s2io.c 239 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462
  1. /************************************************************************
  2. * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
  3. * Copyright(c) 2002-2007 Neterion Inc.
  4. * This software may be used and distributed according to the terms of
  5. * the GNU General Public License (GPL), incorporated herein by reference.
  6. * Drivers based on or derived from this code fall under the GPL and must
  7. * retain the authorship, copyright and license notice. This file is not
  8. * a complete program and may only be used when the entire operating
  9. * system is licensed under the GPL.
  10. * See the file COPYING in this distribution for more information.
  11. *
  12. * Credits:
  13. * Jeff Garzik : For pointing out the improper error condition
  14. * check in the s2io_xmit routine and also some
  15. * issues in the Tx watch dog function. Also for
  16. * patiently answering all those innumerable
  17. * questions regaring the 2.6 porting issues.
  18. * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
  19. * macros available only in 2.6 Kernel.
  20. * Francois Romieu : For pointing out all code part that were
  21. * deprecated and also styling related comments.
  22. * Grant Grundler : For helping me get rid of some Architecture
  23. * dependent code.
  24. * Christopher Hellwig : Some more 2.6 specific issues in the driver.
  25. *
  26. * The module loadable parameters that are supported by the driver and a brief
  27. * explaination of all the variables.
  28. *
  29. * rx_ring_num : This can be used to program the number of receive rings used
  30. * in the driver.
  31. * rx_ring_sz: This defines the number of receive blocks each ring can have.
  32. * This is also an array of size 8.
  33. * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
  34. * values are 1, 2.
  35. * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
  36. * tx_fifo_len: This too is an array of 8. Each element defines the number of
  37. * Tx descriptors that can be associated with each corresponding FIFO.
  38. * intr_type: This defines the type of interrupt. The values can be 0(INTA),
  39. * 2(MSI_X). Default value is '2(MSI_X)'
  40. * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
  41. * Possible values '1' for enable '0' for disable. Default is '0'
  42. * lro_max_pkts: This parameter defines maximum number of packets can be
  43. * aggregated as a single large packet
  44. * napi: This parameter used to enable/disable NAPI (polling Rx)
  45. * Possible values '1' for enable and '0' for disable. Default is '1'
  46. * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
  47. * Possible values '1' for enable and '0' for disable. Default is '0'
  48. * vlan_tag_strip: This can be used to enable or disable vlan stripping.
  49. * Possible values '1' for enable , '0' for disable.
  50. * Default is '2' - which means disable in promisc mode
  51. * and enable in non-promiscuous mode.
  52. ************************************************************************/
  53. #include <linux/module.h>
  54. #include <linux/types.h>
  55. #include <linux/errno.h>
  56. #include <linux/ioport.h>
  57. #include <linux/pci.h>
  58. #include <linux/dma-mapping.h>
  59. #include <linux/kernel.h>
  60. #include <linux/netdevice.h>
  61. #include <linux/etherdevice.h>
  62. #include <linux/skbuff.h>
  63. #include <linux/init.h>
  64. #include <linux/delay.h>
  65. #include <linux/stddef.h>
  66. #include <linux/ioctl.h>
  67. #include <linux/timex.h>
  68. #include <linux/ethtool.h>
  69. #include <linux/workqueue.h>
  70. #include <linux/if_vlan.h>
  71. #include <linux/ip.h>
  72. #include <linux/tcp.h>
  73. #include <net/tcp.h>
  74. #include <asm/system.h>
  75. #include <asm/uaccess.h>
  76. #include <asm/io.h>
  77. #include <asm/div64.h>
  78. #include <asm/irq.h>
  79. /* local include */
  80. #include "s2io.h"
  81. #include "s2io-regs.h"
  82. #define DRV_VERSION "2.0.26.15-2"
  83. /* S2io Driver name & version. */
  84. static char s2io_driver_name[] = "Neterion";
  85. static char s2io_driver_version[] = DRV_VERSION;
  86. static int rxd_size[2] = {32,48};
  87. static int rxd_count[2] = {127,85};
  88. static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
  89. {
  90. int ret;
  91. ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
  92. (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
  93. return ret;
  94. }
  95. /*
  96. * Cards with following subsystem_id have a link state indication
  97. * problem, 600B, 600C, 600D, 640B, 640C and 640D.
  98. * macro below identifies these cards given the subsystem_id.
  99. */
  100. #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
  101. (dev_type == XFRAME_I_DEVICE) ? \
  102. ((((subid >= 0x600B) && (subid <= 0x600D)) || \
  103. ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
  104. #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
  105. ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
  106. #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
  107. #define PANIC 1
  108. #define LOW 2
  109. static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
  110. {
  111. struct mac_info *mac_control;
  112. mac_control = &sp->mac_control;
  113. if (rxb_size <= rxd_count[sp->rxd_mode])
  114. return PANIC;
  115. else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
  116. return LOW;
  117. return 0;
  118. }
  119. static inline int is_s2io_card_up(const struct s2io_nic * sp)
  120. {
  121. return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
  122. }
  123. /* Ethtool related variables and Macros. */
  124. static char s2io_gstrings[][ETH_GSTRING_LEN] = {
  125. "Register test\t(offline)",
  126. "Eeprom test\t(offline)",
  127. "Link test\t(online)",
  128. "RLDRAM test\t(offline)",
  129. "BIST Test\t(offline)"
  130. };
  131. static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
  132. {"tmac_frms"},
  133. {"tmac_data_octets"},
  134. {"tmac_drop_frms"},
  135. {"tmac_mcst_frms"},
  136. {"tmac_bcst_frms"},
  137. {"tmac_pause_ctrl_frms"},
  138. {"tmac_ttl_octets"},
  139. {"tmac_ucst_frms"},
  140. {"tmac_nucst_frms"},
  141. {"tmac_any_err_frms"},
  142. {"tmac_ttl_less_fb_octets"},
  143. {"tmac_vld_ip_octets"},
  144. {"tmac_vld_ip"},
  145. {"tmac_drop_ip"},
  146. {"tmac_icmp"},
  147. {"tmac_rst_tcp"},
  148. {"tmac_tcp"},
  149. {"tmac_udp"},
  150. {"rmac_vld_frms"},
  151. {"rmac_data_octets"},
  152. {"rmac_fcs_err_frms"},
  153. {"rmac_drop_frms"},
  154. {"rmac_vld_mcst_frms"},
  155. {"rmac_vld_bcst_frms"},
  156. {"rmac_in_rng_len_err_frms"},
  157. {"rmac_out_rng_len_err_frms"},
  158. {"rmac_long_frms"},
  159. {"rmac_pause_ctrl_frms"},
  160. {"rmac_unsup_ctrl_frms"},
  161. {"rmac_ttl_octets"},
  162. {"rmac_accepted_ucst_frms"},
  163. {"rmac_accepted_nucst_frms"},
  164. {"rmac_discarded_frms"},
  165. {"rmac_drop_events"},
  166. {"rmac_ttl_less_fb_octets"},
  167. {"rmac_ttl_frms"},
  168. {"rmac_usized_frms"},
  169. {"rmac_osized_frms"},
  170. {"rmac_frag_frms"},
  171. {"rmac_jabber_frms"},
  172. {"rmac_ttl_64_frms"},
  173. {"rmac_ttl_65_127_frms"},
  174. {"rmac_ttl_128_255_frms"},
  175. {"rmac_ttl_256_511_frms"},
  176. {"rmac_ttl_512_1023_frms"},
  177. {"rmac_ttl_1024_1518_frms"},
  178. {"rmac_ip"},
  179. {"rmac_ip_octets"},
  180. {"rmac_hdr_err_ip"},
  181. {"rmac_drop_ip"},
  182. {"rmac_icmp"},
  183. {"rmac_tcp"},
  184. {"rmac_udp"},
  185. {"rmac_err_drp_udp"},
  186. {"rmac_xgmii_err_sym"},
  187. {"rmac_frms_q0"},
  188. {"rmac_frms_q1"},
  189. {"rmac_frms_q2"},
  190. {"rmac_frms_q3"},
  191. {"rmac_frms_q4"},
  192. {"rmac_frms_q5"},
  193. {"rmac_frms_q6"},
  194. {"rmac_frms_q7"},
  195. {"rmac_full_q0"},
  196. {"rmac_full_q1"},
  197. {"rmac_full_q2"},
  198. {"rmac_full_q3"},
  199. {"rmac_full_q4"},
  200. {"rmac_full_q5"},
  201. {"rmac_full_q6"},
  202. {"rmac_full_q7"},
  203. {"rmac_pause_cnt"},
  204. {"rmac_xgmii_data_err_cnt"},
  205. {"rmac_xgmii_ctrl_err_cnt"},
  206. {"rmac_accepted_ip"},
  207. {"rmac_err_tcp"},
  208. {"rd_req_cnt"},
  209. {"new_rd_req_cnt"},
  210. {"new_rd_req_rtry_cnt"},
  211. {"rd_rtry_cnt"},
  212. {"wr_rtry_rd_ack_cnt"},
  213. {"wr_req_cnt"},
  214. {"new_wr_req_cnt"},
  215. {"new_wr_req_rtry_cnt"},
  216. {"wr_rtry_cnt"},
  217. {"wr_disc_cnt"},
  218. {"rd_rtry_wr_ack_cnt"},
  219. {"txp_wr_cnt"},
  220. {"txd_rd_cnt"},
  221. {"txd_wr_cnt"},
  222. {"rxd_rd_cnt"},
  223. {"rxd_wr_cnt"},
  224. {"txf_rd_cnt"},
  225. {"rxf_wr_cnt"}
  226. };
  227. static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
  228. {"rmac_ttl_1519_4095_frms"},
  229. {"rmac_ttl_4096_8191_frms"},
  230. {"rmac_ttl_8192_max_frms"},
  231. {"rmac_ttl_gt_max_frms"},
  232. {"rmac_osized_alt_frms"},
  233. {"rmac_jabber_alt_frms"},
  234. {"rmac_gt_max_alt_frms"},
  235. {"rmac_vlan_frms"},
  236. {"rmac_len_discard"},
  237. {"rmac_fcs_discard"},
  238. {"rmac_pf_discard"},
  239. {"rmac_da_discard"},
  240. {"rmac_red_discard"},
  241. {"rmac_rts_discard"},
  242. {"rmac_ingm_full_discard"},
  243. {"link_fault_cnt"}
  244. };
  245. static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
  246. {"\n DRIVER STATISTICS"},
  247. {"single_bit_ecc_errs"},
  248. {"double_bit_ecc_errs"},
  249. {"parity_err_cnt"},
  250. {"serious_err_cnt"},
  251. {"soft_reset_cnt"},
  252. {"fifo_full_cnt"},
  253. {"ring_0_full_cnt"},
  254. {"ring_1_full_cnt"},
  255. {"ring_2_full_cnt"},
  256. {"ring_3_full_cnt"},
  257. {"ring_4_full_cnt"},
  258. {"ring_5_full_cnt"},
  259. {"ring_6_full_cnt"},
  260. {"ring_7_full_cnt"},
  261. {"alarm_transceiver_temp_high"},
  262. {"alarm_transceiver_temp_low"},
  263. {"alarm_laser_bias_current_high"},
  264. {"alarm_laser_bias_current_low"},
  265. {"alarm_laser_output_power_high"},
  266. {"alarm_laser_output_power_low"},
  267. {"warn_transceiver_temp_high"},
  268. {"warn_transceiver_temp_low"},
  269. {"warn_laser_bias_current_high"},
  270. {"warn_laser_bias_current_low"},
  271. {"warn_laser_output_power_high"},
  272. {"warn_laser_output_power_low"},
  273. {"lro_aggregated_pkts"},
  274. {"lro_flush_both_count"},
  275. {"lro_out_of_sequence_pkts"},
  276. {"lro_flush_due_to_max_pkts"},
  277. {"lro_avg_aggr_pkts"},
  278. {"mem_alloc_fail_cnt"},
  279. {"pci_map_fail_cnt"},
  280. {"watchdog_timer_cnt"},
  281. {"mem_allocated"},
  282. {"mem_freed"},
  283. {"link_up_cnt"},
  284. {"link_down_cnt"},
  285. {"link_up_time"},
  286. {"link_down_time"},
  287. {"tx_tcode_buf_abort_cnt"},
  288. {"tx_tcode_desc_abort_cnt"},
  289. {"tx_tcode_parity_err_cnt"},
  290. {"tx_tcode_link_loss_cnt"},
  291. {"tx_tcode_list_proc_err_cnt"},
  292. {"rx_tcode_parity_err_cnt"},
  293. {"rx_tcode_abort_cnt"},
  294. {"rx_tcode_parity_abort_cnt"},
  295. {"rx_tcode_rda_fail_cnt"},
  296. {"rx_tcode_unkn_prot_cnt"},
  297. {"rx_tcode_fcs_err_cnt"},
  298. {"rx_tcode_buf_size_err_cnt"},
  299. {"rx_tcode_rxd_corrupt_cnt"},
  300. {"rx_tcode_unkn_err_cnt"},
  301. {"tda_err_cnt"},
  302. {"pfc_err_cnt"},
  303. {"pcc_err_cnt"},
  304. {"tti_err_cnt"},
  305. {"tpa_err_cnt"},
  306. {"sm_err_cnt"},
  307. {"lso_err_cnt"},
  308. {"mac_tmac_err_cnt"},
  309. {"mac_rmac_err_cnt"},
  310. {"xgxs_txgxs_err_cnt"},
  311. {"xgxs_rxgxs_err_cnt"},
  312. {"rc_err_cnt"},
  313. {"prc_pcix_err_cnt"},
  314. {"rpa_err_cnt"},
  315. {"rda_err_cnt"},
  316. {"rti_err_cnt"},
  317. {"mc_err_cnt"}
  318. };
  319. #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
  320. #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
  321. #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
  322. #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
  323. #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
  324. #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
  325. #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
  326. #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
  327. #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
  328. #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
  329. init_timer(&timer); \
  330. timer.function = handle; \
  331. timer.data = (unsigned long) arg; \
  332. mod_timer(&timer, (jiffies + exp)) \
  333. /* copy mac addr to def_mac_addr array */
  334. static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
  335. {
  336. sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
  337. sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
  338. sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
  339. sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
  340. sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
  341. sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
  342. }
  343. /* Add the vlan */
  344. static void s2io_vlan_rx_register(struct net_device *dev,
  345. struct vlan_group *grp)
  346. {
  347. int i;
  348. struct s2io_nic *nic = dev->priv;
  349. unsigned long flags[MAX_TX_FIFOS];
  350. struct mac_info *mac_control = &nic->mac_control;
  351. struct config_param *config = &nic->config;
  352. for (i = 0; i < config->tx_fifo_num; i++)
  353. spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
  354. nic->vlgrp = grp;
  355. for (i = config->tx_fifo_num - 1; i >= 0; i--)
  356. spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
  357. flags[i]);
  358. }
  359. /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
  360. static int vlan_strip_flag;
  361. /*
  362. * Constants to be programmed into the Xena's registers, to configure
  363. * the XAUI.
  364. */
  365. #define END_SIGN 0x0
  366. static const u64 herc_act_dtx_cfg[] = {
  367. /* Set address */
  368. 0x8000051536750000ULL, 0x80000515367500E0ULL,
  369. /* Write data */
  370. 0x8000051536750004ULL, 0x80000515367500E4ULL,
  371. /* Set address */
  372. 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
  373. /* Write data */
  374. 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
  375. /* Set address */
  376. 0x801205150D440000ULL, 0x801205150D4400E0ULL,
  377. /* Write data */
  378. 0x801205150D440004ULL, 0x801205150D4400E4ULL,
  379. /* Set address */
  380. 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
  381. /* Write data */
  382. 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
  383. /* Done */
  384. END_SIGN
  385. };
  386. static const u64 xena_dtx_cfg[] = {
  387. /* Set address */
  388. 0x8000051500000000ULL, 0x80000515000000E0ULL,
  389. /* Write data */
  390. 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
  391. /* Set address */
  392. 0x8001051500000000ULL, 0x80010515000000E0ULL,
  393. /* Write data */
  394. 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
  395. /* Set address */
  396. 0x8002051500000000ULL, 0x80020515000000E0ULL,
  397. /* Write data */
  398. 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
  399. END_SIGN
  400. };
  401. /*
  402. * Constants for Fixing the MacAddress problem seen mostly on
  403. * Alpha machines.
  404. */
  405. static const u64 fix_mac[] = {
  406. 0x0060000000000000ULL, 0x0060600000000000ULL,
  407. 0x0040600000000000ULL, 0x0000600000000000ULL,
  408. 0x0020600000000000ULL, 0x0060600000000000ULL,
  409. 0x0020600000000000ULL, 0x0060600000000000ULL,
  410. 0x0020600000000000ULL, 0x0060600000000000ULL,
  411. 0x0020600000000000ULL, 0x0060600000000000ULL,
  412. 0x0020600000000000ULL, 0x0060600000000000ULL,
  413. 0x0020600000000000ULL, 0x0060600000000000ULL,
  414. 0x0020600000000000ULL, 0x0060600000000000ULL,
  415. 0x0020600000000000ULL, 0x0060600000000000ULL,
  416. 0x0020600000000000ULL, 0x0060600000000000ULL,
  417. 0x0020600000000000ULL, 0x0060600000000000ULL,
  418. 0x0020600000000000ULL, 0x0000600000000000ULL,
  419. 0x0040600000000000ULL, 0x0060600000000000ULL,
  420. END_SIGN
  421. };
  422. MODULE_LICENSE("GPL");
  423. MODULE_VERSION(DRV_VERSION);
  424. /* Module Loadable parameters. */
  425. S2IO_PARM_INT(tx_fifo_num, 1);
  426. S2IO_PARM_INT(rx_ring_num, 1);
  427. S2IO_PARM_INT(rx_ring_mode, 1);
  428. S2IO_PARM_INT(use_continuous_tx_intrs, 1);
  429. S2IO_PARM_INT(rmac_pause_time, 0x100);
  430. S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
  431. S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
  432. S2IO_PARM_INT(shared_splits, 0);
  433. S2IO_PARM_INT(tmac_util_period, 5);
  434. S2IO_PARM_INT(rmac_util_period, 5);
  435. S2IO_PARM_INT(l3l4hdr_size, 128);
  436. /* Frequency of Rx desc syncs expressed as power of 2 */
  437. S2IO_PARM_INT(rxsync_frequency, 3);
  438. /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
  439. S2IO_PARM_INT(intr_type, 2);
  440. /* Large receive offload feature */
  441. static unsigned int lro_enable;
  442. module_param_named(lro, lro_enable, uint, 0);
  443. /* Max pkts to be aggregated by LRO at one time. If not specified,
  444. * aggregation happens until we hit max IP pkt size(64K)
  445. */
  446. S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
  447. S2IO_PARM_INT(indicate_max_pkts, 0);
  448. S2IO_PARM_INT(napi, 1);
  449. S2IO_PARM_INT(ufo, 0);
  450. S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
  451. static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
  452. {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
  453. static unsigned int rx_ring_sz[MAX_RX_RINGS] =
  454. {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
  455. static unsigned int rts_frm_len[MAX_RX_RINGS] =
  456. {[0 ...(MAX_RX_RINGS - 1)] = 0 };
  457. module_param_array(tx_fifo_len, uint, NULL, 0);
  458. module_param_array(rx_ring_sz, uint, NULL, 0);
  459. module_param_array(rts_frm_len, uint, NULL, 0);
  460. /*
  461. * S2IO device table.
  462. * This table lists all the devices that this driver supports.
  463. */
  464. static struct pci_device_id s2io_tbl[] __devinitdata = {
  465. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
  466. PCI_ANY_ID, PCI_ANY_ID},
  467. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
  468. PCI_ANY_ID, PCI_ANY_ID},
  469. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
  470. PCI_ANY_ID, PCI_ANY_ID},
  471. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
  472. PCI_ANY_ID, PCI_ANY_ID},
  473. {0,}
  474. };
  475. MODULE_DEVICE_TABLE(pci, s2io_tbl);
  476. static struct pci_error_handlers s2io_err_handler = {
  477. .error_detected = s2io_io_error_detected,
  478. .slot_reset = s2io_io_slot_reset,
  479. .resume = s2io_io_resume,
  480. };
  481. static struct pci_driver s2io_driver = {
  482. .name = "S2IO",
  483. .id_table = s2io_tbl,
  484. .probe = s2io_init_nic,
  485. .remove = __devexit_p(s2io_rem_nic),
  486. .err_handler = &s2io_err_handler,
  487. };
  488. /* A simplifier macro used both by init and free shared_mem Fns(). */
  489. #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
  490. /**
  491. * init_shared_mem - Allocation and Initialization of Memory
  492. * @nic: Device private variable.
  493. * Description: The function allocates all the memory areas shared
  494. * between the NIC and the driver. This includes Tx descriptors,
  495. * Rx descriptors and the statistics block.
  496. */
  497. static int init_shared_mem(struct s2io_nic *nic)
  498. {
  499. u32 size;
  500. void *tmp_v_addr, *tmp_v_addr_next;
  501. dma_addr_t tmp_p_addr, tmp_p_addr_next;
  502. struct RxD_block *pre_rxd_blk = NULL;
  503. int i, j, blk_cnt;
  504. int lst_size, lst_per_page;
  505. struct net_device *dev = nic->dev;
  506. unsigned long tmp;
  507. struct buffAdd *ba;
  508. struct mac_info *mac_control;
  509. struct config_param *config;
  510. unsigned long long mem_allocated = 0;
  511. mac_control = &nic->mac_control;
  512. config = &nic->config;
  513. /* Allocation and initialization of TXDLs in FIOFs */
  514. size = 0;
  515. for (i = 0; i < config->tx_fifo_num; i++) {
  516. size += config->tx_cfg[i].fifo_len;
  517. }
  518. if (size > MAX_AVAILABLE_TXDS) {
  519. DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
  520. DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
  521. return -EINVAL;
  522. }
  523. size = 0;
  524. for (i = 0; i < config->tx_fifo_num; i++) {
  525. size = config->tx_cfg[i].fifo_len;
  526. /*
  527. * Legal values are from 2 to 8192
  528. */
  529. if (size < 2) {
  530. DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
  531. DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
  532. DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
  533. "are 2 to 8192\n");
  534. return -EINVAL;
  535. }
  536. }
  537. lst_size = (sizeof(struct TxD) * config->max_txds);
  538. lst_per_page = PAGE_SIZE / lst_size;
  539. for (i = 0; i < config->tx_fifo_num; i++) {
  540. int fifo_len = config->tx_cfg[i].fifo_len;
  541. int list_holder_size = fifo_len * sizeof(struct list_info_hold);
  542. mac_control->fifos[i].list_info = kzalloc(list_holder_size,
  543. GFP_KERNEL);
  544. if (!mac_control->fifos[i].list_info) {
  545. DBG_PRINT(INFO_DBG,
  546. "Malloc failed for list_info\n");
  547. return -ENOMEM;
  548. }
  549. mem_allocated += list_holder_size;
  550. }
  551. for (i = 0; i < config->tx_fifo_num; i++) {
  552. int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
  553. lst_per_page);
  554. mac_control->fifos[i].tx_curr_put_info.offset = 0;
  555. mac_control->fifos[i].tx_curr_put_info.fifo_len =
  556. config->tx_cfg[i].fifo_len - 1;
  557. mac_control->fifos[i].tx_curr_get_info.offset = 0;
  558. mac_control->fifos[i].tx_curr_get_info.fifo_len =
  559. config->tx_cfg[i].fifo_len - 1;
  560. mac_control->fifos[i].fifo_no = i;
  561. mac_control->fifos[i].nic = nic;
  562. mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
  563. for (j = 0; j < page_num; j++) {
  564. int k = 0;
  565. dma_addr_t tmp_p;
  566. void *tmp_v;
  567. tmp_v = pci_alloc_consistent(nic->pdev,
  568. PAGE_SIZE, &tmp_p);
  569. if (!tmp_v) {
  570. DBG_PRINT(INFO_DBG,
  571. "pci_alloc_consistent ");
  572. DBG_PRINT(INFO_DBG, "failed for TxDL\n");
  573. return -ENOMEM;
  574. }
  575. /* If we got a zero DMA address(can happen on
  576. * certain platforms like PPC), reallocate.
  577. * Store virtual address of page we don't want,
  578. * to be freed later.
