rt2400pci.c 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611
  1. /*
  2. Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2400pci
  19. Abstract: rt2400pci device specific routines.
  20. Supported chipsets: RT2460.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/pci.h>
  28. #include <linux/eeprom_93cx6.h>
  29. #include "rt2x00.h"
  30. #include "rt2x00pci.h"
  31. #include "rt2400pci.h"
  32. /*
  33. * Register access.
  34. * All access to the CSR registers will go through the methods
  35. * rt2x00pci_register_read and rt2x00pci_register_write.
  36. * BBP and RF register require indirect register access,
  37. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  38. * These indirect registers work with busy bits,
  39. * and we will try maximal REGISTER_BUSY_COUNT times to access
  40. * the register while taking a REGISTER_BUSY_DELAY us delay
  41. * between each attampt. When the busy bit is still set at that time,
  42. * the access attempt is considered to have failed,
  43. * and we will print an error.
  44. */
  45. static u32 rt2400pci_bbp_check(struct rt2x00_dev *rt2x00dev)
  46. {
  47. u32 reg;
  48. unsigned int i;
  49. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  50. rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
  51. if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
  52. break;
  53. udelay(REGISTER_BUSY_DELAY);
  54. }
  55. return reg;
  56. }
  57. static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  58. const unsigned int word, const u8 value)
  59. {
  60. u32 reg;
  61. /*
  62. * Wait until the BBP becomes ready.
  63. */
  64. reg = rt2400pci_bbp_check(rt2x00dev);
  65. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  66. ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
  67. return;
  68. }
  69. /*
  70. * Write the data into the BBP.
  71. */
  72. reg = 0;
  73. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  74. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  75. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  76. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  77. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  78. }
  79. static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  80. const unsigned int word, u8 *value)
  81. {
  82. u32 reg;
  83. /*
  84. * Wait until the BBP becomes ready.
  85. */
  86. reg = rt2400pci_bbp_check(rt2x00dev);
  87. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  88. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  89. return;
  90. }
  91. /*
  92. * Write the request into the BBP.
  93. */
  94. reg = 0;
  95. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  96. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  97. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  98. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  99. /*
  100. * Wait until the BBP becomes ready.
  101. */
  102. reg = rt2400pci_bbp_check(rt2x00dev);
  103. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  104. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  105. *value = 0xff;
  106. return;
  107. }
  108. *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  109. }
  110. static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
  111. const unsigned int word, const u32 value)
  112. {
  113. u32 reg;
  114. unsigned int i;
  115. if (!word)
  116. return;
  117. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  118. rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
  119. if (!rt2x00_get_field32(reg, RFCSR_BUSY))
  120. goto rf_write;
  121. udelay(REGISTER_BUSY_DELAY);
  122. }
  123. ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
  124. return;
  125. rf_write:
  126. reg = 0;
  127. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  128. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  129. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  130. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  131. rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
  132. rt2x00_rf_write(rt2x00dev, word, value);
  133. }
  134. static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  135. {
  136. struct rt2x00_dev *rt2x00dev = eeprom->data;
  137. u32 reg;
  138. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  139. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  140. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  141. eeprom->reg_data_clock =
  142. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  143. eeprom->reg_chip_select =
  144. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  145. }
  146. static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  147. {
  148. struct rt2x00_dev *rt2x00dev = eeprom->data;
  149. u32 reg = 0;
  150. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  151. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  152. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  153. !!eeprom->reg_data_clock);
  154. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  155. !!eeprom->reg_chip_select);
  156. rt2x00pci_register_write(rt2x00dev, CSR21, reg);
  157. }
  158. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  159. #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
  160. static void rt2400pci_read_csr(struct rt2x00_dev *rt2x00dev,
  161. const unsigned int word, u32 *data)
  162. {
  163. rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
  164. }
  165. static void rt2400pci_write_csr(struct rt2x00_dev *rt2x00dev,
  166. const unsigned int word, u32 data)
  167. {
  168. rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
  169. }
  170. static const struct rt2x00debug rt2400pci_rt2x00debug = {
  171. .owner = THIS_MODULE,
  172. .csr = {
  173. .read = rt2400pci_read_csr,
  174. .write = rt2400pci_write_csr,
  175. .word_size = sizeof(u32),
  176. .word_count = CSR_REG_SIZE / sizeof(u32),
  177. },
  178. .eeprom = {
  179. .read = rt2x00_eeprom_read,
  180. .write = rt2x00_eeprom_write,
  181. .word_size = sizeof(u16),
  182. .word_count = EEPROM_SIZE / sizeof(u16),
  183. },
  184. .bbp = {
  185. .read = rt2400pci_bbp_read,
  186. .write = rt2400pci_bbp_write,
  187. .word_size = sizeof(u8),
  188. .word_count = BBP_SIZE / sizeof(u8),
  189. },
  190. .rf = {
  191. .read = rt2x00_rf_read,
  192. .write = rt2400pci_rf_write,
  193. .word_size = sizeof(u32),
  194. .word_count = RF_SIZE / sizeof(u32),
  195. },
  196. };
  197. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  198. #ifdef CONFIG_RT2400PCI_RFKILL
  199. static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  200. {
  201. u32 reg;
  202. rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
  203. return rt2x00_get_field32(reg, GPIOCSR_BIT0);
  204. }
  205. #else
  206. #define rt2400pci_rfkill_poll NULL
  207. #endif /* CONFIG_RT2400PCI_RFKILL */
  208. /*
  209. * Configuration handlers.
