bootmem.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504
  1. /*
  2. * linux/mm/bootmem.c
  3. *
  4. * Copyright (C) 1999 Ingo Molnar
  5. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  6. *
  7. * simple boot-time physical memory area allocator and
  8. * free memory collector. It's used to deal with reserved
  9. * system memory and memory holes as well.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/pfn.h>
  13. #include <linux/bootmem.h>
  14. #include <linux/module.h>
  15. #include <asm/bug.h>
  16. #include <asm/io.h>
  17. #include <asm/processor.h>
  18. #include "internal.h"
  19. /*
  20. * Access to this subsystem has to be serialized externally. (this is
  21. * true for the boot process anyway)
  22. */
  23. unsigned long max_low_pfn;
  24. unsigned long min_low_pfn;
  25. unsigned long max_pfn;
  26. static LIST_HEAD(bdata_list);
  27. #ifdef CONFIG_CRASH_DUMP
  28. /*
  29. * If we have booted due to a crash, max_pfn will be a very low value. We need
  30. * to know the amount of memory that the previous kernel used.
  31. */
  32. unsigned long saved_max_pfn;
  33. #endif
  34. /* return the number of _pages_ that will be allocated for the boot bitmap */
  35. unsigned long __init bootmem_bootmap_pages(unsigned long pages)
  36. {
  37. unsigned long mapsize;
  38. mapsize = (pages+7)/8;
  39. mapsize = (mapsize + ~PAGE_MASK) & PAGE_MASK;
  40. mapsize >>= PAGE_SHIFT;
  41. return mapsize;
  42. }
  43. /*
  44. * link bdata in order
  45. */
  46. static void __init link_bootmem(bootmem_data_t *bdata)
  47. {
  48. bootmem_data_t *ent;
  49. if (list_empty(&bdata_list)) {
  50. list_add(&bdata->list, &bdata_list);
  51. return;
  52. }
  53. /* insert in order */
  54. list_for_each_entry(ent, &bdata_list, list) {
  55. if (bdata->node_boot_start < ent->node_boot_start) {
  56. list_add_tail(&bdata->list, &ent->list);
  57. return;
  58. }
  59. }
  60. list_add_tail(&bdata->list, &bdata_list);
  61. }
  62. /*
  63. * Given an initialised bdata, it returns the size of the boot bitmap
  64. */
  65. static unsigned long __init get_mapsize(bootmem_data_t *bdata)
  66. {
  67. unsigned long mapsize;
  68. unsigned long start = PFN_DOWN(bdata->node_boot_start);
  69. unsigned long end = bdata->node_low_pfn;
  70. mapsize = ((end - start) + 7) / 8;
  71. return ALIGN(mapsize, sizeof(long));
  72. }
  73. /*
  74. * Called once to set up the allocator itself.
  75. */
  76. static unsigned long __init init_bootmem_core(pg_data_t *pgdat,
  77. unsigned long mapstart, unsigned long start, unsigned long end)
  78. {
  79. bootmem_data_t *bdata = pgdat->bdata;
  80. unsigned long mapsize;
  81. bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
  82. bdata->node_boot_start = PFN_PHYS(start);
  83. bdata->node_low_pfn = end;
  84. link_bootmem(bdata);
  85. /*
  86. * Initially all pages are reserved - setup_arch() has to
  87. * register free RAM areas explicitly.
  88. */
  89. mapsize = get_mapsize(bdata);
  90. memset(bdata->node_bootmem_map, 0xff, mapsize);
  91. return mapsize;
  92. }
  93. /*
  94. * Marks a particular physical memory range as unallocatable. Usable RAM
  95. * might be used for boot-time allocations - or it might get added
  96. * to the free page pool later on.
  97. */
  98. static int __init reserve_bootmem_core(bootmem_data_t *bdata,
  99. unsigned long addr, unsigned long size, int flags)
  100. {
  101. unsigned long sidx, eidx;
  102. unsigned long i;
  103. int ret;
  104. /*
  105. * round up, partially reserved pages are considered
  106. * fully reserved.