  579. */
  580. if (!tmp_p) {
  581. mac_control->zerodma_virt_addr = tmp_v;
  582. DBG_PRINT(INIT_DBG,
  583. "%s: Zero DMA address for TxDL. ", dev->name);
  584. DBG_PRINT(INIT_DBG,
  585. "Virtual address %p\n", tmp_v);
  586. tmp_v = pci_alloc_consistent(nic->pdev,
  587. PAGE_SIZE, &tmp_p);
  588. if (!tmp_v) {
  589. DBG_PRINT(INFO_DBG,
  590. "pci_alloc_consistent ");
  591. DBG_PRINT(INFO_DBG, "failed for TxDL\n");
  592. return -ENOMEM;
  593. }
  594. mem_allocated += PAGE_SIZE;
  595. }
  596. while (k < lst_per_page) {
  597. int l = (j * lst_per_page) + k;
  598. if (l == config->tx_cfg[i].fifo_len)
  599. break;
  600. mac_control->fifos[i].list_info[l].list_virt_addr =
  601. tmp_v + (k * lst_size);
  602. mac_control->fifos[i].list_info[l].list_phy_addr =
  603. tmp_p + (k * lst_size);
  604. k++;
  605. }
  606. }
  607. }
  608. for (i = 0; i < config->tx_fifo_num; i++) {
  609. size = config->tx_cfg[i].fifo_len;
  610. mac_control->fifos[i].ufo_in_band_v
  611. = kcalloc(size, sizeof(u64), GFP_KERNEL);
  612. if (!mac_control->fifos[i].ufo_in_band_v)
  613. return -ENOMEM;
  614. mem_allocated += (size * sizeof(u64));
  615. }
  616. /* Allocation and initialization of RXDs in Rings */
  617. size = 0;
  618. for (i = 0; i < config->rx_ring_num; i++) {
  619. if (config->rx_cfg[i].num_rxd %
  620. (rxd_count[nic->rxd_mode] + 1)) {
  621. DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
  622. DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
  623. i);
  624. DBG_PRINT(ERR_DBG, "RxDs per Block");
  625. return FAILURE;
  626. }
  627. size += config->rx_cfg[i].num_rxd;
  628. mac_control->rings[i].block_count =
  629. config->rx_cfg[i].num_rxd /
  630. (rxd_count[nic->rxd_mode] + 1 );
  631. mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
  632. mac_control->rings[i].block_count;
  633. }
  634. if (nic->rxd_mode == RXD_MODE_1)
  635. size = (size * (sizeof(struct RxD1)));
  636. else
  637. size = (size * (sizeof(struct RxD3)));
  638. for (i = 0; i < config->rx_ring_num; i++) {
  639. mac_control->rings[i].rx_curr_get_info.block_index = 0;
  640. mac_control->rings[i].rx_curr_get_info.offset = 0;
  641. mac_control->rings[i].rx_curr_get_info.ring_len =
  642. config->rx_cfg[i].num_rxd - 1;
  643. mac_control->rings[i].rx_curr_put_info.block_index = 0;
  644. mac_control->rings[i].rx_curr_put_info.offset = 0;
  645. mac_control->rings[i].rx_curr_put_info.ring_len =
  646. config->rx_cfg[i].num_rxd - 1;
  647. mac_control->rings[i].nic = nic;
  648. mac_control->rings[i].ring_no = i;
  649. blk_cnt = config->rx_cfg[i].num_rxd /
  650. (rxd_count[nic->rxd_mode] + 1);
  651. /* Allocating all the Rx blocks */
  652. for (j = 0; j < blk_cnt; j++) {
  653. struct rx_block_info *rx_blocks;
  654. int l;
  655. rx_blocks = &mac_control->rings[i].rx_blocks[j];
  656. size = SIZE_OF_BLOCK; //size is always page size
  657. tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
  658. &tmp_p_addr);
  659. if (tmp_v_addr == NULL) {
  660. /*
  661. * In case of failure, free_shared_mem()
  662. * is called, which should free any
  663. * memory that was alloced till the
  664. * failure happened.
  665. */
  666. rx_blocks->block_virt_addr = tmp_v_addr;
  667. return -ENOMEM;
  668. }
  669. mem_allocated += size;
  670. memset(tmp_v_addr, 0, size);
  671. rx_blocks->block_virt_addr = tmp_v_addr;
  672. rx_blocks->block_dma_addr = tmp_p_addr;
  673. rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
  674. rxd_count[nic->rxd_mode],
  675. GFP_KERNEL);
  676. if (!rx_blocks->rxds)
  677. return -ENOMEM;
  678. mem_allocated +=
  679. (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
  680. for (l=0; l<rxd_count[nic->rxd_mode];l++) {
  681. rx_blocks->rxds[l].virt_addr =
  682. rx_blocks->block_virt_addr +
  683. (rxd_size[nic->rxd_mode] * l);
  684. rx_blocks->rxds[l].dma_addr =
  685. rx_blocks->block_dma_addr +
  686. (rxd_size[nic->rxd_mode] * l);
  687. }
  688. }
  689. /* Interlinking all Rx Blocks */
  690. for (j = 0; j < blk_cnt; j++) {
  691. tmp_v_addr =
  692. mac_control->rings[i].rx_blocks[j].block_virt_addr;
  693. tmp_v_addr_next =
  694. mac_control->rings[i].rx_blocks[(j + 1) %
  695. blk_cnt].block_virt_addr;
  696. tmp_p_addr =
  697. mac_control->rings[i].rx_blocks[j].block_dma_addr;
  698. tmp_p_addr_next =
  699. mac_control->rings[i].rx_blocks[(j + 1) %
  700. blk_cnt].block_dma_addr;
  701. pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
  702. pre_rxd_blk->reserved_2_pNext_RxD_block =
  703. (unsigned long) tmp_v_addr_next;
  704. pre_rxd_blk->pNext_RxD_Blk_physical =
  705. (u64) tmp_p_addr_next;
  706. }
  707. }
  708. if (nic->rxd_mode == RXD_MODE_3B) {
  709. /*
  710. * Allocation of Storages for buffer addresses in 2BUFF mode
  711. * and the buffers as well.
  712. */
  713. for (i = 0; i < config->rx_ring_num; i++) {
  714. blk_cnt = config->rx_cfg[i].num_rxd /
  715. (rxd_count[nic->rxd_mode]+ 1);
  716. mac_control->rings[i].ba =
  717. kmalloc((sizeof(struct buffAdd *) * blk_cnt),
  718. GFP_KERNEL);
  719. if (!mac_control->rings[i].ba)
  720. return -ENOMEM;
  721. mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
  722. for (j = 0; j < blk_cnt; j++) {
  723. int k = 0;
  724. mac_control->rings[i].ba[j] =
  725. kmalloc((sizeof(struct buffAdd) *
  726. (rxd_count[nic->rxd_mode] + 1)),
  727. GFP_KERNEL);
  728. if (!mac_control->rings[i].ba[j])
  729. return -ENOMEM;
  730. mem_allocated += (sizeof(struct buffAdd) * \
  731. (rxd_count[nic->rxd_mode] + 1));
  732. while (k != rxd_count[nic->rxd_mode]) {
  733. ba = &mac_control->rings[i].ba[j][k];
  734. ba->ba_0_org = (void *) kmalloc
  735. (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
  736. if (!ba->ba_0_org)
  737. return -ENOMEM;
  738. mem_allocated +=
  739. (BUF0_LEN + ALIGN_SIZE);
  740. tmp = (unsigned long)ba->ba_0_org;
  741. tmp += ALIGN_SIZE;
  742. tmp &= ~((unsigned long) ALIGN_SIZE);
  743. ba->ba_0 = (void *) tmp;
  744. ba->ba_1_org = (void *) kmalloc
  745. (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
  746. if (!ba->ba_1_org)
  747. return -ENOMEM;
  748. mem_allocated
  749. += (BUF1_LEN + ALIGN_SIZE);
  750. tmp = (unsigned long) ba->ba_1_org;
  751. tmp += ALIGN_SIZE;
  752. tmp &= ~((unsigned long) ALIGN_SIZE);
  753. ba->ba_1 = (void *) tmp;
  754. k++;
  755. }
  756. }
  757. }
  758. }
  759. /* Allocation and initialization of Statistics block */
  760. size = sizeof(struct stat_block);
  761. mac_control->stats_mem = pci_alloc_consistent
  762. (nic->pdev, size, &mac_control->stats_mem_phy);
  763. if (!mac_control->stats_mem) {
  764. /*
  765. * In case of failure, free_shared_mem() is called, which
  766. * should free any memory that was alloced till the
  767. * failure happened.
  768. */
  769. return -ENOMEM;
  770. }
  771. mem_allocated += size;
  772. mac_control->stats_mem_sz = size;
  773. tmp_v_addr = mac_control->stats_mem;
  774. mac_control->stats_info = (struct stat_block *) tmp_v_addr;
  775. memset(tmp_v_addr, 0, size);
  776. DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
  777. (unsigned long long) tmp_p_addr);
  778. mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
  779. return SUCCESS;
  780. }
  781. /**
  782. * free_shared_mem - Free the allocated Memory
  783. * @nic: Device private variable.
  784. * Description: This function is to free all memory locations allocated by
  785. * the init_shared_mem() function and return it to the kernel.
  786. */
  787. static void free_shared_mem(struct s2io_nic *nic)
  788. {
  789. int i, j, blk_cnt, size;
  790. void *tmp_v_addr;
  791. dma_addr_t tmp_p_addr;
  792. struct mac_info *mac_control;
  793. struct config_param *config;
  794. int lst_size, lst_per_page;
  795. struct net_device *dev;
  796. int page_num = 0;
  797. if (!nic)
  798. return;
  799. dev = nic->dev;
  800. mac_control = &nic->mac_control;
  801. config = &nic->config;
  802. lst_size = (sizeof(struct TxD) * config->max_txds);
  803. lst_per_page = PAGE_SIZE / lst_size;
  804. for (i = 0; i < config->tx_fifo_num; i++) {
  805. page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
  806. lst_per_page);
  807. for (j = 0; j < page_num; j++) {
  808. int mem_blks = (j * lst_per_page);
  809. if (!mac_control->fifos[i].list_info)
  810. return;
  811. if (!mac_control->fifos[i].list_info[mem_blks].
  812. list_virt_addr)
  813. break;
  814. pci_free_consistent(nic->pdev, PAGE_SIZE,
  815. mac_control->fifos[i].
  816. list_info[mem_blks].
  817. list_virt_addr,
  818. mac_control->fifos[i].
  819. list_info[mem_blks].
  820. list_phy_addr);
  821. nic->mac_control.stats_info->sw_stat.mem_freed
  822. += PAGE_SIZE;
  823. }
  824. /* If we got a zero DMA address during allocation,
  825. * free the page now
  826. */
  827. if (mac_control->zerodma_virt_addr) {
  828. pci_free_consistent(nic->pdev, PAGE_SIZE,
  829. mac_control->zerodma_virt_addr,
  830. (dma_addr_t)0);
  831. DBG_PRINT(INIT_DBG,
  832. "%s: Freeing TxDL with zero DMA addr. ",
  833. dev->name);
  834. DBG_PRINT(INIT_DBG, "Virtual address %p\n",
  835. mac_control->zerodma_virt_addr);
  836. nic->mac_control.stats_info->sw_stat.mem_freed
  837. += PAGE_SIZE;
  838. }
  839. kfree(mac_control->fifos[i].list_info);
  840. nic->mac_control.stats_info->sw_stat.mem_freed +=
  841. (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
  842. }
  843. size = SIZE_OF_BLOCK;
  844. for (i = 0; i < config->rx_ring_num; i++) {
  845. blk_cnt = mac_control->rings[i].block_count;
  846. for (j = 0; j < blk_cnt; j++) {
  847. tmp_v_addr = mac_control->rings[i].rx_blocks[j].
  848. block_virt_addr;
  849. tmp_p_addr = mac_control->rings[i].rx_blocks[j].
  850. block_dma_addr;
  851. if (tmp_v_addr == NULL)
  852. break;
  853. pci_free_consistent(nic->pdev, size,
  854. tmp_v_addr, tmp_p_addr);
  855. nic->mac_control.stats_info->sw_stat.mem_freed += size;
  856. kfree(mac_control->rings[i].rx_blocks[j].rxds);
  857. nic->mac_control.stats_info->sw_stat.mem_freed +=
  858. ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
  859. }
  860. }
  861. if (nic->rxd_mode == RXD_MODE_3B) {
  862. /* Freeing buffer storage addresses in 2BUFF mode. */
  863. for (i = 0; i < config->rx_ring_num; i++) {
  864. blk_cnt = config->rx_cfg[i].num_rxd /
  865. (rxd_count[nic->rxd_mode] + 1);
  866. for (j = 0; j < blk_cnt; j++) {
  867. int k = 0;
  868. if (!mac_control->rings[i].ba[j])
  869. continue;
  870. while (k != rxd_count[nic->rxd_mode]) {
  871. struct buffAdd *ba =
  872. &mac_control->rings[i].ba[j][k];
  873. kfree(ba->ba_0_org);
  874. nic->mac_control.stats_info->sw_stat.\
  875. mem_freed += (BUF0_LEN + ALIGN_SIZE);
  876. kfree(ba->ba_1_org);
  877. nic->mac_control.stats_info->sw_stat.\
  878. mem_freed += (BUF1_LEN + ALIGN_SIZE);
  879. k++;
  880. }
  881. kfree(mac_control->rings[i].ba[j]);
  882. nic->mac_control.stats_info->sw_stat.mem_freed +=
  883. (sizeof(struct buffAdd) *
  884. (rxd_count[nic->rxd_mode] + 1));
  885. }
  886. kfree(mac_control->rings[i].ba);
  887. nic->mac_control.stats_info->sw_stat.mem_freed +=
  888. (sizeof(struct buffAdd *) * blk_cnt);
  889. }
  890. }
  891. for (i = 0; i < nic->config.tx_fifo_num; i++) {
  892. if (mac_control->fifos[i].ufo_in_band_v) {
  893. nic->mac_control.stats_info->sw_stat.mem_freed
  894. += (config->tx_cfg[i].fifo_len * sizeof(u64));
  895. kfree(mac_control->fifos[i].ufo_in_band_v);
  896. }
  897. }
  898. if (mac_control->stats_mem) {
  899. nic->mac_control.stats_info->sw_stat.mem_freed +=
  900. mac_control->stats_mem_sz;
  901. pci_free_consistent(nic->pdev,
  902. mac_control->stats_mem_sz,
  903. mac_control->stats_mem,
  904. mac_control->stats_mem_phy);
  905. }
  906. }
  907. /**
  908. * s2io_verify_pci_mode -
  909. */
  910. static int s2io_verify_pci_mode(struct s2io_nic *nic)
  911. {
  912. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  913. register u64 val64 = 0;
  914. int mode;
  915. val64 = readq(&bar0->pci_mode);
  916. mode = (u8)GET_PCI_MODE(val64);
  917. if ( val64 & PCI_MODE_UNKNOWN_MODE)
  918. return -1; /* Unknown PCI mode */
  919. return mode;
  920. }
  921. #define NEC_VENID 0x1033
  922. #define NEC_DEVID 0x0125
  923. static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
  924. {
  925. struct pci_dev *tdev = NULL;
  926. while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
  927. if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
  928. if (tdev->bus == s2io_pdev->bus->parent)
  929. pci_dev_put(tdev);
  930. return 1;
  931. }
  932. }
  933. return 0;
  934. }
  935. static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
  936. /**
  937. * s2io_print_pci_mode -
  938. */
  939. static int s2io_print_pci_mode(struct s2io_nic *nic)
  940. {
  941. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  942. register u64 val64 = 0;
  943. int mode;
  944. struct config_param *config = &nic->config;
  945. val64 = readq(&bar0->pci_mode);
  946. mode = (u8)GET_PCI_MODE(val64);
  947. if ( val64 & PCI_MODE_UNKNOWN_MODE)
  948. return -1; /* Unknown PCI mode */
  949. config->bus_speed = bus_speed[mode];
  950. if (s2io_on_nec_bridge(nic->pdev)) {
  951. DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
  952. nic->dev->name);
  953. return mode;
  954. }
  955. if (val64 & PCI_MODE_32_BITS) {
  956. DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
  957. } else {
  958. DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
  959. }
  960. switch(mode) {
  961. case PCI_MODE_PCI_33:
  962. DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
  963. break;
  964. case PCI_MODE_PCI_66:
  965. DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
  966. break;
  967. case PCI_MODE_PCIX_M1_66:
  968. DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
  969. break;
  970. case PCI_MODE_PCIX_M1_100:
  971. DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
  972. break;
  973. case PCI_MODE_PCIX_M1_133:
  974. DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
  975. break;
  976. case PCI_MODE_PCIX_M2_66:
  977. DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
  978. break;
  979. case PCI_MODE_PCIX_M2_100:
  980. DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
  981. break;
  982. case PCI_MODE_PCIX_M2_133:
  983. DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
  984. break;
  985. default:
  986. return -1; /* Unsupported bus speed */
  987. }
  988. return mode;
  989. }
  990. /**
  991. * init_tti - Initialization transmit traffic interrupt scheme
  992. * @nic: device private variable
  993. * @link: link status (UP/DOWN) used to enable/disable continuous
  994. * transmit interrupts
  995. * Description: The function configures transmit traffic interrupts
  996. * Return Value: SUCCESS on success and
  997. * '-1' on failure
  998. */
  999. int init_tti(struct s2io_nic *nic, int link)
  1000. {
  1001. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1002. register u64 val64 = 0;
  1003. int i;
  1004. struct config_param *config;
  1005. config = &nic->config;
  1006. for (i = 0; i < config->tx_fifo_num; i++) {
  1007. /*
  1008. * TTI Initialization. Default Tx timer gets us about
  1009. * 250 interrupts per sec. Continuous interrupts are enabled
  1010. * by default.
  1011. */
  1012. if (nic->device_type == XFRAME_II_DEVICE) {
  1013. int count = (nic->config.bus_speed * 125)/2;
  1014. val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
  1015. } else
  1016. val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
  1017. val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
  1018. TTI_DATA1_MEM_TX_URNG_B(0x10) |
  1019. TTI_DATA1_MEM_TX_URNG_C(0x30) |
  1020. TTI_DATA1_MEM_TX_TIMER_AC_EN;
  1021. if (use_continuous_tx_intrs && (link == LINK_UP))
  1022. val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
  1023. writeq(val64, &bar0->tti_data1_mem);
  1024. val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
  1025. TTI_DATA2_MEM_TX_UFC_B(0x20) |
  1026. TTI_DATA2_MEM_TX_UFC_C(0x40) |
  1027. TTI_DATA2_MEM_TX_UFC_D(0x80);
  1028. writeq(val64, &bar0->tti_data2_mem);
  1029. val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
  1030. TTI_CMD_MEM_OFFSET(i);
  1031. writeq(val64, &bar0->tti_command_mem);
  1032. if (wait_for_cmd_complete(&bar0->tti_command_mem,
  1033. TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
  1034. return FAILURE;
  1035. }
  1036. return SUCCESS;
  1037. }
  1038. /**
  1039. * init_nic - Initialization of hardware
  1040. * @nic: device private variable
  1041. * Description: The function sequentially configures every block
  1042. * of the H/W from their reset values.
  1043. * Return Value: SUCCESS on success and
  1044. * '-1' on failure (endian settings incorrect).
  1045. */
  1046. static int init_nic(struct s2io_nic *nic)
  1047. {
  1048. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1049. struct net_device *dev = nic->dev;
  1050. register u64 val64 = 0;
  1051. void __iomem *add;
  1052. u32 time;
  1053. int i, j;
  1054. struct mac_info *mac_control;
  1055. struct config_param *config;
  1056. int dtx_cnt = 0;
  1057. unsigned long long mem_share;
  1058. int mem_size;
  1059. mac_control = &nic->mac_control;
  1060. config = &nic->config;
  1061. /* to set the swapper controle on the card */
  1062. if(s2io_set_swapper(nic)) {
  1063. DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
  1064. return -EIO;
  1065. }
  1066. /*
  1067. * Herc requires EOI to be removed from reset before XGXS, so..
  1068. */
  1069. if (nic->device_type & XFRAME_II_DEVICE) {
  1070. val64 = 0xA500000000ULL;
  1071. writeq(val64, &bar0->sw_reset);
  1072. msleep(500);
  1073. val64 = readq(&bar0->sw_reset);
  1074. }
  1075. /* Remove XGXS from reset state */
  1076. val64 = 0;
  1077. writeq(val64, &bar0->sw_reset);
  1078. msleep(500);
  1079. val64 = readq(&bar0->sw_reset);
  1080. /* Ensure that it's safe to access registers by checking
  1081. * RIC_RUNNING bit is reset. Check is valid only for XframeII.
  1082. */
  1083. if (nic->device_type == XFRAME_II_DEVICE) {
  1084. for (i = 0; i < 50; i++) {
  1085. val64 = readq(&bar0->adapter_status);
  1086. if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
  1087. break;
  1088. msleep(10);
  1089. }
  1090. if (i == 50)
  1091. return -ENODEV;
  1092. }
  1093. /* Enable Receiving broadcasts */
  1094. add = &bar0->mac_cfg;
  1095. val64 = readq(&bar0->mac_cfg);
  1096. val64 |= MAC_RMAC_BCAST_ENABLE;
  1097. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1098. writel((u32) val64, add);
  1099. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1100. writel((u32) (val64 >> 32), (add + 4));
  1101. /* Read registers in all blocks */
  1102. val64 = readq(&bar0->mac_int_mask);
  1103. val64 = readq(&bar0->mc_int_mask);
  1104. val64 = readq(&bar0->xgxs_int_mask);
  1105. /* Set MTU */
  1106. val64 = dev->mtu;
  1107. writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
  1108. if (nic->device_type & XFRAME_II_DEVICE) {
  1109. while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
  1110. SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
  1111. &bar0->dtx_control, UF);
  1112. if (dtx_cnt & 0x1)
  1113. msleep(1); /* Necessary!! */
  1114. dtx_cnt++;
  1115. }
  1116. } else {
  1117. while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
  1118. SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
  1119. &bar0->dtx_control, UF);
  1120. val64 = readq(&bar0->dtx_control);
  1121. dtx_cnt++;
  1122. }
  1123. }
  1124. /* Tx DMA Initialization */
  1125. val64 = 0;
  1126. writeq(val64, &bar0->tx_fifo_partition_0);
  1127. writeq(val64, &bar0->tx_fifo_partition_1);
  1128. writeq(val64, &bar0->tx_fifo_partition_2);
  1129. writeq(val64, &bar0->tx_fifo_partition_3);
  1130. for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
  1131. val64 |=
  1132. vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
  1133. 13) | vBIT(config->tx_cfg[i].fifo_priority,
  1134. ((j * 32) + 5), 3);
  1135. if (i == (config->tx_fifo_num - 1)) {
  1136. if (i % 2 == 0)
  1137. i++;
  1138. }
  1139. switch (i) {
  1140. case 1:
  1141. writeq(val64, &bar0->tx_fifo_partition_0);
  1142. val64 = 0;
  1143. j = 0;
  1144. break;
  1145. case 3:
  1146. writeq(val64, &bar0->tx_fifo_partition_1);
  1147. val64 = 0;
  1148. j = 0;
  1149. break;
  1150. case 5:
  1151. writeq(val64, &bar0->tx_fifo_partition_2);
  1152. val64 = 0;
  1153. j = 0;
  1154. break;
  1155. case 7:
  1156. writeq(val64, &bar0->tx_fifo_partition_3);
  1157. val64 = 0;
  1158. j = 0;
  1159. break;
  1160. default:
  1161. j++;
  1162. break;
  1163. }
  1164. }
  1165. /*
  1166. * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
  1167. * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
  1168. */
  1169. if ((nic->device_type == XFRAME_I_DEVICE) &&
  1170. (nic->pdev->revision < 4))
  1171. writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
  1172. val64 = readq(&bar0->tx_fifo_partition_0);
  1173. DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
  1174. &bar0->tx_fifo_partition_0, (unsigned long long) val64);
  1175. /*
  1176. * Initialization of Tx_PA_CONFIG register to ignore packet
  1177. * integrity checking.
  1178. */
  1179. val64 = readq(&bar0->tx_pa_cfg);
  1180. val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
  1181. TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
  1182. writeq(val64, &bar0->tx_pa_cfg);
  1183. /* Rx DMA intialization. */
  1184. val64 = 0;
  1185. for (i = 0; i < config->rx_ring_num; i++) {
  1186. val64 |=
  1187. vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
  1188. 3);
  1189. }
  1190. writeq(val64, &bar0->rx_queue_priority);
  1191. /*
  1192. * Allocating equal share of memory to all the
  1193. * configured Rings.