  210. */
  211. static void rt2400pci_config_mac_addr(struct rt2x00_dev *rt2x00dev,
  212. __le32 *mac)
  213. {
  214. rt2x00pci_register_multiwrite(rt2x00dev, CSR3, mac,
  215. (2 * sizeof(__le32)));
  216. }
  217. static void rt2400pci_config_bssid(struct rt2x00_dev *rt2x00dev,
  218. __le32 *bssid)
  219. {
  220. rt2x00pci_register_multiwrite(rt2x00dev, CSR5, bssid,
  221. (2 * sizeof(__le32)));
  222. }
  223. static void rt2400pci_config_type(struct rt2x00_dev *rt2x00dev, const int type,
  224. const int tsf_sync)
  225. {
  226. u32 reg;
  227. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  228. /*
  229. * Enable beacon config
  230. */
  231. rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
  232. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD,
  233. PREAMBLE + get_duration(IEEE80211_HEADER, 20));
  234. rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
  235. /*
  236. * Enable synchronisation.
  237. */
  238. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  239. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  240. rt2x00_set_field32(&reg, CSR14_TBCN, (tsf_sync == TSF_SYNC_BEACON));
  241. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  242. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, tsf_sync);
  243. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  244. }
  245. static void rt2400pci_config_preamble(struct rt2x00_dev *rt2x00dev,
  246. const int short_preamble,
  247. const int ack_timeout,
  248. const int ack_consume_time)
  249. {
  250. int preamble_mask;
  251. u32 reg;
  252. /*
  253. * When short preamble is enabled, we should set bit 0x08
  254. */
  255. preamble_mask = short_preamble << 3;
  256. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  257. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, ack_timeout);
  258. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, ack_consume_time);
  259. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  260. rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
  261. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);
  262. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  263. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
  264. rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
  265. rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
  266. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  267. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  268. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
  269. rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
  270. rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
  271. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  272. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  273. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
  274. rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
  275. rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
  276. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  277. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  278. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
  279. rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
  280. }
  281. static void rt2400pci_config_phymode(struct rt2x00_dev *rt2x00dev,
  282. const int basic_rate_mask)
  283. {
  284. rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
  285. }
  286. static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
  287. struct rf_channel *rf)
  288. {
  289. /*
  290. * Switch on tuning bits.
  291. */
  292. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  293. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  294. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  295. rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
  296. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  297. /*
  298. * RF2420 chipset don't need any additional actions.
  299. */
  300. if (rt2x00_rf(&rt2x00dev->chip, RF2420))
  301. return;
  302. /*
  303. * For the RT2421 chipsets we need to write an invalid
  304. * reference clock rate to activate auto_tune.
  305. * After that we set the value back to the correct channel.
  306. */
  307. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  308. rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
  309. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  310. msleep(1);
  311. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  312. rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
  313. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  314. msleep(1);
  315. /*
  316. * Switch off tuning bits.
  317. */
  318. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  319. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  320. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  321. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  322. /*
  323. * Clear false CRC during channel switch.
  324. */
  325. rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
  326. }
  327. static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
  328. {
  329. rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
  330. }
  331. static void rt2400pci_config_antenna(struct rt2x00_dev *rt2x00dev,
  332. struct antenna_setup *ant)
  333. {
  334. u8 r1;
  335. u8 r4;
  336. rt2400pci_bbp_read(rt2x00dev, 4, &r4);
  337. rt2400pci_bbp_read(rt2x00dev, 1, &r1);
  338. /*
  339. * Configure the TX antenna.
  340. */
  341. switch (ant->tx) {
  342. case ANTENNA_HW_DIVERSITY:
  343. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
  344. break;
  345. case ANTENNA_A:
  346. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
  347. break;
  348. case ANTENNA_SW_DIVERSITY:
  349. /*
  350. * NOTE: We should never come here because rt2x00lib is
  351. * supposed to catch this and send us the correct antenna
  352. * explicitely. However we are nog going to bug about this.
  353. * Instead, just default to antenna B.
  354. */
  355. case ANTENNA_B:
  356. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
  357. break;
  358. }
  359. /*
  360. * Configure the RX antenna.
  361. */
  362. switch (ant->rx) {
  363. case ANTENNA_HW_DIVERSITY:
  364. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
  365. break;
  366. case ANTENNA_A:
  367. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
  368. break;
  369. case ANTENNA_SW_DIVERSITY:
  370. /*
  371. * NOTE: We should never come here because rt2x00lib is
  372. * supposed to catch this and send us the correct antenna
  373. * explicitely. However we are nog going to bug about this.
  374. * Instead, just default to antenna B.
