memory.c 73 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/rmap.h>
  44. #include <linux/module.h>
  45. #include <linux/delayacct.h>
  46. #include <linux/init.h>
  47. #include <linux/writeback.h>
  48. #include <linux/memcontrol.h>
  49. #include <asm/pgalloc.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/tlb.h>
  52. #include <asm/tlbflush.h>
  53. #include <asm/pgtable.h>
  54. #include <linux/swapops.h>
  55. #include <linux/elf.h>
  56. #ifndef CONFIG_NEED_MULTIPLE_NODES
  57. /* use the per-pgdat data instead for discontigmem - mbligh */
  58. unsigned long max_mapnr;
  59. struct page *mem_map;
  60. EXPORT_SYMBOL(max_mapnr);
  61. EXPORT_SYMBOL(mem_map);
  62. #endif
  63. unsigned long num_physpages;
  64. /*
  65. * A number of key systems in x86 including ioremap() rely on the assumption
  66. * that high_memory defines the upper bound on direct map memory, then end
  67. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  68. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  69. * and ZONE_HIGHMEM.
  70. */
  71. void * high_memory;
  72. EXPORT_SYMBOL(num_physpages);
  73. EXPORT_SYMBOL(high_memory);
  74. /*
  75. * Randomize the address space (stacks, mmaps, brk, etc.).
  76. *
  77. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  78. * as ancient (libc5 based) binaries can segfault. )
  79. */
  80. int randomize_va_space __read_mostly =
  81. #ifdef CONFIG_COMPAT_BRK
  82. 1;
  83. #else
  84. 2;
  85. #endif
  86. static int __init disable_randmaps(char *s)
  87. {
  88. randomize_va_space = 0;
  89. return 1;
  90. }
  91. __setup("norandmaps", disable_randmaps);
  92. /*
  93. * If a p?d_bad entry is found while walking page tables, report
  94. * the error, before resetting entry to p?d_none. Usually (but
  95. * very seldom) called out from the p?d_none_or_clear_bad macros.
  96. */
  97. void pgd_clear_bad(pgd_t *pgd)
  98. {
  99. pgd_ERROR(*pgd);
  100. pgd_clear(pgd);
  101. }
  102. void pud_clear_bad(pud_t *pud)
  103. {
  104. pud_ERROR(*pud);
  105. pud_clear(pud);
  106. }
  107. void pmd_clear_bad(pmd_t *pmd)
  108. {
  109. pmd_ERROR(*pmd);
  110. pmd_clear(pmd);
  111. }
  112. /*
  113. * Note: this doesn't free the actual pages themselves. That
  114. * has been handled earlier when unmapping all the memory regions.
  115. */
  116. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
  117. {
  118. pgtable_t token = pmd_pgtable(*pmd);
  119. pmd_clear(pmd);
  120. pte_free_tlb(tlb, token);
  121. tlb->mm->nr_ptes--;
  122. }
  123. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  124. unsigned long addr, unsigned long end,
  125. unsigned long floor, unsigned long ceiling)
  126. {
  127. pmd_t *pmd;
  128. unsigned long next;
  129. unsigned long start;
  130. start = addr;
  131. pmd = pmd_offset(pud, addr);
  132. do {
  133. next = pmd_addr_end(addr, end);
  134. if (pmd_none_or_clear_bad(pmd))
  135. continue;
  136. free_pte_range(tlb, pmd);
  137. } while (pmd++, addr = next, addr != end);
  138. start &= PUD_MASK;
  139. if (start < floor)
  140. return;
  141. if (ceiling) {
  142. ceiling &= PUD_MASK;
  143. if (!ceiling)
  144. return;
  145. }
  146. if (end - 1 > ceiling - 1)
  147. return;
  148. pmd = pmd_offset(pud, start);
  149. pud_clear(pud);
  150. pmd_free_tlb(tlb, pmd);
  151. }
  152. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  153. unsigned long addr, unsigned long end,
  154. unsigned long floor, unsigned long ceiling)
  155. {
  156. pud_t *pud;
  157. unsigned long next;
  158. unsigned long start;
  159. start = addr;
  160. pud = pud_offset(pgd, addr);
  161. do {
  162. next = pud_addr_end(addr, end);
  163. if (pud_none_or_clear_bad(pud))
  164. continue;
  165. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  166. } while (pud++, addr = next, addr != end);
  167. start &= PGDIR_MASK;
  168. if (start < floor)
  169. return;
  170. if (ceiling) {
  171. ceiling &= PGDIR_MASK;
  172. if (!ceiling)
  173. return;
  174. }
  175. if (end - 1 > ceiling - 1)
  176. return;
  177. pud = pud_offset(pgd, start);
  178. pgd_clear(pgd);
  179. pud_free_tlb(tlb, pud);
  180. }
  181. /*
  182. * This function frees user-level page tables of a process.
  183. *
  184. * Must be called with pagetable lock held.
  185. */
  186. void free_pgd_range(struct mmu_gather **tlb,
  187. unsigned long addr, unsigned long end,
  188. unsigned long floor, unsigned long ceiling)
  189. {
  190. pgd_t *pgd;
  191. unsigned long next;
  192. unsigned long start;
  193. /*
  194. * The next few lines have given us lots of grief...
  195. *
  196. * Why are we testing PMD* at this top level? Because often
  197. * there will be no work to do at all, and we'd prefer not to
  198. * go all the way down to the bottom just to discover that.
  199. *
  200. * Why all these "- 1"s? Because 0 represents both the bottom
  201. * of the address space and the top of it (using -1 for the
  202. * top wouldn't help much: the masks would do the wrong thing).
  203. * The rule is that addr 0 and floor 0 refer to the bottom of
  204. * the address space, but end 0 and ceiling 0 refer to the top
  205. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  206. * that end 0 case should be mythical).
  207. *
  208. * Wherever addr is brought up or ceiling brought down, we must
  209. * be careful to reject "the opposite 0" before it confuses the
  210. * subsequent tests. But what about where end is brought down
  211. * by PMD_SIZE below? no, end can't go down to 0 there.
  212. *
  213. * Whereas we round start (addr) and ceiling down, by different
  214. * masks at different levels, in order to test whether a table
  215. * now has no other vmas using it, so can be freed, we don't
  216. * bother to round floor or end up - the tests don't need that.
  217. */
  218. addr &= PMD_MASK;
  219. if (addr < floor) {
  220. addr += PMD_SIZE;
  221. if (!addr)
  222. return;
  223. }
  224. if (ceiling) {
  225. ceiling &= PMD_MASK;
  226. if (!ceiling)
  227. return;
  228. }
  229. if (end - 1 > ceiling - 1)
  230. end -= PMD_SIZE;
  231. if (addr > end - 1)
  232. return;
  233. start = addr;
  234. pgd = pgd_offset((*tlb)->mm, addr);
  235. do {
  236. next = pgd_addr_end(addr, end);
  237. if (pgd_none_or_clear_bad(pgd))
  238. continue;
  239. free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
  240. } while (pgd++, addr = next, addr != end);
  241. }
  242. void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
  243. unsigned long floor, unsigned long ceiling)
  244. {
  245. while (vma) {
  246. struct vm_area_struct *next = vma->vm_next;
  247. unsigned long addr = vma->vm_start;
  248. /*
  249. * Hide vma from rmap and vmtruncate before freeing pgtables
  250. */
  251. anon_vma_unlink(vma);
  252. unlink_file_vma(vma);
  253. if (is_vm_hugetlb_page(vma)) {
  254. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  255. floor, next? next->vm_start: ceiling);
  256. } else {
  257. /*
  258. * Optimization: gather nearby vmas into one call down
  259. */
  260. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  261. && !is_vm_hugetlb_page(next)) {
  262. vma = next;
  263. next = vma->vm_next;
  264. anon_vma_unlink(vma);
  265. unlink_file_vma(vma);
  266. }
  267. free_pgd_range(tlb, addr, vma->vm_end,
  268. floor, next? next->vm_start: ceiling);
  269. }
  270. vma = next;
  271. }
  272. }
  273. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  274. {
  275. pgtable_t new = pte_alloc_one(mm, address);
  276. if (!new)
  277. return -ENOMEM;
  278. spin_lock(&mm->page_table_lock);
  279. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  280. mm->nr_ptes++;
  281. pmd_populate(mm, pmd, new);
  282. new = NULL;
  283. }
  284. spin_unlock(&mm->page_table_lock);
  285. if (new)
  286. pte_free(mm, new);
  287. return 0;
  288. }
  289. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  290. {
  291. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  292. if (!new)
  293. return -ENOMEM;
  294. spin_lock(&init_mm.page_table_lock);
  295. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  296. pmd_populate_kernel(&init_mm, pmd, new);
  297. new = NULL;
  298. }
  299. spin_unlock(&init_mm.page_table_lock);
  300. if (new)
  301. pte_free_kernel(&init_mm, new);
  302. return 0;
  303. }
  304. static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
  305. {
  306. if (file_rss)
  307. add_mm_counter(mm, file_rss, file_rss);
  308. if (anon_rss)
  309. add_mm_counter(mm, anon_rss, anon_rss);
  310. }
  311. /*
  312. * This function is called to print an error when a bad pte
  313. * is found. For example, we might have a PFN-mapped pte in
  314. * a region that doesn't allow it.
  315. *
  316. * The calling function must still handle the error.
  317. */
  318. void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
  319. {
  320. printk(KERN_ERR "Bad pte = %08llx, process = %s, "
  321. "vm_flags = %lx, vaddr = %lx\n",
  322. (long long)pte_val(pte),
  323. (vma->vm_mm == current->mm ? current->comm : "???"),
  324. vma->vm_flags, vaddr);
  325. dump_stack();
  326. }
  327. static inline int is_cow_mapping(unsigned int flags)
  328. {
  329. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  330. }
  331. /*
  332. * This function gets the "struct page" associated with a pte.
  333. *
  334. * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
  335. * will have each page table entry just pointing to a raw page frame
  336. * number, and as far as the VM layer is concerned, those do not have
  337. * pages associated with them - even if the PFN might point to memory
  338. * that otherwise is perfectly fine and has a "struct page".
  339. *
  340. * The way we recognize those mappings is through the rules set up
  341. * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
  342. * and the vm_pgoff will point to the first PFN mapped: thus every
  343. * page that is a raw mapping will always honor the rule
  344. *
  345. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  346. *
  347. * and if that isn't true, the page has been COW'ed (in which case it
  348. * _does_ have a "struct page" associated with it even if it is in a
  349. * VM_PFNMAP range).
  350. */
  351. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
  352. {
  353. unsigned long pfn = pte_pfn(pte);
  354. if (unlikely(vma->vm_flags & VM_PFNMAP)) {
  355. unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
  356. if (pfn == vma->vm_pgoff + off)
  357. return NULL;
  358. if (!is_cow_mapping(vma->vm_flags))
  359. return NULL;
  360. }
  361. #ifdef CONFIG_DEBUG_VM
  362. /*
  363. * Add some anal sanity checks for now. Eventually,
  364. * we should just do "return pfn_to_page(pfn)", but
  365. * in the meantime we check that we get a valid pfn,
  366. * and that the resulting page looks ok.