  1194. */
  1195. val64 = 0;
  1196. if (nic->device_type & XFRAME_II_DEVICE)
  1197. mem_size = 32;
  1198. else
  1199. mem_size = 64;
  1200. for (i = 0; i < config->rx_ring_num; i++) {
  1201. switch (i) {
  1202. case 0:
  1203. mem_share = (mem_size / config->rx_ring_num +
  1204. mem_size % config->rx_ring_num);
  1205. val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
  1206. continue;
  1207. case 1:
  1208. mem_share = (mem_size / config->rx_ring_num);
  1209. val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
  1210. continue;
  1211. case 2:
  1212. mem_share = (mem_size / config->rx_ring_num);
  1213. val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
  1214. continue;
  1215. case 3:
  1216. mem_share = (mem_size / config->rx_ring_num);
  1217. val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
  1218. continue;
  1219. case 4:
  1220. mem_share = (mem_size / config->rx_ring_num);
  1221. val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
  1222. continue;
  1223. case 5:
  1224. mem_share = (mem_size / config->rx_ring_num);
  1225. val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
  1226. continue;
  1227. case 6:
  1228. mem_share = (mem_size / config->rx_ring_num);
  1229. val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
  1230. continue;
  1231. case 7:
  1232. mem_share = (mem_size / config->rx_ring_num);
  1233. val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
  1234. continue;
  1235. }
  1236. }
  1237. writeq(val64, &bar0->rx_queue_cfg);
  1238. /*
  1239. * Filling Tx round robin registers
  1240. * as per the number of FIFOs for equal scheduling priority
  1241. */
  1242. switch (config->tx_fifo_num) {
  1243. case 1:
  1244. val64 = 0x0;
  1245. writeq(val64, &bar0->tx_w_round_robin_0);
  1246. writeq(val64, &bar0->tx_w_round_robin_1);
  1247. writeq(val64, &bar0->tx_w_round_robin_2);
  1248. writeq(val64, &bar0->tx_w_round_robin_3);
  1249. writeq(val64, &bar0->tx_w_round_robin_4);
  1250. break;
  1251. case 2:
  1252. val64 = 0x0001000100010001ULL;
  1253. writeq(val64, &bar0->tx_w_round_robin_0);
  1254. writeq(val64, &bar0->tx_w_round_robin_1);
  1255. writeq(val64, &bar0->tx_w_round_robin_2);
  1256. writeq(val64, &bar0->tx_w_round_robin_3);
  1257. val64 = 0x0001000100000000ULL;
  1258. writeq(val64, &bar0->tx_w_round_robin_4);
  1259. break;
  1260. case 3:
  1261. val64 = 0x0001020001020001ULL;
  1262. writeq(val64, &bar0->tx_w_round_robin_0);
  1263. val64 = 0x0200010200010200ULL;
  1264. writeq(val64, &bar0->tx_w_round_robin_1);
  1265. val64 = 0x0102000102000102ULL;
  1266. writeq(val64, &bar0->tx_w_round_robin_2);
  1267. val64 = 0x0001020001020001ULL;
  1268. writeq(val64, &bar0->tx_w_round_robin_3);
  1269. val64 = 0x0200010200000000ULL;
  1270. writeq(val64, &bar0->tx_w_round_robin_4);
  1271. break;
  1272. case 4:
  1273. val64 = 0x0001020300010203ULL;
  1274. writeq(val64, &bar0->tx_w_round_robin_0);
  1275. writeq(val64, &bar0->tx_w_round_robin_1);
  1276. writeq(val64, &bar0->tx_w_round_robin_2);
  1277. writeq(val64, &bar0->tx_w_round_robin_3);
  1278. val64 = 0x0001020300000000ULL;
  1279. writeq(val64, &bar0->tx_w_round_robin_4);
  1280. break;
  1281. case 5:
  1282. val64 = 0x0001020304000102ULL;
  1283. writeq(val64, &bar0->tx_w_round_robin_0);
  1284. val64 = 0x0304000102030400ULL;
  1285. writeq(val64, &bar0->tx_w_round_robin_1);
  1286. val64 = 0x0102030400010203ULL;
  1287. writeq(val64, &bar0->tx_w_round_robin_2);
  1288. val64 = 0x0400010203040001ULL;
  1289. writeq(val64, &bar0->tx_w_round_robin_3);
  1290. val64 = 0x0203040000000000ULL;
  1291. writeq(val64, &bar0->tx_w_round_robin_4);
  1292. break;
  1293. case 6:
  1294. val64 = 0x0001020304050001ULL;
  1295. writeq(val64, &bar0->tx_w_round_robin_0);
  1296. val64 = 0x0203040500010203ULL;
  1297. writeq(val64, &bar0->tx_w_round_robin_1);
  1298. val64 = 0x0405000102030405ULL;
  1299. writeq(val64, &bar0->tx_w_round_robin_2);
  1300. val64 = 0x0001020304050001ULL;
  1301. writeq(val64, &bar0->tx_w_round_robin_3);
  1302. val64 = 0x0203040500000000ULL;
  1303. writeq(val64, &bar0->tx_w_round_robin_4);
  1304. break;
  1305. case 7:
  1306. val64 = 0x0001020304050600ULL;
  1307. writeq(val64, &bar0->tx_w_round_robin_0);
  1308. val64 = 0x0102030405060001ULL;
  1309. writeq(val64, &bar0->tx_w_round_robin_1);
  1310. val64 = 0x0203040506000102ULL;
  1311. writeq(val64, &bar0->tx_w_round_robin_2);
  1312. val64 = 0x0304050600010203ULL;
  1313. writeq(val64, &bar0->tx_w_round_robin_3);
  1314. val64 = 0x0405060000000000ULL;
  1315. writeq(val64, &bar0->tx_w_round_robin_4);
  1316. break;
  1317. case 8:
  1318. val64 = 0x0001020304050607ULL;
  1319. writeq(val64, &bar0->tx_w_round_robin_0);
  1320. writeq(val64, &bar0->tx_w_round_robin_1);
  1321. writeq(val64, &bar0->tx_w_round_robin_2);
  1322. writeq(val64, &bar0->tx_w_round_robin_3);
  1323. val64 = 0x0001020300000000ULL;
  1324. writeq(val64, &bar0->tx_w_round_robin_4);
  1325. break;
  1326. }
  1327. /* Enable all configured Tx FIFO partitions */
  1328. val64 = readq(&bar0->tx_fifo_partition_0);
  1329. val64 |= (TX_FIFO_PARTITION_EN);
  1330. writeq(val64, &bar0->tx_fifo_partition_0);
  1331. /* Filling the Rx round robin registers as per the
  1332. * number of Rings and steering based on QoS.
  1333. */
  1334. switch (config->rx_ring_num) {
  1335. case 1:
  1336. val64 = 0x8080808080808080ULL;
  1337. writeq(val64, &bar0->rts_qos_steering);
  1338. break;
  1339. case 2:
  1340. val64 = 0x0000010000010000ULL;
  1341. writeq(val64, &bar0->rx_w_round_robin_0);
  1342. val64 = 0x0100000100000100ULL;
  1343. writeq(val64, &bar0->rx_w_round_robin_1);
  1344. val64 = 0x0001000001000001ULL;
  1345. writeq(val64, &bar0->rx_w_round_robin_2);
  1346. val64 = 0x0000010000010000ULL;
  1347. writeq(val64, &bar0->rx_w_round_robin_3);
  1348. val64 = 0x0100000000000000ULL;
  1349. writeq(val64, &bar0->rx_w_round_robin_4);
  1350. val64 = 0x8080808040404040ULL;
  1351. writeq(val64, &bar0->rts_qos_steering);
  1352. break;
  1353. case 3:
  1354. val64 = 0x0001000102000001ULL;
  1355. writeq(val64, &bar0->rx_w_round_robin_0);
  1356. val64 = 0x0001020000010001ULL;
  1357. writeq(val64, &bar0->rx_w_round_robin_1);
  1358. val64 = 0x0200000100010200ULL;
  1359. writeq(val64, &bar0->rx_w_round_robin_2);
  1360. val64 = 0x0001000102000001ULL;
  1361. writeq(val64, &bar0->rx_w_round_robin_3);
  1362. val64 = 0x0001020000000000ULL;
  1363. writeq(val64, &bar0->rx_w_round_robin_4);
  1364. val64 = 0x8080804040402020ULL;
  1365. writeq(val64, &bar0->rts_qos_steering);
  1366. break;
  1367. case 4:
  1368. val64 = 0x0001020300010200ULL;
  1369. writeq(val64, &bar0->rx_w_round_robin_0);
  1370. val64 = 0x0100000102030001ULL;
  1371. writeq(val64, &bar0->rx_w_round_robin_1);
  1372. val64 = 0x0200010000010203ULL;
  1373. writeq(val64, &bar0->rx_w_round_robin_2);
  1374. val64 = 0x0001020001000001ULL;
  1375. writeq(val64, &bar0->rx_w_round_robin_3);
  1376. val64 = 0x0203000100000000ULL;
  1377. writeq(val64, &bar0->rx_w_round_robin_4);
  1378. val64 = 0x8080404020201010ULL;
  1379. writeq(val64, &bar0->rts_qos_steering);
  1380. break;
  1381. case 5:
  1382. val64 = 0x0001000203000102ULL;
  1383. writeq(val64, &bar0->rx_w_round_robin_0);
  1384. val64 = 0x0001020001030004ULL;
  1385. writeq(val64, &bar0->rx_w_round_robin_1);
  1386. val64 = 0x0001000203000102ULL;
  1387. writeq(val64, &bar0->rx_w_round_robin_2);
  1388. val64 = 0x0001020001030004ULL;
  1389. writeq(val64, &bar0->rx_w_round_robin_3);
  1390. val64 = 0x0001000000000000ULL;
  1391. writeq(val64, &bar0->rx_w_round_robin_4);
  1392. val64 = 0x8080404020201008ULL;
  1393. writeq(val64, &bar0->rts_qos_steering);
  1394. break;
  1395. case 6:
  1396. val64 = 0x0001020304000102ULL;
  1397. writeq(val64, &bar0->rx_w_round_robin_0);
  1398. val64 = 0x0304050001020001ULL;
  1399. writeq(val64, &bar0->rx_w_round_robin_1);
  1400. val64 = 0x0203000100000102ULL;
  1401. writeq(val64, &bar0->rx_w_round_robin_2);
  1402. val64 = 0x0304000102030405ULL;
  1403. writeq(val64, &bar0->rx_w_round_robin_3);
  1404. val64 = 0x0001000200000000ULL;
  1405. writeq(val64, &bar0->rx_w_round_robin_4);
  1406. val64 = 0x8080404020100804ULL;
  1407. writeq(val64, &bar0->rts_qos_steering);
  1408. break;
  1409. case 7:
  1410. val64 = 0x0001020001020300ULL;
  1411. writeq(val64, &bar0->rx_w_round_robin_0);
  1412. val64 = 0x0102030400010203ULL;
  1413. writeq(val64, &bar0->rx_w_round_robin_1);
  1414. val64 = 0x0405060001020001ULL;
  1415. writeq(val64, &bar0->rx_w_round_robin_2);
  1416. val64 = 0x0304050000010200ULL;
  1417. writeq(val64, &bar0->rx_w_round_robin_3);
  1418. val64 = 0x0102030000000000ULL;
  1419. writeq(val64, &bar0->rx_w_round_robin_4);
  1420. val64 = 0x8080402010080402ULL;
  1421. writeq(val64, &bar0->rts_qos_steering);
  1422. break;
  1423. case 8:
  1424. val64 = 0x0001020300040105ULL;
  1425. writeq(val64, &bar0->rx_w_round_robin_0);
  1426. val64 = 0x0200030106000204ULL;
  1427. writeq(val64, &bar0->rx_w_round_robin_1);
  1428. val64 = 0x0103000502010007ULL;
  1429. writeq(val64, &bar0->rx_w_round_robin_2);
  1430. val64 = 0x0304010002060500ULL;
  1431. writeq(val64, &bar0->rx_w_round_robin_3);
  1432. val64 = 0x0103020400000000ULL;
  1433. writeq(val64, &bar0->rx_w_round_robin_4);
  1434. val64 = 0x8040201008040201ULL;
  1435. writeq(val64, &bar0->rts_qos_steering);
  1436. break;
  1437. }
  1438. /* UDP Fix */
  1439. val64 = 0;
  1440. for (i = 0; i < 8; i++)
  1441. writeq(val64, &bar0->rts_frm_len_n[i]);
  1442. /* Set the default rts frame length for the rings configured */
  1443. val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
  1444. for (i = 0 ; i < config->rx_ring_num ; i++)
  1445. writeq(val64, &bar0->rts_frm_len_n[i]);
  1446. /* Set the frame length for the configured rings
  1447. * desired by the user
  1448. */
  1449. for (i = 0; i < config->rx_ring_num; i++) {
  1450. /* If rts_frm_len[i] == 0 then it is assumed that user not
  1451. * specified frame length steering.
  1452. * If the user provides the frame length then program
  1453. * the rts_frm_len register for those values or else
  1454. * leave it as it is.
  1455. */
  1456. if (rts_frm_len[i] != 0) {
  1457. writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
  1458. &bar0->rts_frm_len_n[i]);
  1459. }
  1460. }
  1461. /* Disable differentiated services steering logic */
  1462. for (i = 0; i < 64; i++) {
  1463. if (rts_ds_steer(nic, i, 0) == FAILURE) {
  1464. DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
  1465. dev->name);
  1466. DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
  1467. return -ENODEV;
  1468. }
  1469. }
  1470. /* Program statistics memory */
  1471. writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
  1472. if (nic->device_type == XFRAME_II_DEVICE) {
  1473. val64 = STAT_BC(0x320);
  1474. writeq(val64, &bar0->stat_byte_cnt);
  1475. }
  1476. /*
  1477. * Initializing the sampling rate for the device to calculate the
  1478. * bandwidth utilization.
  1479. */
  1480. val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
  1481. MAC_RX_LINK_UTIL_VAL(rmac_util_period);
  1482. writeq(val64, &bar0->mac_link_util);
  1483. /*
  1484. * Initializing the Transmit and Receive Traffic Interrupt
  1485. * Scheme.
  1486. */
  1487. /* Initialize TTI */
  1488. if (SUCCESS != init_tti(nic, nic->last_link_state))
  1489. return -ENODEV;
  1490. /* RTI Initialization */
  1491. if (nic->device_type == XFRAME_II_DEVICE) {
  1492. /*
  1493. * Programmed to generate Apprx 500 Intrs per
  1494. * second
  1495. */
  1496. int count = (nic->config.bus_speed * 125)/4;
  1497. val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
  1498. } else
  1499. val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
  1500. val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
  1501. RTI_DATA1_MEM_RX_URNG_B(0x10) |
  1502. RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
  1503. writeq(val64, &bar0->rti_data1_mem);
  1504. val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
  1505. RTI_DATA2_MEM_RX_UFC_B(0x2) ;
  1506. if (nic->config.intr_type == MSI_X)
  1507. val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
  1508. RTI_DATA2_MEM_RX_UFC_D(0x40));
  1509. else
  1510. val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
  1511. RTI_DATA2_MEM_RX_UFC_D(0x80));
  1512. writeq(val64, &bar0->rti_data2_mem);
  1513. for (i = 0; i < config->rx_ring_num; i++) {
  1514. val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
  1515. | RTI_CMD_MEM_OFFSET(i);
  1516. writeq(val64, &bar0->rti_command_mem);
  1517. /*
  1518. * Once the operation completes, the Strobe bit of the
  1519. * command register will be reset. We poll for this
  1520. * particular condition. We wait for a maximum of 500ms
  1521. * for the operation to complete, if it's not complete
  1522. * by then we return error.
  1523. */
  1524. time = 0;
  1525. while (TRUE) {
  1526. val64 = readq(&bar0->rti_command_mem);
  1527. if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
  1528. break;
  1529. if (time > 10) {
  1530. DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
  1531. dev->name);
  1532. return -ENODEV;
  1533. }
  1534. time++;
  1535. msleep(50);
  1536. }
  1537. }
  1538. /*
  1539. * Initializing proper values as Pause threshold into all
  1540. * the 8 Queues on Rx side.
  1541. */
  1542. writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
  1543. writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
  1544. /* Disable RMAC PAD STRIPPING */
  1545. add = &bar0->mac_cfg;
  1546. val64 = readq(&bar0->mac_cfg);
  1547. val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
  1548. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1549. writel((u32) (val64), add);
  1550. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1551. writel((u32) (val64 >> 32), (add + 4));
  1552. val64 = readq(&bar0->mac_cfg);
  1553. /* Enable FCS stripping by adapter */
  1554. add = &bar0->mac_cfg;
  1555. val64 = readq(&bar0->mac_cfg);
  1556. val64 |= MAC_CFG_RMAC_STRIP_FCS;
  1557. if (nic->device_type == XFRAME_II_DEVICE)
  1558. writeq(val64, &bar0->mac_cfg);
  1559. else {
  1560. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1561. writel((u32) (val64), add);
  1562. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1563. writel((u32) (val64 >> 32), (add + 4));
  1564. }
  1565. /*
  1566. * Set the time value to be inserted in the pause frame
  1567. * generated by xena.
  1568. */
  1569. val64 = readq(&bar0->rmac_pause_cfg);
  1570. val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
  1571. val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
  1572. writeq(val64, &bar0->rmac_pause_cfg);
  1573. /*
  1574. * Set the Threshold Limit for Generating the pause frame
  1575. * If the amount of data in any Queue exceeds ratio of
  1576. * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
  1577. * pause frame is generated
  1578. */
  1579. val64 = 0;
  1580. for (i = 0; i < 4; i++) {
  1581. val64 |=
  1582. (((u64) 0xFF00 | nic->mac_control.
  1583. mc_pause_threshold_q0q3)
  1584. << (i * 2 * 8));
  1585. }
  1586. writeq(val64, &bar0->mc_pause_thresh_q0q3);
  1587. val64 = 0;
  1588. for (i = 0; i < 4; i++) {
  1589. val64 |=
  1590. (((u64) 0xFF00 | nic->mac_control.
  1591. mc_pause_threshold_q4q7)
  1592. << (i * 2 * 8));
  1593. }
  1594. writeq(val64, &bar0->mc_pause_thresh_q4q7);
  1595. /*
  1596. * TxDMA will stop Read request if the number of read split has
  1597. * exceeded the limit pointed by shared_splits
  1598. */
  1599. val64 = readq(&bar0->pic_control);
  1600. val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
  1601. writeq(val64, &bar0->pic_control);
  1602. if (nic->config.bus_speed == 266) {
  1603. writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
  1604. writeq(0x0, &bar0->read_retry_delay);
  1605. writeq(0x0, &bar0->write_retry_delay);
  1606. }
  1607. /*
  1608. * Programming the Herc to split every write transaction
  1609. * that does not start on an ADB to reduce disconnects.
  1610. */
  1611. if (nic->device_type == XFRAME_II_DEVICE) {
  1612. val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
  1613. MISC_LINK_STABILITY_PRD(3);
  1614. writeq(val64, &bar0->misc_control);
  1615. val64 = readq(&bar0->pic_control2);
  1616. val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
  1617. writeq(val64, &bar0->pic_control2);
  1618. }
  1619. if (strstr(nic->product_name, "CX4")) {
  1620. val64 = TMAC_AVG_IPG(0x17);
  1621. writeq(val64, &bar0->tmac_avg_ipg);
  1622. }
  1623. return SUCCESS;
  1624. }
  1625. #define LINK_UP_DOWN_INTERRUPT 1
  1626. #define MAC_RMAC_ERR_TIMER 2
  1627. static int s2io_link_fault_indication(struct s2io_nic *nic)
  1628. {
  1629. if (nic->config.intr_type != INTA)
  1630. return MAC_RMAC_ERR_TIMER;
  1631. if (nic->device_type == XFRAME_II_DEVICE)
  1632. return LINK_UP_DOWN_INTERRUPT;
  1633. else
  1634. return MAC_RMAC_ERR_TIMER;
  1635. }
  1636. /**
  1637. * do_s2io_write_bits - update alarm bits in alarm register
  1638. * @value: alarm bits
  1639. * @flag: interrupt status
  1640. * @addr: address value
  1641. * Description: update alarm bits in alarm register
  1642. * Return Value:
  1643. * NONE.
  1644. */
  1645. static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
  1646. {
  1647. u64 temp64;
  1648. temp64 = readq(addr);
  1649. if(flag == ENABLE_INTRS)
  1650. temp64 &= ~((u64) value);
  1651. else
  1652. temp64 |= ((u64) value);
  1653. writeq(temp64, addr);
  1654. }
  1655. static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
  1656. {
  1657. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1658. register u64 gen_int_mask = 0;
  1659. if (mask & TX_DMA_INTR) {
  1660. gen_int_mask |= TXDMA_INT_M;
  1661. do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
  1662. TXDMA_PCC_INT | TXDMA_TTI_INT |
  1663. TXDMA_LSO_INT | TXDMA_TPA_INT |
  1664. TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
  1665. do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
  1666. PFC_MISC_0_ERR | PFC_MISC_1_ERR |
  1667. PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
  1668. &bar0->pfc_err_mask);
  1669. do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
  1670. TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
  1671. TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
  1672. do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
  1673. PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
  1674. PCC_N_SERR | PCC_6_COF_OV_ERR |
  1675. PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
  1676. PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
  1677. PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
  1678. do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
  1679. TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
  1680. do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
  1681. LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
  1682. LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
  1683. flag, &bar0->lso_err_mask);
  1684. do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
  1685. flag, &bar0->tpa_err_mask);
  1686. do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
  1687. }
  1688. if (mask & TX_MAC_INTR) {
  1689. gen_int_mask |= TXMAC_INT_M;
  1690. do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
  1691. &bar0->mac_int_mask);
  1692. do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
  1693. TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
  1694. TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
  1695. flag, &bar0->mac_tmac_err_mask);
  1696. }
  1697. if (mask & TX_XGXS_INTR) {
  1698. gen_int_mask |= TXXGXS_INT_M;
  1699. do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
  1700. &bar0->xgxs_int_mask);
  1701. do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
  1702. TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
  1703. flag, &bar0->xgxs_txgxs_err_mask);
  1704. }
  1705. if (mask & RX_DMA_INTR) {
  1706. gen_int_mask |= RXDMA_INT_M;
  1707. do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
  1708. RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
  1709. flag, &bar0->rxdma_int_mask);
  1710. do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
  1711. RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
  1712. RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
  1713. RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
  1714. do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
  1715. PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
  1716. PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
  1717. &bar0->prc_pcix_err_mask);
  1718. do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
  1719. RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
  1720. &bar0->rpa_err_mask);
  1721. do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
  1722. RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
  1723. RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
  1724. RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
  1725. flag, &bar0->rda_err_mask);
  1726. do_s2io_write_bits(RTI_SM_ERR_ALARM |
  1727. RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
  1728. flag, &bar0->rti_err_mask);
  1729. }
  1730. if (mask & RX_MAC_INTR) {
  1731. gen_int_mask |= RXMAC_INT_M;
  1732. do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
  1733. &bar0->mac_int_mask);
  1734. do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
  1735. RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
  1736. RMAC_DOUBLE_ECC_ERR |
  1737. RMAC_LINK_STATE_CHANGE_INT,
  1738. flag, &bar0->mac_rmac_err_mask);
  1739. }
  1740. if (mask & RX_XGXS_INTR)
  1741. {
  1742. gen_int_mask |= RXXGXS_INT_M;
  1743. do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
  1744. &bar0->xgxs_int_mask);
  1745. do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
  1746. &bar0->xgxs_rxgxs_err_mask);
  1747. }
  1748. if (mask & MC_INTR) {
  1749. gen_int_mask |= MC_INT_M;
  1750. do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
  1751. do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
  1752. MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
  1753. &bar0->mc_err_mask);
  1754. }
  1755. nic->general_int_mask = gen_int_mask;
  1756. /* Remove this line when alarm interrupts are enabled */
  1757. nic->general_int_mask = 0;
  1758. }
  1759. /**
  1760. * en_dis_able_nic_intrs - Enable or Disable the interrupts
  1761. * @nic: device private variable,
  1762. * @mask: A mask indicating which Intr block must be modified and,
  1763. * @flag: A flag indicating whether to enable or disable the Intrs.
  1764. * Description: This function will either disable or enable the interrupts
  1765. * depending on the flag argument. The mask argument can be used to
  1766. * enable/disable any Intr block.
  1767. * Return Value: NONE.
  1768. */
  1769. static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
  1770. {
  1771. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1772. register u64 temp64 = 0, intr_mask = 0;
  1773. intr_mask = nic->general_int_mask;
  1774. /* Top level interrupt classification */
  1775. /* PIC Interrupts */
  1776. if (mask & TX_PIC_INTR) {
  1777. /* Enable PIC Intrs in the general intr mask register */
  1778. intr_mask |= TXPIC_INT_M;
  1779. if (flag == ENABLE_INTRS) {
  1780. /*
  1781. * If Hercules adapter enable GPIO otherwise
  1782. * disable all PCIX, Flash, MDIO, IIC and GPIO
  1783. * interrupts for now.