  375. */
  376. case ANTENNA_B:
  377. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
  378. break;
  379. }
  380. rt2400pci_bbp_write(rt2x00dev, 4, r4);
  381. rt2400pci_bbp_write(rt2x00dev, 1, r1);
  382. }
  383. static void rt2400pci_config_duration(struct rt2x00_dev *rt2x00dev,
  384. struct rt2x00lib_conf *libconf)
  385. {
  386. u32 reg;
  387. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  388. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
  389. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  390. rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
  391. rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
  392. rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
  393. rt2x00pci_register_write(rt2x00dev, CSR18, reg);
  394. rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
  395. rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
  396. rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
  397. rt2x00pci_register_write(rt2x00dev, CSR19, reg);
  398. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  399. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  400. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  401. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  402. rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
  403. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
  404. libconf->conf->beacon_int * 16);
  405. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
  406. libconf->conf->beacon_int * 16);
  407. rt2x00pci_register_write(rt2x00dev, CSR12, reg);
  408. }
  409. static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
  410. const unsigned int flags,
  411. struct rt2x00lib_conf *libconf)
  412. {
  413. if (flags & CONFIG_UPDATE_PHYMODE)
  414. rt2400pci_config_phymode(rt2x00dev, libconf->basic_rates);
  415. if (flags & CONFIG_UPDATE_CHANNEL)
  416. rt2400pci_config_channel(rt2x00dev, &libconf->rf);
  417. if (flags & CONFIG_UPDATE_TXPOWER)
  418. rt2400pci_config_txpower(rt2x00dev,
  419. libconf->conf->power_level);
  420. if (flags & CONFIG_UPDATE_ANTENNA)
  421. rt2400pci_config_antenna(rt2x00dev, &libconf->ant);
  422. if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
  423. rt2400pci_config_duration(rt2x00dev, libconf);
  424. }
  425. static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
  426. struct ieee80211_tx_queue_params *params)
  427. {
  428. u32 reg;
  429. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  430. rt2x00_set_field32(&reg, CSR11_CWMIN, params->cw_min);
  431. rt2x00_set_field32(&reg, CSR11_CWMAX, params->cw_max);
  432. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  433. }
  434. /*
  435. * LED functions.
  436. */
  437. static void rt2400pci_enable_led(struct rt2x00_dev *rt2x00dev)
  438. {
  439. u32 reg;
  440. rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
  441. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
  442. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
  443. rt2x00_set_field32(&reg, LEDCSR_LINK,
  444. (rt2x00dev->led_mode != LED_MODE_ASUS));
  445. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY,
  446. (rt2x00dev->led_mode != LED_MODE_TXRX_ACTIVITY));
  447. rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
  448. }
  449. static void rt2400pci_disable_led(struct rt2x00_dev *rt2x00dev)
  450. {
  451. u32 reg;
  452. rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
  453. rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
  454. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
  455. rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
  456. }
  457. /*
  458. * Link tuning
  459. */
  460. static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
  461. struct link_qual *qual)
  462. {
  463. u32 reg;
  464. u8 bbp;
  465. /*
  466. * Update FCS error count from register.
  467. */
  468. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  469. qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  470. /*
  471. * Update False CCA count from register.
  472. */
  473. rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
  474. qual->false_cca = bbp;
  475. }
  476. static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
  477. {
  478. rt2400pci_bbp_write(rt2x00dev, 13, 0x08);
  479. rt2x00dev->link.vgc_level = 0x08;
  480. }
  481. static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev)
  482. {
  483. u8 reg;
  484. /*
  485. * The link tuner should not run longer then 60 seconds,
  486. * and should run once every 2 seconds.
  487. */
  488. if (rt2x00dev->link.count > 60 || !(rt2x00dev->link.count & 1))
  489. return;
  490. /*
  491. * Base r13 link tuning on the false cca count.
  492. */
  493. rt2400pci_bbp_read(rt2x00dev, 13, &reg);
  494. if (rt2x00dev->link.qual.false_cca > 512 && reg < 0x20) {
  495. rt2400pci_bbp_write(rt2x00dev, 13, ++reg);
  496. rt2x00dev->link.vgc_level = reg;
  497. } else if (rt2x00dev->link.qual.false_cca < 100 && reg > 0x08) {
  498. rt2400pci_bbp_write(rt2x00dev, 13, --reg);
  499. rt2x00dev->link.vgc_level = reg;
  500. }
  501. }
  502. /*
  503. * Initialization functions.
  504. */
  505. static void rt2400pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
  506. struct data_entry *entry)
  507. {
  508. __le32 *rxd = entry->priv;
  509. u32 word;
  510. rt2x00_desc_read(rxd, 2, &word);
  511. rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->ring->data_size);
  512. rt2x00_desc_write(rxd, 2, word);
  513. rt2x00_desc_read(rxd, 1, &word);
  514. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, entry->data_dma);
  515. rt2x00_desc_write(rxd, 1, word);
  516. rt2x00_desc_read(rxd, 0, &word);
  517. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  518. rt2x00_desc_write(rxd, 0, word);
  519. }
  520. static void rt2400pci_init_txentry(struct rt2x00_dev *rt2x00dev,
  521. struct data_entry *entry)
  522. {
  523. __le32 *txd = entry->priv;
  524. u32 word;
  525. rt2x00_desc_read(txd, 1, &word);
  526. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, entry->data_dma);
  527. rt2x00_desc_write(txd, 1, word);
  528. rt2x00_desc_read(txd, 2, &word);
  529. rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, entry->ring->data_size);
  530. rt2x00_desc_write(txd, 2, word);
  531. rt2x00_desc_read(txd, 0, &word);
  532. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  533. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  534. rt2x00_desc_write(txd, 0, word);
  535. }
  536. static int rt2400pci_init_rings(struct rt2x00_dev *rt2x00dev)
  537. {
  538. u32 reg;
  539. /*
  540. * Initialize registers.
