oom_kill.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583
  1. /*
  2. * linux/mm/oom_kill.c
  3. *
  4. * Copyright (C) 1998,2000 Rik van Riel
  5. * Thanks go out to Claus Fischer for some serious inspiration and
  6. * for goading me into coding this file...
  7. *
  8. * The routines in this file are used to kill a process when
  9. * we're seriously out of memory. This gets called from __alloc_pages()
  10. * in mm/page_alloc.c when we really run out of memory.
  11. *
  12. * Since we won't call these routines often (on a well-configured
  13. * machine) this file will double as a 'coding guide' and a signpost
  14. * for newbie kernel hackers. It features several pointers to major
  15. * kernel subsystems and hints as to where to find out what things do.
  16. */
  17. #include <linux/oom.h>
  18. #include <linux/mm.h>
  19. #include <linux/err.h>
  20. #include <linux/sched.h>
  21. #include <linux/swap.h>
  22. #include <linux/timex.h>
  23. #include <linux/jiffies.h>
  24. #include <linux/cpuset.h>
  25. #include <linux/module.h>
  26. #include <linux/notifier.h>
  27. #include <linux/memcontrol.h>
  28. int sysctl_panic_on_oom;
  29. int sysctl_oom_kill_allocating_task;
  30. int sysctl_oom_dump_tasks;
  31. static DEFINE_SPINLOCK(zone_scan_mutex);
  32. /* #define DEBUG */
  33. /**
  34. * badness - calculate a numeric value for how bad this task has been
  35. * @p: task struct of which task we should calculate
  36. * @uptime: current uptime in seconds
  37. *
  38. * The formula used is relatively simple and documented inline in the
  39. * function. The main rationale is that we want to select a good task
  40. * to kill when we run out of memory.
  41. *
  42. * Good in this context means that:
  43. * 1) we lose the minimum amount of work done
  44. * 2) we recover a large amount of memory
  45. * 3) we don't kill anything innocent of eating tons of memory
  46. * 4) we want to kill the minimum amount of processes (one)
  47. * 5) we try to kill the process the user expects us to kill, this
  48. * algorithm has been meticulously tuned to meet the principle
  49. * of least surprise ... (be careful when you change it)
  50. */
  51. unsigned long badness(struct task_struct *p, unsigned long uptime,
  52. struct mem_cgroup *mem)
  53. {
  54. unsigned long points, cpu_time, run_time, s;
  55. struct mm_struct *mm;
  56. struct task_struct *child;
  57. task_lock(p);
  58. mm = p->mm;
  59. if (!mm) {
  60. task_unlock(p);
  61. return 0;
  62. }
  63. /*
  64. * The memory size of the process is the basis for the badness.
  65. */
  66. points = mm->total_vm;
  67. /*
  68. * After this unlock we can no longer dereference local variable `mm'
  69. */
  70. task_unlock(p);
  71. /*
  72. * swapoff can easily use up all memory, so kill those first.
  73. */
  74. if (p->flags & PF_SWAPOFF)
  75. return ULONG_MAX;
  76. /*
  77. * Processes which fork a lot of child processes are likely
  78. * a good choice. We add half the vmsize of the children if they
  79. * have an own mm. This prevents forking servers to flood the
  80. * machine with an endless amount of children. In case a single
  81. * child is eating the vast majority of memory, adding only half
  82. * to the parents will make the child our kill candidate of choice.
  83. */
  84. list_for_each_entry(child, &p->children, sibling) {
  85. task_lock(child);
  86. if (child->mm != mm && child->mm)
  87. points += child->mm->total_vm/2 + 1;
  88. task_unlock(child);
  89. }
  90. /*
  91. * CPU time is in tens of seconds and run time is in thousands
  92. * of seconds. There is no particular reason for this other than
  93. * that it turned out to work very well in practice.
  94. */
  95. cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
  96. >> (SHIFT_HZ + 3);
  97. if (uptime >= p->start_time.tv_sec)
  98. run_time = (uptime - p->start_time.tv_sec) >> 10;
  99. else
  100. run_time = 0;
  101. s = int_sqrt(cpu_time);
  102. if (s)
  103. points /= s;
  104. s = int_sqrt(int_sqrt(run_time));
  105. if (s)
  106. points /= s;
  107. /*
  108. * Niced processes are most likely less important, so double
  109. * their badness points.
  110. */
  111. if (task_nice(p) > 0)
  112. points *= 2;
  113. /*
  114. * Superuser processes are usually more important, so we make it
  115. * less likely that we kill those.
  116. */
  117. if (__capable(p, CAP_SYS_ADMIN) || __capable(p, CAP_SYS_RESOURCE))
  118. points /= 4;
  119. /*
  120. * We don't want to kill a process with direct hardware access.
  121. * Not only could that mess up the hardware, but usually users
  122. * tend to only have this flag set on applications they think
  123. * of as important.