  1784. * TODO
  1785. */
  1786. if (s2io_link_fault_indication(nic) ==
  1787. LINK_UP_DOWN_INTERRUPT ) {
  1788. do_s2io_write_bits(PIC_INT_GPIO, flag,
  1789. &bar0->pic_int_mask);
  1790. do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
  1791. &bar0->gpio_int_mask);
  1792. } else
  1793. writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
  1794. } else if (flag == DISABLE_INTRS) {
  1795. /*
  1796. * Disable PIC Intrs in the general
  1797. * intr mask register
  1798. */
  1799. writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
  1800. }
  1801. }
  1802. /* Tx traffic interrupts */
  1803. if (mask & TX_TRAFFIC_INTR) {
  1804. intr_mask |= TXTRAFFIC_INT_M;
  1805. if (flag == ENABLE_INTRS) {
  1806. /*
  1807. * Enable all the Tx side interrupts
  1808. * writing 0 Enables all 64 TX interrupt levels
  1809. */
  1810. writeq(0x0, &bar0->tx_traffic_mask);
  1811. } else if (flag == DISABLE_INTRS) {
  1812. /*
  1813. * Disable Tx Traffic Intrs in the general intr mask
  1814. * register.
  1815. */
  1816. writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
  1817. }
  1818. }
  1819. /* Rx traffic interrupts */
  1820. if (mask & RX_TRAFFIC_INTR) {
  1821. intr_mask |= RXTRAFFIC_INT_M;
  1822. if (flag == ENABLE_INTRS) {
  1823. /* writing 0 Enables all 8 RX interrupt levels */
  1824. writeq(0x0, &bar0->rx_traffic_mask);
  1825. } else if (flag == DISABLE_INTRS) {
  1826. /*
  1827. * Disable Rx Traffic Intrs in the general intr mask
  1828. * register.
  1829. */
  1830. writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
  1831. }
  1832. }
  1833. temp64 = readq(&bar0->general_int_mask);
  1834. if (flag == ENABLE_INTRS)
  1835. temp64 &= ~((u64) intr_mask);
  1836. else
  1837. temp64 = DISABLE_ALL_INTRS;
  1838. writeq(temp64, &bar0->general_int_mask);
  1839. nic->general_int_mask = readq(&bar0->general_int_mask);
  1840. }
  1841. /**
  1842. * verify_pcc_quiescent- Checks for PCC quiescent state
  1843. * Return: 1 If PCC is quiescence
  1844. * 0 If PCC is not quiescence
  1845. */
  1846. static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
  1847. {
  1848. int ret = 0, herc;
  1849. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1850. u64 val64 = readq(&bar0->adapter_status);
  1851. herc = (sp->device_type == XFRAME_II_DEVICE);
  1852. if (flag == FALSE) {
  1853. if ((!herc && (sp->pdev->revision >= 4)) || herc) {
  1854. if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
  1855. ret = 1;
  1856. } else {
  1857. if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
  1858. ret = 1;
  1859. }
  1860. } else {
  1861. if ((!herc && (sp->pdev->revision >= 4)) || herc) {
  1862. if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
  1863. ADAPTER_STATUS_RMAC_PCC_IDLE))
  1864. ret = 1;
  1865. } else {
  1866. if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
  1867. ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
  1868. ret = 1;
  1869. }
  1870. }
  1871. return ret;
  1872. }
  1873. /**
  1874. * verify_xena_quiescence - Checks whether the H/W is ready
  1875. * Description: Returns whether the H/W is ready to go or not. Depending
  1876. * on whether adapter enable bit was written or not the comparison
  1877. * differs and the calling function passes the input argument flag to
  1878. * indicate this.
  1879. * Return: 1 If xena is quiescence
  1880. * 0 If Xena is not quiescence
  1881. */
  1882. static int verify_xena_quiescence(struct s2io_nic *sp)
  1883. {
  1884. int mode;
  1885. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1886. u64 val64 = readq(&bar0->adapter_status);
  1887. mode = s2io_verify_pci_mode(sp);
  1888. if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
  1889. DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
  1890. return 0;
  1891. }
  1892. if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
  1893. DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
  1894. return 0;
  1895. }
  1896. if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
  1897. DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
  1898. return 0;
  1899. }
  1900. if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
  1901. DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
  1902. return 0;
  1903. }
  1904. if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
  1905. DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
  1906. return 0;
  1907. }
  1908. if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
  1909. DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
  1910. return 0;
  1911. }
  1912. if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
  1913. DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
  1914. return 0;
  1915. }
  1916. if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
  1917. DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
  1918. return 0;
  1919. }
  1920. /*
  1921. * In PCI 33 mode, the P_PLL is not used, and therefore,
  1922. * the the P_PLL_LOCK bit in the adapter_status register will
  1923. * not be asserted.
  1924. */
  1925. if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
  1926. sp->device_type == XFRAME_II_DEVICE && mode !=
  1927. PCI_MODE_PCI_33) {
  1928. DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
  1929. return 0;
  1930. }
  1931. if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
  1932. ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
  1933. DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
  1934. return 0;
  1935. }
  1936. return 1;
  1937. }
  1938. /**
  1939. * fix_mac_address - Fix for Mac addr problem on Alpha platforms
  1940. * @sp: Pointer to device specifc structure
  1941. * Description :
  1942. * New procedure to clear mac address reading problems on Alpha platforms
  1943. *
  1944. */
  1945. static void fix_mac_address(struct s2io_nic * sp)
  1946. {
  1947. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1948. u64 val64;
  1949. int i = 0;
  1950. while (fix_mac[i] != END_SIGN) {
  1951. writeq(fix_mac[i++], &bar0->gpio_control);
  1952. udelay(10);
  1953. val64 = readq(&bar0->gpio_control);
  1954. }
  1955. }
  1956. /**
  1957. * start_nic - Turns the device on
  1958. * @nic : device private variable.
  1959. * Description:
  1960. * This function actually turns the device on. Before this function is
  1961. * called,all Registers are configured from their reset states
  1962. * and shared memory is allocated but the NIC is still quiescent. On
  1963. * calling this function, the device interrupts are cleared and the NIC is
  1964. * literally switched on by writing into the adapter control register.
  1965. * Return Value:
  1966. * SUCCESS on success and -1 on failure.
  1967. */
  1968. static int start_nic(struct s2io_nic *nic)
  1969. {
  1970. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1971. struct net_device *dev = nic->dev;
  1972. register u64 val64 = 0;
  1973. u16 subid, i;
  1974. struct mac_info *mac_control;
  1975. struct config_param *config;
  1976. mac_control = &nic->mac_control;
  1977. config = &nic->config;
  1978. /* PRC Initialization and configuration */
  1979. for (i = 0; i < config->rx_ring_num; i++) {
  1980. writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
  1981. &bar0->prc_rxd0_n[i]);
  1982. val64 = readq(&bar0->prc_ctrl_n[i]);
  1983. if (nic->rxd_mode == RXD_MODE_1)
  1984. val64 |= PRC_CTRL_RC_ENABLED;
  1985. else
  1986. val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
  1987. if (nic->device_type == XFRAME_II_DEVICE)
  1988. val64 |= PRC_CTRL_GROUP_READS;
  1989. val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
  1990. val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
  1991. writeq(val64, &bar0->prc_ctrl_n[i]);
  1992. }
  1993. if (nic->rxd_mode == RXD_MODE_3B) {
  1994. /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
  1995. val64 = readq(&bar0->rx_pa_cfg);
  1996. val64 |= RX_PA_CFG_IGNORE_L2_ERR;
  1997. writeq(val64, &bar0->rx_pa_cfg);
  1998. }
  1999. if (vlan_tag_strip == 0) {
  2000. val64 = readq(&bar0->rx_pa_cfg);
  2001. val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
  2002. writeq(val64, &bar0->rx_pa_cfg);
  2003. vlan_strip_flag = 0;
  2004. }
  2005. /*
  2006. * Enabling MC-RLDRAM. After enabling the device, we timeout
  2007. * for around 100ms, which is approximately the time required
  2008. * for the device to be ready for operation.
  2009. */
  2010. val64 = readq(&bar0->mc_rldram_mrs);
  2011. val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
  2012. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  2013. val64 = readq(&bar0->mc_rldram_mrs);
  2014. msleep(100); /* Delay by around 100 ms. */
  2015. /* Enabling ECC Protection. */
  2016. val64 = readq(&bar0->adapter_control);
  2017. val64 &= ~ADAPTER_ECC_EN;
  2018. writeq(val64, &bar0->adapter_control);
  2019. /*
  2020. * Verify if the device is ready to be enabled, if so enable
  2021. * it.
  2022. */
  2023. val64 = readq(&bar0->adapter_status);
  2024. if (!verify_xena_quiescence(nic)) {
  2025. DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
  2026. DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
  2027. (unsigned long long) val64);
  2028. return FAILURE;
  2029. }
  2030. /*
  2031. * With some switches, link might be already up at this point.
  2032. * Because of this weird behavior, when we enable laser,
  2033. * we may not get link. We need to handle this. We cannot
  2034. * figure out which switch is misbehaving. So we are forced to
  2035. * make a global change.
  2036. */
  2037. /* Enabling Laser. */
  2038. val64 = readq(&bar0->adapter_control);
  2039. val64 |= ADAPTER_EOI_TX_ON;
  2040. writeq(val64, &bar0->adapter_control);
  2041. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  2042. /*
  2043. * Dont see link state interrupts initally on some switches,
  2044. * so directly scheduling the link state task here.
  2045. */
  2046. schedule_work(&nic->set_link_task);
  2047. }
  2048. /* SXE-002: Initialize link and activity LED */
  2049. subid = nic->pdev->subsystem_device;
  2050. if (((subid & 0xFF) >= 0x07) &&
  2051. (nic->device_type == XFRAME_I_DEVICE)) {
  2052. val64 = readq(&bar0->gpio_control);
  2053. val64 |= 0x0000800000000000ULL;
  2054. writeq(val64, &bar0->gpio_control);
  2055. val64 = 0x0411040400000000ULL;
  2056. writeq(val64, (void __iomem *)bar0 + 0x2700);
  2057. }
  2058. return SUCCESS;
  2059. }
  2060. /**
  2061. * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
  2062. */
  2063. static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
  2064. TxD *txdlp, int get_off)
  2065. {
  2066. struct s2io_nic *nic = fifo_data->nic;
  2067. struct sk_buff *skb;
  2068. struct TxD *txds;
  2069. u16 j, frg_cnt;
  2070. txds = txdlp;
  2071. if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
  2072. pci_unmap_single(nic->pdev, (dma_addr_t)
  2073. txds->Buffer_Pointer, sizeof(u64),
  2074. PCI_DMA_TODEVICE);
  2075. txds++;
  2076. }
  2077. skb = (struct sk_buff *) ((unsigned long)
  2078. txds->Host_Control);
  2079. if (!skb) {
  2080. memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
  2081. return NULL;
  2082. }
  2083. pci_unmap_single(nic->pdev, (dma_addr_t)
  2084. txds->Buffer_Pointer,
  2085. skb->len - skb->data_len,
  2086. PCI_DMA_TODEVICE);
  2087. frg_cnt = skb_shinfo(skb)->nr_frags;
  2088. if (frg_cnt) {
  2089. txds++;
  2090. for (j = 0; j < frg_cnt; j++, txds++) {
  2091. skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
  2092. if (!txds->Buffer_Pointer)
  2093. break;
  2094. pci_unmap_page(nic->pdev, (dma_addr_t)
  2095. txds->Buffer_Pointer,
  2096. frag->size, PCI_DMA_TODEVICE);
  2097. }
  2098. }
  2099. memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
  2100. return(skb);
  2101. }
  2102. /**
  2103. * free_tx_buffers - Free all queued Tx buffers
  2104. * @nic : device private variable.
  2105. * Description:
  2106. * Free all queued Tx buffers.
  2107. * Return Value: void
  2108. */
  2109. static void free_tx_buffers(struct s2io_nic *nic)
  2110. {
  2111. struct net_device *dev = nic->dev;
  2112. struct sk_buff *skb;
  2113. struct TxD *txdp;
  2114. int i, j;
  2115. struct mac_info *mac_control;
  2116. struct config_param *config;
  2117. int cnt = 0;
  2118. mac_control = &nic->mac_control;
  2119. config = &nic->config;
  2120. for (i = 0; i < config->tx_fifo_num; i++) {
  2121. unsigned long flags;
  2122. spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
  2123. for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
  2124. txdp = (struct TxD *) \
  2125. mac_control->fifos[i].list_info[j].list_virt_addr;
  2126. skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
  2127. if (skb) {
  2128. nic->mac_control.stats_info->sw_stat.mem_freed
  2129. += skb->truesize;
  2130. dev_kfree_skb(skb);
  2131. cnt++;
  2132. }
  2133. }
  2134. DBG_PRINT(INTR_DBG,
  2135. "%s:forcibly freeing %d skbs on FIFO%d\n",
  2136. dev->name, cnt, i);
  2137. mac_control->fifos[i].tx_curr_get_info.offset = 0;
  2138. mac_control->fifos[i].tx_curr_put_info.offset = 0;
  2139. spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
  2140. }
  2141. }
  2142. /**
  2143. * stop_nic - To stop the nic
  2144. * @nic ; device private variable.
  2145. * Description:
  2146. * This function does exactly the opposite of what the start_nic()
  2147. * function does. This function is called to stop the device.
  2148. * Return Value:
  2149. * void.
  2150. */
  2151. static void stop_nic(struct s2io_nic *nic)
  2152. {
  2153. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2154. register u64 val64 = 0;
  2155. u16 interruptible;
  2156. struct mac_info *mac_control;
  2157. struct config_param *config;
  2158. mac_control = &nic->mac_control;
  2159. config = &nic->config;
  2160. /* Disable all interrupts */
  2161. en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
  2162. interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
  2163. interruptible |= TX_PIC_INTR;
  2164. en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
  2165. /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
  2166. val64 = readq(&bar0->adapter_control);
  2167. val64 &= ~(ADAPTER_CNTL_EN);
  2168. writeq(val64, &bar0->adapter_control);
  2169. }
  2170. /**
  2171. * fill_rx_buffers - Allocates the Rx side skbs
  2172. * @nic: device private variable
  2173. * @ring_no: ring number
  2174. * Description:
  2175. * The function allocates Rx side skbs and puts the physical
  2176. * address of these buffers into the RxD buffer pointers, so that the NIC
  2177. * can DMA the received frame into these locations.
  2178. * The NIC supports 3 receive modes, viz
  2179. * 1. single buffer,
  2180. * 2. three buffer and
  2181. * 3. Five buffer modes.
  2182. * Each mode defines how many fragments the received frame will be split
  2183. * up into by the NIC. The frame is split into L3 header, L4 Header,
  2184. * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
  2185. * is split into 3 fragments. As of now only single buffer mode is
  2186. * supported.
  2187. * Return Value:
  2188. * SUCCESS on success or an appropriate -ve value on failure.
  2189. */
  2190. static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
  2191. {
  2192. struct net_device *dev = nic->dev;
  2193. struct sk_buff *skb;
  2194. struct RxD_t *rxdp;
  2195. int off, off1, size, block_no, block_no1;
  2196. u32 alloc_tab = 0;
  2197. u32 alloc_cnt;
  2198. struct mac_info *mac_control;
  2199. struct config_param *config;
  2200. u64 tmp;
  2201. struct buffAdd *ba;
  2202. unsigned long flags;
  2203. struct RxD_t *first_rxdp = NULL;
  2204. u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
  2205. struct RxD1 *rxdp1;
  2206. struct RxD3 *rxdp3;
  2207. struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
  2208. mac_control = &nic->mac_control;
  2209. config = &nic->config;
  2210. alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
  2211. atomic_read(&nic->rx_bufs_left[ring_no]);
  2212. block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
  2213. off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
  2214. while (alloc_tab < alloc_cnt) {
  2215. block_no = mac_control->rings[ring_no].rx_curr_put_info.
  2216. block_index;
  2217. off = mac_control->rings[ring_no].rx_curr_put_info.offset;
  2218. rxdp = mac_control->rings[ring_no].
  2219. rx_blocks[block_no].rxds[off].virt_addr;
  2220. if ((block_no == block_no1) && (off == off1) &&
  2221. (rxdp->Host_Control)) {
  2222. DBG_PRINT(INTR_DBG, "%s: Get and Put",
  2223. dev->name);
  2224. DBG_PRINT(INTR_DBG, " info equated\n");
  2225. goto end;
  2226. }
  2227. if (off && (off == rxd_count[nic->rxd_mode])) {
  2228. mac_control->rings[ring_no].rx_curr_put_info.
  2229. block_index++;
  2230. if (mac_control->rings[ring_no].rx_curr_put_info.
  2231. block_index == mac_control->rings[ring_no].
  2232. block_count)
  2233. mac_control->rings[ring_no].rx_curr_put_info.
  2234. block_index = 0;
  2235. block_no = mac_control->rings[ring_no].
  2236. rx_curr_put_info.block_index;
  2237. if (off == rxd_count[nic->rxd_mode])
  2238. off = 0;
  2239. mac_control->rings[ring_no].rx_curr_put_info.
  2240. offset = off;
  2241. rxdp = mac_control->rings[ring_no].
  2242. rx_blocks[block_no].block_virt_addr;
  2243. DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
  2244. dev->name, rxdp);
  2245. }
  2246. if(!napi) {
  2247. spin_lock_irqsave(&nic->put_lock, flags);
  2248. mac_control->rings[ring_no].put_pos =
  2249. (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
  2250. spin_unlock_irqrestore(&nic->put_lock, flags);
  2251. } else {
  2252. mac_control->rings[ring_no].put_pos =
  2253. (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
  2254. }
  2255. if ((rxdp->Control_1 & RXD_OWN_XENA) &&
  2256. ((nic->rxd_mode == RXD_MODE_3B) &&
  2257. (rxdp->Control_2 & s2BIT(0)))) {
  2258. mac_control->rings[ring_no].rx_curr_put_info.
  2259. offset = off;
  2260. goto end;
  2261. }
  2262. /* calculate size of skb based on ring mode */
  2263. size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
  2264. HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
  2265. if (nic->rxd_mode == RXD_MODE_1)
  2266. size += NET_IP_ALIGN;
  2267. else
  2268. size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
  2269. /* allocate skb */
  2270. skb = dev_alloc_skb(size);
  2271. if(!skb) {
  2272. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  2273. DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
  2274. if (first_rxdp) {
  2275. wmb();
  2276. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2277. }
  2278. nic->mac_control.stats_info->sw_stat. \
  2279. mem_alloc_fail_cnt++;
  2280. return -ENOMEM ;
  2281. }
  2282. nic->mac_control.stats_info->sw_stat.mem_allocated
  2283. += skb->truesize;
  2284. if (nic->rxd_mode == RXD_MODE_1) {
  2285. /* 1 buffer mode - normal operation mode */
  2286. rxdp1 = (struct RxD1*)rxdp;
  2287. memset(rxdp, 0, sizeof(struct RxD1));
  2288. skb_reserve(skb, NET_IP_ALIGN);
  2289. rxdp1->Buffer0_ptr = pci_map_single
  2290. (nic->pdev, skb->data, size - NET_IP_ALIGN,
  2291. PCI_DMA_FROMDEVICE);
  2292. if( (rxdp1->Buffer0_ptr == 0) ||
  2293. (rxdp1->Buffer0_ptr ==
  2294. DMA_ERROR_CODE))
  2295. goto pci_map_failed;
  2296. rxdp->Control_2 =
  2297. SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
  2298. } else if (nic->rxd_mode == RXD_MODE_3B) {
  2299. /*
  2300. * 2 buffer mode -
  2301. * 2 buffer mode provides 128
  2302. * byte aligned receive buffers.
  2303. */
  2304. rxdp3 = (struct RxD3*)rxdp;
  2305. /* save buffer pointers to avoid frequent dma mapping */
  2306. Buffer0_ptr = rxdp3->Buffer0_ptr;
  2307. Buffer1_ptr = rxdp3->Buffer1_ptr;
  2308. memset(rxdp, 0, sizeof(struct RxD3));
  2309. /* restore the buffer pointers for dma sync*/
  2310. rxdp3->Buffer0_ptr = Buffer0_ptr;
  2311. rxdp3->Buffer1_ptr = Buffer1_ptr;
  2312. ba = &mac_control->rings[ring_no].ba[block_no][off];
  2313. skb_reserve(skb, BUF0_LEN);
  2314. tmp = (u64)(unsigned long) skb->data;
  2315. tmp += ALIGN_SIZE;
  2316. tmp &= ~ALIGN_SIZE;
  2317. skb->data = (void *) (unsigned long)tmp;
  2318. skb_reset_tail_pointer(skb);
  2319. if (!(rxdp3->Buffer0_ptr))
  2320. rxdp3->Buffer0_ptr =
  2321. pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
  2322. PCI_DMA_FROMDEVICE);
  2323. else
  2324. pci_dma_sync_single_for_device(nic->pdev,
  2325. (dma_addr_t) rxdp3->Buffer0_ptr,
  2326. BUF0_LEN, PCI_DMA_FROMDEVICE);
  2327. if( (rxdp3->Buffer0_ptr == 0) ||
  2328. (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
  2329. goto pci_map_failed;
  2330. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  2331. if (nic->rxd_mode == RXD_MODE_3B) {
  2332. /* Two buffer mode */
  2333. /*
  2334. * Buffer2 will have L3/L4 header plus
  2335. * L4 payload
  2336. */
  2337. rxdp3->Buffer2_ptr = pci_map_single
  2338. (nic->pdev, skb->data, dev->mtu + 4,
  2339. PCI_DMA_FROMDEVICE);
  2340. if( (rxdp3->Buffer2_ptr == 0) ||
  2341. (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
  2342. goto pci_map_failed;
  2343. rxdp3->Buffer1_ptr =
  2344. pci_map_single(nic->pdev,
  2345. ba->ba_1, BUF1_LEN,
  2346. PCI_DMA_FROMDEVICE);
  2347. if( (rxdp3->Buffer1_ptr == 0) ||
  2348. (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
  2349. pci_unmap_single
  2350. (nic->pdev,
  2351. (dma_addr_t)rxdp3->Buffer2_ptr,
  2352. dev->mtu + 4,
  2353. PCI_DMA_FROMDEVICE);
  2354. goto pci_map_failed;
  2355. }
  2356. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
  2357. rxdp->Control_2 |= SET_BUFFER2_SIZE_3
  2358. (dev->mtu + 4);
  2359. }
  2360. rxdp->Control_2 |= s2BIT(0);
  2361. }
  2362. rxdp->Host_Control = (unsigned long) (skb);
  2363. if (alloc_tab & ((1 << rxsync_frequency) - 1))
  2364. rxdp->Control_1 |= RXD_OWN_XENA;
  2365. off++;
  2366. if (off == (rxd_count[nic->rxd_mode] + 1))
  2367. off = 0;
  2368. mac_control->rings[ring_no].rx_curr_put_info.offset = off;
  2369. rxdp->Control_2 |= SET_RXD_MARKER;
  2370. if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
  2371. if (first_rxdp) {
  2372. wmb();
  2373. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2374. }
  2375. first_rxdp = rxdp;
  2376. }
  2377. atomic_inc(&nic->rx_bufs_left[ring_no]);
  2378. alloc_tab++;
  2379. }
  2380. end:
  2381. /* Transfer ownership of first descriptor to adapter just before
  2382. * exiting. Before that, use memory barrier so that ownership
  2383. * and other fields are seen by adapter correctly.
  2384. */
  2385. if (first_rxdp) {
  2386. wmb();
  2387. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2388. }
  2389. return SUCCESS;
  2390. pci_map_failed:
  2391. stats->pci_map_fail_cnt++;
  2392. stats->mem_freed += skb->truesize;
  2393. dev_kfree_skb_irq(skb);
  2394. return -ENOMEM;
  2395. }
  2396. static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
  2397. {
  2398. struct net_device *dev = sp->dev;
  2399. int j;
  2400. struct sk_buff *skb;
  2401. struct RxD_t *rxdp;
  2402. struct mac_info *mac_control;
  2403. struct buffAdd *ba;
  2404. struct RxD1 *rxdp1;
  2405. struct RxD3 *rxdp3;
  2406. mac_control = &sp->mac_control;
  2407. for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
  2408. rxdp = mac_control->rings[ring_no].