  541. */
  542. rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
  543. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE,
  544. rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size);
  545. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD,
  546. rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
  547. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM,
  548. rt2x00dev->bcn[1].stats.limit);
  549. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO,
  550. rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
  551. rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
  552. rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
  553. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
  554. rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
  555. rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
  556. rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
  557. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
  558. rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
  559. rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
  560. rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
  561. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
  562. rt2x00dev->bcn[1].data_dma);
  563. rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
  564. rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
  565. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
  566. rt2x00dev->bcn[0].data_dma);
  567. rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
  568. rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
  569. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  570. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->stats.limit);
  571. rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
  572. rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
  573. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
  574. rt2x00dev->rx->data_dma);
  575. rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
  576. return 0;
  577. }
  578. static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
  579. {
  580. u32 reg;
  581. rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
  582. rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
  583. rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
  584. rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
  585. rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
  586. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  587. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  588. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  589. rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
  590. rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
  591. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  592. (rt2x00dev->rx->data_size / 128));
  593. rt2x00pci_register_write(rt2x00dev, CSR9, reg);
  594. rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
  595. rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
  596. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
  597. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
  598. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
  599. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
  600. rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
  601. rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
  602. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
  603. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  604. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
  605. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  606. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
  607. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  608. rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
  609. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  610. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  611. return -EBUSY;
  612. rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
  613. rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
  614. rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
  615. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  616. rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
  617. rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
  618. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  619. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
  620. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  621. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
  622. rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
  623. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  624. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  625. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  626. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  627. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  628. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  629. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  630. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  631. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  632. /*
  633. * We must clear the FCS and FIFO error count.
  634. * These registers are cleared on read,
  635. * so we may pass a useless variable to store the value.
  636. */
  637. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  638. rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
  639. return 0;
  640. }
  641. static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  642. {
  643. unsigned int i;
  644. u16 eeprom;
  645. u8 reg_id;
  646. u8 value;
  647. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  648. rt2400pci_bbp_read(rt2x00dev, 0, &value);
  649. if ((value != 0xff) && (value != 0x00))
  650. goto continue_csr_init;
  651. NOTICE(rt2x00dev, "Waiting for BBP register.\n");
  652. udelay(REGISTER_BUSY_DELAY);
  653. }
  654. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  655. return -EACCES;
  656. continue_csr_init:
  657. rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
  658. rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
  659. rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
  660. rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
  661. rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
  662. rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
  663. rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
  664. rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
  665. rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
  666. rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
  667. rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
  668. rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
  669. rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
  670. rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
  671. DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
  672. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  673. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  674. if (eeprom != 0xffff && eeprom != 0x0000) {
  675. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  676. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  677. DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
  678. reg_id, value);
  679. rt2400pci_bbp_write(rt2x00dev, reg_id, value);
  680. }
  681. }
  682. DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
  683. return 0;
  684. }
  685. /*
  686. * Device state switch handlers.
  687. */
  688. static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  689. enum dev_state state)
  690. {
  691. u32 reg;
  692. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  693. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
  694. state == STATE_RADIO_RX_OFF);
  695. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  696. }
  697. static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  698. enum dev_state state)
  699. {
  700. int mask = (state == STATE_RADIO_IRQ_OFF);
  701. u32 reg;
  702. /*
  703. * When interrupts are being enabled, the interrupt registers
  704. * should clear the register to assure a clean state.
  705. */
  706. if (state == STATE_RADIO_IRQ_ON) {
  707. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  708. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  709. }
  710. /*
  711. * Only toggle the interrupts bits we are going to use.
  712. * Non-checked interrupt bits are disabled by default.
  713. */
  714. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  715. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  716. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  717. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  718. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  719. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  720. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  721. }
  722. static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  723. {
  724. /*
  725. * Initialize all registers.
  726. */
  727. if (rt2400pci_init_rings(rt2x00dev) ||
  728. rt2400pci_init_registers(rt2x00dev) ||
  729. rt2400pci_init_bbp(rt2x00dev)) {
  730. ERROR(rt2x00dev, "Register initialization failed.\n");
  731. return -EIO;
  732. }
  733. /*
  734. * Enable interrupts.
  735. */
  736. rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
  737. /*
  738. * Enable LED
  739. */
  740. rt2400pci_enable_led(rt2x00dev);
  741. return 0;
  742. }
  743. static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  744. {
  745. u32 reg;
  746. /*
  747. * Disable LED
  748. */
  749. rt2400pci_disable_led(rt2x00dev);
  750. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
  751. /*
  752. * Disable synchronisation.
  753. */
  754. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  755. /*
  756. * Cancel RX and TX.
  757. */
  758. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  759. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  760. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  761. /*
  762. * Disable interrupts.