  124. */
  125. if (__capable(p, CAP_SYS_RAWIO))
  126. points /= 4;
  127. /*
  128. * If p's nodes don't overlap ours, it may still help to kill p
  129. * because p may have allocated or otherwise mapped memory on
  130. * this node before. However it will be less likely.
  131. */
  132. if (!cpuset_mems_allowed_intersects(current, p))
  133. points /= 8;
  134. /*
  135. * Adjust the score by oomkilladj.
  136. */
  137. if (p->oomkilladj) {
  138. if (p->oomkilladj > 0) {
  139. if (!points)
  140. points = 1;
  141. points <<= p->oomkilladj;
  142. } else
  143. points >>= -(p->oomkilladj);
  144. }
  145. #ifdef DEBUG
  146. printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
  147. p->pid, p->comm, points);
  148. #endif
  149. return points;
  150. }
  151. /*
  152. * Determine the type of allocation constraint.
  153. */
  154. static inline enum oom_constraint constrained_alloc(struct zonelist *zonelist,
  155. gfp_t gfp_mask)
  156. {
  157. #ifdef CONFIG_NUMA
  158. struct zone **z;
  159. nodemask_t nodes = node_states[N_HIGH_MEMORY];
  160. for (z = zonelist->zones; *z; z++)
  161. if (cpuset_zone_allowed_softwall(*z, gfp_mask))
  162. node_clear(zone_to_nid(*z), nodes);
  163. else
  164. return CONSTRAINT_CPUSET;
  165. if (!nodes_empty(nodes))
  166. return CONSTRAINT_MEMORY_POLICY;
  167. #endif
  168. return CONSTRAINT_NONE;
  169. }
  170. /*
  171. * Simple selection loop. We chose the process with the highest
  172. * number of 'points'. We expect the caller will lock the tasklist.
  173. *
  174. * (not docbooked, we don't want this one cluttering up the manual)
  175. */
  176. static struct task_struct *select_bad_process(unsigned long *ppoints,
  177. struct mem_cgroup *mem)
  178. {
  179. struct task_struct *g, *p;
  180. struct task_struct *chosen = NULL;
  181. struct timespec uptime;
  182. *ppoints = 0;
  183. do_posix_clock_monotonic_gettime(&uptime);
  184. do_each_thread(g, p) {
  185. unsigned long points;
  186. /*
  187. * skip kernel threads and tasks which have already released
  188. * their mm.
  189. */
  190. if (!p->mm)
  191. continue;
  192. /* skip the init task */
  193. if (is_global_init(p))
  194. continue;
  195. if (mem && !task_in_mem_cgroup(p, mem))
  196. continue;
  197. /*
  198. * This task already has access to memory reserves and is
  199. * being killed. Don't allow any other task access to the
  200. * memory reserve.
  201. *
  202. * Note: this may have a chance of deadlock if it gets
  203. * blocked waiting for another task which itself is waiting
  204. * for memory. Is there a better alternative?
  205. */
  206. if (test_tsk_thread_flag(p, TIF_MEMDIE))
  207. return ERR_PTR(-1UL);
  208. /*
  209. * This is in the process of releasing memory so wait for it
  210. * to finish before killing some other task by mistake.
  211. *
  212. * However, if p is the current task, we allow the 'kill' to
  213. * go ahead if it is exiting: this will simply set TIF_MEMDIE,
  214. * which will allow it to gain access to memory reserves in
  215. * the process of exiting and releasing its resources.
  216. * Otherwise we could get an easy OOM deadlock.
  217. */
  218. if (p->flags & PF_EXITING) {
  219. if (p != current)
  220. return ERR_PTR(-1UL);
  221. chosen = p;
  222. *ppoints = ULONG_MAX;
  223. }
  224. if (p->oomkilladj == OOM_DISABLE)
  225. continue;
  226. points = badness(p, uptime.tv_sec, mem);
  227. if (points > *ppoints || !chosen) {
  228. chosen = p;
  229. *ppoints = points;
  230. }
  231. } while_each_thread(g, p);
  232. return chosen;
  233. }
  234. /**
  235. * Dumps the current memory state of all system tasks, excluding kernel threads.
  236. * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
  237. * score, and name.
  238. *
  239. * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are
  240. * shown.
  241. *
  242. * Call with tasklist_lock read-locked.
  243. */
  244. static void dump_tasks(const struct mem_cgroup *mem)
  245. {
  246. struct task_struct *g, *p;
  247. printk(KERN_INFO "[ pid ] uid tgid total_vm rss cpu oom_adj "
  248. "name\n");
  249. do_each_thread(g, p) {
  250. /*
  251. * total_vm and rss sizes do not exist for tasks with a
  252. * detached mm so there's no need to report them.