  367. */
  368. if (unlikely(!pfn_valid(pfn))) {
  369. print_bad_pte(vma, pte, addr);
  370. return NULL;
  371. }
  372. #endif
  373. /*
  374. * NOTE! We still have PageReserved() pages in the page
  375. * tables.
  376. *
  377. * The PAGE_ZERO() pages and various VDSO mappings can
  378. * cause them to exist.
  379. */
  380. return pfn_to_page(pfn);
  381. }
  382. /*
  383. * copy one vm_area from one task to the other. Assumes the page tables
  384. * already present in the new task to be cleared in the whole range
  385. * covered by this vma.
  386. */
  387. static inline void
  388. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  389. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  390. unsigned long addr, int *rss)
  391. {
  392. unsigned long vm_flags = vma->vm_flags;
  393. pte_t pte = *src_pte;
  394. struct page *page;
  395. /* pte contains position in swap or file, so copy. */
  396. if (unlikely(!pte_present(pte))) {
  397. if (!pte_file(pte)) {
  398. swp_entry_t entry = pte_to_swp_entry(pte);
  399. swap_duplicate(entry);
  400. /* make sure dst_mm is on swapoff's mmlist. */
  401. if (unlikely(list_empty(&dst_mm->mmlist))) {
  402. spin_lock(&mmlist_lock);
  403. if (list_empty(&dst_mm->mmlist))
  404. list_add(&dst_mm->mmlist,
  405. &src_mm->mmlist);
  406. spin_unlock(&mmlist_lock);
  407. }
  408. if (is_write_migration_entry(entry) &&
  409. is_cow_mapping(vm_flags)) {
  410. /*
  411. * COW mappings require pages in both parent
  412. * and child to be set to read.
  413. */
  414. make_migration_entry_read(&entry);
  415. pte = swp_entry_to_pte(entry);
  416. set_pte_at(src_mm, addr, src_pte, pte);
  417. }
  418. }
  419. goto out_set_pte;
  420. }
  421. /*
  422. * If it's a COW mapping, write protect it both
  423. * in the parent and the child
  424. */
  425. if (is_cow_mapping(vm_flags)) {
  426. ptep_set_wrprotect(src_mm, addr, src_pte);
  427. pte = pte_wrprotect(pte);
  428. }
  429. /*
  430. * If it's a shared mapping, mark it clean in
  431. * the child
  432. */
  433. if (vm_flags & VM_SHARED)
  434. pte = pte_mkclean(pte);
  435. pte = pte_mkold(pte);
  436. page = vm_normal_page(vma, addr, pte);
  437. if (page) {
  438. get_page(page);
  439. page_dup_rmap(page, vma, addr);
  440. rss[!!PageAnon(page)]++;
  441. }
  442. out_set_pte:
  443. set_pte_at(dst_mm, addr, dst_pte, pte);
  444. }
  445. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  446. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  447. unsigned long addr, unsigned long end)
  448. {
  449. pte_t *src_pte, *dst_pte;
  450. spinlock_t *src_ptl, *dst_ptl;
  451. int progress = 0;
  452. int rss[2];
  453. again:
  454. rss[1] = rss[0] = 0;
  455. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  456. if (!dst_pte)
  457. return -ENOMEM;
  458. src_pte = pte_offset_map_nested(src_pmd, addr);
  459. src_ptl = pte_lockptr(src_mm, src_pmd);
  460. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  461. arch_enter_lazy_mmu_mode();
  462. do {
  463. /*
  464. * We are holding two locks at this point - either of them
  465. * could generate latencies in another task on another CPU.
  466. */
  467. if (progress >= 32) {
  468. progress = 0;
  469. if (need_resched() ||
  470. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  471. break;
  472. }
  473. if (pte_none(*src_pte)) {
  474. progress++;
  475. continue;
  476. }
  477. copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
  478. progress += 8;
  479. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  480. arch_leave_lazy_mmu_mode();
  481. spin_unlock(src_ptl);
  482. pte_unmap_nested(src_pte - 1);
  483. add_mm_rss(dst_mm, rss[0], rss[1]);
  484. pte_unmap_unlock(dst_pte - 1, dst_ptl);
  485. cond_resched();
  486. if (addr != end)
  487. goto again;
  488. return 0;
  489. }
  490. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  491. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  492. unsigned long addr, unsigned long end)
  493. {
  494. pmd_t *src_pmd, *dst_pmd;
  495. unsigned long next;
  496. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  497. if (!dst_pmd)
  498. return -ENOMEM;
  499. src_pmd = pmd_offset(src_pud, addr);
  500. do {
  501. next = pmd_addr_end(addr, end);
  502. if (pmd_none_or_clear_bad(src_pmd))
  503. continue;
  504. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  505. vma, addr, next))
  506. return -ENOMEM;
  507. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  508. return 0;
  509. }
  510. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  511. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  512. unsigned long addr, unsigned long end)
  513. {
  514. pud_t *src_pud, *dst_pud;
  515. unsigned long next;
  516. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  517. if (!dst_pud)
  518. return -ENOMEM;
  519. src_pud = pud_offset(src_pgd, addr);
  520. do {
  521. next = pud_addr_end(addr, end);
  522. if (pud_none_or_clear_bad(src_pud))
  523. continue;
  524. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  525. vma, addr, next))
  526. return -ENOMEM;
  527. } while (dst_pud++, src_pud++, addr = next, addr != end);
  528. return 0;
  529. }
  530. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  531. struct vm_area_struct *vma)
  532. {
  533. pgd_t *src_pgd, *dst_pgd;
  534. unsigned long next;
  535. unsigned long addr = vma->vm_start;
  536. unsigned long end = vma->vm_end;
  537. /*
  538. * Don't copy ptes where a page fault will fill them correctly.
  539. * Fork becomes much lighter when there are big shared or private
  540. * readonly mappings. The tradeoff is that copy_page_range is more
  541. * efficient than faulting.
  542. */
  543. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  544. if (!vma->anon_vma)
  545. return 0;
  546. }
  547. if (is_vm_hugetlb_page(vma))
  548. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  549. dst_pgd = pgd_offset(dst_mm, addr);
  550. src_pgd = pgd_offset(src_mm, addr);
  551. do {
  552. next = pgd_addr_end(addr, end);
  553. if (pgd_none_or_clear_bad(src_pgd))
  554. continue;
  555. if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  556. vma, addr, next))
  557. return -ENOMEM;
  558. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  559. return 0;
  560. }
  561. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  562. struct vm_area_struct *vma, pmd_t *pmd,
  563. unsigned long addr, unsigned long end,
  564. long *zap_work, struct zap_details *details)
  565. {
  566. struct mm_struct *mm = tlb->mm;
  567. pte_t *pte;
  568. spinlock_t *ptl;
  569. int file_rss = 0;
  570. int anon_rss = 0;
  571. pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  572. arch_enter_lazy_mmu_mode();
  573. do {
  574. pte_t ptent = *pte;
  575. if (pte_none(ptent)) {
  576. (*zap_work)--;
  577. continue;
  578. }
  579. (*zap_work) -= PAGE_SIZE;
  580. if (pte_present(ptent)) {
  581. struct page *page;
  582. page = vm_normal_page(vma, addr, ptent);
  583. if (unlikely(details) && page) {
  584. /*
  585. * unmap_shared_mapping_pages() wants to
  586. * invalidate cache without truncating:
  587. * unmap shared but keep private pages.
  588. */
  589. if (details->check_mapping &&
  590. details->check_mapping != page->mapping)
  591. continue;
  592. /*
  593. * Each page->index must be checked when
  594. * invalidating or truncating nonlinear.
  595. */
  596. if (details->nonlinear_vma &&
  597. (page->index < details->first_index ||
  598. page->index > details->last_index))
  599. continue;
  600. }
  601. ptent = ptep_get_and_clear_full(mm, addr, pte,
  602. tlb->fullmm);
  603. tlb_remove_tlb_entry(tlb, pte, addr);
  604. if (unlikely(!page))
  605. continue;
  606. if (unlikely(details) && details->nonlinear_vma
  607. && linear_page_index(details->nonlinear_vma,
  608. addr) != page->index)
  609. set_pte_at(mm, addr, pte,
  610. pgoff_to_pte(page->index));
  611. if (PageAnon(page))
  612. anon_rss--;
  613. else {
  614. if (pte_dirty(ptent))
  615. set_page_dirty(page);
  616. if (pte_young(ptent))
  617. SetPageReferenced(page);
  618. file_rss--;
  619. }
  620. page_remove_rmap(page, vma);
  621. tlb_remove_page(tlb, page);
  622. continue;
  623. }
  624. /*
  625. * If details->check_mapping, we leave swap entries;
  626. * if details->nonlinear_vma, we leave file entries.
  627. */
  628. if (unlikely(details))
  629. continue;
  630. if (!pte_file(ptent))
  631. free_swap_and_cache(pte_to_swp_entry(ptent));
  632. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  633. } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
  634. add_mm_rss(mm, file_rss, anon_rss);
  635. arch_leave_lazy_mmu_mode();
  636. pte_unmap_unlock(pte - 1, ptl);
  637. return addr;
  638. }
  639. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  640. struct vm_area_struct *vma, pud_t *pud,
  641. unsigned long addr, unsigned long end,
  642. long *zap_work, struct zap_details *details)
  643. {
  644. pmd_t *pmd;
  645. unsigned long next;
  646. pmd = pmd_offset(pud, addr);
  647. do {
  648. next = pmd_addr_end(addr, end);
  649. if (pmd_none_or_clear_bad(pmd)) {
  650. (*zap_work)--;
  651. continue;
  652. }
  653. next = zap_pte_range(tlb, vma, pmd, addr, next,
  654. zap_work, details);
  655. } while (pmd++, addr = next, (addr != end && *zap_work > 0));
  656. return addr;
  657. }
  658. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  659. struct vm_area_struct *vma, pgd_t *pgd,
  660. unsigned long addr, unsigned long end,
  661. long *zap_work, struct zap_details *details)
  662. {
  663. pud_t *pud;
  664. unsigned long next;
  665. pud = pud_offset(pgd, addr);
  666. do {
  667. next = pud_addr_end(addr, end);
  668. if (pud_none_or_clear_bad(pud)) {
  669. (*zap_work)--;
  670. continue;
  671. }
  672. next = zap_pmd_range(tlb, vma, pud, addr, next,
  673. zap_work, details);
  674. } while (pud++, addr = next, (addr != end && *zap_work > 0));
  675. return addr;
  676. }
  677. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  678. struct vm_area_struct *vma,
  679. unsigned long addr, unsigned long end,
  680. long *zap_work, struct zap_details *details)
  681. {
  682. pgd_t *pgd;
  683. unsigned long next;
  684. if (details && !details->check_mapping && !details->nonlinear_vma)
  685. details = NULL;
  686. BUG_ON(addr >= end);
  687. tlb_start_vma(tlb, vma);
  688. pgd = pgd_offset(vma->vm_mm, addr);
  689. do {
  690. next = pgd_addr_end(addr, end);
  691. if (pgd_none_or_clear_bad(pgd)) {
  692. (*zap_work)--;
  693. continue;
  694. }
  695. next = zap_pud_range(tlb, vma, pgd, addr, next,
  696. zap_work, details);
  697. } while (pgd++, addr = next, (addr != end && *zap_work > 0));
  698. tlb_end_vma(tlb, vma);
  699. return addr;
  700. }
  701. #ifdef CONFIG_PREEMPT
  702. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  703. #else
  704. /* No preempt: go for improved straight-line efficiency */
  705. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  706. #endif
  707. /**
  708. * unmap_vmas - unmap a range of memory covered by a list of vma's
  709. * @tlbp: address of the caller's struct mmu_gather
  710. * @vma: the starting vma
  711. * @start_addr: virtual address at which to start unmapping
  712. * @end_addr: virtual address at which to end unmapping
  713. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  714. * @details: details of nonlinear truncation or shared cache invalidation
  715. *
  716. * Returns the end address of the unmapping (restart addr if interrupted).