  2409. rx_blocks[blk].rxds[j].virt_addr;
  2410. skb = (struct sk_buff *)
  2411. ((unsigned long) rxdp->Host_Control);
  2412. if (!skb) {
  2413. continue;
  2414. }
  2415. if (sp->rxd_mode == RXD_MODE_1) {
  2416. rxdp1 = (struct RxD1*)rxdp;
  2417. pci_unmap_single(sp->pdev, (dma_addr_t)
  2418. rxdp1->Buffer0_ptr,
  2419. dev->mtu +
  2420. HEADER_ETHERNET_II_802_3_SIZE
  2421. + HEADER_802_2_SIZE +
  2422. HEADER_SNAP_SIZE,
  2423. PCI_DMA_FROMDEVICE);
  2424. memset(rxdp, 0, sizeof(struct RxD1));
  2425. } else if(sp->rxd_mode == RXD_MODE_3B) {
  2426. rxdp3 = (struct RxD3*)rxdp;
  2427. ba = &mac_control->rings[ring_no].
  2428. ba[blk][j];
  2429. pci_unmap_single(sp->pdev, (dma_addr_t)
  2430. rxdp3->Buffer0_ptr,
  2431. BUF0_LEN,
  2432. PCI_DMA_FROMDEVICE);
  2433. pci_unmap_single(sp->pdev, (dma_addr_t)
  2434. rxdp3->Buffer1_ptr,
  2435. BUF1_LEN,
  2436. PCI_DMA_FROMDEVICE);
  2437. pci_unmap_single(sp->pdev, (dma_addr_t)
  2438. rxdp3->Buffer2_ptr,
  2439. dev->mtu + 4,
  2440. PCI_DMA_FROMDEVICE);
  2441. memset(rxdp, 0, sizeof(struct RxD3));
  2442. }
  2443. sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  2444. dev_kfree_skb(skb);
  2445. atomic_dec(&sp->rx_bufs_left[ring_no]);
  2446. }
  2447. }
  2448. /**
  2449. * free_rx_buffers - Frees all Rx buffers
  2450. * @sp: device private variable.
  2451. * Description:
  2452. * This function will free all Rx buffers allocated by host.
  2453. * Return Value:
  2454. * NONE.
  2455. */
  2456. static void free_rx_buffers(struct s2io_nic *sp)
  2457. {
  2458. struct net_device *dev = sp->dev;
  2459. int i, blk = 0, buf_cnt = 0;
  2460. struct mac_info *mac_control;
  2461. struct config_param *config;
  2462. mac_control = &sp->mac_control;
  2463. config = &sp->config;
  2464. for (i = 0; i < config->rx_ring_num; i++) {
  2465. for (blk = 0; blk < rx_ring_sz[i]; blk++)
  2466. free_rxd_blk(sp,i,blk);
  2467. mac_control->rings[i].rx_curr_put_info.block_index = 0;
  2468. mac_control->rings[i].rx_curr_get_info.block_index = 0;
  2469. mac_control->rings[i].rx_curr_put_info.offset = 0;
  2470. mac_control->rings[i].rx_curr_get_info.offset = 0;
  2471. atomic_set(&sp->rx_bufs_left[i], 0);
  2472. DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
  2473. dev->name, buf_cnt, i);
  2474. }
  2475. }
  2476. /**
  2477. * s2io_poll - Rx interrupt handler for NAPI support
  2478. * @napi : pointer to the napi structure.
  2479. * @budget : The number of packets that were budgeted to be processed
  2480. * during one pass through the 'Poll" function.
  2481. * Description:
  2482. * Comes into picture only if NAPI support has been incorporated. It does
  2483. * the same thing that rx_intr_handler does, but not in a interrupt context
  2484. * also It will process only a given number of packets.
  2485. * Return value:
  2486. * 0 on success and 1 if there are No Rx packets to be processed.
  2487. */
  2488. static int s2io_poll(struct napi_struct *napi, int budget)
  2489. {
  2490. struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
  2491. struct net_device *dev = nic->dev;
  2492. int pkt_cnt = 0, org_pkts_to_process;
  2493. struct mac_info *mac_control;
  2494. struct config_param *config;
  2495. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2496. int i;
  2497. mac_control = &nic->mac_control;
  2498. config = &nic->config;
  2499. nic->pkts_to_process = budget;
  2500. org_pkts_to_process = nic->pkts_to_process;
  2501. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
  2502. readl(&bar0->rx_traffic_int);
  2503. for (i = 0; i < config->rx_ring_num; i++) {
  2504. rx_intr_handler(&mac_control->rings[i]);
  2505. pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
  2506. if (!nic->pkts_to_process) {
  2507. /* Quota for the current iteration has been met */
  2508. goto no_rx;
  2509. }
  2510. }
  2511. netif_rx_complete(dev, napi);
  2512. for (i = 0; i < config->rx_ring_num; i++) {
  2513. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2514. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2515. DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
  2516. break;
  2517. }
  2518. }
  2519. /* Re enable the Rx interrupts. */
  2520. writeq(0x0, &bar0->rx_traffic_mask);
  2521. readl(&bar0->rx_traffic_mask);
  2522. return pkt_cnt;
  2523. no_rx:
  2524. for (i = 0; i < config->rx_ring_num; i++) {
  2525. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2526. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2527. DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
  2528. break;
  2529. }
  2530. }
  2531. return pkt_cnt;
  2532. }
  2533. #ifdef CONFIG_NET_POLL_CONTROLLER
  2534. /**
  2535. * s2io_netpoll - netpoll event handler entry point
  2536. * @dev : pointer to the device structure.
  2537. * Description:
  2538. * This function will be called by upper layer to check for events on the
  2539. * interface in situations where interrupts are disabled. It is used for
  2540. * specific in-kernel networking tasks, such as remote consoles and kernel
  2541. * debugging over the network (example netdump in RedHat).
  2542. */
  2543. static void s2io_netpoll(struct net_device *dev)
  2544. {
  2545. struct s2io_nic *nic = dev->priv;
  2546. struct mac_info *mac_control;
  2547. struct config_param *config;
  2548. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2549. u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
  2550. int i;
  2551. if (pci_channel_offline(nic->pdev))
  2552. return;
  2553. disable_irq(dev->irq);
  2554. mac_control = &nic->mac_control;
  2555. config = &nic->config;
  2556. writeq(val64, &bar0->rx_traffic_int);
  2557. writeq(val64, &bar0->tx_traffic_int);
  2558. /* we need to free up the transmitted skbufs or else netpoll will
  2559. * run out of skbs and will fail and eventually netpoll application such
  2560. * as netdump will fail.
  2561. */
  2562. for (i = 0; i < config->tx_fifo_num; i++)
  2563. tx_intr_handler(&mac_control->fifos[i]);
  2564. /* check for received packet and indicate up to network */
  2565. for (i = 0; i < config->rx_ring_num; i++)
  2566. rx_intr_handler(&mac_control->rings[i]);
  2567. for (i = 0; i < config->rx_ring_num; i++) {
  2568. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2569. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2570. DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
  2571. break;
  2572. }
  2573. }
  2574. enable_irq(dev->irq);
  2575. return;
  2576. }
  2577. #endif
  2578. /**
  2579. * rx_intr_handler - Rx interrupt handler
  2580. * @nic: device private variable.
  2581. * Description:
  2582. * If the interrupt is because of a received frame or if the
  2583. * receive ring contains fresh as yet un-processed frames,this function is
  2584. * called. It picks out the RxD at which place the last Rx processing had
  2585. * stopped and sends the skb to the OSM's Rx handler and then increments
  2586. * the offset.
  2587. * Return Value:
  2588. * NONE.
  2589. */
  2590. static void rx_intr_handler(struct ring_info *ring_data)
  2591. {
  2592. struct s2io_nic *nic = ring_data->nic;
  2593. struct net_device *dev = (struct net_device *) nic->dev;
  2594. int get_block, put_block, put_offset;
  2595. struct rx_curr_get_info get_info, put_info;
  2596. struct RxD_t *rxdp;
  2597. struct sk_buff *skb;
  2598. int pkt_cnt = 0;
  2599. int i;
  2600. struct RxD1* rxdp1;
  2601. struct RxD3* rxdp3;
  2602. spin_lock(&nic->rx_lock);
  2603. get_info = ring_data->rx_curr_get_info;
  2604. get_block = get_info.block_index;
  2605. memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
  2606. put_block = put_info.block_index;
  2607. rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
  2608. if (!napi) {
  2609. spin_lock(&nic->put_lock);
  2610. put_offset = ring_data->put_pos;
  2611. spin_unlock(&nic->put_lock);
  2612. } else
  2613. put_offset = ring_data->put_pos;
  2614. while (RXD_IS_UP2DT(rxdp)) {
  2615. /*
  2616. * If your are next to put index then it's
  2617. * FIFO full condition
  2618. */
  2619. if ((get_block == put_block) &&
  2620. (get_info.offset + 1) == put_info.offset) {
  2621. DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
  2622. break;
  2623. }
  2624. skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
  2625. if (skb == NULL) {
  2626. DBG_PRINT(ERR_DBG, "%s: The skb is ",
  2627. dev->name);
  2628. DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
  2629. spin_unlock(&nic->rx_lock);
  2630. return;
  2631. }
  2632. if (nic->rxd_mode == RXD_MODE_1) {
  2633. rxdp1 = (struct RxD1*)rxdp;
  2634. pci_unmap_single(nic->pdev, (dma_addr_t)
  2635. rxdp1->Buffer0_ptr,
  2636. dev->mtu +
  2637. HEADER_ETHERNET_II_802_3_SIZE +
  2638. HEADER_802_2_SIZE +
  2639. HEADER_SNAP_SIZE,
  2640. PCI_DMA_FROMDEVICE);
  2641. } else if (nic->rxd_mode == RXD_MODE_3B) {
  2642. rxdp3 = (struct RxD3*)rxdp;
  2643. pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
  2644. rxdp3->Buffer0_ptr,
  2645. BUF0_LEN, PCI_DMA_FROMDEVICE);
  2646. pci_unmap_single(nic->pdev, (dma_addr_t)
  2647. rxdp3->Buffer2_ptr,
  2648. dev->mtu + 4,
  2649. PCI_DMA_FROMDEVICE);
  2650. }
  2651. prefetch(skb->data);
  2652. rx_osm_handler(ring_data, rxdp);
  2653. get_info.offset++;
  2654. ring_data->rx_curr_get_info.offset = get_info.offset;
  2655. rxdp = ring_data->rx_blocks[get_block].
  2656. rxds[get_info.offset].virt_addr;
  2657. if (get_info.offset == rxd_count[nic->rxd_mode]) {
  2658. get_info.offset = 0;
  2659. ring_data->rx_curr_get_info.offset = get_info.offset;
  2660. get_block++;
  2661. if (get_block == ring_data->block_count)
  2662. get_block = 0;
  2663. ring_data->rx_curr_get_info.block_index = get_block;
  2664. rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
  2665. }
  2666. nic->pkts_to_process -= 1;
  2667. if ((napi) && (!nic->pkts_to_process))
  2668. break;
  2669. pkt_cnt++;
  2670. if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
  2671. break;
  2672. }
  2673. if (nic->lro) {
  2674. /* Clear all LRO sessions before exiting */
  2675. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  2676. struct lro *lro = &nic->lro0_n[i];
  2677. if (lro->in_use) {
  2678. update_L3L4_header(nic, lro);
  2679. queue_rx_frame(lro->parent);
  2680. clear_lro_session(lro);
  2681. }
  2682. }
  2683. }
  2684. spin_unlock(&nic->rx_lock);
  2685. }
  2686. /**
  2687. * tx_intr_handler - Transmit interrupt handler
  2688. * @nic : device private variable
  2689. * Description:
  2690. * If an interrupt was raised to indicate DMA complete of the
  2691. * Tx packet, this function is called. It identifies the last TxD
  2692. * whose buffer was freed and frees all skbs whose data have already
  2693. * DMA'ed into the NICs internal memory.
  2694. * Return Value:
  2695. * NONE
  2696. */
  2697. static void tx_intr_handler(struct fifo_info *fifo_data)
  2698. {
  2699. struct s2io_nic *nic = fifo_data->nic;
  2700. struct net_device *dev = (struct net_device *) nic->dev;
  2701. struct tx_curr_get_info get_info, put_info;
  2702. struct sk_buff *skb;
  2703. struct TxD *txdlp;
  2704. unsigned long flags = 0;
  2705. u8 err_mask;
  2706. if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
  2707. return;
  2708. get_info = fifo_data->tx_curr_get_info;
  2709. memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
  2710. txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
  2711. list_virt_addr;
  2712. while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
  2713. (get_info.offset != put_info.offset) &&
  2714. (txdlp->Host_Control)) {
  2715. /* Check for TxD errors */
  2716. if (txdlp->Control_1 & TXD_T_CODE) {
  2717. unsigned long long err;
  2718. err = txdlp->Control_1 & TXD_T_CODE;
  2719. if (err & 0x1) {
  2720. nic->mac_control.stats_info->sw_stat.
  2721. parity_err_cnt++;
  2722. }
  2723. /* update t_code statistics */
  2724. err_mask = err >> 48;
  2725. switch(err_mask) {
  2726. case 2:
  2727. nic->mac_control.stats_info->sw_stat.
  2728. tx_buf_abort_cnt++;
  2729. break;
  2730. case 3:
  2731. nic->mac_control.stats_info->sw_stat.
  2732. tx_desc_abort_cnt++;
  2733. break;
  2734. case 7:
  2735. nic->mac_control.stats_info->sw_stat.
  2736. tx_parity_err_cnt++;
  2737. break;
  2738. case 10:
  2739. nic->mac_control.stats_info->sw_stat.
  2740. tx_link_loss_cnt++;
  2741. break;
  2742. case 15:
  2743. nic->mac_control.stats_info->sw_stat.
  2744. tx_list_proc_err_cnt++;
  2745. break;
  2746. }
  2747. }
  2748. skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
  2749. if (skb == NULL) {
  2750. spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
  2751. DBG_PRINT(ERR_DBG, "%s: Null skb ",
  2752. __FUNCTION__);
  2753. DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
  2754. return;
  2755. }
  2756. /* Updating the statistics block */
  2757. nic->stats.tx_bytes += skb->len;
  2758. nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  2759. dev_kfree_skb_irq(skb);
  2760. get_info.offset++;
  2761. if (get_info.offset == get_info.fifo_len + 1)
  2762. get_info.offset = 0;
  2763. txdlp = (struct TxD *) fifo_data->list_info
  2764. [get_info.offset].list_virt_addr;
  2765. fifo_data->tx_curr_get_info.offset =
  2766. get_info.offset;
  2767. }
  2768. if (netif_queue_stopped(dev))
  2769. netif_wake_queue(dev);
  2770. spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
  2771. }
  2772. /**
  2773. * s2io_mdio_write - Function to write in to MDIO registers
  2774. * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
  2775. * @addr : address value
  2776. * @value : data value
  2777. * @dev : pointer to net_device structure
  2778. * Description:
  2779. * This function is used to write values to the MDIO registers
  2780. * NONE
  2781. */
  2782. static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
  2783. {
  2784. u64 val64 = 0x0;
  2785. struct s2io_nic *sp = dev->priv;
  2786. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2787. //address transaction
  2788. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2789. | MDIO_MMD_DEV_ADDR(mmd_type)
  2790. | MDIO_MMS_PRT_ADDR(0x0);
  2791. writeq(val64, &bar0->mdio_control);
  2792. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2793. writeq(val64, &bar0->mdio_control);
  2794. udelay(100);
  2795. //Data transaction
  2796. val64 = 0x0;
  2797. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2798. | MDIO_MMD_DEV_ADDR(mmd_type)
  2799. | MDIO_MMS_PRT_ADDR(0x0)
  2800. | MDIO_MDIO_DATA(value)
  2801. | MDIO_OP(MDIO_OP_WRITE_TRANS);
  2802. writeq(val64, &bar0->mdio_control);
  2803. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2804. writeq(val64, &bar0->mdio_control);
  2805. udelay(100);
  2806. val64 = 0x0;
  2807. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2808. | MDIO_MMD_DEV_ADDR(mmd_type)
  2809. | MDIO_MMS_PRT_ADDR(0x0)
  2810. | MDIO_OP(MDIO_OP_READ_TRANS);
  2811. writeq(val64, &bar0->mdio_control);
  2812. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2813. writeq(val64, &bar0->mdio_control);
  2814. udelay(100);
  2815. }
  2816. /**
  2817. * s2io_mdio_read - Function to write in to MDIO registers
  2818. * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
  2819. * @addr : address value
  2820. * @dev : pointer to net_device structure
  2821. * Description:
  2822. * This function is used to read values to the MDIO registers
  2823. * NONE
  2824. */
  2825. static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
  2826. {
  2827. u64 val64 = 0x0;
  2828. u64 rval64 = 0x0;
  2829. struct s2io_nic *sp = dev->priv;
  2830. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2831. /* address transaction */
  2832. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2833. | MDIO_MMD_DEV_ADDR(mmd_type)
  2834. | MDIO_MMS_PRT_ADDR(0x0);
  2835. writeq(val64, &bar0->mdio_control);
  2836. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2837. writeq(val64, &bar0->mdio_control);
  2838. udelay(100);
  2839. /* Data transaction */
  2840. val64 = 0x0;
  2841. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2842. | MDIO_MMD_DEV_ADDR(mmd_type)
  2843. | MDIO_MMS_PRT_ADDR(0x0)
  2844. | MDIO_OP(MDIO_OP_READ_TRANS);
  2845. writeq(val64, &bar0->mdio_control);
  2846. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2847. writeq(val64, &bar0->mdio_control);
  2848. udelay(100);
  2849. /* Read the value from regs */
  2850. rval64 = readq(&bar0->mdio_control);
  2851. rval64 = rval64 & 0xFFFF0000;
  2852. rval64 = rval64 >> 16;
  2853. return rval64;
  2854. }
  2855. /**
  2856. * s2io_chk_xpak_counter - Function to check the status of the xpak counters
  2857. * @counter : couter value to be updated
  2858. * @flag : flag to indicate the status
  2859. * @type : counter type
  2860. * Description:
  2861. * This function is to check the status of the xpak counters value
  2862. * NONE
  2863. */
  2864. static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
  2865. {
  2866. u64 mask = 0x3;
  2867. u64 val64;
  2868. int i;
  2869. for(i = 0; i <index; i++)
  2870. mask = mask << 0x2;
  2871. if(flag > 0)
  2872. {
  2873. *counter = *counter + 1;
  2874. val64 = *regs_stat & mask;
  2875. val64 = val64 >> (index * 0x2);
  2876. val64 = val64 + 1;
  2877. if(val64 == 3)
  2878. {
  2879. switch(type)
  2880. {
  2881. case 1:
  2882. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2883. "service. Excessive temperatures may "
  2884. "result in premature transceiver "
  2885. "failure \n");
  2886. break;
  2887. case 2:
  2888. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2889. "service Excessive bias currents may "
  2890. "indicate imminent laser diode "
  2891. "failure \n");
  2892. break;
  2893. case 3:
  2894. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2895. "service Excessive laser output "
  2896. "power may saturate far-end "
  2897. "receiver\n");
  2898. break;
  2899. default:
  2900. DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
  2901. "type \n");
  2902. }
  2903. val64 = 0x0;
  2904. }
  2905. val64 = val64 << (index * 0x2);
  2906. *regs_stat = (*regs_stat & (~mask)) | (val64);
  2907. } else {
  2908. *regs_stat = *regs_stat & (~mask);
  2909. }
  2910. }
  2911. /**
  2912. * s2io_updt_xpak_counter - Function to update the xpak counters
  2913. * @dev : pointer to net_device struct
  2914. * Description:
  2915. * This function is to upate the status of the xpak counters value
  2916. * NONE
  2917. */
  2918. static void s2io_updt_xpak_counter(struct net_device *dev)
  2919. {
  2920. u16 flag = 0x0;
  2921. u16 type = 0x0;
  2922. u16 val16 = 0x0;
  2923. u64 val64 = 0x0;
  2924. u64 addr = 0x0;
  2925. struct s2io_nic *sp = dev->priv;
  2926. struct stat_block *stat_info = sp->mac_control.stats_info;
  2927. /* Check the communication with the MDIO slave */
  2928. addr = 0x0000;
  2929. val64 = 0x0;
  2930. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2931. if((val64 == 0xFFFF) || (val64 == 0x0000))
  2932. {
  2933. DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
  2934. "Returned %llx\n", (unsigned long long)val64);
  2935. return;
  2936. }
  2937. /* Check for the expecte value of 2040 at PMA address 0x0000 */
  2938. if(val64 != 0x2040)
  2939. {
  2940. DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
  2941. DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
  2942. (unsigned long long)val64);
  2943. return;
  2944. }
  2945. /* Loading the DOM register to MDIO register */
  2946. addr = 0xA100;
  2947. s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
  2948. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2949. /* Reading the Alarm flags */
  2950. addr = 0xA070;
  2951. val64 = 0x0;
  2952. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2953. flag = CHECKBIT(val64, 0x7);
  2954. type = 1;
  2955. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
  2956. &stat_info->xpak_stat.xpak_regs_stat,
  2957. 0x0, flag, type);
  2958. if(CHECKBIT(val64, 0x6))
  2959. stat_info->xpak_stat.alarm_transceiver_temp_low++;
  2960. flag = CHECKBIT(val64, 0x3);
  2961. type = 2;
  2962. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
  2963. &stat_info->xpak_stat.xpak_regs_stat,
  2964. 0x2, flag, type);
  2965. if(CHECKBIT(val64, 0x2))
  2966. stat_info->xpak_stat.alarm_laser_bias_current_low++;
  2967. flag = CHECKBIT(val64, 0x1);
  2968. type = 3;
  2969. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
  2970. &stat_info->xpak_stat.xpak_regs_stat,
  2971. 0x4, flag, type);
  2972. if(CHECKBIT(val64, 0x0))
  2973. stat_info->xpak_stat.alarm_laser_output_power_low++;
  2974. /* Reading the Warning flags */
  2975. addr = 0xA074;
  2976. val64 = 0x0;
  2977. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2978. if(CHECKBIT(val64, 0x7))
  2979. stat_info->xpak_stat.warn_transceiver_temp_high++;
  2980. if(CHECKBIT(val64, 0x6))
  2981. stat_info->xpak_stat.warn_transceiver_temp_low++;
  2982. if(CHECKBIT(val64, 0x3))
  2983. stat_info->xpak_stat.warn_laser_bias_current_high++;
  2984. if(CHECKBIT(val64, 0x2))
  2985. stat_info->xpak_stat.warn_laser_bias_current_low++;
  2986. if(CHECKBIT(val64, 0x1))
  2987. stat_info->xpak_stat.warn_laser_output_power_high++;
  2988. if(CHECKBIT(val64, 0x0))
  2989. stat_info->xpak_stat.warn_laser_output_power_low++;
  2990. }
  2991. /**
  2992. * wait_for_cmd_complete - waits for a command to complete.
  2993. * @sp : private member of the device structure, which is a pointer to the
  2994. * s2io_nic structure.
  2995. * Description: Function that waits for a command to Write into RMAC
  2996. * ADDR DATA registers to be completed and returns either success or
  2997. * error depending on whether the command was complete or not.
  2998. * Return value:
  2999. * SUCCESS on success and FAILURE on failure.
  3000. */
  3001. static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
  3002. int bit_state)
  3003. {
  3004. int ret = FAILURE, cnt = 0, delay = 1;
  3005. u64 val64;
  3006. if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
  3007. return FAILURE;
  3008. do {
  3009. val64 = readq(addr);
  3010. if (bit_state == S2IO_BIT_RESET) {
  3011. if (!(val64 & busy_bit)) {
  3012. ret = SUCCESS;
  3013. break;
  3014. }
  3015. } else {
  3016. if (!(val64 & busy_bit)) {
  3017. ret = SUCCESS;
  3018. break;
  3019. }
  3020. }
  3021. if(in_interrupt())
  3022. mdelay(delay);
  3023. else
  3024. msleep(delay);
  3025. if (++cnt >= 10)
  3026. delay = 50;
  3027. } while (cnt < 20);
  3028. return ret;
  3029. }
  3030. /*
  3031. * check_pci_device_id - Checks if the device id is supported
  3032. * @id : device id
  3033. * Description: Function to check if the pci device id is supported by driver.
  3034. * Return value: Actual device id if supported else PCI_ANY_ID
  3035. */
  3036. static u16 check_pci_device_id(u16 id)
  3037. {
  3038. switch (id) {
  3039. case PCI_DEVICE_ID_HERC_WIN:
  3040. case PCI_DEVICE_ID_HERC_UNI:
  3041. return XFRAME_II_DEVICE;
  3042. case PCI_DEVICE_ID_S2IO_UNI:
  3043. case PCI_DEVICE_ID_S2IO_WIN:
  3044. return XFRAME_I_DEVICE;
  3045. default:
  3046. return PCI_ANY_ID;
  3047. }
  3048. }
  3049. /**
  3050. * s2io_reset - Resets the card.
