swap_state.c 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359
  1. /*
  2. * linux/mm/swap_state.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. * Swap reorganised 29.12.95, Stephen Tweedie
  6. *
  7. * Rewritten to use page cache, (C) 1998 Stephen Tweedie
  8. */
  9. #include <linux/module.h>
  10. #include <linux/mm.h>
  11. #include <linux/kernel_stat.h>
  12. #include <linux/swap.h>
  13. #include <linux/swapops.h>
  14. #include <linux/init.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/buffer_head.h>
  17. #include <linux/backing-dev.h>
  18. #include <linux/pagevec.h>
  19. #include <linux/migrate.h>
  20. #include <asm/pgtable.h>
  21. /*
  22. * swapper_space is a fiction, retained to simplify the path through
  23. * vmscan's shrink_page_list, to make sync_page look nicer, and to allow
  24. * future use of radix_tree tags in the swap cache.
  25. */
  26. static const struct address_space_operations swap_aops = {
  27. .writepage = swap_writepage,
  28. .sync_page = block_sync_page,
  29. .set_page_dirty = __set_page_dirty_nobuffers,
  30. .migratepage = migrate_page,
  31. };
  32. static struct backing_dev_info swap_backing_dev_info = {
  33. .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
  34. .unplug_io_fn = swap_unplug_io_fn,
  35. };
  36. struct address_space swapper_space = {
  37. .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
  38. .tree_lock = __RW_LOCK_UNLOCKED(swapper_space.tree_lock),
  39. .a_ops = &swap_aops,
  40. .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
  41. .backing_dev_info = &swap_backing_dev_info,
  42. };
  43. #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
  44. static struct {
  45. unsigned long add_total;
  46. unsigned long del_total;
  47. unsigned long find_success;
  48. unsigned long find_total;
  49. } swap_cache_info;
  50. void show_swap_cache_info(void)
  51. {
  52. printk("Swap cache: add %lu, delete %lu, find %lu/%lu\n",
  53. swap_cache_info.add_total, swap_cache_info.del_total,
  54. swap_cache_info.find_success, swap_cache_info.find_total);
  55. printk("Free swap = %lukB\n", nr_swap_pages << (PAGE_SHIFT - 10));
  56. printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
  57. }
  58. /*
  59. * add_to_swap_cache resembles add_to_page_cache on swapper_space,
  60. * but sets SwapCache flag and private instead of mapping and index.
  61. */
  62. int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
  63. {
  64. int error;
  65. BUG_ON(!PageLocked(page));
  66. BUG_ON(PageSwapCache(page));
  67. BUG_ON(PagePrivate(page));
  68. error = radix_tree_preload(gfp_mask);
  69. if (!error) {
  70. write_lock_irq(&swapper_space.tree_lock);
  71. error = radix_tree_insert(&swapper_space.page_tree,
  72. entry.val, page);
  73. if (!error) {
  74. page_cache_get(page);
  75. SetPageSwapCache(page);
  76. set_page_private(page, entry.val);
  77. total_swapcache_pages++;
  78. __inc_zone_page_state(page, NR_FILE_PAGES);
  79. INC_CACHE_INFO(add_total);
  80. }
  81. write_unlock_irq(&swapper_space.tree_lock);
  82. radix_tree_preload_end();
  83. }
  84. return error;
  85. }
  86. /*
  87. * This must be called only on pages that have
  88. * been verified to be in the swap cache.
  89. */
  90. void __delete_from_swap_cache(struct page *page)
  91. {
  92. BUG_ON(!PageLocked(page));
  93. BUG_ON(!PageSwapCache(page));
  94. BUG_ON(PageWriteback(page));
  95. BUG_ON(PagePrivate(page));
  96. radix_tree_delete(&swapper_space.page_tree, page_private(page));
  97. set_page_private(page, 0);
  98. ClearPageSwapCache(page);
  99. total_swapcache_pages--;
  100. __dec_zone_page_state(page, NR_FILE_PAGES);
  101. INC_CACHE_INFO(del_total);
  102. }
  103. /**
  104. * add_to_swap - allocate swap space for a page
  105. * @page: page we want to move to swap
  106. *
  107. * Allocate swap space for the page and add the page to the
  108. * swap cache. Caller needs to hold the page lock.