  107. */
  108. BUG_ON(!size);
  109. BUG_ON(PFN_DOWN(addr) >= bdata->node_low_pfn);
  110. BUG_ON(PFN_UP(addr + size) > bdata->node_low_pfn);
  111. sidx = PFN_DOWN(addr - bdata->node_boot_start);
  112. eidx = PFN_UP(addr + size - bdata->node_boot_start);
  113. for (i = sidx; i < eidx; i++)
  114. if (test_and_set_bit(i, bdata->node_bootmem_map)) {
  115. #ifdef CONFIG_DEBUG_BOOTMEM
  116. printk("hm, page %08lx reserved twice.\n", i*PAGE_SIZE);
  117. #endif
  118. if (flags & BOOTMEM_EXCLUSIVE) {
  119. ret = -EBUSY;
  120. goto err;
  121. }
  122. }
  123. return 0;
  124. err:
  125. /* unreserve memory we accidentally reserved */
  126. for (i--; i >= sidx; i--)
  127. clear_bit(i, bdata->node_bootmem_map);
  128. return ret;
  129. }
  130. static void __init free_bootmem_core(bootmem_data_t *bdata, unsigned long addr,
  131. unsigned long size)
  132. {
  133. unsigned long sidx, eidx;
  134. unsigned long i;
  135. /*
  136. * round down end of usable mem, partially free pages are
  137. * considered reserved.
  138. */
  139. BUG_ON(!size);
  140. BUG_ON(PFN_DOWN(addr + size) > bdata->node_low_pfn);
  141. if (addr < bdata->last_success)
  142. bdata->last_success = addr;
  143. /*
  144. * Round up the beginning of the address.
  145. */
  146. sidx = PFN_UP(addr) - PFN_DOWN(bdata->node_boot_start);
  147. eidx = PFN_DOWN(addr + size - bdata->node_boot_start);
  148. for (i = sidx; i < eidx; i++) {
  149. if (unlikely(!test_and_clear_bit(i, bdata->node_bootmem_map)))
  150. BUG();
  151. }
  152. }
  153. /*
  154. * We 'merge' subsequent allocations to save space. We might 'lose'
  155. * some fraction of a page if allocations cannot be satisfied due to
  156. * size constraints on boxes where there is physical RAM space
  157. * fragmentation - in these cases (mostly large memory boxes) this
  158. * is not a problem.
  159. *
  160. * On low memory boxes we get it right in 100% of the cases.
  161. *
  162. * alignment has to be a power of 2 value.
  163. *
  164. * NOTE: This function is _not_ reentrant.
  165. */
  166. void * __init
  167. __alloc_bootmem_core(struct bootmem_data *bdata, unsigned long size,
  168. unsigned long align, unsigned long goal, unsigned long limit)
  169. {
  170. unsigned long offset, remaining_size, areasize, preferred;
  171. unsigned long i, start = 0, incr, eidx, end_pfn;
  172. void *ret;
  173. if (!size) {
  174. printk("__alloc_bootmem_core(): zero-sized request\n");
  175. BUG();
  176. }
  177. BUG_ON(align & (align-1));
  178. if (limit && bdata->node_boot_start >= limit)
  179. return NULL;
  180. /* on nodes without memory - bootmem_map is NULL */
  181. if (!bdata->node_bootmem_map)
  182. return NULL;
  183. end_pfn = bdata->node_low_pfn;
  184. limit = PFN_DOWN(limit);
  185. if (limit && end_pfn > limit)
  186. end_pfn = limit;
  187. eidx = end_pfn - PFN_DOWN(bdata->node_boot_start);
  188. offset = 0;
  189. if (align && (bdata->node_boot_start & (align - 1UL)) != 0)
  190. offset = align - (bdata->node_boot_start & (align - 1UL));
  191. offset = PFN_DOWN(offset);
  192. /*
  193. * We try to allocate bootmem pages above 'goal'
  194. * first, then we try to allocate lower pages.