  3051. * @sp : private member of the device structure.
  3052. * Description: Function to Reset the card. This function then also
  3053. * restores the previously saved PCI configuration space registers as
  3054. * the card reset also resets the configuration space.
  3055. * Return value:
  3056. * void.
  3057. */
  3058. static void s2io_reset(struct s2io_nic * sp)
  3059. {
  3060. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3061. u64 val64;
  3062. u16 subid, pci_cmd;
  3063. int i;
  3064. u16 val16;
  3065. unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
  3066. unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
  3067. DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
  3068. __FUNCTION__, sp->dev->name);
  3069. /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
  3070. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
  3071. val64 = SW_RESET_ALL;
  3072. writeq(val64, &bar0->sw_reset);
  3073. if (strstr(sp->product_name, "CX4")) {
  3074. msleep(750);
  3075. }
  3076. msleep(250);
  3077. for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
  3078. /* Restore the PCI state saved during initialization. */
  3079. pci_restore_state(sp->pdev);
  3080. pci_read_config_word(sp->pdev, 0x2, &val16);
  3081. if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
  3082. break;
  3083. msleep(200);
  3084. }
  3085. if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
  3086. DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
  3087. }
  3088. pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
  3089. s2io_init_pci(sp);
  3090. /* Set swapper to enable I/O register access */
  3091. s2io_set_swapper(sp);
  3092. /* restore mac_addr entries */
  3093. do_s2io_restore_unicast_mc(sp);
  3094. /* Restore the MSIX table entries from local variables */
  3095. restore_xmsi_data(sp);
  3096. /* Clear certain PCI/PCI-X fields after reset */
  3097. if (sp->device_type == XFRAME_II_DEVICE) {
  3098. /* Clear "detected parity error" bit */
  3099. pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
  3100. /* Clearing PCIX Ecc status register */
  3101. pci_write_config_dword(sp->pdev, 0x68, 0x7C);
  3102. /* Clearing PCI_STATUS error reflected here */
  3103. writeq(s2BIT(62), &bar0->txpic_int_reg);
  3104. }
  3105. /* Reset device statistics maintained by OS */
  3106. memset(&sp->stats, 0, sizeof (struct net_device_stats));
  3107. up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
  3108. down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
  3109. up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
  3110. down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
  3111. reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
  3112. mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
  3113. mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
  3114. watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
  3115. /* save link up/down time/cnt, reset/memory/watchdog cnt */
  3116. memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
  3117. /* restore link up/down time/cnt, reset/memory/watchdog cnt */
  3118. sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
  3119. sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
  3120. sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
  3121. sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
  3122. sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
  3123. sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
  3124. sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
  3125. sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
  3126. /* SXE-002: Configure link and activity LED to turn it off */
  3127. subid = sp->pdev->subsystem_device;
  3128. if (((subid & 0xFF) >= 0x07) &&
  3129. (sp->device_type == XFRAME_I_DEVICE)) {
  3130. val64 = readq(&bar0->gpio_control);
  3131. val64 |= 0x0000800000000000ULL;
  3132. writeq(val64, &bar0->gpio_control);
  3133. val64 = 0x0411040400000000ULL;
  3134. writeq(val64, (void __iomem *)bar0 + 0x2700);
  3135. }
  3136. /*
  3137. * Clear spurious ECC interrupts that would have occured on
  3138. * XFRAME II cards after reset.
  3139. */
  3140. if (sp->device_type == XFRAME_II_DEVICE) {
  3141. val64 = readq(&bar0->pcc_err_reg);
  3142. writeq(val64, &bar0->pcc_err_reg);
  3143. }
  3144. sp->device_enabled_once = FALSE;
  3145. }
  3146. /**
  3147. * s2io_set_swapper - to set the swapper controle on the card
  3148. * @sp : private member of the device structure,
  3149. * pointer to the s2io_nic structure.
  3150. * Description: Function to set the swapper control on the card
  3151. * correctly depending on the 'endianness' of the system.
  3152. * Return value:
  3153. * SUCCESS on success and FAILURE on failure.
  3154. */
  3155. static int s2io_set_swapper(struct s2io_nic * sp)
  3156. {
  3157. struct net_device *dev = sp->dev;
  3158. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3159. u64 val64, valt, valr;
  3160. /*
  3161. * Set proper endian settings and verify the same by reading
  3162. * the PIF Feed-back register.
  3163. */
  3164. val64 = readq(&bar0->pif_rd_swapper_fb);
  3165. if (val64 != 0x0123456789ABCDEFULL) {
  3166. int i = 0;
  3167. u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
  3168. 0x8100008181000081ULL, /* FE=1, SE=0 */
  3169. 0x4200004242000042ULL, /* FE=0, SE=1 */
  3170. 0}; /* FE=0, SE=0 */
  3171. while(i<4) {
  3172. writeq(value[i], &bar0->swapper_ctrl);
  3173. val64 = readq(&bar0->pif_rd_swapper_fb);
  3174. if (val64 == 0x0123456789ABCDEFULL)
  3175. break;
  3176. i++;
  3177. }
  3178. if (i == 4) {
  3179. DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
  3180. dev->name);
  3181. DBG_PRINT(ERR_DBG, "feedback read %llx\n",
  3182. (unsigned long long) val64);
  3183. return FAILURE;
  3184. }
  3185. valr = value[i];
  3186. } else {
  3187. valr = readq(&bar0->swapper_ctrl);
  3188. }
  3189. valt = 0x0123456789ABCDEFULL;
  3190. writeq(valt, &bar0->xmsi_address);
  3191. val64 = readq(&bar0->xmsi_address);
  3192. if(val64 != valt) {
  3193. int i = 0;
  3194. u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
  3195. 0x0081810000818100ULL, /* FE=1, SE=0 */
  3196. 0x0042420000424200ULL, /* FE=0, SE=1 */
  3197. 0}; /* FE=0, SE=0 */
  3198. while(i<4) {
  3199. writeq((value[i] | valr), &bar0->swapper_ctrl);
  3200. writeq(valt, &bar0->xmsi_address);
  3201. val64 = readq(&bar0->xmsi_address);
  3202. if(val64 == valt)
  3203. break;
  3204. i++;
  3205. }
  3206. if(i == 4) {
  3207. unsigned long long x = val64;
  3208. DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
  3209. DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
  3210. return FAILURE;
  3211. }
  3212. }
  3213. val64 = readq(&bar0->swapper_ctrl);
  3214. val64 &= 0xFFFF000000000000ULL;
  3215. #ifdef __BIG_ENDIAN
  3216. /*
  3217. * The device by default set to a big endian format, so a
  3218. * big endian driver need not set anything.
  3219. */
  3220. val64 |= (SWAPPER_CTRL_TXP_FE |
  3221. SWAPPER_CTRL_TXP_SE |
  3222. SWAPPER_CTRL_TXD_R_FE |
  3223. SWAPPER_CTRL_TXD_W_FE |
  3224. SWAPPER_CTRL_TXF_R_FE |
  3225. SWAPPER_CTRL_RXD_R_FE |
  3226. SWAPPER_CTRL_RXD_W_FE |
  3227. SWAPPER_CTRL_RXF_W_FE |
  3228. SWAPPER_CTRL_XMSI_FE |
  3229. SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
  3230. if (sp->config.intr_type == INTA)
  3231. val64 |= SWAPPER_CTRL_XMSI_SE;
  3232. writeq(val64, &bar0->swapper_ctrl);
  3233. #else
  3234. /*
  3235. * Initially we enable all bits to make it accessible by the
  3236. * driver, then we selectively enable only those bits that
  3237. * we want to set.
  3238. */
  3239. val64 |= (SWAPPER_CTRL_TXP_FE |
  3240. SWAPPER_CTRL_TXP_SE |
  3241. SWAPPER_CTRL_TXD_R_FE |
  3242. SWAPPER_CTRL_TXD_R_SE |
  3243. SWAPPER_CTRL_TXD_W_FE |
  3244. SWAPPER_CTRL_TXD_W_SE |
  3245. SWAPPER_CTRL_TXF_R_FE |
  3246. SWAPPER_CTRL_RXD_R_FE |
  3247. SWAPPER_CTRL_RXD_R_SE |
  3248. SWAPPER_CTRL_RXD_W_FE |
  3249. SWAPPER_CTRL_RXD_W_SE |
  3250. SWAPPER_CTRL_RXF_W_FE |
  3251. SWAPPER_CTRL_XMSI_FE |
  3252. SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
  3253. if (sp->config.intr_type == INTA)
  3254. val64 |= SWAPPER_CTRL_XMSI_SE;
  3255. writeq(val64, &bar0->swapper_ctrl);
  3256. #endif
  3257. val64 = readq(&bar0->swapper_ctrl);
  3258. /*
  3259. * Verifying if endian settings are accurate by reading a
  3260. * feedback register.
  3261. */
  3262. val64 = readq(&bar0->pif_rd_swapper_fb);
  3263. if (val64 != 0x0123456789ABCDEFULL) {
  3264. /* Endian settings are incorrect, calls for another dekko. */
  3265. DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
  3266. dev->name);
  3267. DBG_PRINT(ERR_DBG, "feedback read %llx\n",
  3268. (unsigned long long) val64);
  3269. return FAILURE;
  3270. }
  3271. return SUCCESS;
  3272. }
  3273. static int wait_for_msix_trans(struct s2io_nic *nic, int i)
  3274. {
  3275. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3276. u64 val64;
  3277. int ret = 0, cnt = 0;
  3278. do {
  3279. val64 = readq(&bar0->xmsi_access);
  3280. if (!(val64 & s2BIT(15)))
  3281. break;
  3282. mdelay(1);
  3283. cnt++;
  3284. } while(cnt < 5);
  3285. if (cnt == 5) {
  3286. DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
  3287. ret = 1;
  3288. }
  3289. return ret;
  3290. }
  3291. static void restore_xmsi_data(struct s2io_nic *nic)
  3292. {
  3293. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3294. u64 val64;
  3295. int i;
  3296. for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
  3297. writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
  3298. writeq(nic->msix_info[i].data, &bar0->xmsi_data);
  3299. val64 = (s2BIT(7) | s2BIT(15) | vBIT(i, 26, 6));
  3300. writeq(val64, &bar0->xmsi_access);
  3301. if (wait_for_msix_trans(nic, i)) {
  3302. DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
  3303. continue;
  3304. }
  3305. }
  3306. }
  3307. static void store_xmsi_data(struct s2io_nic *nic)
  3308. {
  3309. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3310. u64 val64, addr, data;
  3311. int i;
  3312. /* Store and display */
  3313. for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
  3314. val64 = (s2BIT(15) | vBIT(i, 26, 6));
  3315. writeq(val64, &bar0->xmsi_access);
  3316. if (wait_for_msix_trans(nic, i)) {
  3317. DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
  3318. continue;
  3319. }
  3320. addr = readq(&bar0->xmsi_address);
  3321. data = readq(&bar0->xmsi_data);
  3322. if (addr && data) {
  3323. nic->msix_info[i].addr = addr;
  3324. nic->msix_info[i].data = data;
  3325. }
  3326. }
  3327. }
  3328. static int s2io_enable_msi_x(struct s2io_nic *nic)
  3329. {
  3330. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3331. u64 tx_mat, rx_mat;
  3332. u16 msi_control; /* Temp variable */
  3333. int ret, i, j, msix_indx = 1;
  3334. nic->entries = kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct msix_entry),
  3335. GFP_KERNEL);
  3336. if (!nic->entries) {
  3337. DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
  3338. __FUNCTION__);
  3339. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  3340. return -ENOMEM;
  3341. }
  3342. nic->mac_control.stats_info->sw_stat.mem_allocated
  3343. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3344. nic->s2io_entries =
  3345. kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct s2io_msix_entry),
  3346. GFP_KERNEL);
  3347. if (!nic->s2io_entries) {
  3348. DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
  3349. __FUNCTION__);
  3350. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  3351. kfree(nic->entries);
  3352. nic->mac_control.stats_info->sw_stat.mem_freed
  3353. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3354. return -ENOMEM;
  3355. }
  3356. nic->mac_control.stats_info->sw_stat.mem_allocated
  3357. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3358. for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
  3359. nic->entries[i].entry = i;
  3360. nic->s2io_entries[i].entry = i;
  3361. nic->s2io_entries[i].arg = NULL;
  3362. nic->s2io_entries[i].in_use = 0;
  3363. }
  3364. tx_mat = readq(&bar0->tx_mat0_n[0]);
  3365. for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
  3366. tx_mat |= TX_MAT_SET(i, msix_indx);
  3367. nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
  3368. nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
  3369. nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
  3370. }
  3371. writeq(tx_mat, &bar0->tx_mat0_n[0]);
  3372. rx_mat = readq(&bar0->rx_mat);
  3373. for (j = 0; j < nic->config.rx_ring_num; j++, msix_indx++) {
  3374. rx_mat |= RX_MAT_SET(j, msix_indx);
  3375. nic->s2io_entries[msix_indx].arg
  3376. = &nic->mac_control.rings[j];
  3377. nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
  3378. nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
  3379. }
  3380. writeq(rx_mat, &bar0->rx_mat);
  3381. nic->avail_msix_vectors = 0;
  3382. ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
  3383. /* We fail init if error or we get less vectors than min required */
  3384. if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
  3385. nic->avail_msix_vectors = ret;
  3386. ret = pci_enable_msix(nic->pdev, nic->entries, ret);
  3387. }
  3388. if (ret) {
  3389. DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
  3390. kfree(nic->entries);
  3391. nic->mac_control.stats_info->sw_stat.mem_freed
  3392. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3393. kfree(nic->s2io_entries);
  3394. nic->mac_control.stats_info->sw_stat.mem_freed
  3395. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3396. nic->entries = NULL;
  3397. nic->s2io_entries = NULL;
  3398. nic->avail_msix_vectors = 0;
  3399. return -ENOMEM;
  3400. }
  3401. if (!nic->avail_msix_vectors)
  3402. nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
  3403. /*
  3404. * To enable MSI-X, MSI also needs to be enabled, due to a bug
  3405. * in the herc NIC. (Temp change, needs to be removed later)
  3406. */
  3407. pci_read_config_word(nic->pdev, 0x42, &msi_control);
  3408. msi_control |= 0x1; /* Enable MSI */
  3409. pci_write_config_word(nic->pdev, 0x42, msi_control);
  3410. return 0;
  3411. }
  3412. /* Handle software interrupt used during MSI(X) test */
  3413. static irqreturn_t s2io_test_intr(int irq, void *dev_id)
  3414. {
  3415. struct s2io_nic *sp = dev_id;
  3416. sp->msi_detected = 1;
  3417. wake_up(&sp->msi_wait);
  3418. return IRQ_HANDLED;
  3419. }
  3420. /* Test interrupt path by forcing a a software IRQ */
  3421. static int s2io_test_msi(struct s2io_nic *sp)
  3422. {
  3423. struct pci_dev *pdev = sp->pdev;
  3424. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3425. int err;
  3426. u64 val64, saved64;
  3427. err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
  3428. sp->name, sp);
  3429. if (err) {
  3430. DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
  3431. sp->dev->name, pci_name(pdev), pdev->irq);
  3432. return err;
  3433. }
  3434. init_waitqueue_head (&sp->msi_wait);
  3435. sp->msi_detected = 0;
  3436. saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
  3437. val64 |= SCHED_INT_CTRL_ONE_SHOT;
  3438. val64 |= SCHED_INT_CTRL_TIMER_EN;
  3439. val64 |= SCHED_INT_CTRL_INT2MSI(1);
  3440. writeq(val64, &bar0->scheduled_int_ctrl);
  3441. wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
  3442. if (!sp->msi_detected) {
  3443. /* MSI(X) test failed, go back to INTx mode */
  3444. DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
  3445. "using MSI(X) during test\n", sp->dev->name,
  3446. pci_name(pdev));
  3447. err = -EOPNOTSUPP;
  3448. }
  3449. free_irq(sp->entries[1].vector, sp);
  3450. writeq(saved64, &bar0->scheduled_int_ctrl);
  3451. return err;
  3452. }
  3453. static void remove_msix_isr(struct s2io_nic *sp)
  3454. {
  3455. int i;
  3456. u16 msi_control;
  3457. for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
  3458. if (sp->s2io_entries[i].in_use ==
  3459. MSIX_REGISTERED_SUCCESS) {
  3460. int vector = sp->entries[i].vector;
  3461. void *arg = sp->s2io_entries[i].arg;
  3462. free_irq(vector, arg);
  3463. }
  3464. }
  3465. kfree(sp->entries);
  3466. kfree(sp->s2io_entries);
  3467. sp->entries = NULL;
  3468. sp->s2io_entries = NULL;
  3469. pci_read_config_word(sp->pdev, 0x42, &msi_control);
  3470. msi_control &= 0xFFFE; /* Disable MSI */
  3471. pci_write_config_word(sp->pdev, 0x42, msi_control);
  3472. pci_disable_msix(sp->pdev);
  3473. }
  3474. static void remove_inta_isr(struct s2io_nic *sp)
  3475. {
  3476. struct net_device *dev = sp->dev;
  3477. free_irq(sp->pdev->irq, dev);
  3478. }
  3479. /* ********************************************************* *
  3480. * Functions defined below concern the OS part of the driver *
  3481. * ********************************************************* */
  3482. /**
  3483. * s2io_open - open entry point of the driver
  3484. * @dev : pointer to the device structure.
  3485. * Description:
  3486. * This function is the open entry point of the driver. It mainly calls a
  3487. * function to allocate Rx buffers and inserts them into the buffer
  3488. * descriptors and then enables the Rx part of the NIC.
  3489. * Return value:
  3490. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  3491. * file on failure.
  3492. */
  3493. static int s2io_open(struct net_device *dev)
  3494. {
  3495. struct s2io_nic *sp = dev->priv;
  3496. int err = 0;
  3497. /*
  3498. * Make sure you have link off by default every time
  3499. * Nic is initialized
  3500. */
  3501. netif_carrier_off(dev);
  3502. sp->last_link_state = 0;
  3503. if (sp->config.intr_type == MSI_X) {
  3504. int ret = s2io_enable_msi_x(sp);
  3505. if (!ret) {
  3506. ret = s2io_test_msi(sp);
  3507. /* rollback MSI-X, will re-enable during add_isr() */
  3508. remove_msix_isr(sp);
  3509. }
  3510. if (ret) {
  3511. DBG_PRINT(ERR_DBG,
  3512. "%s: MSI-X requested but failed to enable\n",
  3513. dev->name);
  3514. sp->config.intr_type = INTA;
  3515. }
  3516. }
  3517. /* NAPI doesn't work well with MSI(X) */
  3518. if (sp->config.intr_type != INTA) {
  3519. if(sp->config.napi)
  3520. sp->config.napi = 0;
  3521. }
  3522. /* Initialize H/W and enable interrupts */
  3523. err = s2io_card_up(sp);
  3524. if (err) {
  3525. DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
  3526. dev->name);
  3527. goto hw_init_failed;
  3528. }
  3529. if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
  3530. DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
  3531. s2io_card_down(sp);
  3532. err = -ENODEV;
  3533. goto hw_init_failed;
  3534. }
  3535. netif_start_queue(dev);
  3536. return 0;
  3537. hw_init_failed:
  3538. if (sp->config.intr_type == MSI_X) {
  3539. if (sp->entries) {
  3540. kfree(sp->entries);
  3541. sp->mac_control.stats_info->sw_stat.mem_freed
  3542. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3543. }
  3544. if (sp->s2io_entries) {
  3545. kfree(sp->s2io_entries);
  3546. sp->mac_control.stats_info->sw_stat.mem_freed
  3547. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3548. }
  3549. }
  3550. return err;
  3551. }
  3552. /**
  3553. * s2io_close -close entry point of the driver
  3554. * @dev : device pointer.
  3555. * Description:
  3556. * This is the stop entry point of the driver. It needs to undo exactly
  3557. * whatever was done by the open entry point,thus it's usually referred to
  3558. * as the close function.Among other things this function mainly stops the
  3559. * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
  3560. * Return value:
  3561. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  3562. * file on failure.
  3563. */
  3564. static int s2io_close(struct net_device *dev)
  3565. {
  3566. struct s2io_nic *sp = dev->priv;
  3567. struct config_param *config = &sp->config;
  3568. u64 tmp64;
  3569. int offset;
  3570. /* Return if the device is already closed *
  3571. * Can happen when s2io_card_up failed in change_mtu *
  3572. */
  3573. if (!is_s2io_card_up(sp))
  3574. return 0;
  3575. netif_stop_queue(dev);
  3576. /* delete all populated mac entries */
  3577. for (offset = 1; offset < config->max_mc_addr; offset++) {
  3578. tmp64 = do_s2io_read_unicast_mc(sp, offset);
  3579. if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
  3580. do_s2io_delete_unicast_mc(sp, tmp64);
  3581. }
  3582. /* Reset card, kill tasklet and free Tx and Rx buffers. */
  3583. s2io_card_down(sp);
  3584. return 0;
  3585. }
  3586. /**
  3587. * s2io_xmit - Tx entry point of te driver
  3588. * @skb : the socket buffer containing the Tx data.
  3589. * @dev : device pointer.
  3590. * Description :
  3591. * This function is the Tx entry point of the driver. S2IO NIC supports
  3592. * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
  3593. * NOTE: when device cant queue the pkt,just the trans_start variable will
  3594. * not be upadted.
  3595. * Return value:
  3596. * 0 on success & 1 on failure.