  109. */
  110. int add_to_swap(struct page * page, gfp_t gfp_mask)
  111. {
  112. swp_entry_t entry;
  113. int err;
  114. BUG_ON(!PageLocked(page));
  115. BUG_ON(!PageUptodate(page));
  116. for (;;) {
  117. entry = get_swap_page();
  118. if (!entry.val)
  119. return 0;
  120. /*
  121. * Radix-tree node allocations from PF_MEMALLOC contexts could
  122. * completely exhaust the page allocator. __GFP_NOMEMALLOC
  123. * stops emergency reserves from being allocated.
  124. *
  125. * TODO: this could cause a theoretical memory reclaim
  126. * deadlock in the swap out path.
  127. */
  128. /*
  129. * Add it to the swap cache and mark it dirty
  130. */
  131. err = add_to_swap_cache(page, entry,
  132. gfp_mask|__GFP_NOMEMALLOC|__GFP_NOWARN);
  133. switch (err) {
  134. case 0: /* Success */
  135. SetPageDirty(page);
  136. return 1;
  137. case -EEXIST:
  138. /* Raced with "speculative" read_swap_cache_async */
  139. swap_free(entry);
  140. continue;
  141. default:
  142. /* -ENOMEM radix-tree allocation failure */
  143. swap_free(entry);
  144. return 0;
  145. }
  146. }
  147. }
  148. /*
  149. * This must be called only on pages that have
  150. * been verified to be in the swap cache and locked.
  151. * It will never put the page into the free list,
  152. * the caller has a reference on the page.
  153. */
  154. void delete_from_swap_cache(struct page *page)
  155. {
  156. swp_entry_t entry;
  157. entry.val = page_private(page);
  158. write_lock_irq(&swapper_space.tree_lock);
  159. __delete_from_swap_cache(page);
  160. write_unlock_irq(&swapper_space.tree_lock);
  161. swap_free(entry);
  162. page_cache_release(page);
  163. }
  164. /*
  165. * If we are the only user, then try to free up the swap cache.
  166. *
  167. * Its ok to check for PageSwapCache without the page lock
  168. * here because we are going to recheck again inside
  169. * exclusive_swap_page() _with_ the lock.
  170. * - Marcelo
  171. */
  172. static inline void free_swap_cache(struct page *page)
  173. {
  174. if (PageSwapCache(page) && !TestSetPageLocked(page)) {
  175. remove_exclusive_swap_page(page);
  176. unlock_page(page);
  177. }
  178. }
  179. /*
  180. * Perform a free_page(), also freeing any swap cache associated with
  181. * this page if it is the last user of the page.
  182. */
  183. void free_page_and_swap_cache(struct page *page)
  184. {
  185. free_swap_cache(page);
  186. page_cache_release(page);
  187. }
  188. /*
  189. * Passed an array of pages, drop them all from swapcache and then release
  190. * them. They are removed from the LRU and freed if this is their last use.
  191. */
  192. void free_pages_and_swap_cache(struct page **pages, int nr)
  193. {
  194. struct page **pagep = pages;
  195. lru_add_drain();
  196. while (nr) {
  197. int todo = min(nr, PAGEVEC_SIZE);
  198. int i;
  199. for (i = 0; i < todo; i++)
  200. free_swap_cache(pagep[i]);
  201. release_pages(pagep, todo, 0);
  202. pagep += todo;
  203. nr -= todo;
  204. }
  205. }
  206. /*
  207. * Lookup a swap entry in the swap cache. A found page will be returned
  208. * unlocked and with its refcount incremented - we rely on the kernel
  209. * lock getting page table operations atomic even if we drop the page
  210. * lock before returning.
