. local->mdev->mc_count,
  2865. local->mdev->mc_list);
  2866. netif_tx_unlock_bh(local->mdev);
  2867. /* TODO: start scan as soon as all nullfunc frames are ACKed */
  2868. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  2869. IEEE80211_CHANNEL_TIME);
  2870. return 0;
  2871. }
  2872. int ieee80211_sta_req_scan(struct net_device *dev, u8 *ssid, size_t ssid_len)
  2873. {
  2874. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2875. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2876. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2877. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  2878. return ieee80211_sta_start_scan(dev, ssid, ssid_len);
  2879. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  2880. if (local->scan_dev == dev)
  2881. return 0;
  2882. return -EBUSY;
  2883. }
  2884. ifsta->scan_ssid_len = ssid_len;
  2885. if (ssid_len)
  2886. memcpy(ifsta->scan_ssid, ssid, ssid_len);
  2887. set_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request);
  2888. queue_work(local->hw.workqueue, &ifsta->work);
  2889. return 0;
  2890. }
  2891. static char *
  2892. ieee80211_sta_scan_result(struct net_device *dev,
  2893. struct ieee80211_sta_bss *bss,
  2894. char *current_ev, char *end_buf)
  2895. {
  2896. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2897. struct iw_event iwe;
  2898. if (time_after(jiffies,
  2899. bss->last_update + IEEE80211_SCAN_RESULT_EXPIRE))
  2900. return current_ev;
  2901. if (!(local->enabled_modes & (1 << bss->hw_mode)))
  2902. return current_ev;
  2903. memset(&iwe, 0, sizeof(iwe));
  2904. iwe.cmd = SIOCGIWAP;
  2905. iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
  2906. memcpy(iwe.u.ap_addr.sa_data, bss->bssid, ETH_ALEN);
  2907. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  2908. IW_EV_ADDR_LEN);
  2909. memset(&iwe, 0, sizeof(iwe));
  2910. iwe.cmd = SIOCGIWESSID;
  2911. iwe.u.data.length = bss->ssid_len;
  2912. iwe.u.data.flags = 1;
  2913. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  2914. bss->ssid);
  2915. if (bss->capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)) {
  2916. memset(&iwe, 0, sizeof(iwe));
  2917. iwe.cmd = SIOCGIWMODE;
  2918. if (bss->capability & WLAN_CAPABILITY_ESS)
  2919. iwe.u.mode = IW_MODE_MASTER;
  2920. else
  2921. iwe.u.mode = IW_MODE_ADHOC;
  2922. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  2923. IW_EV_UINT_LEN);
  2924. }
  2925. memset(&iwe, 0, sizeof(iwe));
  2926. iwe.cmd = SIOCGIWFREQ;
  2927. iwe.u.freq.m = bss->channel;
  2928. iwe.u.freq.e = 0;
  2929. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  2930. IW_EV_FREQ_LEN);
  2931. iwe.u.freq.m = bss->freq * 100000;
  2932. iwe.u.freq.e = 1;
  2933. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  2934. IW_EV_FREQ_LEN);
  2935. memset(&iwe, 0, sizeof(iwe));
  2936. iwe.cmd = IWEVQUAL;
  2937. iwe.u.qual.qual = bss->signal;
  2938. iwe.u.qual.level = bss->rssi;
  2939. iwe.u.qual.noise = bss->noise;
  2940. iwe.u.qual.updated = local->wstats_flags;
  2941. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  2942. IW_EV_QUAL_LEN);
  2943. memset(&iwe, 0, sizeof(iwe));
  2944. iwe.cmd = SIOCGIWENCODE;
  2945. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  2946. iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
  2947. else
  2948. iwe.u.data.flags = IW_ENCODE_DISABLED;
  2949. iwe.u.data.length = 0;
  2950. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe, "");
  2951. if (bss && bss->wpa_ie) {
  2952. memset(&iwe, 0, sizeof(iwe));
  2953. iwe.cmd = IWEVGENIE;
  2954. iwe.u.data.length = bss->wpa_ie_len;
  2955. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  2956. bss->wpa_ie);
  2957. }
  2958. if (bss && bss->rsn_ie) {
  2959. memset(&iwe, 0, sizeof(iwe));
  2960. iwe.cmd = IWEVGENIE;
  2961. iwe.u.data.length = bss->rsn_ie_len;
  2962. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  2963. bss->rsn_ie);
  2964. }
  2965. if (bss && bss->supp_rates_len > 0) {
  2966. /* display all supported rates in readable format */
  2967. char *p = current_ev + IW_EV_LCP_LEN;
  2968. int i;
  2969. memset(&iwe, 0, sizeof(iwe));
  2970. iwe.cmd = SIOCGIWRATE;
  2971. /* Those two flags are ignored... */
  2972. iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