  195. */
  196. if (goal && goal >= bdata->node_boot_start && PFN_DOWN(goal) < end_pfn) {
  197. preferred = goal - bdata->node_boot_start;
  198. if (bdata->last_success >= preferred)
  199. if (!limit || (limit && limit > bdata->last_success))
  200. preferred = bdata->last_success;
  201. } else
  202. preferred = 0;
  203. preferred = PFN_DOWN(ALIGN(preferred, align)) + offset;
  204. areasize = (size + PAGE_SIZE-1) / PAGE_SIZE;
  205. incr = align >> PAGE_SHIFT ? : 1;
  206. restart_scan:
  207. for (i = preferred; i < eidx; i += incr) {
  208. unsigned long j;
  209. i = find_next_zero_bit(bdata->node_bootmem_map, eidx, i);
  210. i = ALIGN(i, incr);
  211. if (i >= eidx)
  212. break;
  213. if (test_bit(i, bdata->node_bootmem_map))
  214. continue;
  215. for (j = i + 1; j < i + areasize; ++j) {
  216. if (j >= eidx)
  217. goto fail_block;
  218. if (test_bit(j, bdata->node_bootmem_map))
  219. goto fail_block;
  220. }
  221. start = i;
  222. goto found;
  223. fail_block:
  224. i = ALIGN(j, incr);
  225. }
  226. if (preferred > offset) {
  227. preferred = offset;
  228. goto restart_scan;
  229. }
  230. return NULL;
  231. found:
  232. bdata->last_success = PFN_PHYS(start);
  233. BUG_ON(start >= eidx);
  234. /*
  235. * Is the next page of the previous allocation-end the start
  236. * of this allocation's buffer? If yes then we can 'merge'
  237. * the previous partial page with this allocation.
  238. */
  239. if (align < PAGE_SIZE &&
  240. bdata->last_offset && bdata->last_pos+1 == start) {
  241. offset = ALIGN(bdata->last_offset, align);
  242. BUG_ON(offset > PAGE_SIZE);
  243. remaining_size = PAGE_SIZE - offset;
  244. if (size < remaining_size) {
  245. areasize = 0;
  246. /* last_pos unchanged */
  247. bdata->last_offset = offset + size;
  248. ret = phys_to_virt(bdata->last_pos * PAGE_SIZE +
  249. offset +
  250. bdata->node_boot_start);
  251. } else {
  252. remaining_size = size - remaining_size;
  253. areasize = (remaining_size + PAGE_SIZE-1) / PAGE_SIZE;
  254. ret = phys_to_virt(bdata->last_pos * PAGE_SIZE +
  255. offset +
  256. bdata->node_boot_start);
  257. bdata->last_pos = start + areasize - 1;
  258. bdata->last_offset = remaining_size;
  259. }
  260. bdata->last_offset &= ~PAGE_MASK;
  261. } else {
  262. bdata->last_pos = start + areasize - 1;
  263. bdata->last_offset = size & ~PAGE_MASK;
  264. ret = phys_to_virt(start * PAGE_SIZE + bdata->node_boot_start);
  265. }
  266. /*
  267. * Reserve the area now:
  268. */
  269. for (i = start; i < start + areasize; i++)
  270. if (unlikely(test_and_set_bit(i, bdata->node_bootmem_map)))
  271. BUG();
  272. memset(ret, 0, size);
  273. return ret;
  274. }
  275. static unsigned long __init free_all_bootmem_core(pg_data_t *pgdat)
  276. {
  277. struct page *page;
  278. unsigned long pfn;
  279. bootmem_data_t *bdata = pgdat->bdata;
  280. unsigned long i, count, total = 0;
  281. unsigned long idx;
  282. unsigned long *map;
  283. int gofast = 0;
  284. BUG_ON(!bdata->node_bootmem_map);
  285. count = 0;
  286. /* first extant page of the node */
  287. pfn = PFN_DOWN(bdata->node_boot_start);
  288. idx = bdata->node_low_pfn - pfn;
  289. map = bdata->node_bootmem_map;
  290. /* Check physaddr is O(LOG2(BITS_PER_LONG)) page aligned */
  291. if (bdata->node_boot_start == 0 ||
  292. ffs(bdata->node_boot_start) - PAGE_SHIFT > ffs(BITS_PER_LONG))
  293. gofast = 1;
  294. for (i = 0; i < idx; ) {
  295. unsigned long v = ~map[i / BITS_PER_LONG];
  296. if (gofast && v == ~0UL) {
  297. int order;
  298. page = pfn_to_page(pfn);
  299. count += BITS_PER_LONG;
  300. order = ffs(BITS_PER_LONG) - 1;
  301. __free_pages_bootmem(page, order);
  302. i += BITS_PER_LONG;
  303. page += BITS_PER_LONG;
  304. } else if (v) {
  305. unsigned long m;
  306. page = pfn_to_page(pfn);
  307. for (m = 1; m && i < idx; m<<=1, page++, i++) {
  308. if (v & m) {
  309. count++;
  310. __free_pages_bootmem(page, 0);
  311. }
  312. }