  763. */
  764. rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
  765. }
  766. static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
  767. enum dev_state state)
  768. {
  769. u32 reg;
  770. unsigned int i;
  771. char put_to_sleep;
  772. char bbp_state;
  773. char rf_state;
  774. put_to_sleep = (state != STATE_AWAKE);
  775. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  776. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  777. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  778. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  779. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  780. rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
  781. /*
  782. * Device is not guaranteed to be in the requested state yet.
  783. * We must wait until the register indicates that the
  784. * device has entered the correct state.
  785. */
  786. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  787. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  788. bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
  789. rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
  790. if (bbp_state == state && rf_state == state)
  791. return 0;
  792. msleep(10);
  793. }
  794. NOTICE(rt2x00dev, "Device failed to enter state %d, "
  795. "current device state: bbp %d and rf %d.\n",
  796. state, bbp_state, rf_state);
  797. return -EBUSY;
  798. }
  799. static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  800. enum dev_state state)
  801. {
  802. int retval = 0;
  803. switch (state) {
  804. case STATE_RADIO_ON:
  805. retval = rt2400pci_enable_radio(rt2x00dev);
  806. break;
  807. case STATE_RADIO_OFF:
  808. rt2400pci_disable_radio(rt2x00dev);
  809. break;
  810. case STATE_RADIO_RX_ON:
  811. case STATE_RADIO_RX_ON_LINK:
  812. rt2400pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
  813. break;
  814. case STATE_RADIO_RX_OFF:
  815. case STATE_RADIO_RX_OFF_LINK:
  816. rt2400pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
  817. break;
  818. case STATE_DEEP_SLEEP:
  819. case STATE_SLEEP:
  820. case STATE_STANDBY:
  821. case STATE_AWAKE:
  822. retval = rt2400pci_set_state(rt2x00dev, state);
  823. break;
  824. default:
  825. retval = -ENOTSUPP;
  826. break;
  827. }
  828. return retval;
  829. }
  830. /*
  831. * TX descriptor initialization
  832. */
  833. static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  834. struct sk_buff *skb,
  835. struct txdata_entry_desc *desc,
  836. struct ieee80211_tx_control *control)
  837. {
  838. struct skb_desc *skbdesc = get_skb_desc(skb);
  839. __le32 *txd = skbdesc->desc;
  840. u32 word;
  841. /*
  842. * Start writing the descriptor words.
  843. */
  844. rt2x00_desc_read(txd, 2, &word);
  845. rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, skbdesc->data_len);
  846. rt2x00_desc_write(txd, 2, word);
  847. rt2x00_desc_read(txd, 3, &word);
  848. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, desc->signal);
  849. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
  850. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
  851. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, desc->service);
  852. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
  853. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
  854. rt2x00_desc_write(txd, 3, word);
  855. rt2x00_desc_read(txd, 4, &word);
  856. rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, desc->length_low);
  857. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
  858. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
  859. rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, desc->length_high);
  860. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
  861. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
  862. rt2x00_desc_write(txd, 4, word);
  863. rt2x00_desc_read(txd, 0, &word);
  864. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  865. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  866. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  867. test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
  868. rt2x00_set_field32(&word, TXD_W0_ACK,
  869. test_bit(ENTRY_TXD_ACK, &desc->flags));
  870. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  871. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
  872. rt2x00_set_field32(&word, TXD_W0_RTS,
  873. test_bit(ENTRY_TXD_RTS_FRAME, &desc->flags));
  874. rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
  875. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  876. !!(control->flags &
  877. IEEE80211_TXCTL_LONG_RETRY_LIMIT));
  878. rt2x00_desc_write(txd, 0, word);
  879. }
  880. /*
  881. * TX data initialization
  882. */
  883. static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  884. unsigned int queue)
  885. {
  886. u32 reg;
  887. if (queue == IEEE80211_TX_QUEUE_BEACON) {
  888. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  889. if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
  890. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  891. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  892. }
  893. return;
  894. }
  895. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  896. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO,
  897. (queue == IEEE80211_TX_QUEUE_DATA0));
  898. rt2x00_set_field32(&reg, TXCSR0_KICK_TX,
  899. (queue == IEEE80211_TX_QUEUE_DATA1));
  900. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM,
  901. (queue == IEEE80211_TX_QUEUE_AFTER_BEACON));
  902. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  903. }
  904. /*
  905. * RX control handlers
  906. */
  907. static void rt2400pci_fill_rxdone(struct data_entry *entry,
  908. struct rxdata_entry_desc *desc)
  909. {
  910. __le32 *rxd = entry->priv;
  911. u32 word0;
  912. u32 word2;
  913. rt2x00_desc_read(rxd, 0, &word0);
  914. rt2x00_desc_read(rxd, 2, &word2);
  915. desc->flags = 0;
  916. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  917. desc->flags |= RX_FLAG_FAILED_FCS_CRC;
  918. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  919. desc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  920. /*
  921. * Obtain the status about this packet.
  922. */
  923. desc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
  924. desc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
  925. entry->ring->rt2x00dev->rssi_offset;
  926. desc->ofdm = 0;
  927. desc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  928. desc->my_bss = !!rt2x00_get_field32(word0, RXD_W0_MY_BSS);
  929. }
  930. /*
  931. * Interrupt functions.