  717. *
  718. * Unmap all pages in the vma list.
  719. *
  720. * We aim to not hold locks for too long (for scheduling latency reasons).
  721. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  722. * return the ending mmu_gather to the caller.
  723. *
  724. * Only addresses between `start' and `end' will be unmapped.
  725. *
  726. * The VMA list must be sorted in ascending virtual address order.
  727. *
  728. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  729. * range after unmap_vmas() returns. So the only responsibility here is to
  730. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  731. * drops the lock and schedules.
  732. */
  733. unsigned long unmap_vmas(struct mmu_gather **tlbp,
  734. struct vm_area_struct *vma, unsigned long start_addr,
  735. unsigned long end_addr, unsigned long *nr_accounted,
  736. struct zap_details *details)
  737. {
  738. long zap_work = ZAP_BLOCK_SIZE;
  739. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  740. int tlb_start_valid = 0;
  741. unsigned long start = start_addr;
  742. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  743. int fullmm = (*tlbp)->fullmm;
  744. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  745. unsigned long end;
  746. start = max(vma->vm_start, start_addr);
  747. if (start >= vma->vm_end)
  748. continue;
  749. end = min(vma->vm_end, end_addr);
  750. if (end <= vma->vm_start)
  751. continue;
  752. if (vma->vm_flags & VM_ACCOUNT)
  753. *nr_accounted += (end - start) >> PAGE_SHIFT;
  754. while (start != end) {
  755. if (!tlb_start_valid) {
  756. tlb_start = start;
  757. tlb_start_valid = 1;
  758. }
  759. if (unlikely(is_vm_hugetlb_page(vma))) {
  760. unmap_hugepage_range(vma, start, end);
  761. zap_work -= (end - start) /
  762. (HPAGE_SIZE / PAGE_SIZE);
  763. start = end;
  764. } else
  765. start = unmap_page_range(*tlbp, vma,
  766. start, end, &zap_work, details);
  767. if (zap_work > 0) {
  768. BUG_ON(start != end);
  769. break;
  770. }
  771. tlb_finish_mmu(*tlbp, tlb_start, start);
  772. if (need_resched() ||
  773. (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
  774. if (i_mmap_lock) {
  775. *tlbp = NULL;
  776. goto out;
  777. }
  778. cond_resched();
  779. }
  780. *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
  781. tlb_start_valid = 0;
  782. zap_work = ZAP_BLOCK_SIZE;
  783. }
  784. }
  785. out:
  786. return start; /* which is now the end (or restart) address */
  787. }
  788. /**
  789. * zap_page_range - remove user pages in a given range
  790. * @vma: vm_area_struct holding the applicable pages
  791. * @address: starting address of pages to zap
  792. * @size: number of bytes to zap
  793. * @details: details of nonlinear truncation or shared cache invalidation
  794. */
  795. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  796. unsigned long size, struct zap_details *details)
  797. {
  798. struct mm_struct *mm = vma->vm_mm;
  799. struct mmu_gather *tlb;
  800. unsigned long end = address + size;
  801. unsigned long nr_accounted = 0;
  802. lru_add_drain();
  803. tlb = tlb_gather_mmu(mm, 0);
  804. update_hiwater_rss(mm);
  805. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  806. if (tlb)
  807. tlb_finish_mmu(tlb, address, end);
  808. return end;
  809. }
  810. /*
  811. * Do a quick page-table lookup for a single page.
  812. */
  813. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  814. unsigned int flags)
  815. {
  816. pgd_t *pgd;
  817. pud_t *pud;
  818. pmd_t *pmd;
  819. pte_t *ptep, pte;
  820. spinlock_t *ptl;
  821. struct page *page;
  822. struct mm_struct *mm = vma->vm_mm;
  823. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  824. if (!IS_ERR(page)) {
  825. BUG_ON(flags & FOLL_GET);
  826. goto out;
  827. }
  828. page = NULL;
  829. pgd = pgd_offset(mm, address);
  830. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  831. goto no_page_table;
  832. pud = pud_offset(pgd, address);
  833. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  834. goto no_page_table;
  835. pmd = pmd_offset(pud, address);
  836. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  837. goto no_page_table;
  838. if (pmd_huge(*pmd)) {
  839. BUG_ON(flags & FOLL_GET);
  840. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  841. goto out;
  842. }
  843. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  844. if (!ptep)
  845. goto out;
  846. pte = *ptep;
  847. if (!pte_present(pte))
  848. goto unlock;
  849. if ((flags & FOLL_WRITE) && !pte_write(pte))
  850. goto unlock;
  851. page = vm_normal_page(vma, address, pte);
  852. if (unlikely(!page))
  853. goto unlock;
  854. if (flags & FOLL_GET)
  855. get_page(page);
  856. if (flags & FOLL_TOUCH) {
  857. if ((flags & FOLL_WRITE) &&
  858. !pte_dirty(pte) && !PageDirty(page))
  859. set_page_dirty(page);
  860. mark_page_accessed(page);
  861. }
  862. unlock:
  863. pte_unmap_unlock(ptep, ptl);
  864. out:
  865. return page;
  866. no_page_table:
  867. /*
  868. * When core dumping an enormous anonymous area that nobody
  869. * has touched so far, we don't want to allocate page tables.
  870. */
  871. if (flags & FOLL_ANON) {
  872. page = ZERO_PAGE(0);
  873. if (flags & FOLL_GET)
  874. get_page(page);
  875. BUG_ON(flags & FOLL_WRITE);
  876. }
  877. return page;
  878. }
  879. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  880. unsigned long start, int len, int write, int force,
  881. struct page **pages, struct vm_area_struct **vmas)
  882. {
  883. int i;
  884. unsigned int vm_flags;
  885. if (len <= 0)
  886. return 0;
  887. /*
  888. * Require read or write permissions.
  889. * If 'force' is set, we only require the "MAY" flags.
  890. */
  891. vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  892. vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  893. i = 0;
  894. do {
  895. struct vm_area_struct *vma;
  896. unsigned int foll_flags;
  897. vma = find_extend_vma(mm, start);
  898. if (!vma && in_gate_area(tsk, start)) {
  899. unsigned long pg = start & PAGE_MASK;
  900. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  901. pgd_t *pgd;
  902. pud_t *pud;
  903. pmd_t *pmd;
  904. pte_t *pte;
  905. if (write) /* user gate pages are read-only */
  906. return i ? : -EFAULT;
  907. if (pg > TASK_SIZE)
  908. pgd = pgd_offset_k(pg);
  909. else
  910. pgd = pgd_offset_gate(mm, pg);
  911. BUG_ON(pgd_none(*pgd));
  912. pud = pud_offset(pgd, pg);
  913. BUG_ON(pud_none(*pud));
  914. pmd = pmd_offset(pud, pg);
  915. if (pmd_none(*pmd))
  916. return i ? : -EFAULT;
  917. pte = pte_offset_map(pmd, pg);
  918. if (pte_none(*pte)) {
  919. pte_unmap(pte);
  920. return i ? : -EFAULT;
  921. }
  922. if (pages) {
  923. struct page *page = vm_normal_page(gate_vma, start, *pte);
  924. pages[i] = page;
  925. if (page)
  926. get_page(page);
  927. }
  928. pte_unmap(pte);
  929. if (vmas)
  930. vmas[i] = gate_vma;
  931. i++;
  932. start += PAGE_SIZE;
  933. len--;
  934. continue;
  935. }
  936. if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
  937. || !(vm_flags & vma->vm_flags))
  938. return i ? : -EFAULT;
  939. if (is_vm_hugetlb_page(vma)) {
  940. i = follow_hugetlb_page(mm, vma, pages, vmas,
  941. &start, &len, i, write);
  942. continue;
  943. }
  944. foll_flags = FOLL_TOUCH;
  945. if (pages)
  946. foll_flags |= FOLL_GET;
  947. if (!write && !(vma->vm_flags & VM_LOCKED) &&
  948. (!vma->vm_ops || (!vma->vm_ops->nopage &&
  949. !vma->vm_ops->fault)))
  950. foll_flags |= FOLL_ANON;
  951. do {
  952. struct page *page;
  953. /*
  954. * If tsk is ooming, cut off its access to large memory
  955. * allocations. It has a pending SIGKILL, but it can't
  956. * be processed until returning to user space.
  957. */
  958. if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
  959. return -ENOMEM;
  960. if (write)
  961. foll_flags |= FOLL_WRITE;
  962. cond_resched();
  963. while (!(page = follow_page(vma, start, foll_flags))) {
  964. int ret;
  965. ret = handle_mm_fault(mm, vma, start,
  966. foll_flags & FOLL_WRITE);
  967. if (ret & VM_FAULT_ERROR) {
  968. if (ret & VM_FAULT_OOM)
  969. return i ? i : -ENOMEM;
  970. else if (ret & VM_FAULT_SIGBUS)
  971. return i ? i : -EFAULT;
  972. BUG();
  973. }
  974. if (ret & VM_FAULT_MAJOR)
  975. tsk->maj_flt++;
  976. else
  977. tsk->min_flt++;
  978. /*
  979. * The VM_FAULT_WRITE bit tells us that
  980. * do_wp_page has broken COW when necessary,
  981. * even if maybe_mkwrite decided not to set
  982. * pte_write. We can thus safely do subsequent
  983. * page lookups as if they were reads.