  3597. */
  3598. static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
  3599. {
  3600. struct s2io_nic *sp = dev->priv;
  3601. u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
  3602. register u64 val64;
  3603. struct TxD *txdp;
  3604. struct TxFIFO_element __iomem *tx_fifo;
  3605. unsigned long flags = 0;
  3606. u16 vlan_tag = 0;
  3607. int vlan_priority = 0;
  3608. struct fifo_info *fifo = NULL;
  3609. struct mac_info *mac_control;
  3610. struct config_param *config;
  3611. int offload_type;
  3612. struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
  3613. mac_control = &sp->mac_control;
  3614. config = &sp->config;
  3615. DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
  3616. if (unlikely(skb->len <= 0)) {
  3617. DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
  3618. dev_kfree_skb_any(skb);
  3619. return 0;
  3620. }
  3621. if (!is_s2io_card_up(sp)) {
  3622. DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
  3623. dev->name);
  3624. dev_kfree_skb(skb);
  3625. return 0;
  3626. }
  3627. queue = 0;
  3628. /* Get Fifo number to Transmit based on vlan priority */
  3629. if (sp->vlgrp && vlan_tx_tag_present(skb)) {
  3630. vlan_tag = vlan_tx_tag_get(skb);
  3631. vlan_priority = vlan_tag >> 13;
  3632. queue = config->fifo_mapping[vlan_priority];
  3633. }
  3634. fifo = &mac_control->fifos[queue];
  3635. spin_lock_irqsave(&fifo->tx_lock, flags);
  3636. put_off = (u16) fifo->tx_curr_put_info.offset;
  3637. get_off = (u16) fifo->tx_curr_get_info.offset;
  3638. txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;
  3639. queue_len = fifo->tx_curr_put_info.fifo_len + 1;
  3640. /* Avoid "put" pointer going beyond "get" pointer */
  3641. if (txdp->Host_Control ||
  3642. ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
  3643. DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
  3644. netif_stop_queue(dev);
  3645. dev_kfree_skb(skb);
  3646. spin_unlock_irqrestore(&fifo->tx_lock, flags);
  3647. return 0;
  3648. }
  3649. offload_type = s2io_offload_type(skb);
  3650. if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
  3651. txdp->Control_1 |= TXD_TCP_LSO_EN;
  3652. txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
  3653. }
  3654. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  3655. txdp->Control_2 |=
  3656. (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
  3657. TXD_TX_CKO_UDP_EN);
  3658. }
  3659. txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
  3660. txdp->Control_1 |= TXD_LIST_OWN_XENA;
  3661. txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
  3662. if (sp->vlgrp && vlan_tx_tag_present(skb)) {
  3663. txdp->Control_2 |= TXD_VLAN_ENABLE;
  3664. txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
  3665. }
  3666. frg_len = skb->len - skb->data_len;
  3667. if (offload_type == SKB_GSO_UDP) {
  3668. int ufo_size;
  3669. ufo_size = s2io_udp_mss(skb);
  3670. ufo_size &= ~7;
  3671. txdp->Control_1 |= TXD_UFO_EN;
  3672. txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
  3673. txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
  3674. #ifdef __BIG_ENDIAN
  3675. fifo->ufo_in_band_v[put_off] =
  3676. (u64)skb_shinfo(skb)->ip6_frag_id;
  3677. #else
  3678. fifo->ufo_in_band_v[put_off] =
  3679. (u64)skb_shinfo(skb)->ip6_frag_id << 32;
  3680. #endif
  3681. txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
  3682. txdp->Buffer_Pointer = pci_map_single(sp->pdev,
  3683. fifo->ufo_in_band_v,
  3684. sizeof(u64), PCI_DMA_TODEVICE);
  3685. if((txdp->Buffer_Pointer == 0) ||
  3686. (txdp->Buffer_Pointer == DMA_ERROR_CODE))
  3687. goto pci_map_failed;
  3688. txdp++;
  3689. }
  3690. txdp->Buffer_Pointer = pci_map_single
  3691. (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
  3692. if((txdp->Buffer_Pointer == 0) ||
  3693. (txdp->Buffer_Pointer == DMA_ERROR_CODE))
  3694. goto pci_map_failed;
  3695. txdp->Host_Control = (unsigned long) skb;
  3696. txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
  3697. if (offload_type == SKB_GSO_UDP)
  3698. txdp->Control_1 |= TXD_UFO_EN;
  3699. frg_cnt = skb_shinfo(skb)->nr_frags;
  3700. /* For fragmented SKB. */
  3701. for (i = 0; i < frg_cnt; i++) {
  3702. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  3703. /* A '0' length fragment will be ignored */
  3704. if (!frag->size)
  3705. continue;
  3706. txdp++;
  3707. txdp->Buffer_Pointer = (u64) pci_map_page
  3708. (sp->pdev, frag->page, frag->page_offset,
  3709. frag->size, PCI_DMA_TODEVICE);
  3710. txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
  3711. if (offload_type == SKB_GSO_UDP)
  3712. txdp->Control_1 |= TXD_UFO_EN;
  3713. }
  3714. txdp->Control_1 |= TXD_GATHER_CODE_LAST;
  3715. if (offload_type == SKB_GSO_UDP)
  3716. frg_cnt++; /* as Txd0 was used for inband header */
  3717. tx_fifo = mac_control->tx_FIFO_start[queue];
  3718. val64 = fifo->list_info[put_off].list_phy_addr;
  3719. writeq(val64, &tx_fifo->TxDL_Pointer);
  3720. val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
  3721. TX_FIFO_LAST_LIST);
  3722. if (offload_type)
  3723. val64 |= TX_FIFO_SPECIAL_FUNC;
  3724. writeq(val64, &tx_fifo->List_Control);
  3725. mmiowb();
  3726. put_off++;
  3727. if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
  3728. put_off = 0;
  3729. fifo->tx_curr_put_info.offset = put_off;
  3730. /* Avoid "put" pointer going beyond "get" pointer */
  3731. if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
  3732. sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
  3733. DBG_PRINT(TX_DBG,
  3734. "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
  3735. put_off, get_off);
  3736. netif_stop_queue(dev);
  3737. }
  3738. mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
  3739. dev->trans_start = jiffies;
  3740. spin_unlock_irqrestore(&fifo->tx_lock, flags);
  3741. return 0;
  3742. pci_map_failed:
  3743. stats->pci_map_fail_cnt++;
  3744. netif_stop_queue(dev);
  3745. stats->mem_freed += skb->truesize;
  3746. dev_kfree_skb(skb);
  3747. spin_unlock_irqrestore(&fifo->tx_lock, flags);
  3748. return 0;
  3749. }
  3750. static void
  3751. s2io_alarm_handle(unsigned long data)
  3752. {
  3753. struct s2io_nic *sp = (struct s2io_nic *)data;
  3754. struct net_device *dev = sp->dev;
  3755. s2io_handle_errors(dev);
  3756. mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
  3757. }
  3758. static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
  3759. {
  3760. int rxb_size, level;
  3761. if (!sp->lro) {
  3762. rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
  3763. level = rx_buffer_level(sp, rxb_size, rng_n);
  3764. if ((level == PANIC) && (!TASKLET_IN_USE)) {
  3765. int ret;
  3766. DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
  3767. DBG_PRINT(INTR_DBG, "PANIC levels\n");
  3768. if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
  3769. DBG_PRINT(INFO_DBG, "Out of memory in %s",
  3770. __FUNCTION__);
  3771. clear_bit(0, (&sp->tasklet_status));
  3772. return -1;
  3773. }
  3774. clear_bit(0, (&sp->tasklet_status));
  3775. } else if (level == LOW)
  3776. tasklet_schedule(&sp->task);
  3777. } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
  3778. DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
  3779. DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
  3780. }
  3781. return 0;
  3782. }
  3783. static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
  3784. {
  3785. struct ring_info *ring = (struct ring_info *)dev_id;
  3786. struct s2io_nic *sp = ring->nic;
  3787. if (!is_s2io_card_up(sp))
  3788. return IRQ_HANDLED;
  3789. rx_intr_handler(ring);
  3790. s2io_chk_rx_buffers(sp, ring->ring_no);
  3791. return IRQ_HANDLED;
  3792. }
  3793. static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
  3794. {
  3795. struct fifo_info *fifo = (struct fifo_info *)dev_id;
  3796. struct s2io_nic *sp = fifo->nic;
  3797. if (!is_s2io_card_up(sp))
  3798. return IRQ_HANDLED;
  3799. tx_intr_handler(fifo);
  3800. return IRQ_HANDLED;
  3801. }
  3802. static void s2io_txpic_intr_handle(struct s2io_nic *sp)
  3803. {
  3804. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3805. u64 val64;
  3806. val64 = readq(&bar0->pic_int_status);
  3807. if (val64 & PIC_INT_GPIO) {
  3808. val64 = readq(&bar0->gpio_int_reg);
  3809. if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
  3810. (val64 & GPIO_INT_REG_LINK_UP)) {
  3811. /*
  3812. * This is unstable state so clear both up/down
  3813. * interrupt and adapter to re-evaluate the link state.
  3814. */
  3815. val64 |= GPIO_INT_REG_LINK_DOWN;
  3816. val64 |= GPIO_INT_REG_LINK_UP;
  3817. writeq(val64, &bar0->gpio_int_reg);
  3818. val64 = readq(&bar0->gpio_int_mask);
  3819. val64 &= ~(GPIO_INT_MASK_LINK_UP |
  3820. GPIO_INT_MASK_LINK_DOWN);
  3821. writeq(val64, &bar0->gpio_int_mask);
  3822. }
  3823. else if (val64 & GPIO_INT_REG_LINK_UP) {
  3824. val64 = readq(&bar0->adapter_status);
  3825. /* Enable Adapter */
  3826. val64 = readq(&bar0->adapter_control);
  3827. val64 |= ADAPTER_CNTL_EN;
  3828. writeq(val64, &bar0->adapter_control);
  3829. val64 |= ADAPTER_LED_ON;
  3830. writeq(val64, &bar0->adapter_control);
  3831. if (!sp->device_enabled_once)
  3832. sp->device_enabled_once = 1;
  3833. s2io_link(sp, LINK_UP);
  3834. /*
  3835. * unmask link down interrupt and mask link-up
  3836. * intr
  3837. */
  3838. val64 = readq(&bar0->gpio_int_mask);
  3839. val64 &= ~GPIO_INT_MASK_LINK_DOWN;
  3840. val64 |= GPIO_INT_MASK_LINK_UP;
  3841. writeq(val64, &bar0->gpio_int_mask);
  3842. }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
  3843. val64 = readq(&bar0->adapter_status);
  3844. s2io_link(sp, LINK_DOWN);
  3845. /* Link is down so unmaks link up interrupt */
  3846. val64 = readq(&bar0->gpio_int_mask);
  3847. val64 &= ~GPIO_INT_MASK_LINK_UP;
  3848. val64 |= GPIO_INT_MASK_LINK_DOWN;
  3849. writeq(val64, &bar0->gpio_int_mask);
  3850. /* turn off LED */
  3851. val64 = readq(&bar0->adapter_control);
  3852. val64 = val64 &(~ADAPTER_LED_ON);
  3853. writeq(val64, &bar0->adapter_control);
  3854. }
  3855. }
  3856. val64 = readq(&bar0->gpio_int_mask);
  3857. }
  3858. /**
  3859. * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
  3860. * @value: alarm bits
  3861. * @addr: address value
  3862. * @cnt: counter variable
  3863. * Description: Check for alarm and increment the counter
  3864. * Return Value:
  3865. * 1 - if alarm bit set
  3866. * 0 - if alarm bit is not set
  3867. */
  3868. static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
  3869. unsigned long long *cnt)
  3870. {
  3871. u64 val64;
  3872. val64 = readq(addr);
  3873. if ( val64 & value ) {
  3874. writeq(val64, addr);
  3875. (*cnt)++;
  3876. return 1;
  3877. }
  3878. return 0;
  3879. }
  3880. /**
  3881. * s2io_handle_errors - Xframe error indication handler
  3882. * @nic: device private variable
  3883. * Description: Handle alarms such as loss of link, single or
  3884. * double ECC errors, critical and serious errors.
  3885. * Return Value:
  3886. * NONE
  3887. */
  3888. static void s2io_handle_errors(void * dev_id)
  3889. {
  3890. struct net_device *dev = (struct net_device *) dev_id;
  3891. struct s2io_nic *sp = dev->priv;
  3892. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3893. u64 temp64 = 0,val64=0;
  3894. int i = 0;
  3895. struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
  3896. struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
  3897. if (!is_s2io_card_up(sp))
  3898. return;
  3899. if (pci_channel_offline(sp->pdev))
  3900. return;
  3901. memset(&sw_stat->ring_full_cnt, 0,
  3902. sizeof(sw_stat->ring_full_cnt));
  3903. /* Handling the XPAK counters update */
  3904. if(stats->xpak_timer_count < 72000) {
  3905. /* waiting for an hour */
  3906. stats->xpak_timer_count++;
  3907. } else {
  3908. s2io_updt_xpak_counter(dev);
  3909. /* reset the count to zero */
  3910. stats->xpak_timer_count = 0;
  3911. }
  3912. /* Handling link status change error Intr */
  3913. if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
  3914. val64 = readq(&bar0->mac_rmac_err_reg);
  3915. writeq(val64, &bar0->mac_rmac_err_reg);
  3916. if (val64 & RMAC_LINK_STATE_CHANGE_INT)
  3917. schedule_work(&sp->set_link_task);
  3918. }
  3919. /* In case of a serious error, the device will be Reset. */
  3920. if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
  3921. &sw_stat->serious_err_cnt))
  3922. goto reset;
  3923. /* Check for data parity error */
  3924. if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
  3925. &sw_stat->parity_err_cnt))
  3926. goto reset;
  3927. /* Check for ring full counter */
  3928. if (sp->device_type == XFRAME_II_DEVICE) {
  3929. val64 = readq(&bar0->ring_bump_counter1);
  3930. for (i=0; i<4; i++) {
  3931. temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
  3932. temp64 >>= 64 - ((i+1)*16);
  3933. sw_stat->ring_full_cnt[i] += temp64;
  3934. }
  3935. val64 = readq(&bar0->ring_bump_counter2);
  3936. for (i=0; i<4; i++) {
  3937. temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
  3938. temp64 >>= 64 - ((i+1)*16);
  3939. sw_stat->ring_full_cnt[i+4] += temp64;
  3940. }
  3941. }
  3942. val64 = readq(&bar0->txdma_int_status);
  3943. /*check for pfc_err*/
  3944. if (val64 & TXDMA_PFC_INT) {
  3945. if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
  3946. PFC_MISC_0_ERR | PFC_MISC_1_ERR|
  3947. PFC_PCIX_ERR, &bar0->pfc_err_reg,
  3948. &sw_stat->pfc_err_cnt))
  3949. goto reset;
  3950. do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
  3951. &sw_stat->pfc_err_cnt);
  3952. }
  3953. /*check for tda_err*/
  3954. if (val64 & TXDMA_TDA_INT) {
  3955. if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
  3956. TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
  3957. &sw_stat->tda_err_cnt))
  3958. goto reset;
  3959. do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
  3960. &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
  3961. }
  3962. /*check for pcc_err*/
  3963. if (val64 & TXDMA_PCC_INT) {
  3964. if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
  3965. | PCC_N_SERR | PCC_6_COF_OV_ERR
  3966. | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
  3967. | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
  3968. | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
  3969. &sw_stat->pcc_err_cnt))
  3970. goto reset;
  3971. do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
  3972. &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
  3973. }
  3974. /*check for tti_err*/
  3975. if (val64 & TXDMA_TTI_INT) {
  3976. if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
  3977. &sw_stat->tti_err_cnt))
  3978. goto reset;
  3979. do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
  3980. &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
  3981. }
  3982. /*check for lso_err*/
  3983. if (val64 & TXDMA_LSO_INT) {
  3984. if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
  3985. | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
  3986. &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
  3987. goto reset;
  3988. do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
  3989. &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
  3990. }
  3991. /*check for tpa_err*/
  3992. if (val64 & TXDMA_TPA_INT) {
  3993. if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
  3994. &sw_stat->tpa_err_cnt))
  3995. goto reset;
  3996. do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
  3997. &sw_stat->tpa_err_cnt);
  3998. }
  3999. /*check for sm_err*/
  4000. if (val64 & TXDMA_SM_INT) {
  4001. if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
  4002. &sw_stat->sm_err_cnt))
  4003. goto reset;
  4004. }
  4005. val64 = readq(&bar0->mac_int_status);
  4006. if (val64 & MAC_INT_STATUS_TMAC_INT) {
  4007. if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
  4008. &bar0->mac_tmac_err_reg,
  4009. &sw_stat->mac_tmac_err_cnt))
  4010. goto reset;
  4011. do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
  4012. | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
  4013. &bar0->mac_tmac_err_reg,
  4014. &sw_stat->mac_tmac_err_cnt);
  4015. }
  4016. val64 = readq(&bar0->xgxs_int_status);
  4017. if (val64 & XGXS_INT_STATUS_TXGXS) {
  4018. if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
  4019. &bar0->xgxs_txgxs_err_reg,
  4020. &sw_stat->xgxs_txgxs_err_cnt))
  4021. goto reset;
  4022. do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
  4023. &bar0->xgxs_txgxs_err_reg,
  4024. &sw_stat->xgxs_txgxs_err_cnt);
  4025. }
  4026. val64 = readq(&bar0->rxdma_int_status);
  4027. if (val64 & RXDMA_INT_RC_INT_M) {
  4028. if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
  4029. | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
  4030. &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
  4031. goto reset;
  4032. do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
  4033. | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
  4034. &sw_stat->rc_err_cnt);
  4035. if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
  4036. | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
  4037. &sw_stat->prc_pcix_err_cnt))
  4038. goto reset;
  4039. do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
  4040. | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
  4041. &sw_stat->prc_pcix_err_cnt);
  4042. }
  4043. if (val64 & RXDMA_INT_RPA_INT_M) {
  4044. if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
  4045. &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
  4046. goto reset;
  4047. do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
  4048. &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
  4049. }
  4050. if (val64 & RXDMA_INT_RDA_INT_M) {
  4051. if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
  4052. | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
  4053. | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
  4054. &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
  4055. goto reset;
  4056. do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
  4057. | RDA_MISC_ERR | RDA_PCIX_ERR,
  4058. &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
  4059. }
  4060. if (val64 & RXDMA_INT_RTI_INT_M) {
  4061. if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
  4062. &sw_stat->rti_err_cnt))
  4063. goto reset;
  4064. do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
  4065. &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
  4066. }
  4067. val64 = readq(&bar0->mac_int_status);
  4068. if (val64 & MAC_INT_STATUS_RMAC_INT) {
  4069. if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
  4070. &bar0->mac_rmac_err_reg,
  4071. &sw_stat->mac_rmac_err_cnt))
  4072. goto reset;
  4073. do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
  4074. RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
  4075. &sw_stat->mac_rmac_err_cnt);
  4076. }
  4077. val64 = readq(&bar0->xgxs_int_status);
  4078. if (val64 & XGXS_INT_STATUS_RXGXS) {
  4079. if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
  4080. &bar0->xgxs_rxgxs_err_reg,
  4081. &sw_stat->xgxs_rxgxs_err_cnt))
  4082. goto reset;
  4083. }
  4084. val64 = readq(&bar0->mc_int_status);
  4085. if(val64 & MC_INT_STATUS_MC_INT) {
  4086. if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
  4087. &sw_stat->mc_err_cnt))
  4088. goto reset;
  4089. /* Handling Ecc errors */
  4090. if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
  4091. writeq(val64, &bar0->mc_err_reg);
  4092. if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
  4093. sw_stat->double_ecc_errs++;
  4094. if (sp->device_type != XFRAME_II_DEVICE) {
  4095. /*
  4096. * Reset XframeI only if critical error
  4097. */
  4098. if (val64 &
  4099. (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
  4100. MC_ERR_REG_MIRI_ECC_DB_ERR_1))
  4101. goto reset;
  4102. }
  4103. } else
  4104. sw_stat->single_ecc_errs++;
  4105. }
  4106. }
  4107. return;
  4108. reset:
  4109. netif_stop_queue(dev);
  4110. schedule_work(&sp->rst_timer_task);
  4111. sw_stat->soft_reset_cnt++;
  4112. return;
  4113. }
  4114. /**
  4115. * s2io_isr - ISR handler of the device .
  4116. * @irq: the irq of the device.
  4117. * @dev_id: a void pointer to the dev structure of the NIC.
  4118. * Description: This function is the ISR handler of the device. It
  4119. * identifies the reason for the interrupt and calls the relevant
  4120. * service routines. As a contongency measure, this ISR allocates the
  4121. * recv buffers, if their numbers are below the panic value which is
  4122. * presently set to 25% of the original number of rcv buffers allocated.
  4123. * Return value:
  4124. * IRQ_HANDLED: will be returned if IRQ was handled by this routine
  4125. * IRQ_NONE: will be returned if interrupt is not from our device
  4126. */
  4127. static irqreturn_t s2io_isr(int irq, void *dev_id)
  4128. {
  4129. struct net_device *dev = (struct net_device *) dev_id;
  4130. struct s2io_nic *sp = dev->priv;
  4131. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4132. int i;
  4133. u64 reason = 0;
  4134. struct mac_info *mac_control;
  4135. struct config_param *config;
  4136. /* Pretend we handled any irq's from a disconnected card */
  4137. if (pci_channel_offline(sp->pdev))
  4138. return IRQ_NONE;
  4139. if (!is_s2io_card_up(sp))
  4140. return IRQ_NONE;
  4141. mac_control = &sp->mac_control;
  4142. config = &sp->config;
  4143. /*
  4144. * Identify the cause for interrupt and call the appropriate
  4145. * interrupt handler. Causes for the interrupt could be;
  4146. * 1. Rx of packet.
  4147. * 2. Tx complete.
  4148. * 3. Link down.
  4149. */
  4150. reason = readq(&bar0->general_int_status);
  4151. if (unlikely(reason == S2IO_MINUS_ONE) ) {
  4152. /* Nothing much can be done. Get out */
  4153. return IRQ_HANDLED;
  4154. }
  4155. if (reason & (GEN_INTR_RXTRAFFIC |
  4156. GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
  4157. {
  4158. writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
  4159. if (config->napi) {
  4160. if (reason & GEN_INTR_RXTRAFFIC) {
  4161. if (likely(netif_rx_schedule_prep(dev,
  4162. &sp->napi))) {
  4163. __netif_rx_schedule(dev, &sp->napi);
  4164. writeq(S2IO_MINUS_ONE,
  4165. &bar0->rx_traffic_mask);
  4166. } else
  4167. writeq(S2IO_MINUS_ONE,
  4168. &bar0->rx_traffic_int);
  4169. }
  4170. } else {
  4171. /*
  4172. * rx_traffic_int reg is an R1 register, writing all 1's
  4173. * will ensure that the actual interrupt causing bit
  4174. * get's cleared and hence a read can be avoided.
  4175. */
  4176. if (reason & GEN_INTR_RXTRAFFIC)
  4177. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
  4178. for (i = 0; i < config->rx_ring_num; i++)
  4179. rx_intr_handler(&mac_control->rings[i]);
  4180. }
  4181. /*
  4182. * tx_traffic_int reg is an R1 register, writing all 1's
  4183. * will ensure that the actual interrupt causing bit get's
  4184. * cleared and hence a read can be avoided.
  4185. */
  4186. if (reason & GEN_INTR_TXTRAFFIC)
  4187. writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
  4188. for (i = 0; i < config->tx_fifo_num; i++)
  4189. tx_intr_handler(&mac_control->fifos[i]);
  4190. if (reason & GEN_INTR_TXPIC)
  4191. s2io_txpic_intr_handle(sp);
  4192. /*
  4193. * Reallocate the buffers from the interrupt handler itself.
  4194. */
  4195. if (!config->napi) {
  4196. for (i = 0; i < config->rx_ring_num; i++)
  4197. s2io_chk_rx_buffers(sp, i);
  4198. }
  4199. writeq(sp->general_int_mask, &bar0->general_int_mask);
  4200. readl(&bar0->general_int_status);
  4201. return IRQ_HANDLED;
  4202. }
  4203. else if (!reason) {
  4204. /* The interrupt was not raised by us */
  4205. return IRQ_NONE;
  4206. }
  4207. return IRQ_HANDLED;
  4208. }
  4209. /**
  4210. * s2io_updt_stats -
  4211. */
  4212. static void s2io_updt_stats(struct s2io_nic *sp)
  4213. {
  4214. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4215. u64 val64;
  4216. int cnt = 0;
  4217. if (is_s2io_card_up(sp)) {
  4218. /* Apprx 30us on a 133 MHz bus */
  4219. val64 = SET_UPDT_CLICKS(10) |
  4220. STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
  4221. writeq(val64, &bar0->stat_cfg);
  4222. do {
  4223. udelay(100);
  4224. val64 = readq(&bar0->stat_cfg);
  4225. if (!(val64 & s2BIT(0)))
  4226. break;
  4227. cnt++;
  4228. if (cnt == 5)
  4229. break; /* Updt failed */
  4230. } while(1);
  4231. }
  4232. }
  4233. /**
  4234. * s2io_get_stats - Updates the device statistics structure.
  4235. * @dev : pointer to the device structure.
  4236. * Description:
  4237. * This function updates the device statistics structure in the s2io_nic
  4238. * structure and returns a pointer to the same.
  4239. * Return value:
  4240. * pointer to the updated net_device_stats structure.
  4241. */
  4242. static struct net_device_stats *s2io_get_stats(struct net_device *dev)
  4243. {
  4244. struct s2io_nic *sp = dev->priv;
  4245. struct mac_info *mac_control;
  4246. struct config_param *config;
  4247. mac_control = &sp->mac_control;
  4248. config = &sp->config;
  4249. /* Configure Stats for immediate updt */
  4250. s2io_updt_stats(sp);
  4251. sp->stats.tx_packets =
  4252. le32_to_cpu(mac_control->stats_info->tmac_frms);
  4253. sp->stats.tx_errors =
  4254. le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
  4255. sp->stats.rx_errors =
  4256. le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
  4257. sp->stats.multicast =
  4258. le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
  4259. sp->stats.rx_length_errors =
  4260. le64_to_cpu(mac_control->stats_info->rmac_long_frms);
  4261. return (&sp->stats);
  4262. }
  4263. /**
  4264. * s2io_set_multicast - entry point for multicast address enable/disable.
  4265. * @dev : pointer to the device structure
  4266. * Description:
  4267. * This function is a driver entry point which gets called by the kernel
  4268. * whenever multicast addresses must be enabled/disabled. This also gets
  4269. * called to set/reset promiscuous mode. Depending on the deivce flag, we
  4270. * determine, if multicast address must be enabled or if promiscuous mode
  4271. * is to be disabled etc.
  4272. * Return value:
  4273. * void.