  932. */
  933. static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev, const int queue)
  934. {
  935. struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
  936. struct data_entry *entry;
  937. __le32 *txd;
  938. u32 word;
  939. int tx_status;
  940. int retry;
  941. while (!rt2x00_ring_empty(ring)) {
  942. entry = rt2x00_get_data_entry_done(ring);
  943. txd = entry->priv;
  944. rt2x00_desc_read(txd, 0, &word);
  945. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  946. !rt2x00_get_field32(word, TXD_W0_VALID))
  947. break;
  948. /*
  949. * Obtain the status about this packet.
  950. */
  951. tx_status = rt2x00_get_field32(word, TXD_W0_RESULT);
  952. retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  953. rt2x00pci_txdone(rt2x00dev, entry, tx_status, retry);
  954. }
  955. }
  956. static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
  957. {
  958. struct rt2x00_dev *rt2x00dev = dev_instance;
  959. u32 reg;
  960. /*
  961. * Get the interrupt sources & saved to local variable.
  962. * Write register value back to clear pending interrupts.
  963. */
  964. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  965. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  966. if (!reg)
  967. return IRQ_NONE;
  968. if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
  969. return IRQ_HANDLED;
  970. /*
  971. * Handle interrupts, walk through all bits
  972. * and run the tasks, the bits are checked in order of
  973. * priority.
  974. */
  975. /*
  976. * 1 - Beacon timer expired interrupt.
  977. */
  978. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  979. rt2x00lib_beacondone(rt2x00dev);
  980. /*
  981. * 2 - Rx ring done interrupt.
  982. */
  983. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  984. rt2x00pci_rxdone(rt2x00dev);
  985. /*
  986. * 3 - Atim ring transmit done interrupt.
  987. */
  988. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
  989. rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
  990. /*
  991. * 4 - Priority ring transmit done interrupt.
  992. */
  993. if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
  994. rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
  995. /*
  996. * 5 - Tx ring transmit done interrupt.
  997. */
  998. if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
  999. rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
  1000. return IRQ_HANDLED;
  1001. }
  1002. /*
  1003. * Device probe functions.
  1004. */
  1005. static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1006. {
  1007. struct eeprom_93cx6 eeprom;
  1008. u32 reg;
  1009. u16 word;
  1010. u8 *mac;
  1011. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  1012. eeprom.data = rt2x00dev;
  1013. eeprom.register_read = rt2400pci_eepromregister_read;
  1014. eeprom.register_write = rt2400pci_eepromregister_write;
  1015. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1016. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1017. eeprom.reg_data_in = 0;
  1018. eeprom.reg_data_out = 0;
  1019. eeprom.reg_data_clock = 0;
  1020. eeprom.reg_chip_select = 0;
  1021. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1022. EEPROM_SIZE / sizeof(u16));
  1023. /*
  1024. * Start validation of the data that has been read.
  1025. */
  1026. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1027. if (!is_valid_ether_addr(mac)) {
  1028. DECLARE_MAC_BUF(macbuf);
  1029. random_ether_addr(mac);
  1030. EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
  1031. }
  1032. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1033. if (word == 0xffff) {
  1034. ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
  1035. return -EINVAL;
  1036. }
  1037. return 0;
  1038. }
  1039. static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1040. {
  1041. u32 reg;
  1042. u16 value;
  1043. u16 eeprom;
  1044. /*
  1045. * Read EEPROM word for configuration.
  1046. */
  1047. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1048. /*
  1049. * Identify RF chipset.
  1050. */
  1051. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1052. rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
  1053. rt2x00_set_chip(rt2x00dev, RT2460, value, reg);
  1054. if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
  1055. !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
  1056. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1057. return -ENODEV;
  1058. }
  1059. /*
  1060. * Identify default antenna configuration.
  1061. */
  1062. rt2x00dev->default_ant.tx =
  1063. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1064. rt2x00dev->default_ant.rx =
  1065. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1066. /*
  1067. * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
  1068. * I am not 100% sure about this, but the legacy drivers do not
  1069. * indicate antenna swapping in software is required when
  1070. * diversity is enabled.
  1071. */
  1072. if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
  1073. rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
  1074. if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
  1075. rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
  1076. /*
  1077. * Store led mode, for correct led behaviour.
  1078. */
  1079. rt2x00dev->led_mode =
  1080. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1081. /*
  1082. * Detect if this device has an hardware controlled radio.
  1083. */
  1084. #ifdef CONFIG_RT2400PCI_RFKILL
  1085. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1086. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1087. #endif /* CONFIG_RT2400PCI_RFKILL */
  1088. /*
  1089. * Check if the BBP tuning should be enabled.
  1090. */
  1091. if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
  1092. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1093. return 0;
  1094. }
  1095. /*
  1096. * RF value list for RF2420 & RF2421
  1097. * Supports: 2.4 GHz
  1098. */
  1099. static const struct rf_channel rf_vals_bg[] = {
  1100. { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
  1101. { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
  1102. { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
  1103. { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
  1104. { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
  1105. { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
  1106. { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
  1107. { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
  1108. { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
  1109. { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
  1110. { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
  1111. { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
  1112. { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
  1113. { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
  1114. };
  1115. static void rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1116. {
  1117. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1118. u8 *txpower;
  1119. unsigned int i;
  1120. /*
  1121. * Initialize all hw fields.