  313. } else {
  314. i += BITS_PER_LONG;
  315. }
  316. pfn += BITS_PER_LONG;
  317. }
  318. total += count;
  319. /*
  320. * Now free the allocator bitmap itself, it's not
  321. * needed anymore:
  322. */
  323. page = virt_to_page(bdata->node_bootmem_map);
  324. count = 0;
  325. idx = (get_mapsize(bdata) + PAGE_SIZE-1) >> PAGE_SHIFT;
  326. for (i = 0; i < idx; i++, page++) {
  327. __free_pages_bootmem(page, 0);
  328. count++;
  329. }
  330. total += count;
  331. bdata->node_bootmem_map = NULL;
  332. return total;
  333. }
  334. unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
  335. unsigned long startpfn, unsigned long endpfn)
  336. {
  337. return init_bootmem_core(pgdat, freepfn, startpfn, endpfn);
  338. }
  339. void __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
  340. unsigned long size, int flags)
  341. {
  342. reserve_bootmem_core(pgdat->bdata, physaddr, size, flags);
  343. }
  344. void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
  345. unsigned long size)
  346. {
  347. free_bootmem_core(pgdat->bdata, physaddr, size);
  348. }
  349. unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
  350. {
  351. return free_all_bootmem_core(pgdat);
  352. }
  353. unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
  354. {
  355. max_low_pfn = pages;
  356. min_low_pfn = start;
  357. return init_bootmem_core(NODE_DATA(0), start, 0, pages);
  358. }
  359. #ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE
  360. int __init reserve_bootmem(unsigned long addr, unsigned long size,
  361. int flags)
  362. {
  363. return reserve_bootmem_core(NODE_DATA(0)->bdata, addr, size, flags);
  364. }
  365. #endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */
  366. void __init free_bootmem(unsigned long addr, unsigned long size)
  367. {
  368. free_bootmem_core(NODE_DATA(0)->bdata, addr, size);
  369. }
  370. unsigned long __init free_all_bootmem(void)
  371. {
  372. return free_all_bootmem_core(NODE_DATA(0));
  373. }
  374. void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
  375. unsigned long goal)
  376. {
  377. bootmem_data_t *bdata;
  378. void *ptr;
  379. list_for_each_entry(bdata, &bdata_list, list) {
  380. ptr = __alloc_bootmem_core(bdata, size, align, goal, 0);
  381. if (ptr)
  382. return ptr;
  383. }
  384. return NULL;
  385. }
  386. void * __init __alloc_bootmem(unsigned long size, unsigned long align,
  387. unsigned long goal)
  388. {
  389. void *mem = __alloc_bootmem_nopanic(size,align,goal);
  390. if (mem)
  391. return mem;
  392. /*
  393. * Whoops, we cannot satisfy the allocation request.
  394. */
  395. printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
  396. panic("Out of memory");
  397. return NULL;
  398. }
  399. void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
  400. unsigned long align, unsigned long goal)
  401. {
  402. void *ptr;
  403. ptr = __alloc_bootmem_core(pgdat->bdata, size, align, goal, 0);
  404. if (ptr)
  405. return ptr;
  406. return __alloc_bootmem(size, align, goal);
  407. }
  408. #ifndef ARCH_LOW_ADDRESS_LIMIT
  409. #define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL
  410. #endif
  411. void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
  412. unsigned long goal)
  413. {
  414. bootmem_data_t *bdata;
  415. void *ptr;
  416. list_for_each_entry(bdata, &bdata_list, list) {
  417. ptr = __alloc_bootmem_core(bdata, size, align, goal,
  418. ARCH_LOW_ADDRESS_LIMIT);
  419. if (ptr)
  420. return ptr;
  421. }
  422. /*
  423. * Whoops, we cannot satisfy the allocation request.
  424. */
  425. printk(KERN_ALERT "low bootmem alloc of %lu bytes failed!\n", size);
  426. panic("Out of low memory");
  427. return NULL;
  428. }
  429. void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
  430. unsigned long align, unsigned long goal)
  431. {
  432. return __alloc_bootmem_core(pgdat->bdata, size, align, goal,
  433. ARCH_LOW_ADDRESS_LIMIT);
  434. }