  984. */
  985. if (ret & VM_FAULT_WRITE)
  986. foll_flags &= ~FOLL_WRITE;
  987. cond_resched();
  988. }
  989. if (pages) {
  990. pages[i] = page;
  991. flush_anon_page(vma, page, start);
  992. flush_dcache_page(page);
  993. }
  994. if (vmas)
  995. vmas[i] = vma;
  996. i++;
  997. start += PAGE_SIZE;
  998. len--;
  999. } while (len && start < vma->vm_end);
  1000. } while (len);
  1001. return i;
  1002. }
  1003. EXPORT_SYMBOL(get_user_pages);
  1004. pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1005. spinlock_t **ptl)
  1006. {
  1007. pgd_t * pgd = pgd_offset(mm, addr);
  1008. pud_t * pud = pud_alloc(mm, pgd, addr);
  1009. if (pud) {
  1010. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1011. if (pmd)
  1012. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1013. }
  1014. return NULL;
  1015. }
  1016. /*
  1017. * This is the old fallback for page remapping.
  1018. *
  1019. * For historical reasons, it only allows reserved pages. Only
  1020. * old drivers should use this, and they needed to mark their
  1021. * pages reserved for the old functions anyway.
  1022. */
  1023. static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
  1024. {
  1025. int retval;
  1026. pte_t *pte;
  1027. spinlock_t *ptl;
  1028. retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
  1029. if (retval)
  1030. goto out;
  1031. retval = -EINVAL;
  1032. if (PageAnon(page))
  1033. goto out_uncharge;
  1034. retval = -ENOMEM;
  1035. flush_dcache_page(page);
  1036. pte = get_locked_pte(mm, addr, &ptl);
  1037. if (!pte)
  1038. goto out_uncharge;
  1039. retval = -EBUSY;
  1040. if (!pte_none(*pte))
  1041. goto out_unlock;
  1042. /* Ok, finally just insert the thing.. */
  1043. get_page(page);
  1044. inc_mm_counter(mm, file_rss);
  1045. page_add_file_rmap(page);
  1046. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1047. retval = 0;
  1048. pte_unmap_unlock(pte, ptl);
  1049. return retval;
  1050. out_unlock:
  1051. pte_unmap_unlock(pte, ptl);
  1052. out_uncharge:
  1053. mem_cgroup_uncharge_page(page);
  1054. out:
  1055. return retval;
  1056. }
  1057. /**
  1058. * vm_insert_page - insert single page into user vma
  1059. * @vma: user vma to map to
  1060. * @addr: target user address of this page
  1061. * @page: source kernel page
  1062. *
  1063. * This allows drivers to insert individual pages they've allocated
  1064. * into a user vma.
  1065. *
  1066. * The page has to be a nice clean _individual_ kernel allocation.
  1067. * If you allocate a compound page, you need to have marked it as
  1068. * such (__GFP_COMP), or manually just split the page up yourself
  1069. * (see split_page()).
  1070. *
  1071. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1072. * took an arbitrary page protection parameter. This doesn't allow
  1073. * that. Your vma protection will have to be set up correctly, which
  1074. * means that if you want a shared writable mapping, you'd better
  1075. * ask for a shared writable mapping!
  1076. *
  1077. * The page does not need to be reserved.
  1078. */
  1079. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
  1080. {
  1081. if (addr < vma->vm_start || addr >= vma->vm_end)
  1082. return -EFAULT;
  1083. if (!page_count(page))
  1084. return -EINVAL;
  1085. vma->vm_flags |= VM_INSERTPAGE;
  1086. return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
  1087. }
  1088. EXPORT_SYMBOL(vm_insert_page);
  1089. /**
  1090. * vm_insert_pfn - insert single pfn into user vma
  1091. * @vma: user vma to map to
  1092. * @addr: target user address of this page
  1093. * @pfn: source kernel pfn
  1094. *
  1095. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1096. * they've allocated into a user vma. Same comments apply.
  1097. *
  1098. * This function should only be called from a vm_ops->fault handler, and
  1099. * in that case the handler should return NULL.
  1100. */
  1101. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1102. unsigned long pfn)
  1103. {
  1104. struct mm_struct *mm = vma->vm_mm;
  1105. int retval;
  1106. pte_t *pte, entry;
  1107. spinlock_t *ptl;
  1108. BUG_ON(!(vma->vm_flags & VM_PFNMAP));
  1109. BUG_ON(is_cow_mapping(vma->vm_flags));
  1110. retval = -ENOMEM;
  1111. pte = get_locked_pte(mm, addr, &ptl);
  1112. if (!pte)
  1113. goto out;
  1114. retval = -EBUSY;
  1115. if (!pte_none(*pte))
  1116. goto out_unlock;
  1117. /* Ok, finally just insert the thing.. */
  1118. entry = pfn_pte(pfn, vma->vm_page_prot);
  1119. set_pte_at(mm, addr, pte, entry);
  1120. update_mmu_cache(vma, addr, entry);
  1121. retval = 0;
  1122. out_unlock:
  1123. pte_unmap_unlock(pte, ptl);
  1124. out:
  1125. return retval;
  1126. }
  1127. EXPORT_SYMBOL(vm_insert_pfn);
  1128. /*
  1129. * maps a range of physical memory into the requested pages. the old
  1130. * mappings are removed. any references to nonexistent pages results
  1131. * in null mappings (currently treated as "copy-on-access")
  1132. */
  1133. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1134. unsigned long addr, unsigned long end,
  1135. unsigned long pfn, pgprot_t prot)
  1136. {
  1137. pte_t *pte;
  1138. spinlock_t *ptl;
  1139. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1140. if (!pte)
  1141. return -ENOMEM;
  1142. arch_enter_lazy_mmu_mode();
  1143. do {
  1144. BUG_ON(!pte_none(*pte));
  1145. set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
  1146. pfn++;
  1147. } while (pte++, addr += PAGE_SIZE, addr != end);
  1148. arch_leave_lazy_mmu_mode();
  1149. pte_unmap_unlock(pte - 1, ptl);
  1150. return 0;
  1151. }
  1152. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1153. unsigned long addr, unsigned long end,
  1154. unsigned long pfn, pgprot_t prot)
  1155. {
  1156. pmd_t *pmd;
  1157. unsigned long next;
  1158. pfn -= addr >> PAGE_SHIFT;
  1159. pmd = pmd_alloc(mm, pud, addr);
  1160. if (!pmd)
  1161. return -ENOMEM;
  1162. do {
  1163. next = pmd_addr_end(addr, end);
  1164. if (remap_pte_range(mm, pmd, addr, next,
  1165. pfn + (addr >> PAGE_SHIFT), prot))
  1166. return -ENOMEM;
  1167. } while (pmd++, addr = next, addr != end);
  1168. return 0;
  1169. }
  1170. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1171. unsigned long addr, unsigned long end,
  1172. unsigned long pfn, pgprot_t prot)
  1173. {
  1174. pud_t *pud;
  1175. unsigned long next;
  1176. pfn -= addr >> PAGE_SHIFT;
  1177. pud = pud_alloc(mm, pgd, addr);
  1178. if (!pud)
  1179. return -ENOMEM;
  1180. do {
  1181. next = pud_addr_end(addr, end);
  1182. if (remap_pmd_range(mm, pud, addr, next,
  1183. pfn + (addr >> PAGE_SHIFT), prot))
  1184. return -ENOMEM;
  1185. } while (pud++, addr = next, addr != end);
  1186. return 0;
  1187. }
  1188. /**
  1189. * remap_pfn_range - remap kernel memory to userspace
  1190. * @vma: user vma to map to
  1191. * @addr: target user address to start at
  1192. * @pfn: physical address of kernel memory
  1193. * @size: size of map area
  1194. * @prot: page protection flags for this mapping
  1195. *
  1196. * Note: this is only safe if the mm semaphore is held when called.
  1197. */
  1198. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1199. unsigned long pfn, unsigned long size, pgprot_t prot)
  1200. {
  1201. pgd_t *pgd;
  1202. unsigned long next;
  1203. unsigned long end = addr + PAGE_ALIGN(size);
  1204. struct mm_struct *mm = vma->vm_mm;
  1205. int err;
  1206. /*
  1207. * Physically remapped pages are special. Tell the
  1208. * rest of the world about it:
  1209. * VM_IO tells people not to look at these pages
  1210. * (accesses can have side effects).
  1211. * VM_RESERVED is specified all over the place, because
  1212. * in 2.4 it kept swapout's vma scan off this vma; but
  1213. * in 2.6 the LRU scan won't even find its pages, so this
  1214. * flag means no more than count its pages in reserved_vm,
  1215. * and omit it from core dump, even when VM_IO turned off.
  1216. * VM_PFNMAP tells the core MM that the base pages are just
  1217. * raw PFN mappings, and do not have a "struct page" associated
  1218. * with them.
  1219. *
  1220. * There's a horrible special case to handle copy-on-write
  1221. * behaviour that some programs depend on. We mark the "original"
  1222. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1223. */
  1224. if (is_cow_mapping(vma->vm_flags)) {
  1225. if (addr != vma->vm_start || end != vma->vm_end)
  1226. return -EINVAL;
  1227. vma->vm_pgoff = pfn;
  1228. }
  1229. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  1230. BUG_ON(addr >= end);
  1231. pfn -= addr >> PAGE_SHIFT;
  1232. pgd = pgd_offset(mm, addr);
  1233. flush_cache_range(vma, addr, end);
  1234. do {
  1235. next = pgd_addr_end(addr, end);
  1236. err = remap_pud_range(mm, pgd, addr, next,
  1237. pfn + (addr >> PAGE_SHIFT), prot);
  1238. if (err)
  1239. break;
  1240. } while (pgd++, addr = next, addr != end);
  1241. return err;
  1242. }
  1243. EXPORT_SYMBOL(remap_pfn_range);
  1244. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1245. unsigned long addr, unsigned long end,
  1246. pte_fn_t fn, void *data)
  1247. {
  1248. pte_t *pte;
  1249. int err;
  1250. pgtable_t token;
  1251. spinlock_t *uninitialized_var(ptl);
  1252. pte = (mm == &init_mm) ?
  1253. pte_alloc_kernel(pmd, addr) :
  1254. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1255. if (!pte)
  1256. return -ENOMEM;
  1257. BUG_ON(pmd_huge(*pmd));
  1258. token = pmd_pgtable(*pmd);
  1259. do {
  1260. err = fn(pte, token, addr, data);
  1261. if (err)
  1262. break;
  1263. } while (pte++, addr += PAGE_SIZE, addr != end);
  1264. if (mm != &init_mm)
  1265. pte_unmap_unlock(pte-1, ptl);
  1266. return err;
  1267. }
  1268. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1269. unsigned long addr, unsigned long end,
  1270. pte_fn_t fn, void *data)
  1271. {
  1272. pmd_t *pmd;
  1273. unsigned long next;
  1274. int err;
  1275. pmd = pmd_alloc(mm, pud, addr);
  1276. if (!pmd)
  1277. return -ENOMEM;
  1278. do {
  1279. next = pmd_addr_end(addr, end);
  1280. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1281. if (err)
  1282. break;
  1283. } while (pmd++, addr = next, addr != end);
  1284. return err;
  1285. }
  1286. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1287. unsigned long addr, unsigned long end,
  1288. pte_fn_t fn, void *data)
  1289. {
  1290. pud_t *pud;
  1291. unsigned long next;
  1292. int err;
  1293. pud = pud_alloc(mm, pgd, addr);
  1294. if (!pud)
  1295. return -ENOMEM;
  1296. do {
  1297. next = pud_addr_end(addr, end);
  1298. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1299. if (err)
  1300. break;
  1301. } while (pud++, addr = next, addr != end);
  1302. return err;
  1303. }
  1304. /*
  1305. * Scan a region of virtual memory, filling in page tables as necessary
  1306. * and calling a provided function on each leaf page table.