  253. */
  254. if (!p->mm)
  255. continue;
  256. if (mem && !task_in_mem_cgroup(p, mem))
  257. continue;
  258. task_lock(p);
  259. printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3d %3d %s\n",
  260. p->pid, p->uid, p->tgid, p->mm->total_vm,
  261. get_mm_rss(p->mm), (int)task_cpu(p), p->oomkilladj,
  262. p->comm);
  263. task_unlock(p);
  264. } while_each_thread(g, p);
  265. }
  266. /**
  267. * Send SIGKILL to the selected process irrespective of CAP_SYS_RAW_IO
  268. * flag though it's unlikely that we select a process with CAP_SYS_RAW_IO
  269. * set.
  270. */
  271. static void __oom_kill_task(struct task_struct *p, int verbose)
  272. {
  273. if (is_global_init(p)) {
  274. WARN_ON(1);
  275. printk(KERN_WARNING "tried to kill init!\n");
  276. return;
  277. }
  278. if (!p->mm) {
  279. WARN_ON(1);
  280. printk(KERN_WARNING "tried to kill an mm-less task!\n");
  281. return;
  282. }
  283. if (verbose)
  284. printk(KERN_ERR "Killed process %d (%s)\n",
  285. task_pid_nr(p), p->comm);
  286. /*
  287. * We give our sacrificial lamb high priority and access to
  288. * all the memory it needs. That way it should be able to
  289. * exit() and clear out its resources quickly...
  290. */
  291. p->rt.time_slice = HZ;
  292. set_tsk_thread_flag(p, TIF_MEMDIE);
  293. force_sig(SIGKILL, p);
  294. }
  295. static int oom_kill_task(struct task_struct *p)
  296. {
  297. struct mm_struct *mm;
  298. struct task_struct *g, *q;
  299. mm = p->mm;
  300. /* WARNING: mm may not be dereferenced since we did not obtain its
  301. * value from get_task_mm(p). This is OK since all we need to do is
  302. * compare mm to q->mm below.
  303. *
  304. * Furthermore, even if mm contains a non-NULL value, p->mm may
  305. * change to NULL at any time since we do not hold task_lock(p).
  306. * However, this is of no concern to us.
  307. */
  308. if (mm == NULL)
  309. return 1;
  310. /*
  311. * Don't kill the process if any threads are set to OOM_DISABLE
  312. */
  313. do_each_thread(g, q) {
  314. if (q->mm == mm && q->oomkilladj == OOM_DISABLE)
  315. return 1;
  316. } while_each_thread(g, q);
  317. __oom_kill_task(p, 1);
  318. /*
  319. * kill all processes that share the ->mm (i.e. all threads),
  320. * but are in a different thread group. Don't let them have access
  321. * to memory reserves though, otherwise we might deplete all memory.
  322. */
  323. do_each_thread(g, q) {
  324. if (q->mm == mm && !same_thread_group(q, p))
  325. force_sig(SIGKILL, q);
  326. } while_each_thread(g, q);
  327. return 0;
  328. }
  329. static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
  330. unsigned long points, struct mem_cgroup *mem,
  331. const char *message)
  332. {
  333. struct task_struct *c;
  334. if (printk_ratelimit()) {
  335. printk(KERN_WARNING "%s invoked oom-killer: "
  336. "gfp_mask=0x%x, order=%d, oomkilladj=%d\n",
  337. current->comm, gfp_mask, order, current->oomkilladj);
  338. dump_stack();
  339. show_mem();
  340. if (sysctl_oom_dump_tasks)
  341. dump_tasks(mem);
  342. }
  343. /*
  344. * If the task is already exiting, don't alarm the sysadmin or kill
  345. * its children or threads, just set TIF_MEMDIE so it can die quickly
  346. */
  347. if (p->flags & PF_EXITING) {
  348. __oom_kill_task(p, 0);
  349. return 0;
  350. }
  351. printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
  352. message, task_pid_nr(p), p->comm, points);
  353. /* Try to kill a child first */
  354. list_for_each_entry(c, &p->children, sibling) {
  355. if (c->mm == p->mm)
  356. continue;
  357. if (!oom_kill_task(c))
  358. return 0;
  359. }
  360. return oom_kill_task(p);
  361. }
  362. #ifdef CONFIG_CGROUP_MEM_CONT
  363. void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
  364. {
  365. unsigned long points = 0;
  366. struct task_struct *p;
  367. cgroup_lock();
  368. rcu_read_lock();
  369. retry:
  370. p = select_bad_process(&points, mem);
  371. if (PTR_ERR(p) == -1UL)
  372. goto out;
  373. if (!p)
  374. p = current;
  375. if (oom_kill_process(p, gfp_mask, 0, points, mem,
  376. "Memory cgroup out of memory"))
  377. goto retry;
  378. out:
  379. rcu_read_unlock();
  380. cgroup_unlock();
  381. }
  382. #endif
  383. static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
  384. int register_oom_notifier(struct notifier_block *nb)
  385. {
  386. return blocking_notifier_chain_register(&oom_notify_list, nb);
  387. }
  388. EXPORT_SYMBOL_GPL(register_oom_notifier);
  389. int unregister_oom_notifier(struct notifier_block *nb)
  390. {
  391. return blocking_notifier_chain_unregister(&oom_notify_list, nb);
  392. }
  393. EXPORT_SYMBOL_GPL(unregister_oom_notifier);
  394. /*
  395. * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero
  396. * if a parallel OOM killing is already taking place that includes a zone in
  397. * the zonelist. Otherwise, locks all zones in the zonelist and returns 1.