  1122. */
  1123. rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
  1124. rt2x00dev->hw->extra_tx_headroom = 0;
  1125. rt2x00dev->hw->max_signal = MAX_SIGNAL;
  1126. rt2x00dev->hw->max_rssi = MAX_RX_SSI;
  1127. rt2x00dev->hw->queues = 2;
  1128. SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
  1129. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1130. rt2x00_eeprom_addr(rt2x00dev,
  1131. EEPROM_MAC_ADDR_0));
  1132. /*
  1133. * Convert tx_power array in eeprom.
  1134. */
  1135. txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1136. for (i = 0; i < 14; i++)
  1137. txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
  1138. /*
  1139. * Initialize hw_mode information.
  1140. */
  1141. spec->num_modes = 1;
  1142. spec->num_rates = 4;
  1143. spec->tx_power_a = NULL;
  1144. spec->tx_power_bg = txpower;
  1145. spec->tx_power_default = DEFAULT_TXPOWER;
  1146. spec->num_channels = ARRAY_SIZE(rf_vals_bg);
  1147. spec->channels = rf_vals_bg;
  1148. }
  1149. static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1150. {
  1151. int retval;
  1152. /*
  1153. * Allocate eeprom data.
  1154. */
  1155. retval = rt2400pci_validate_eeprom(rt2x00dev);
  1156. if (retval)
  1157. return retval;
  1158. retval = rt2400pci_init_eeprom(rt2x00dev);
  1159. if (retval)
  1160. return retval;
  1161. /*
  1162. * Initialize hw specifications.
  1163. */
  1164. rt2400pci_probe_hw_mode(rt2x00dev);
  1165. /*
  1166. * This device requires the beacon ring
  1167. */
  1168. __set_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
  1169. /*
  1170. * Set the rssi offset.
  1171. */
  1172. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1173. return 0;
  1174. }
  1175. /*
  1176. * IEEE80211 stack callback functions.
  1177. */
  1178. static void rt2400pci_configure_filter(struct ieee80211_hw *hw,
  1179. unsigned int changed_flags,
  1180. unsigned int *total_flags,
  1181. int mc_count,
  1182. struct dev_addr_list *mc_list)
  1183. {
  1184. struct rt2x00_dev *rt2x00dev = hw->priv;
  1185. u32 reg;
  1186. /*
  1187. * Mask off any flags we are going to ignore from
  1188. * the total_flags field.
  1189. */
  1190. *total_flags &=
  1191. FIF_ALLMULTI |
  1192. FIF_FCSFAIL |
  1193. FIF_PLCPFAIL |
  1194. FIF_CONTROL |
  1195. FIF_OTHER_BSS |
  1196. FIF_PROMISC_IN_BSS;
  1197. /*
  1198. * Apply some rules to the filters:
  1199. * - Some filters imply different filters to be set.
  1200. * - Some things we can't filter out at all.
  1201. */
  1202. *total_flags |= FIF_ALLMULTI;
  1203. if (*total_flags & FIF_OTHER_BSS ||
  1204. *total_flags & FIF_PROMISC_IN_BSS)
  1205. *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
  1206. /*
  1207. * Check if there is any work left for us.
  1208. */
  1209. if (rt2x00dev->packet_filter == *total_flags)
  1210. return;
  1211. rt2x00dev->packet_filter = *total_flags;
  1212. /*
  1213. * Start configuration steps.
  1214. * Note that the version error will always be dropped
  1215. * since there is no filter for it at this time.
  1216. */
  1217. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  1218. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  1219. !(*total_flags & FIF_FCSFAIL));
  1220. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  1221. !(*total_flags & FIF_PLCPFAIL));
  1222. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  1223. !(*total_flags & FIF_CONTROL));
  1224. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
  1225. !(*total_flags & FIF_PROMISC_IN_BSS));
  1226. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  1227. !(*total_flags & FIF_PROMISC_IN_BSS));
  1228. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  1229. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  1230. }
  1231. static int rt2400pci_set_retry_limit(struct ieee80211_hw *hw,
  1232. u32 short_retry, u32 long_retry)
  1233. {
  1234. struct rt2x00_dev *rt2x00dev = hw->priv;
  1235. u32 reg;
  1236. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  1237. rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
  1238. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
  1239. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  1240. return 0;
  1241. }
  1242. static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
  1243. int queue,
  1244. const struct ieee80211_tx_queue_params *params)
  1245. {
  1246. struct rt2x00_dev *rt2x00dev = hw->priv;
  1247. /*
  1248. * We don't support variating cw_min and cw_max variables
  1249. * per queue. So by default we only configure the TX queue,
  1250. * and ignore all other configurations.
  1251. */
  1252. if (queue != IEEE80211_TX_QUEUE_DATA0)
  1253. return -EINVAL;
  1254. if (rt2x00mac_conf_tx(hw, queue, params))
  1255. return -EINVAL;
  1256. /*
  1257. * Write configuration to register.