  1307. */
  1308. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1309. unsigned long size, pte_fn_t fn, void *data)
  1310. {
  1311. pgd_t *pgd;
  1312. unsigned long next;
  1313. unsigned long end = addr + size;
  1314. int err;
  1315. BUG_ON(addr >= end);
  1316. pgd = pgd_offset(mm, addr);
  1317. do {
  1318. next = pgd_addr_end(addr, end);
  1319. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1320. if (err)
  1321. break;
  1322. } while (pgd++, addr = next, addr != end);
  1323. return err;
  1324. }
  1325. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1326. /*
  1327. * handle_pte_fault chooses page fault handler according to an entry
  1328. * which was read non-atomically. Before making any commitment, on
  1329. * those architectures or configurations (e.g. i386 with PAE) which
  1330. * might give a mix of unmatched parts, do_swap_page and do_file_page
  1331. * must check under lock before unmapping the pte and proceeding
  1332. * (but do_wp_page is only called after already making such a check;
  1333. * and do_anonymous_page and do_no_page can safely check later on).
  1334. */
  1335. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1336. pte_t *page_table, pte_t orig_pte)
  1337. {
  1338. int same = 1;
  1339. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1340. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1341. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1342. spin_lock(ptl);
  1343. same = pte_same(*page_table, orig_pte);
  1344. spin_unlock(ptl);
  1345. }
  1346. #endif
  1347. pte_unmap(page_table);
  1348. return same;
  1349. }
  1350. /*
  1351. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  1352. * servicing faults for write access. In the normal case, do always want
  1353. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  1354. * that do not have writing enabled, when used by access_process_vm.
  1355. */
  1356. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  1357. {
  1358. if (likely(vma->vm_flags & VM_WRITE))
  1359. pte = pte_mkwrite(pte);
  1360. return pte;
  1361. }
  1362. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1363. {
  1364. /*
  1365. * If the source page was a PFN mapping, we don't have
  1366. * a "struct page" for it. We do a best-effort copy by
  1367. * just copying from the original user address. If that
  1368. * fails, we just zero-fill it. Live with it.
  1369. */
  1370. if (unlikely(!src)) {
  1371. void *kaddr = kmap_atomic(dst, KM_USER0);
  1372. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1373. /*
  1374. * This really shouldn't fail, because the page is there
  1375. * in the page tables. But it might just be unreadable,
  1376. * in which case we just give up and fill the result with
  1377. * zeroes.
  1378. */
  1379. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1380. memset(kaddr, 0, PAGE_SIZE);
  1381. kunmap_atomic(kaddr, KM_USER0);
  1382. flush_dcache_page(dst);
  1383. } else
  1384. copy_user_highpage(dst, src, va, vma);
  1385. }
  1386. /*
  1387. * This routine handles present pages, when users try to write
  1388. * to a shared page. It is done by copying the page to a new address
  1389. * and decrementing the shared-page counter for the old page.
  1390. *
  1391. * Note that this routine assumes that the protection checks have been
  1392. * done by the caller (the low-level page fault routine in most cases).
  1393. * Thus we can safely just mark it writable once we've done any necessary
  1394. * COW.
  1395. *
  1396. * We also mark the page dirty at this point even though the page will
  1397. * change only once the write actually happens. This avoids a few races,
  1398. * and potentially makes it more efficient.
  1399. *
  1400. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1401. * but allow concurrent faults), with pte both mapped and locked.
  1402. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1403. */
  1404. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1405. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1406. spinlock_t *ptl, pte_t orig_pte)
  1407. {
  1408. struct page *old_page, *new_page;
  1409. pte_t entry;
  1410. int reuse = 0, ret = 0;
  1411. int page_mkwrite = 0;
  1412. struct page *dirty_page = NULL;
  1413. old_page = vm_normal_page(vma, address, orig_pte);
  1414. if (!old_page)
  1415. goto gotten;
  1416. /*
  1417. * Take out anonymous pages first, anonymous shared vmas are
  1418. * not dirty accountable.
  1419. */
  1420. if (PageAnon(old_page)) {
  1421. if (!TestSetPageLocked(old_page)) {
  1422. reuse = can_share_swap_page(old_page);
  1423. unlock_page(old_page);
  1424. }
  1425. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1426. (VM_WRITE|VM_SHARED))) {
  1427. /*
  1428. * Only catch write-faults on shared writable pages,
  1429. * read-only shared pages can get COWed by
  1430. * get_user_pages(.write=1, .force=1).
  1431. */
  1432. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1433. /*
  1434. * Notify the address space that the page is about to
  1435. * become writable so that it can prohibit this or wait
  1436. * for the page to get into an appropriate state.
  1437. *
  1438. * We do this without the lock held, so that it can
  1439. * sleep if it needs to.
  1440. */
  1441. page_cache_get(old_page);
  1442. pte_unmap_unlock(page_table, ptl);
  1443. if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
  1444. goto unwritable_page;
  1445. /*
  1446. * Since we dropped the lock we need to revalidate
  1447. * the PTE as someone else may have changed it. If
  1448. * they did, we just return, as we can count on the
  1449. * MMU to tell us if they didn't also make it writable.
  1450. */
  1451. page_table = pte_offset_map_lock(mm, pmd, address,
  1452. &ptl);
  1453. page_cache_release(old_page);
  1454. if (!pte_same(*page_table, orig_pte))
  1455. goto unlock;
  1456. page_mkwrite = 1;
  1457. }
  1458. dirty_page = old_page;
  1459. get_page(dirty_page);
  1460. reuse = 1;
  1461. }
  1462. if (reuse) {
  1463. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1464. entry = pte_mkyoung(orig_pte);
  1465. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1466. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  1467. update_mmu_cache(vma, address, entry);
  1468. ret |= VM_FAULT_WRITE;
  1469. goto unlock;
  1470. }
  1471. /*
  1472. * Ok, we need to copy. Oh, well..
  1473. */
  1474. page_cache_get(old_page);
  1475. gotten:
  1476. pte_unmap_unlock(page_table, ptl);
  1477. if (unlikely(anon_vma_prepare(vma)))
  1478. goto oom;
  1479. VM_BUG_ON(old_page == ZERO_PAGE(0));
  1480. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  1481. if (!new_page)
  1482. goto oom;
  1483. cow_user_page(new_page, old_page, address, vma);
  1484. __SetPageUptodate(new_page);
  1485. if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
  1486. goto oom_free_new;
  1487. /*
  1488. * Re-check the pte - we dropped the lock
  1489. */
  1490. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1491. if (likely(pte_same(*page_table, orig_pte))) {
  1492. if (old_page) {
  1493. page_remove_rmap(old_page, vma);
  1494. if (!PageAnon(old_page)) {
  1495. dec_mm_counter(mm, file_rss);
  1496. inc_mm_counter(mm, anon_rss);
  1497. }
  1498. } else
  1499. inc_mm_counter(mm, anon_rss);
  1500. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1501. entry = mk_pte(new_page, vma->vm_page_prot);
  1502. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1503. /*
  1504. * Clear the pte entry and flush it first, before updating the
  1505. * pte with the new entry. This will avoid a race condition
  1506. * seen in the presence of one thread doing SMC and another
  1507. * thread doing COW.
  1508. */
  1509. ptep_clear_flush(vma, address, page_table);
  1510. set_pte_at(mm, address, page_table, entry);
  1511. update_mmu_cache(vma, address, entry);
  1512. lru_cache_add_active(new_page);
  1513. page_add_new_anon_rmap(new_page, vma, address);
  1514. /* Free the old page.. */
  1515. new_page = old_page;
  1516. ret |= VM_FAULT_WRITE;
  1517. } else
  1518. mem_cgroup_uncharge_page(new_page);
  1519. if (new_page)
  1520. page_cache_release(new_page);
  1521. if (old_page)
  1522. page_cache_release(old_page);
  1523. unlock:
  1524. pte_unmap_unlock(page_table, ptl);
  1525. if (dirty_page) {
  1526. if (vma->vm_file)
  1527. file_update_time(vma->vm_file);
  1528. /*
  1529. * Yes, Virginia, this is actually required to prevent a race
  1530. * with clear_page_dirty_for_io() from clearing the page dirty
  1531. * bit after it clear all dirty ptes, but before a racing
  1532. * do_wp_page installs a dirty pte.
  1533. *
  1534. * do_no_page is protected similarly.
  1535. */
  1536. wait_on_page_locked(dirty_page);
  1537. set_page_dirty_balance(dirty_page, page_mkwrite);
  1538. put_page(dirty_page);
  1539. }
  1540. return ret;
  1541. oom_free_new:
  1542. __free_page(new_page);
  1543. oom:
  1544. if (old_page)
  1545. page_cache_release(old_page);
  1546. return VM_FAULT_OOM;
  1547. unwritable_page:
  1548. page_cache_release(old_page);
  1549. return VM_FAULT_SIGBUS;
  1550. }
  1551. /*
  1552. * Helper functions for unmap_mapping_range().
  1553. *
  1554. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  1555. *
  1556. * We have to restart searching the prio_tree whenever we drop the lock,
  1557. * since the iterator is only valid while the lock is held, and anyway
  1558. * a later vma might be split and reinserted earlier while lock dropped.
  1559. *
  1560. * The list of nonlinear vmas could be handled more efficiently, using
  1561. * a placeholder, but handle it in the same way until a need is shown.
  1562. * It is important to search the prio_tree before nonlinear list: a vma
  1563. * may become nonlinear and be shifted from prio_tree to nonlinear list
  1564. * while the lock is dropped; but never shifted from list to prio_tree.
  1565. *
  1566. * In order to make forward progress despite restarting the search,
  1567. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  1568. * quickly skip it next time around. Since the prio_tree search only
  1569. * shows us those vmas affected by unmapping the range in question, we
  1570. * can't efficiently keep all vmas in step with mapping->truncate_count:
  1571. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  1572. * mapping->truncate_count and vma->vm_truncate_count are protected by
  1573. * i_mmap_lock.
  1574. *
  1575. * In order to make forward progress despite repeatedly restarting some
  1576. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  1577. * and restart from that address when we reach that vma again. It might
  1578. * have been split or merged, shrunk or extended, but never shifted: so
  1579. * restart_addr remains valid so long as it remains in the vma's range.
  1580. * unmap_mapping_range forces truncate_count to leap over page-aligned
  1581. * values so we can save vma's restart_addr in its truncate_count field.