  398. */
  399. int try_set_zone_oom(struct zonelist *zonelist)
  400. {
  401. struct zone **z;
  402. int ret = 1;
  403. z = zonelist->zones;
  404. spin_lock(&zone_scan_mutex);
  405. do {
  406. if (zone_is_oom_locked(*z)) {
  407. ret = 0;
  408. goto out;
  409. }
  410. } while (*(++z) != NULL);
  411. /*
  412. * Lock each zone in the zonelist under zone_scan_mutex so a parallel
  413. * invocation of try_set_zone_oom() doesn't succeed when it shouldn't.
  414. */
  415. z = zonelist->zones;
  416. do {
  417. zone_set_flag(*z, ZONE_OOM_LOCKED);
  418. } while (*(++z) != NULL);
  419. out:
  420. spin_unlock(&zone_scan_mutex);
  421. return ret;
  422. }
  423. /*
  424. * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
  425. * allocation attempts with zonelists containing them may now recall the OOM
  426. * killer, if necessary.
  427. */
  428. void clear_zonelist_oom(struct zonelist *zonelist)
  429. {
  430. struct zone **z;
  431. z = zonelist->zones;
  432. spin_lock(&zone_scan_mutex);
  433. do {
  434. zone_clear_flag(*z, ZONE_OOM_LOCKED);
  435. } while (*(++z) != NULL);
  436. spin_unlock(&zone_scan_mutex);
  437. }
  438. /**
  439. * out_of_memory - kill the "best" process when we run out of memory
  440. *
  441. * If we run out of memory, we have the choice between either
  442. * killing a random task (bad), letting the system crash (worse)
  443. * OR try to be smart about which process to kill. Note that we
  444. * don't have to be perfect here, we just have to be good.
  445. */
  446. void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
  447. {
  448. struct task_struct *p;
  449. unsigned long points = 0;
  450. unsigned long freed = 0;
  451. enum oom_constraint constraint;
  452. blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
  453. if (freed > 0)
  454. /* Got some memory back in the last second. */
  455. return;
  456. if (sysctl_panic_on_oom == 2)
  457. panic("out of memory. Compulsory panic_on_oom is selected.\n");
  458. /*
  459. * Check if there were limitations on the allocation (only relevant for
  460. * NUMA) that may require different handling.
  461. */
  462. constraint = constrained_alloc(zonelist, gfp_mask);
  463. read_lock(&tasklist_lock);
  464. switch (constraint) {
  465. case CONSTRAINT_MEMORY_POLICY:
  466. oom_kill_process(current, gfp_mask, order, points, NULL,
  467. "No available memory (MPOL_BIND)");
  468. break;
  469. case CONSTRAINT_NONE:
  470. if (sysctl_panic_on_oom)
  471. panic("out of memory. panic_on_oom is selected\n");
  472. /* Fall-through */
  473. case CONSTRAINT_CPUSET:
  474. if (sysctl_oom_kill_allocating_task) {
  475. oom_kill_process(current, gfp_mask, order, points, NULL,
  476. "Out of memory (oom_kill_allocating_task)");
  477. break;
  478. }
  479. retry:
  480. /*
  481. * Rambo mode: Shoot down a process and hope it solves whatever
  482. * issues we may have.
  483. */
  484. p = select_bad_process(&points, NULL);
  485. if (PTR_ERR(p) == -1UL)
  486. goto out;
  487. /* Found nothing?!?! Either we hang forever, or we panic. */
  488. if (!p) {
  489. read_unlock(&tasklist_lock);
  490. panic("Out of memory and no killable processes...\n");
  491. }
  492. if (oom_kill_process(p, gfp_mask, order, points, NULL,
  493. "Out of memory"))
  494. goto retry;
  495. break;
  496. }
  497. out:
  498. read_unlock(&tasklist_lock);
  499. /*
  500. * Give "p" a good chance of killing itself before we
  501. * retry to allocate memory unless "p" is current
  502. */
  503. if (!test_thread_flag(TIF_MEMDIE))
  504. schedule_timeout_uninterruptible(1);
  505. }