  1258. */
  1259. rt2400pci_config_cw(rt2x00dev, &rt2x00dev->tx->tx_params);
  1260. return 0;
  1261. }
  1262. static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
  1263. {
  1264. struct rt2x00_dev *rt2x00dev = hw->priv;
  1265. u64 tsf;
  1266. u32 reg;
  1267. rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
  1268. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1269. rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
  1270. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1271. return tsf;
  1272. }
  1273. static void rt2400pci_reset_tsf(struct ieee80211_hw *hw)
  1274. {
  1275. struct rt2x00_dev *rt2x00dev = hw->priv;
  1276. rt2x00pci_register_write(rt2x00dev, CSR16, 0);
  1277. rt2x00pci_register_write(rt2x00dev, CSR17, 0);
  1278. }
  1279. static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
  1280. {
  1281. struct rt2x00_dev *rt2x00dev = hw->priv;
  1282. u32 reg;
  1283. rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
  1284. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1285. }
  1286. static const struct ieee80211_ops rt2400pci_mac80211_ops = {
  1287. .tx = rt2x00mac_tx,
  1288. .start = rt2x00mac_start,
  1289. .stop = rt2x00mac_stop,
  1290. .add_interface = rt2x00mac_add_interface,
  1291. .remove_interface = rt2x00mac_remove_interface,
  1292. .config = rt2x00mac_config,
  1293. .config_interface = rt2x00mac_config_interface,
  1294. .configure_filter = rt2400pci_configure_filter,
  1295. .get_stats = rt2x00mac_get_stats,
  1296. .set_retry_limit = rt2400pci_set_retry_limit,
  1297. .bss_info_changed = rt2x00mac_bss_info_changed,
  1298. .conf_tx = rt2400pci_conf_tx,
  1299. .get_tx_stats = rt2x00mac_get_tx_stats,
  1300. .get_tsf = rt2400pci_get_tsf,
  1301. .reset_tsf = rt2400pci_reset_tsf,
  1302. .beacon_update = rt2x00pci_beacon_update,
  1303. .tx_last_beacon = rt2400pci_tx_last_beacon,
  1304. };
  1305. static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
  1306. .irq_handler = rt2400pci_interrupt,
  1307. .probe_hw = rt2400pci_probe_hw,
  1308. .initialize = rt2x00pci_initialize,
  1309. .uninitialize = rt2x00pci_uninitialize,
  1310. .init_rxentry = rt2400pci_init_rxentry,
  1311. .init_txentry = rt2400pci_init_txentry,
  1312. .set_device_state = rt2400pci_set_device_state,
  1313. .rfkill_poll = rt2400pci_rfkill_poll,
  1314. .link_stats = rt2400pci_link_stats,
  1315. .reset_tuner = rt2400pci_reset_tuner,
  1316. .link_tuner = rt2400pci_link_tuner,
  1317. .write_tx_desc = rt2400pci_write_tx_desc,
  1318. .write_tx_data = rt2x00pci_write_tx_data,
  1319. .kick_tx_queue = rt2400pci_kick_tx_queue,
  1320. .fill_rxdone = rt2400pci_fill_rxdone,
  1321. .config_mac_addr = rt2400pci_config_mac_addr,
  1322. .config_bssid = rt2400pci_config_bssid,
  1323. .config_type = rt2400pci_config_type,
  1324. .config_preamble = rt2400pci_config_preamble,
  1325. .config = rt2400pci_config,
  1326. };
  1327. static const struct rt2x00_ops rt2400pci_ops = {
  1328. .name = KBUILD_MODNAME,
  1329. .rxd_size = RXD_DESC_SIZE,
  1330. .txd_size = TXD_DESC_SIZE,
  1331. .eeprom_size = EEPROM_SIZE,
  1332. .rf_size = RF_SIZE,
  1333. .lib = &rt2400pci_rt2x00_ops,
  1334. .hw = &rt2400pci_mac80211_ops,
  1335. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1336. .debugfs = &rt2400pci_rt2x00debug,
  1337. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1338. };
  1339. /*
  1340. * RT2400pci module information.
  1341. */
  1342. static struct pci_device_id rt2400pci_device_table[] = {
  1343. { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
  1344. { 0, }
  1345. };
  1346. MODULE_AUTHOR(DRV_PROJECT);
  1347. MODULE_VERSION(DRV_VERSION);
  1348. MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
  1349. MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
  1350. MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
  1351. MODULE_LICENSE("GPL");
  1352. static struct pci_driver rt2400pci_driver = {
  1353. .name = KBUILD_MODNAME,
  1354. .id_table = rt2400pci_device_table,
  1355. .probe = rt2x00pci_probe,
  1356. .remove = __devexit_p(rt2x00pci_remove),
  1357. .suspend = rt2x00pci_suspend,
  1358. .resume = rt2x00pci_resume,
  1359. };
  1360. static int __init rt2400pci_init(void)
  1361. {
  1362. return pci_register_driver(&rt2400pci_driver);
  1363. }
  1364. static void __exit rt2400pci_exit(void)
  1365. {
  1366. pci_unregister_driver(&rt2400pci_driver);
  1367. }
  1368. module_init(rt2400pci_init);
  1369. module_exit(rt2400pci_exit);