  1582. */
  1583. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  1584. static void reset_vma_truncate_counts(struct address_space *mapping)
  1585. {
  1586. struct vm_area_struct *vma;
  1587. struct prio_tree_iter iter;
  1588. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  1589. vma->vm_truncate_count = 0;
  1590. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1591. vma->vm_truncate_count = 0;
  1592. }
  1593. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  1594. unsigned long start_addr, unsigned long end_addr,
  1595. struct zap_details *details)
  1596. {
  1597. unsigned long restart_addr;
  1598. int need_break;
  1599. /*
  1600. * files that support invalidating or truncating portions of the
  1601. * file from under mmaped areas must have their ->fault function
  1602. * return a locked page (and set VM_FAULT_LOCKED in the return).
  1603. * This provides synchronisation against concurrent unmapping here.
  1604. */
  1605. again:
  1606. restart_addr = vma->vm_truncate_count;
  1607. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  1608. start_addr = restart_addr;
  1609. if (start_addr >= end_addr) {
  1610. /* Top of vma has been split off since last time */
  1611. vma->vm_truncate_count = details->truncate_count;
  1612. return 0;
  1613. }
  1614. }
  1615. restart_addr = zap_page_range(vma, start_addr,
  1616. end_addr - start_addr, details);
  1617. need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
  1618. if (restart_addr >= end_addr) {
  1619. /* We have now completed this vma: mark it so */
  1620. vma->vm_truncate_count = details->truncate_count;
  1621. if (!need_break)
  1622. return 0;
  1623. } else {
  1624. /* Note restart_addr in vma's truncate_count field */
  1625. vma->vm_truncate_count = restart_addr;
  1626. if (!need_break)
  1627. goto again;
  1628. }
  1629. spin_unlock(details->i_mmap_lock);
  1630. cond_resched();
  1631. spin_lock(details->i_mmap_lock);
  1632. return -EINTR;
  1633. }
  1634. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  1635. struct zap_details *details)
  1636. {
  1637. struct vm_area_struct *vma;
  1638. struct prio_tree_iter iter;
  1639. pgoff_t vba, vea, zba, zea;
  1640. restart:
  1641. vma_prio_tree_foreach(vma, &iter, root,
  1642. details->first_index, details->last_index) {
  1643. /* Skip quickly over those we have already dealt with */
  1644. if (vma->vm_truncate_count == details->truncate_count)
  1645. continue;
  1646. vba = vma->vm_pgoff;
  1647. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  1648. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  1649. zba = details->first_index;
  1650. if (zba < vba)
  1651. zba = vba;
  1652. zea = details->last_index;
  1653. if (zea > vea)
  1654. zea = vea;
  1655. if (unmap_mapping_range_vma(vma,
  1656. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  1657. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  1658. details) < 0)
  1659. goto restart;
  1660. }
  1661. }
  1662. static inline void unmap_mapping_range_list(struct list_head *head,
  1663. struct zap_details *details)
  1664. {
  1665. struct vm_area_struct *vma;
  1666. /*
  1667. * In nonlinear VMAs there is no correspondence between virtual address
  1668. * offset and file offset. So we must perform an exhaustive search
  1669. * across *all* the pages in each nonlinear VMA, not just the pages
  1670. * whose virtual address lies outside the file truncation point.
  1671. */
  1672. restart:
  1673. list_for_each_entry(vma, head, shared.vm_set.list) {
  1674. /* Skip quickly over those we have already dealt with */
  1675. if (vma->vm_truncate_count == details->truncate_count)
  1676. continue;
  1677. details->nonlinear_vma = vma;
  1678. if (unmap_mapping_range_vma(vma, vma->vm_start,
  1679. vma->vm_end, details) < 0)
  1680. goto restart;
  1681. }
  1682. }
  1683. /**
  1684. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  1685. * @mapping: the address space containing mmaps to be unmapped.
  1686. * @holebegin: byte in first page to unmap, relative to the start of
  1687. * the underlying file. This will be rounded down to a PAGE_SIZE
  1688. * boundary. Note that this is different from vmtruncate(), which
  1689. * must keep the partial page. In contrast, we must get rid of
  1690. * partial pages.
  1691. * @holelen: size of prospective hole in bytes. This will be rounded
  1692. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  1693. * end of the file.
  1694. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  1695. * but 0 when invalidating pagecache, don't throw away private data.
  1696. */
  1697. void unmap_mapping_range(struct address_space *mapping,
  1698. loff_t const holebegin, loff_t const holelen, int even_cows)
  1699. {
  1700. struct zap_details details;
  1701. pgoff_t hba = holebegin >> PAGE_SHIFT;
  1702. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1703. /* Check for overflow. */
  1704. if (sizeof(holelen) > sizeof(hlen)) {
  1705. long long holeend =
  1706. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1707. if (holeend & ~(long long)ULONG_MAX)
  1708. hlen = ULONG_MAX - hba + 1;
  1709. }
  1710. details.check_mapping = even_cows? NULL: mapping;
  1711. details.nonlinear_vma = NULL;
  1712. details.first_index = hba;
  1713. details.last_index = hba + hlen - 1;
  1714. if (details.last_index < details.first_index)
  1715. details.last_index = ULONG_MAX;
  1716. details.i_mmap_lock = &mapping->i_mmap_lock;
  1717. spin_lock(&mapping->i_mmap_lock);
  1718. /* Protect against endless unmapping loops */
  1719. mapping->truncate_count++;
  1720. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  1721. if (mapping->truncate_count == 0)
  1722. reset_vma_truncate_counts(mapping);
  1723. mapping->truncate_count++;
  1724. }
  1725. details.truncate_count = mapping->truncate_count;
  1726. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  1727. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  1728. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  1729. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  1730. spin_unlock(&mapping->i_mmap_lock);
  1731. }
  1732. EXPORT_SYMBOL(unmap_mapping_range);
  1733. /**
  1734. * vmtruncate - unmap mappings "freed" by truncate() syscall
  1735. * @inode: inode of the file used
  1736. * @offset: file offset to start truncating
  1737. *
  1738. * NOTE! We have to be ready to update the memory sharing
  1739. * between the file and the memory map for a potential last
  1740. * incomplete page. Ugly, but necessary.
  1741. */
  1742. int vmtruncate(struct inode * inode, loff_t offset)
  1743. {
  1744. if (inode->i_size < offset) {
  1745. unsigned long limit;
  1746. limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
  1747. if (limit != RLIM_INFINITY && offset > limit)
  1748. goto out_sig;
  1749. if (offset > inode->i_sb->s_maxbytes)
  1750. goto out_big;
  1751. i_size_write(inode, offset);
  1752. } else {
  1753. struct address_space *mapping = inode->i_mapping;
  1754. /*
  1755. * truncation of in-use swapfiles is disallowed - it would
  1756. * cause subsequent swapout to scribble on the now-freed
  1757. * blocks.
  1758. */
  1759. if (IS_SWAPFILE(inode))
  1760. return -ETXTBSY;
  1761. i_size_write(inode, offset);
  1762. /*
  1763. * unmap_mapping_range is called twice, first simply for
  1764. * efficiency so that truncate_inode_pages does fewer
  1765. * single-page unmaps. However after this first call, and
  1766. * before truncate_inode_pages finishes, it is possible for
  1767. * private pages to be COWed, which remain after
  1768. * truncate_inode_pages finishes, hence the second
  1769. * unmap_mapping_range call must be made for correctness.
  1770. */
  1771. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  1772. truncate_inode_pages(mapping, offset);
  1773. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  1774. }
  1775. if (inode->i_op && inode->i_op->truncate)
  1776. inode->i_op->truncate(inode);
  1777. return 0;
  1778. out_sig:
  1779. send_sig(SIGXFSZ, current, 0);
  1780. out_big:
  1781. return -EFBIG;
  1782. }
  1783. EXPORT_SYMBOL(vmtruncate);
  1784. int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
  1785. {
  1786. struct address_space *mapping = inode->i_mapping;
  1787. /*
  1788. * If the underlying filesystem is not going to provide
  1789. * a way to truncate a range of blocks (punch a hole) -
  1790. * we should return failure right now.
  1791. */
  1792. if (!inode->i_op || !inode->i_op->truncate_range)
  1793. return -ENOSYS;
  1794. mutex_lock(&inode->i_mutex);
  1795. down_write(&inode->i_alloc_sem);
  1796. unmap_mapping_range(mapping, offset, (end - offset), 1);
  1797. truncate_inode_pages_range(mapping, offset, end);
  1798. unmap_mapping_range(mapping, offset, (end - offset), 1);
  1799. inode->i_op->truncate_range(inode, offset, end);
  1800. up_write(&inode->i_alloc_sem);
  1801. mutex_unlock(&inode->i_mutex);
  1802. return 0;
  1803. }
  1804. /*
  1805. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1806. * but allow concurrent faults), and pte mapped but not yet locked.
  1807. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1808. */
  1809. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1810. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1811. int write_access, pte_t orig_pte)
  1812. {
  1813. spinlock_t *ptl;
  1814. struct page *page;
  1815. swp_entry_t entry;
  1816. pte_t pte;
  1817. int ret = 0;
  1818. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  1819. goto out;
  1820. entry = pte_to_swp_entry(orig_pte);
  1821. if (is_migration_entry(entry)) {
  1822. migration_entry_wait(mm, pmd, address);
  1823. goto out;
  1824. }
  1825. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  1826. page = lookup_swap_cache(entry);
  1827. if (!page) {
  1828. grab_swap_token(); /* Contend for token _before_ read-in */
  1829. page = swapin_readahead(entry,
  1830. GFP_HIGHUSER_MOVABLE, vma, address);
  1831. if (!page) {
  1832. /*
  1833. * Back out if somebody else faulted in this pte
  1834. * while we released the pte lock.
  1835. */
  1836. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1837. if (likely(pte_same(*page_table, orig_pte)))
  1838. ret = VM_FAULT_OOM;
  1839. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  1840. goto unlock;
  1841. }
  1842. /* Had to read the page from swap area: Major fault */
  1843. ret = VM_FAULT_MAJOR;
  1844. count_vm_event(PGMAJFAULT);
  1845. }
  1846. if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
  1847. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  1848. ret = VM_FAULT_OOM;
  1849. goto out;
  1850. }
  1851. mark_page_accessed(page);
  1852. lock_page(page);
  1853. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  1854. /*
  1855. * Back out if somebody else already faulted in this pte.