  211. */
  212. struct page * lookup_swap_cache(swp_entry_t entry)
  213. {
  214. struct page *page;
  215. page = find_get_page(&swapper_space, entry.val);
  216. if (page)
  217. INC_CACHE_INFO(find_success);
  218. INC_CACHE_INFO(find_total);
  219. return page;
  220. }
  221. /*
  222. * Locate a page of swap in physical memory, reserving swap cache space
  223. * and reading the disk if it is not already cached.
  224. * A failure return means that either the page allocation failed or that
  225. * the swap entry is no longer in use.
  226. */
  227. struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
  228. struct vm_area_struct *vma, unsigned long addr)
  229. {
  230. struct page *found_page, *new_page = NULL;
  231. int err;
  232. do {
  233. /*
  234. * First check the swap cache. Since this is normally
  235. * called after lookup_swap_cache() failed, re-calling
  236. * that would confuse statistics.
  237. */
  238. found_page = find_get_page(&swapper_space, entry.val);
  239. if (found_page)
  240. break;
  241. /*
  242. * Get a new page to read into from swap.
  243. */
  244. if (!new_page) {
  245. new_page = alloc_page_vma(gfp_mask, vma, addr);
  246. if (!new_page)
  247. break; /* Out of memory */
  248. }
  249. /*
  250. * Swap entry may have been freed since our caller observed it.
  251. */
  252. if (!swap_duplicate(entry))
  253. break;
  254. /*
  255. * Associate the page with swap entry in the swap cache.
  256. * May fail (-EEXIST) if there is already a page associated
  257. * with this entry in the swap cache: added by a racing
  258. * read_swap_cache_async, or add_to_swap or shmem_writepage
  259. * re-using the just freed swap entry for an existing page.
  260. * May fail (-ENOMEM) if radix-tree node allocation failed.
  261. */
  262. SetPageLocked(new_page);
  263. err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL);
  264. if (!err) {
  265. /*
  266. * Initiate read into locked page and return.
  267. */
  268. lru_cache_add_active(new_page);
  269. swap_readpage(NULL, new_page);
  270. return new_page;
  271. }
  272. ClearPageLocked(new_page);
  273. swap_free(entry);
  274. } while (err != -ENOMEM);
  275. if (new_page)
  276. page_cache_release(new_page);
  277. return found_page;
  278. }
  279. /**
  280. * swapin_readahead - swap in pages in hope we need them soon
  281. * @entry: swap entry of this memory
  282. * @vma: user vma this address belongs to
  283. * @addr: target address for mempolicy
  284. *
  285. * Returns the struct page for entry and addr, after queueing swapin.
  286. *
  287. * Primitive swap readahead code. We simply read an aligned block of
  288. * (1 << page_cluster) entries in the swap area. This method is chosen
  289. * because it doesn't cost us any seek time. We also make sure to queue
  290. * the 'original' request together with the readahead ones...
  291. *
  292. * This has been extended to use the NUMA policies from the mm triggering
  293. * the readahead.
  294. *
  295. * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
  296. */
  297. struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
  298. struct vm_area_struct *vma, unsigned long addr)
  299. {
  300. int nr_pages;
  301. struct page *page;
  302. unsigned long offset;
  303. unsigned long end_offset;
  304. /*
  305. * Get starting offset for readaround, and number of pages to read.
  306. * Adjust starting address by readbehind (for NUMA interleave case)?
  307. * No, it's very unlikely that swap layout would follow vma layout,
  308. * more likely that neighbouring swap pages came from the same node:
  309. * so use the same "addr" to choose the same node for each swap read.
  310. */
  311. nr_pages = valid_swaphandles(entry, &offset);
  312. for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
  313. /* Ok, do the async read-ahead now */
  314. page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
  315. gfp_mask, vma, addr);
  316. if (!page)
  317. break;
  318. page_cache_release(page);
  319. }
  320. lru_add_drain(); /* Push any new pages onto the LRU now */
  321. return read_swap_cache_async(entry, gfp_mask, vma, addr);
  322. }