  2973. for (i = 0; i < bss->supp_rates_len; i++) {
  2974. iwe.u.bitrate.value = ((bss->supp_rates[i] &
  2975. 0x7f) * 500000);
  2976. p = iwe_stream_add_value(current_ev, p,
  2977. end_buf, &iwe, IW_EV_PARAM_LEN);
  2978. }
  2979. current_ev = p;
  2980. }
  2981. if (bss) {
  2982. char *buf;
  2983. buf = kmalloc(30, GFP_ATOMIC);
  2984. if (buf) {
  2985. memset(&iwe, 0, sizeof(iwe));
  2986. iwe.cmd = IWEVCUSTOM;
  2987. sprintf(buf, "tsf=%016llx", (unsigned long long)(bss->timestamp));
  2988. iwe.u.data.length = strlen(buf);
  2989. current_ev = iwe_stream_add_point(current_ev, end_buf,
  2990. &iwe, buf);
  2991. kfree(buf);
  2992. }
  2993. }
  2994. return current_ev;
  2995. }
  2996. int ieee80211_sta_scan_results(struct net_device *dev, char *buf, size_t len)
  2997. {
  2998. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2999. char *current_ev = buf;
  3000. char *end_buf = buf + len;
  3001. struct ieee80211_sta_bss *bss;
  3002. spin_lock_bh(&local->sta_bss_lock);
  3003. list_for_each_entry(bss, &local->sta_bss_list, list) {
  3004. if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
  3005. spin_unlock_bh(&local->sta_bss_lock);
  3006. return -E2BIG;
  3007. }
  3008. current_ev = ieee80211_sta_scan_result(dev, bss, current_ev,
  3009. end_buf);
  3010. }
  3011. spin_unlock_bh(&local->sta_bss_lock);
  3012. return current_ev - buf;
  3013. }
  3014. int ieee80211_sta_set_extra_ie(struct net_device *dev, char *ie, size_t len)
  3015. {
  3016. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3017. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3018. kfree(ifsta->extra_ie);
  3019. if (len == 0) {
  3020. ifsta->extra_ie = NULL;
  3021. ifsta->extra_ie_len = 0;
  3022. return 0;
  3023. }
  3024. ifsta->extra_ie = kmalloc(len, GFP_KERNEL);
  3025. if (!ifsta->extra_ie) {
  3026. ifsta->extra_ie_len = 0;
  3027. return -ENOMEM;
  3028. }
  3029. memcpy(ifsta->extra_ie, ie, len);
  3030. ifsta->extra_ie_len = len;
  3031. return 0;
  3032. }
  3033. struct sta_info * ieee80211_ibss_add_sta(struct net_device *dev,
  3034. struct sk_buff *skb, u8 *bssid,
  3035. u8 *addr)
  3036. {
  3037. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3038. struct sta_info *sta;
  3039. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3040. DECLARE_MAC_BUF(mac);
  3041. /* TODO: Could consider removing the least recently used entry and
  3042. * allow new one to be added. */
  3043. if (local->num_sta >= IEEE80211_IBSS_MAX_STA_ENTRIES) {
  3044. if (net_ratelimit()) {
  3045. printk(KERN_DEBUG "%s: No room for a new IBSS STA "
  3046. "entry %s\n", dev->name, print_mac(mac, addr));
  3047. }
  3048. return NULL;
  3049. }
  3050. printk(KERN_DEBUG "%s: Adding new IBSS station %s (dev=%s)\n",
  3051. wiphy_name(local->hw.wiphy), print_mac(mac, addr), dev->name);
  3052. sta = sta_info_add(local, dev, addr, GFP_ATOMIC);
  3053. if (!sta)
  3054. return NULL;
  3055. sta->supp_rates = sdata->u.sta.supp_rates_bits;
  3056. rate_control_rate_init(sta, local);
  3057. return sta; /* caller will call sta_info_put() */
  3058. }
  3059. int ieee80211_sta_deauthenticate(struct net_device *dev, u16 reason)
  3060. {
  3061. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3062. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3063. printk(KERN_DEBUG "%s: deauthenticate(reason=%d)\n",
  3064. dev->name, reason);
  3065. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  3066. sdata->vif.type != IEEE80211_IF_TYPE_IBSS)
  3067. return -EINVAL;
  3068. ieee80211_send_deauth(dev, ifsta, reason);
  3069. ieee80211_set_disassoc(dev, ifsta, 1);
  3070. return 0;
  3071. }
  3072. int ieee80211_sta_disassociate(struct net_device *dev, u16 reason)
  3073. {
  3074. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3075. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3076. printk(KERN_DEBUG "%s: disassociate(reason=%d)\n",
  3077. dev->name, reason);
  3078. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  3079. return -EINVAL;
  3080. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED))
  3081. return -1;
  3082. ieee80211_send_disassoc(dev, ifsta, reason);
  3083. ieee80211_set_disassoc(dev, ifsta, 0);
  3084. return 0;
  3085. }