  1856. */
  1857. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1858. if (unlikely(!pte_same(*page_table, orig_pte)))
  1859. goto out_nomap;
  1860. if (unlikely(!PageUptodate(page))) {
  1861. ret = VM_FAULT_SIGBUS;
  1862. goto out_nomap;
  1863. }
  1864. /* The page isn't present yet, go ahead with the fault. */
  1865. inc_mm_counter(mm, anon_rss);
  1866. pte = mk_pte(page, vma->vm_page_prot);
  1867. if (write_access && can_share_swap_page(page)) {
  1868. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  1869. write_access = 0;
  1870. }
  1871. flush_icache_page(vma, page);
  1872. set_pte_at(mm, address, page_table, pte);
  1873. page_add_anon_rmap(page, vma, address);
  1874. swap_free(entry);
  1875. if (vm_swap_full())
  1876. remove_exclusive_swap_page(page);
  1877. unlock_page(page);
  1878. if (write_access) {
  1879. /* XXX: We could OR the do_wp_page code with this one? */
  1880. if (do_wp_page(mm, vma, address,
  1881. page_table, pmd, ptl, pte) & VM_FAULT_OOM) {
  1882. mem_cgroup_uncharge_page(page);
  1883. ret = VM_FAULT_OOM;
  1884. }
  1885. goto out;
  1886. }
  1887. /* No need to invalidate - it was non-present before */
  1888. update_mmu_cache(vma, address, pte);
  1889. unlock:
  1890. pte_unmap_unlock(page_table, ptl);
  1891. out:
  1892. return ret;
  1893. out_nomap:
  1894. mem_cgroup_uncharge_page(page);
  1895. pte_unmap_unlock(page_table, ptl);
  1896. unlock_page(page);
  1897. page_cache_release(page);
  1898. return ret;
  1899. }
  1900. /*
  1901. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1902. * but allow concurrent faults), and pte mapped but not yet locked.
  1903. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1904. */
  1905. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1906. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1907. int write_access)
  1908. {
  1909. struct page *page;
  1910. spinlock_t *ptl;
  1911. pte_t entry;
  1912. /* Allocate our own private page. */
  1913. pte_unmap(page_table);
  1914. if (unlikely(anon_vma_prepare(vma)))
  1915. goto oom;
  1916. page = alloc_zeroed_user_highpage_movable(vma, address);
  1917. if (!page)
  1918. goto oom;
  1919. __SetPageUptodate(page);
  1920. if (mem_cgroup_charge(page, mm, GFP_KERNEL))
  1921. goto oom_free_page;
  1922. entry = mk_pte(page, vma->vm_page_prot);
  1923. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1924. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1925. if (!pte_none(*page_table))
  1926. goto release;
  1927. inc_mm_counter(mm, anon_rss);
  1928. lru_cache_add_active(page);
  1929. page_add_new_anon_rmap(page, vma, address);
  1930. set_pte_at(mm, address, page_table, entry);
  1931. /* No need to invalidate - it was non-present before */
  1932. update_mmu_cache(vma, address, entry);
  1933. unlock:
  1934. pte_unmap_unlock(page_table, ptl);
  1935. return 0;
  1936. release:
  1937. mem_cgroup_uncharge_page(page);
  1938. page_cache_release(page);
  1939. goto unlock;
  1940. oom_free_page:
  1941. __free_page(page);
  1942. oom:
  1943. return VM_FAULT_OOM;
  1944. }
  1945. /*
  1946. * __do_fault() tries to create a new page mapping. It aggressively
  1947. * tries to share with existing pages, but makes a separate copy if
  1948. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  1949. * the next page fault.
  1950. *
  1951. * As this is called only for pages that do not currently exist, we
  1952. * do not need to flush old virtual caches or the TLB.
  1953. *
  1954. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1955. * but allow concurrent faults), and pte neither mapped nor locked.
  1956. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1957. */
  1958. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  1959. unsigned long address, pmd_t *pmd,
  1960. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  1961. {
  1962. pte_t *page_table;
  1963. spinlock_t *ptl;
  1964. struct page *page;
  1965. pte_t entry;
  1966. int anon = 0;
  1967. struct page *dirty_page = NULL;
  1968. struct vm_fault vmf;
  1969. int ret;
  1970. int page_mkwrite = 0;
  1971. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  1972. vmf.pgoff = pgoff;
  1973. vmf.flags = flags;
  1974. vmf.page = NULL;
  1975. BUG_ON(vma->vm_flags & VM_PFNMAP);
  1976. if (likely(vma->vm_ops->fault)) {
  1977. ret = vma->vm_ops->fault(vma, &vmf);
  1978. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  1979. return ret;
  1980. } else {
  1981. /* Legacy ->nopage path */
  1982. ret = 0;
  1983. vmf.page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
  1984. /* no page was available -- either SIGBUS or OOM */
  1985. if (unlikely(vmf.page == NOPAGE_SIGBUS))
  1986. return VM_FAULT_SIGBUS;
  1987. else if (unlikely(vmf.page == NOPAGE_OOM))
  1988. return VM_FAULT_OOM;
  1989. }
  1990. /*
  1991. * For consistency in subsequent calls, make the faulted page always
  1992. * locked.
  1993. */
  1994. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  1995. lock_page(vmf.page);
  1996. else
  1997. VM_BUG_ON(!PageLocked(vmf.page));
  1998. /*
  1999. * Should we do an early C-O-W break?
  2000. */
  2001. page = vmf.page;
  2002. if (flags & FAULT_FLAG_WRITE) {
  2003. if (!(vma->vm_flags & VM_SHARED)) {
  2004. anon = 1;
  2005. if (unlikely(anon_vma_prepare(vma))) {
  2006. ret = VM_FAULT_OOM;
  2007. goto out;
  2008. }
  2009. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  2010. vma, address);
  2011. if (!page) {
  2012. ret = VM_FAULT_OOM;
  2013. goto out;
  2014. }
  2015. copy_user_highpage(page, vmf.page, address, vma);
  2016. __SetPageUptodate(page);
  2017. } else {
  2018. /*
  2019. * If the page will be shareable, see if the backing
  2020. * address space wants to know that the page is about
  2021. * to become writable
  2022. */
  2023. if (vma->vm_ops->page_mkwrite) {
  2024. unlock_page(page);
  2025. if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
  2026. ret = VM_FAULT_SIGBUS;
  2027. anon = 1; /* no anon but release vmf.page */
  2028. goto out_unlocked;
  2029. }
  2030. lock_page(page);
  2031. /*
  2032. * XXX: this is not quite right (racy vs
  2033. * invalidate) to unlock and relock the page
  2034. * like this, however a better fix requires
  2035. * reworking page_mkwrite locking API, which
  2036. * is better done later.
  2037. */
  2038. if (!page->mapping) {
  2039. ret = 0;
  2040. anon = 1; /* no anon but release vmf.page */
  2041. goto out;
  2042. }
  2043. page_mkwrite = 1;
  2044. }
  2045. }
  2046. }
  2047. if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
  2048. ret = VM_FAULT_OOM;
  2049. goto out;
  2050. }
  2051. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2052. /*
  2053. * This silly early PAGE_DIRTY setting removes a race
  2054. * due to the bad i386 page protection. But it's valid
  2055. * for other architectures too.
  2056. *
  2057. * Note that if write_access is true, we either now have
  2058. * an exclusive copy of the page, or this is a shared mapping,
  2059. * so we can make it writable and dirty to avoid having to
  2060. * handle that later.
  2061. */
  2062. /* Only go through if we didn't race with anybody else... */
  2063. if (likely(pte_same(*page_table, orig_pte))) {
  2064. flush_icache_page(vma, page);
  2065. entry = mk_pte(page, vma->vm_page_prot);
  2066. if (flags & FAULT_FLAG_WRITE)
  2067. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2068. set_pte_at(mm, address, page_table, entry);
  2069. if (anon) {
  2070. inc_mm_counter(mm, anon_rss);
  2071. lru_cache_add_active(page);
  2072. page_add_new_anon_rmap(page, vma, address);
  2073. } else {
  2074. inc_mm_counter(mm, file_rss);
  2075. page_add_file_rmap(page);
  2076. if (flags & FAULT_FLAG_WRITE) {
  2077. dirty_page = page;
  2078. get_page(dirty_page);
  2079. }
  2080. }
  2081. /* no need to invalidate: a not-present page won't be cached */
  2082. update_mmu_cache(vma, address, entry);
  2083. } else {
  2084. mem_cgroup_uncharge_page(page);
  2085. if (anon)
  2086. page_cache_release(page);
  2087. else
  2088. anon = 1; /* no anon but release faulted_page */
  2089. }
  2090. pte_unmap_unlock(page_table, ptl);
  2091. out:
  2092. unlock_page(vmf.page);
  2093. out_unlocked:
  2094. if (anon)
  2095. page_cache_release(vmf.page);
  2096. else if (dirty_page) {
  2097. if (vma->vm_file)
  2098. file_update_time(vma->vm_file);
  2099. set_page_dirty_balance(dirty_page, page_mkwrite);
  2100. put_page(dirty_page);
  2101. }
  2102. return ret;
  2103. }
  2104. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2105. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2106. int write_access, pte_t orig_pte)
  2107. {
  2108. pgoff_t pgoff = (((address & PAGE_MASK)
  2109. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2110. unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
  2111. pte_unmap(page_table);
  2112. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2113. }
  2114. /*
  2115. * do_no_pfn() tries to create a new page mapping for a page without
  2116. * a struct_page backing it
  2117. *
  2118. * As this is called only for pages that do not currently exist, we
  2119. * do not need to flush old virtual caches or the TLB.
  2120. *
  2121. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2122. * but allow concurrent faults), and pte mapped but not yet locked.
  2123. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2124. *
  2125. * It is expected that the ->nopfn handler always returns the same pfn
  2126. * for a given virtual mapping.
  2127. *
  2128. * Mark this `noinline' to prevent it from bloating the main pagefault code.
  2129. */
  2130. static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
  2131. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2132. int write_access)
  2133. {
  2134. spinlock_t *ptl;
  2135. pte_t entry;
  2136. unsigned long pfn;
  2137. pte_unmap(page_table);
  2138. BUG_ON(!(vma->vm_flags & VM_PFNMAP));
  2139. BUG_ON(is_cow_mapping(vma->vm_flags));
  2140. pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
  2141. if (unlikely(pfn == NOPFN_OOM))
  2142. return VM_FAULT_OOM;
  2143. else if (unlikely(pfn == NOPFN_SIGBUS))
  2144. return VM_FAULT_SIGBUS;
  2145. else if (unlikely(pfn == NOPFN_REFAULT))
  2146. return 0;
  2147. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2148. /* Only go through if we didn't race with anybody else... */
  2149. if (pte_none(*page_table)) {
  2150. entry = pfn_pte(pfn, vma->vm_page_prot);
  2151. if (write_access)
  2152. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2153. set_pte_at(mm, address, page_table, entry);
  2154. }
  2155. pte_unmap_unlock(page_table, ptl);
  2156. return 0;
  2157. }
  2158. /*
  2159. * Fault of a previously existing named mapping. Repopulate the pte
  2160. * from the encoded file_pte if possible. This enables swappable
  2161. * nonlinear vmas.
  2162. *
  2163. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2164. * but allow concurrent faults), and pte mapped but not yet locked.
  2165. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2166. */
  2167. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2168. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2169. int write_access, pte_t orig_pte)
  2170. {
  2171. unsigned int flags = FAULT_FLAG_NONLINEAR |
  2172. (write_access ? FAULT_FLAG_WRITE : 0);
  2173. pgoff_t pgoff;
  2174. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2175. return 0;
  2176. if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
  2177. !(vma->vm_flags & VM_CAN_NONLINEAR))) {
  2178. /*
  2179. * Page table corrupted: show pte and kill process.
  2180. */
  2181. print_bad_pte(vma, orig_pte, address);
  2182. return VM_FAULT_OOM;
  2183. }
  2184. pgoff = pte_to_pgoff(orig_pte);
  2185. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2186. }
  2187. /*
  2188. * These routines also need to handle stuff like marking pages dirty
  2189. * and/or accessed for architectures that don't do it in hardware (most
  2190. * RISC architectures). The early dirtying is also good on the i386.
  2191. *
  2192. * There is also a hook called "update_mmu_cache()" that architectures
  2193. * with external mmu caches can use to update those (ie the Sparc or
  2194. * PowerPC hashed page tables that act as extended TLBs).
  2195. *
  2196. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2197. * but allow concurrent faults), and pte mapped but not yet locked.
  2198. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2199. */
  2200. static inline int handle_pte_fault(struct mm_struct *mm,
  2201. struct vm_area_struct *vma, unsigned long address,
  2202. pte_t *pte, pmd_t *pmd, int write_access)
  2203. {
  2204. pte_t entry;
  2205. spinlock_t *ptl;
  2206. entry = *pte;
  2207. if (!pte_present(entry)) {
  2208. if (pte_none(entry)) {
  2209. if (vma->vm_ops) {
  2210. if (vma->vm_ops->fault || vma->vm_ops->nopage)
  2211. return do_linear_fault(mm, vma, address,
  2212. pte, pmd, write_access, entry);
  2213. if (unlikely(vma->vm_ops->nopfn))
  2214. return do_no_pfn(mm, vma, address, pte,
  2215. pmd, write_access);
  2216. }
  2217. return do_anonymous_page(mm, vma, address,
  2218. pte, pmd, write_access);
  2219. }
  2220. if (pte_file(entry))
  2221. return do_nonlinear_fault(mm, vma, address,
  2222. pte, pmd, write_access, entry);
  2223. return do_swap_page(mm, vma, address,
  2224. pte, pmd, write_access, entry);
  2225. }
  2226. ptl = pte_lockptr(mm, pmd);
  2227. spin_lock(ptl);
  2228. if (unlikely(!pte_same(*pte, entry)))
  2229. goto unlock;
  2230. if (write_access) {
  2231. if (!pte_write(entry))
  2232. return do_wp_page(mm, vma, address,
  2233. pte, pmd, ptl, entry);
  2234. entry = pte_mkdirty(entry);
  2235. }
  2236. entry = pte_mkyoung(entry);
  2237. if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
  2238. update_mmu_cache(vma, address, entry);
  2239. } else {
  2240. /*
  2241. * This is needed only for protection faults but the arch code
  2242. * is not yet telling us if this is a protection fault or not.
  2243. * This still avoids useless tlb flushes for .text page faults
  2244. * with threads.
  2245. */
  2246. if (write_access)
  2247. flush_tlb_page(vma, address);
  2248. }
  2249. unlock:
  2250. pte_unmap_unlock(pte, ptl);
  2251. return 0;
  2252. }
  2253. /*
  2254. * By the time we get here, we already hold the mm semaphore
  2255. */
  2256. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2257. unsigned long address, int write_access)
  2258. {
  2259. pgd_t *pgd;
  2260. pud_t *pud;
  2261. pmd_t *pmd;
  2262. pte_t *pte;
  2263. __set_current_state(TASK_RUNNING);
  2264. count_vm_event(PGFAULT);
  2265. if (unlikely(is_vm_hugetlb_page(vma)))
  2266. return hugetlb_fault(mm, vma, address, write_access);
  2267. pgd = pgd_offset(mm, address);
  2268. pud = pud_alloc(mm, pgd, address);
  2269. if (!pud)
  2270. return VM_FAULT_OOM;
  2271. pmd = pmd_alloc(mm, pud, address);
  2272. if (!pmd)
  2273. return VM_FAULT_OOM;
  2274. pte = pte_alloc_map(mm, pmd, address);
  2275. if (!pte)
  2276. return VM_FAULT_OOM;
  2277. return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
  2278. }
  2279. #ifndef __PAGETABLE_PUD_FOLDED
  2280. /*
  2281. * Allocate page upper directory.
  2282. * We've already handled the fast-path in-line.
  2283. */
  2284. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  2285. {
  2286. pud_t *new = pud_alloc_one(mm, address);
  2287. if (!new)
  2288. return -ENOMEM;
  2289. spin_lock(&mm->page_table_lock);
  2290. if (pgd_present(*pgd)) /* Another has populated it */
  2291. pud_free(mm, new);
  2292. else
  2293. pgd_populate(mm, pgd, new);
  2294. spin_unlock(&mm->page_table_lock);
  2295. return 0;
  2296. }
  2297. #endif /* __PAGETABLE_PUD_FOLDED */
  2298. #ifndef __PAGETABLE_PMD_FOLDED
  2299. /*
  2300. * Allocate page middle directory.
  2301. * We've already handled the fast-path in-line.
  2302. */
  2303. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  2304. {
  2305. pmd_t *new = pmd_alloc_one(mm, address);
  2306. if (!new)
  2307. return -ENOMEM;
  2308. spin_lock(&mm->page_table_lock);
  2309. #ifndef __ARCH_HAS_4LEVEL_HACK
  2310. if (pud_present(*pud)) /* Another has populated it */
  2311. pmd_free(mm, new);
  2312. else
  2313. pud_populate(mm, pud, new);
  2314. #else
  2315. if (pgd_present(*pud)) /* Another has populated it */
  2316. pmd_free(mm, new);
  2317. else
  2318. pgd_populate(mm, pud, new);
  2319. #endif /* __ARCH_HAS_4LEVEL_HACK */
  2320. spin_unlock(&mm->page_table_lock);
  2321. return 0;
  2322. }
  2323. #endif /* __PAGETABLE_PMD_FOLDED */
  2324. int make_pages_present(unsigned long addr, unsigned long end)
  2325. {
  2326. int ret, len, write;
  2327. struct vm_area_struct * vma;
  2328. vma = find_vma(current->mm, addr);
  2329. if (!vma)
  2330. return -1;
  2331. write = (vma->vm_flags & VM_WRITE) != 0;
  2332. BUG_ON(addr >= end);
  2333. BUG_ON(end > vma->vm_end);
  2334. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  2335. ret = get_user_pages(current, current->mm, addr,
  2336. len, write, 0, NULL, NULL);
  2337. if (ret < 0)
  2338. return ret;
  2339. return ret == len ? 0 : -1;
  2340. }
  2341. #if !defined(__HAVE_ARCH_GATE_AREA)
  2342. #if defined(AT_SYSINFO_EHDR)
  2343. static struct vm_area_struct gate_vma;
  2344. static int __init gate_vma_init(void)
  2345. {
  2346. gate_vma.vm_mm = NULL;
  2347. gate_vma.vm_start = FIXADDR_USER_START;
  2348. gate_vma.vm_end = FIXADDR_USER_END;
  2349. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  2350. gate_vma.vm_page_prot = __P101;
  2351. /*
  2352. * Make sure the vDSO gets into every core dump.
  2353. * Dumping its contents makes post-mortem fully interpretable later
  2354. * without matching up the same kernel and hardware config to see
  2355. * what PC values meant.
  2356. */
  2357. gate_vma.vm_flags |= VM_ALWAYSDUMP;
  2358. return 0;
  2359. }
  2360. __initcall(gate_vma_init);
  2361. #endif
  2362. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  2363. {
  2364. #ifdef AT_SYSINFO_EHDR
  2365. return &gate_vma;
  2366. #else
  2367. return NULL;
  2368. #endif
  2369. }
  2370. int in_gate_area_no_task(unsigned long addr)
  2371. {
  2372. #ifdef AT_SYSINFO_EHDR
  2373. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  2374. return 1;
  2375. #endif
  2376. return 0;
  2377. }
  2378. #endif /* __HAVE_ARCH_GATE_AREA */
  2379. /*
  2380. * Access another process' address space.
  2381. * Source/target buffer must be kernel space,
  2382. * Do not walk the page table directly, use get_user_pages
  2383. */
  2384. int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
  2385. {
  2386. struct mm_struct *mm;
  2387. struct vm_area_struct *vma;
  2388. struct page *page;
  2389. void *old_buf = buf;
  2390. mm = get_task_mm(tsk);
  2391. if (!mm)
  2392. return 0;
  2393. down_read(&mm->mmap_sem);
  2394. /* ignore errors, just check how much was successfully transferred */
  2395. while (len) {
  2396. int bytes, ret, offset;
  2397. void *maddr;
  2398. ret = get_user_pages(tsk, mm, addr, 1,
  2399. write, 1, &page, &vma);
  2400. if (ret <= 0)
  2401. break;
  2402. bytes = len;
  2403. offset = addr & (PAGE_SIZE-1);
  2404. if (bytes > PAGE_SIZE-offset)
  2405. bytes = PAGE_SIZE-offset;
  2406. maddr = kmap(page);
  2407. if (write) {
  2408. copy_to_user_page(vma, page, addr,
  2409. maddr + offset, buf, bytes);
  2410. set_page_dirty_lock(page);
  2411. } else {
  2412. copy_from_user_page(vma, page, addr,
  2413. buf, maddr + offset, bytes);
  2414. }
  2415. kunmap(page);
  2416. page_cache_release(page);
  2417. len -= bytes;
  2418. buf += bytes;
  2419. addr += bytes;
  2420. }
  2421. up_read(&mm->mmap_sem);
  2422. mmput(mm);
  2423. return buf - old_buf;
  2424. }
  2425. /*
  2426. * Print the name of a VMA.
  2427. */
  2428. void print_vma_addr(char *prefix, unsigned long ip)
  2429. {
  2430. struct mm_struct *mm = current->mm;
  2431. struct vm_area_struct *vma;
  2432. /*
  2433. * Do not print if we are in atomic
  2434. * contexts (in exception stacks, etc.):
  2435. */
  2436. if (preempt_count())
  2437. return;
  2438. down_read(&mm->mmap_sem);
  2439. vma = find_vma(mm, ip);
  2440. if (vma && vma->vm_file) {
  2441. struct file *f = vma->vm_file;
  2442. char *buf = (char *)__get_free_page(GFP_KERNEL);
  2443. if (buf) {
  2444. char *p, *s;
  2445. p = d_path(&f->f_path, buf, PAGE_SIZE);
  2446. if (IS_ERR(p))
  2447. p = "?";
  2448. s = strrchr(p, '/');
  2449. if (s)
  2450. p = s+1;
  2451. printk("%s%s[%lx+%lx]", prefix, p,
  2452. vma->vm_start,
  2453. vma->vm_end - vma->vm_start);
  2454. free_page((unsigned long)buf);
  2455. }
  2456. }
  2457. up_read(&current->mm->mmap_sem);
  2458. }