  4274. */
  4275. static void s2io_set_multicast(struct net_device *dev)
  4276. {
  4277. int i, j, prev_cnt;
  4278. struct dev_mc_list *mclist;
  4279. struct s2io_nic *sp = dev->priv;
  4280. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4281. u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
  4282. 0xfeffffffffffULL;
  4283. u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
  4284. void __iomem *add;
  4285. struct config_param *config = &sp->config;
  4286. if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
  4287. /* Enable all Multicast addresses */
  4288. writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
  4289. &bar0->rmac_addr_data0_mem);
  4290. writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
  4291. &bar0->rmac_addr_data1_mem);
  4292. val64 = RMAC_ADDR_CMD_MEM_WE |
  4293. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4294. RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
  4295. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4296. /* Wait till command completes */
  4297. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4298. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4299. S2IO_BIT_RESET);
  4300. sp->m_cast_flg = 1;
  4301. sp->all_multi_pos = config->max_mc_addr - 1;
  4302. } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
  4303. /* Disable all Multicast addresses */
  4304. writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
  4305. &bar0->rmac_addr_data0_mem);
  4306. writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
  4307. &bar0->rmac_addr_data1_mem);
  4308. val64 = RMAC_ADDR_CMD_MEM_WE |
  4309. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4310. RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
  4311. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4312. /* Wait till command completes */
  4313. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4314. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4315. S2IO_BIT_RESET);
  4316. sp->m_cast_flg = 0;
  4317. sp->all_multi_pos = 0;
  4318. }
  4319. if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
  4320. /* Put the NIC into promiscuous mode */
  4321. add = &bar0->mac_cfg;
  4322. val64 = readq(&bar0->mac_cfg);
  4323. val64 |= MAC_CFG_RMAC_PROM_ENABLE;
  4324. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4325. writel((u32) val64, add);
  4326. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4327. writel((u32) (val64 >> 32), (add + 4));
  4328. if (vlan_tag_strip != 1) {
  4329. val64 = readq(&bar0->rx_pa_cfg);
  4330. val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
  4331. writeq(val64, &bar0->rx_pa_cfg);
  4332. vlan_strip_flag = 0;
  4333. }
  4334. val64 = readq(&bar0->mac_cfg);
  4335. sp->promisc_flg = 1;
  4336. DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
  4337. dev->name);
  4338. } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
  4339. /* Remove the NIC from promiscuous mode */
  4340. add = &bar0->mac_cfg;
  4341. val64 = readq(&bar0->mac_cfg);
  4342. val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
  4343. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4344. writel((u32) val64, add);
  4345. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4346. writel((u32) (val64 >> 32), (add + 4));
  4347. if (vlan_tag_strip != 0) {
  4348. val64 = readq(&bar0->rx_pa_cfg);
  4349. val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
  4350. writeq(val64, &bar0->rx_pa_cfg);
  4351. vlan_strip_flag = 1;
  4352. }
  4353. val64 = readq(&bar0->mac_cfg);
  4354. sp->promisc_flg = 0;
  4355. DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
  4356. dev->name);
  4357. }
  4358. /* Update individual M_CAST address list */
  4359. if ((!sp->m_cast_flg) && dev->mc_count) {
  4360. if (dev->mc_count >
  4361. (config->max_mc_addr - config->max_mac_addr)) {
  4362. DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
  4363. dev->name);
  4364. DBG_PRINT(ERR_DBG, "can be added, please enable ");
  4365. DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
  4366. return;
  4367. }
  4368. prev_cnt = sp->mc_addr_count;
  4369. sp->mc_addr_count = dev->mc_count;
  4370. /* Clear out the previous list of Mc in the H/W. */
  4371. for (i = 0; i < prev_cnt; i++) {
  4372. writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
  4373. &bar0->rmac_addr_data0_mem);
  4374. writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
  4375. &bar0->rmac_addr_data1_mem);
  4376. val64 = RMAC_ADDR_CMD_MEM_WE |
  4377. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4378. RMAC_ADDR_CMD_MEM_OFFSET
  4379. (config->mc_start_offset + i);
  4380. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4381. /* Wait for command completes */
  4382. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4383. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4384. S2IO_BIT_RESET)) {
  4385. DBG_PRINT(ERR_DBG, "%s: Adding ",
  4386. dev->name);
  4387. DBG_PRINT(ERR_DBG, "Multicasts failed\n");
  4388. return;
  4389. }
  4390. }
  4391. /* Create the new Rx filter list and update the same in H/W. */
  4392. for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
  4393. i++, mclist = mclist->next) {
  4394. memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
  4395. ETH_ALEN);
  4396. mac_addr = 0;
  4397. for (j = 0; j < ETH_ALEN; j++) {
  4398. mac_addr |= mclist->dmi_addr[j];
  4399. mac_addr <<= 8;
  4400. }
  4401. mac_addr >>= 8;
  4402. writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
  4403. &bar0->rmac_addr_data0_mem);
  4404. writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
  4405. &bar0->rmac_addr_data1_mem);
  4406. val64 = RMAC_ADDR_CMD_MEM_WE |
  4407. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4408. RMAC_ADDR_CMD_MEM_OFFSET
  4409. (i + config->mc_start_offset);
  4410. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4411. /* Wait for command completes */
  4412. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4413. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4414. S2IO_BIT_RESET)) {
  4415. DBG_PRINT(ERR_DBG, "%s: Adding ",
  4416. dev->name);
  4417. DBG_PRINT(ERR_DBG, "Multicasts failed\n");
  4418. return;
  4419. }
  4420. }
  4421. }
  4422. }
  4423. /* read from CAM unicast & multicast addresses and store it in
  4424. * def_mac_addr structure
  4425. */
  4426. void do_s2io_store_unicast_mc(struct s2io_nic *sp)
  4427. {
  4428. int offset;
  4429. u64 mac_addr = 0x0;
  4430. struct config_param *config = &sp->config;
  4431. /* store unicast & multicast mac addresses */
  4432. for (offset = 0; offset < config->max_mc_addr; offset++) {
  4433. mac_addr = do_s2io_read_unicast_mc(sp, offset);
  4434. /* if read fails disable the entry */
  4435. if (mac_addr == FAILURE)
  4436. mac_addr = S2IO_DISABLE_MAC_ENTRY;
  4437. do_s2io_copy_mac_addr(sp, offset, mac_addr);
  4438. }
  4439. }
  4440. /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
  4441. static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
  4442. {
  4443. int offset;
  4444. struct config_param *config = &sp->config;
  4445. /* restore unicast mac address */
  4446. for (offset = 0; offset < config->max_mac_addr; offset++)
  4447. do_s2io_prog_unicast(sp->dev,
  4448. sp->def_mac_addr[offset].mac_addr);
  4449. /* restore multicast mac address */
  4450. for (offset = config->mc_start_offset;
  4451. offset < config->max_mc_addr; offset++)
  4452. do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
  4453. }
  4454. /* add a multicast MAC address to CAM */
  4455. static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
  4456. {
  4457. int i;
  4458. u64 mac_addr = 0;
  4459. struct config_param *config = &sp->config;
  4460. for (i = 0; i < ETH_ALEN; i++) {
  4461. mac_addr <<= 8;
  4462. mac_addr |= addr[i];
  4463. }
  4464. if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
  4465. return SUCCESS;
  4466. /* check if the multicast mac already preset in CAM */
  4467. for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
  4468. u64 tmp64;
  4469. tmp64 = do_s2io_read_unicast_mc(sp, i);
  4470. if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
  4471. break;
  4472. if (tmp64 == mac_addr)
  4473. return SUCCESS;
  4474. }
  4475. if (i == config->max_mc_addr) {
  4476. DBG_PRINT(ERR_DBG,
  4477. "CAM full no space left for multicast MAC\n");
  4478. return FAILURE;
  4479. }
  4480. /* Update the internal structure with this new mac address */
  4481. do_s2io_copy_mac_addr(sp, i, mac_addr);
  4482. return (do_s2io_add_mac(sp, mac_addr, i));
  4483. }
  4484. /* add MAC address to CAM */
  4485. static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
  4486. {
  4487. u64 val64;
  4488. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4489. writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
  4490. &bar0->rmac_addr_data0_mem);
  4491. val64 =
  4492. RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4493. RMAC_ADDR_CMD_MEM_OFFSET(off);
  4494. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4495. /* Wait till command completes */
  4496. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4497. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4498. S2IO_BIT_RESET)) {
  4499. DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
  4500. return FAILURE;
  4501. }
  4502. return SUCCESS;
  4503. }
  4504. /* deletes a specified unicast/multicast mac entry from CAM */
  4505. static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
  4506. {
  4507. int offset;
  4508. u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
  4509. struct config_param *config = &sp->config;
  4510. for (offset = 1;
  4511. offset < config->max_mc_addr; offset++) {
  4512. tmp64 = do_s2io_read_unicast_mc(sp, offset);
  4513. if (tmp64 == addr) {
  4514. /* disable the entry by writing 0xffffffffffffULL */
  4515. if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
  4516. return FAILURE;
  4517. /* store the new mac list from CAM */
  4518. do_s2io_store_unicast_mc(sp);
  4519. return SUCCESS;
  4520. }
  4521. }
  4522. DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
  4523. (unsigned long long)addr);
  4524. return FAILURE;
  4525. }
  4526. /* read mac entries from CAM */
  4527. static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
  4528. {
  4529. u64 tmp64 = 0xffffffffffff0000ULL, val64;
  4530. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4531. /* read mac addr */
  4532. val64 =
  4533. RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4534. RMAC_ADDR_CMD_MEM_OFFSET(offset);
  4535. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4536. /* Wait till command completes */
  4537. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4538. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4539. S2IO_BIT_RESET)) {
  4540. DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
  4541. return FAILURE;
  4542. }
  4543. tmp64 = readq(&bar0->rmac_addr_data0_mem);
  4544. return (tmp64 >> 16);
  4545. }
  4546. /**
  4547. * s2io_set_mac_addr driver entry point
  4548. */
  4549. static int s2io_set_mac_addr(struct net_device *dev, void *p)
  4550. {
  4551. struct sockaddr *addr = p;
  4552. if (!is_valid_ether_addr(addr->sa_data))
  4553. return -EINVAL;
  4554. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  4555. /* store the MAC address in CAM */
  4556. return (do_s2io_prog_unicast(dev, dev->dev_addr));
  4557. }
  4558. /**
  4559. * do_s2io_prog_unicast - Programs the Xframe mac address
  4560. * @dev : pointer to the device structure.
  4561. * @addr: a uchar pointer to the new mac address which is to be set.
  4562. * Description : This procedure will program the Xframe to receive
  4563. * frames with new Mac Address
  4564. * Return value: SUCCESS on success and an appropriate (-)ve integer
  4565. * as defined in errno.h file on failure.
  4566. */
  4567. static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
  4568. {
  4569. struct s2io_nic *sp = dev->priv;
  4570. register u64 mac_addr = 0, perm_addr = 0;
  4571. int i;
  4572. u64 tmp64;
  4573. struct config_param *config = &sp->config;
  4574. /*
  4575. * Set the new MAC address as the new unicast filter and reflect this
  4576. * change on the device address registered with the OS. It will be
  4577. * at offset 0.
  4578. */
  4579. for (i = 0; i < ETH_ALEN; i++) {
  4580. mac_addr <<= 8;
  4581. mac_addr |= addr[i];
  4582. perm_addr <<= 8;
  4583. perm_addr |= sp->def_mac_addr[0].mac_addr[i];
  4584. }
  4585. /* check if the dev_addr is different than perm_addr */
  4586. if (mac_addr == perm_addr)
  4587. return SUCCESS;
  4588. /* check if the mac already preset in CAM */
  4589. for (i = 1; i < config->max_mac_addr; i++) {
  4590. tmp64 = do_s2io_read_unicast_mc(sp, i);
  4591. if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
  4592. break;
  4593. if (tmp64 == mac_addr) {
  4594. DBG_PRINT(INFO_DBG,
  4595. "MAC addr:0x%llx already present in CAM\n",
  4596. (unsigned long long)mac_addr);
  4597. return SUCCESS;
  4598. }
  4599. }
  4600. if (i == config->max_mac_addr) {
  4601. DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
  4602. return FAILURE;
  4603. }
  4604. /* Update the internal structure with this new mac address */
  4605. do_s2io_copy_mac_addr(sp, i, mac_addr);
  4606. return (do_s2io_add_mac(sp, mac_addr, i));
  4607. }
  4608. /**
  4609. * s2io_ethtool_sset - Sets different link parameters.
  4610. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
  4611. * @info: pointer to the structure with parameters given by ethtool to set
  4612. * link information.
  4613. * Description:
  4614. * The function sets different link parameters provided by the user onto
  4615. * the NIC.
  4616. * Return value:
  4617. * 0 on success.
  4618. */
  4619. static int s2io_ethtool_sset(struct net_device *dev,
  4620. struct ethtool_cmd *info)
  4621. {
  4622. struct s2io_nic *sp = dev->priv;
  4623. if ((info->autoneg == AUTONEG_ENABLE) ||
  4624. (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
  4625. return -EINVAL;
  4626. else {
  4627. s2io_close(sp->dev);
  4628. s2io_open(sp->dev);
  4629. }
  4630. return 0;
  4631. }
  4632. /**
  4633. * s2io_ethtol_gset - Return link specific information.
  4634. * @sp : private member of the device structure, pointer to the
  4635. * s2io_nic structure.
  4636. * @info : pointer to the structure with parameters given by ethtool
  4637. * to return link information.
  4638. * Description:
  4639. * Returns link specific information like speed, duplex etc.. to ethtool.
  4640. * Return value :
  4641. * return 0 on success.
  4642. */
  4643. static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
  4644. {
  4645. struct s2io_nic *sp = dev->priv;
  4646. info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  4647. info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  4648. info->port = PORT_FIBRE;
  4649. /* info->transceiver */
  4650. info->transceiver = XCVR_EXTERNAL;
  4651. if (netif_carrier_ok(sp->dev)) {
  4652. info->speed = 10000;
  4653. info->duplex = DUPLEX_FULL;
  4654. } else {
  4655. info->speed = -1;
  4656. info->duplex = -1;
  4657. }
  4658. info->autoneg = AUTONEG_DISABLE;
  4659. return 0;
  4660. }
  4661. /**
  4662. * s2io_ethtool_gdrvinfo - Returns driver specific information.
  4663. * @sp : private member of the device structure, which is a pointer to the
  4664. * s2io_nic structure.
  4665. * @info : pointer to the structure with parameters given by ethtool to
  4666. * return driver information.
  4667. * Description:
  4668. * Returns driver specefic information like name, version etc.. to ethtool.
  4669. * Return value:
  4670. * void
  4671. */
  4672. static void s2io_ethtool_gdrvinfo(struct net_device *dev,
  4673. struct ethtool_drvinfo *info)
  4674. {
  4675. struct s2io_nic *sp = dev->priv;
  4676. strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
  4677. strncpy(info->version, s2io_driver_version, sizeof(info->version));
  4678. strncpy(info->fw_version, "", sizeof(info->fw_version));
  4679. strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
  4680. info->regdump_len = XENA_REG_SPACE;
  4681. info->eedump_len = XENA_EEPROM_SPACE;
  4682. }
  4683. /**
  4684. * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
  4685. * @sp: private member of the device structure, which is a pointer to the
  4686. * s2io_nic structure.
  4687. * @regs : pointer to the structure with parameters given by ethtool for
  4688. * dumping the registers.
  4689. * @reg_space: The input argumnet into which all the registers are dumped.
  4690. * Description:
  4691. * Dumps the entire register space of xFrame NIC into the user given
  4692. * buffer area.
  4693. * Return value :
  4694. * void .
  4695. */
  4696. static void s2io_ethtool_gregs(struct net_device *dev,
  4697. struct ethtool_regs *regs, void *space)
  4698. {
  4699. int i;
  4700. u64 reg;
  4701. u8 *reg_space = (u8 *) space;
  4702. struct s2io_nic *sp = dev->priv;
  4703. regs->len = XENA_REG_SPACE;
  4704. regs->version = sp->pdev->subsystem_device;
  4705. for (i = 0; i < regs->len; i += 8) {
  4706. reg = readq(sp->bar0 + i);
  4707. memcpy((reg_space + i), &reg, 8);
  4708. }
  4709. }
  4710. /**
  4711. * s2io_phy_id - timer function that alternates adapter LED.
  4712. * @data : address of the private member of the device structure, which
  4713. * is a pointer to the s2io_nic structure, provided as an u32.
  4714. * Description: This is actually the timer function that alternates the
  4715. * adapter LED bit of the adapter control bit to set/reset every time on
  4716. * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
  4717. * once every second.
  4718. */
  4719. static void s2io_phy_id(unsigned long data)
  4720. {
  4721. struct s2io_nic *sp = (struct s2io_nic *) data;
  4722. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4723. u64 val64 = 0;
  4724. u16 subid;
  4725. subid = sp->pdev->subsystem_device;
  4726. if ((sp->device_type == XFRAME_II_DEVICE) ||
  4727. ((subid & 0xFF) >= 0x07)) {
  4728. val64 = readq(&bar0->gpio_control);
  4729. val64 ^= GPIO_CTRL_GPIO_0;
  4730. writeq(val64, &bar0->gpio_control);
  4731. } else {
  4732. val64 = readq(&bar0->adapter_control);
  4733. val64 ^= ADAPTER_LED_ON;
  4734. writeq(val64, &bar0->adapter_control);
  4735. }
  4736. mod_timer(&sp->id_timer, jiffies + HZ / 2);
  4737. }
  4738. /**
  4739. * s2io_ethtool_idnic - To physically identify the nic on the system.
  4740. * @sp : private member of the device structure, which is a pointer to the
  4741. * s2io_nic structure.
  4742. * @id : pointer to the structure with identification parameters given by
  4743. * ethtool.
  4744. * Description: Used to physically identify the NIC on the system.
  4745. * The Link LED will blink for a time specified by the user for
  4746. * identification.
  4747. * NOTE: The Link has to be Up to be able to blink the LED. Hence
  4748. * identification is possible only if it's link is up.
  4749. * Return value:
  4750. * int , returns 0 on success
  4751. */
  4752. static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
  4753. {
  4754. u64 val64 = 0, last_gpio_ctrl_val;
  4755. struct s2io_nic *sp = dev->priv;
  4756. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4757. u16 subid;
  4758. subid = sp->pdev->subsystem_device;
  4759. last_gpio_ctrl_val = readq(&bar0->gpio_control);
  4760. if ((sp->device_type == XFRAME_I_DEVICE) &&
  4761. ((subid & 0xFF) < 0x07)) {
  4762. val64 = readq(&bar0->adapter_control);
  4763. if (!(val64 & ADAPTER_CNTL_EN)) {
  4764. printk(KERN_ERR
  4765. "Adapter Link down, cannot blink LED\n");
  4766. return -EFAULT;
  4767. }
  4768. }
  4769. if (sp->id_timer.function == NULL) {
  4770. init_timer(&sp->id_timer);
  4771. sp->id_timer.function = s2io_phy_id;
  4772. sp->id_timer.data = (unsigned long) sp;
  4773. }
  4774. mod_timer(&sp->id_timer, jiffies);
  4775. if (data)
  4776. msleep_interruptible(data * HZ);
  4777. else
  4778. msleep_interruptible(MAX_FLICKER_TIME);
  4779. del_timer_sync(&sp->id_timer);
  4780. if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
  4781. writeq(last_gpio_ctrl_val, &bar0->gpio_control);
  4782. last_gpio_ctrl_val = readq(&bar0->gpio_control);
  4783. }
  4784. return 0;
  4785. }
  4786. static void s2io_ethtool_gringparam(struct net_device *dev,
  4787. struct ethtool_ringparam *ering)
  4788. {
  4789. struct s2io_nic *sp = dev->priv;
  4790. int i,tx_desc_count=0,rx_desc_count=0;
  4791. if (sp->rxd_mode == RXD_MODE_1)
  4792. ering->rx_max_pending = MAX_RX_DESC_1;
  4793. else if (sp->rxd_mode == RXD_MODE_3B)
  4794. ering->rx_max_pending = MAX_RX_DESC_2;
  4795. ering->tx_max_pending = MAX_TX_DESC;
  4796. for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
  4797. tx_desc_count += sp->config.tx_cfg[i].fifo_len;
  4798. DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
  4799. ering->tx_pending = tx_desc_count;
  4800. rx_desc_count = 0;
  4801. for (i = 0 ; i < sp->config.rx_ring_num ; i++)
  4802. rx_desc_count += sp->config.rx_cfg[i].num_rxd;
  4803. ering->rx_pending = rx_desc_count;
  4804. ering->rx_mini_max_pending = 0;
  4805. ering->rx_mini_pending = 0;
  4806. if(sp->rxd_mode == RXD_MODE_1)
  4807. ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
  4808. else if (sp->rxd_mode == RXD_MODE_3B)
  4809. ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
  4810. ering->rx_jumbo_pending = rx_desc_count;
  4811. }
  4812. /**
  4813. * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
  4814. * @sp : private member of the device structure, which is a pointer to the
  4815. * s2io_nic structure.
  4816. * @ep : pointer to the structure with pause parameters given by ethtool.
  4817. * Description:
  4818. * Returns the Pause frame generation and reception capability of the NIC.
  4819. * Return value:
  4820. * void
  4821. */
  4822. static void s2io_ethtool_getpause_data(struct net_device *dev,
  4823. struct ethtool_pauseparam *ep)
  4824. {
  4825. u64 val64;
  4826. struct s2io_nic *sp = dev->priv;
  4827. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4828. val64 = readq(&bar0->rmac_pause_cfg);
  4829. if (val64 & RMAC_PAUSE_GEN_ENABLE)
  4830. ep->tx_pause = TRUE;
  4831. if (val64 & RMAC_PAUSE_RX_ENABLE)
  4832. ep->rx_pause = TRUE;
  4833. ep->autoneg = FALSE;
  4834. }
  4835. /**
  4836. * s2io_ethtool_setpause_data - set/reset pause frame generation.
  4837. * @sp : private member of the device structure, which is a pointer to the
  4838. * s2io_nic structure.
  4839. * @ep : pointer to the structure with pause parameters given by ethtool.
  4840. * Description:
  4841. * It can be used to set or reset Pause frame generation or reception
  4842. * support of the NIC.
  4843. * Return value:
  4844. * int, returns 0 on Success
  4845. */
  4846. static int s2io_ethtool_setpause_data(struct net_device *dev,
  4847. struct ethtool_pauseparam *ep)
  4848. {
  4849. u64 val64;
  4850. struct s2io_nic *sp = dev->priv;
  4851. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4852. val64 = readq(&bar0->rmac_pause_cfg);
  4853. if (ep->tx_pause)
  4854. val64 |= RMAC_PAUSE_GEN_ENABLE;
  4855. else
  4856. val64 &= ~RMAC_PAUSE_GEN_ENABLE;
  4857. if (ep->rx_pause)
  4858. val64 |= RMAC_PAUSE_RX_ENABLE;
  4859. else
  4860. val64 &= ~RMAC_PAUSE_RX_ENABLE;
  4861. writeq(val64, &bar0->rmac_pause_cfg);
  4862. return 0;
  4863. }
  4864. /**
  4865. * read_eeprom - reads 4 bytes of data from user given offset.
  4866. * @sp : private member of the device structure, which is a pointer to the
  4867. * s2io_nic structure.
  4868. * @off : offset at which the data must be written
  4869. * @data : Its an output parameter where the data read at the given
  4870. * offset is stored.
  4871. * Description:
  4872. * Will read 4 bytes of data from the user given offset and return the
  4873. * read data.
  4874. * NOTE: Will allow to read only part of the EEPROM visible through the
  4875. * I2C bus.
  4876. * Return value:
  4877. * -1 on failure and 0 on success.
  4878. */
  4879. #define S2IO_DEV_ID 5
  4880. static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
  4881. {
  4882. int ret = -1;
  4883. u32 exit_cnt = 0;
  4884. u64 val64;
  4885. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4886. if (sp->device_type == XFRAME_I_DEVICE) {
  4887. val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
  4888. I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
  4889. I2C_CONTROL_CNTL_START;
  4890. SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
  4891. while (exit_cnt < 5) {
  4892. val64 = readq(&bar0->i2c_control);
  4893. if (I2C_CONTROL_CNTL_END(val64)) {
  4894. *data = I2C_CONTROL_GET_DATA(val64);
  4895. ret = 0;
  4896. break;
  4897. }
  4898. msleep(50);
  4899. exit_cnt++;
  4900. }
  4901. }
  4902. if (sp->device_type == XFRAME_II_DEVICE) {
  4903. val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
  4904. SPI_CONTROL_BYTECNT(0x3) |
  4905. SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
  4906. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4907. val64 |= SPI_CONTROL_REQ;
  4908. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4909. while (exit_cnt < 5) {
  4910. val64 = readq(&bar0->spi_control);
  4911. if (val64 & SPI_CONTROL_NACK) {
  4912. ret = 1;
  4913. break;
  4914. } else if (val64 & SPI_CONTROL_DONE) {
  4915. *data = readq(&bar0->spi_data);
  4916. *data &= 0xffffff;
  4917. ret = 0;
  4918. break;
  4919. }
  4920. msleep(50);
  4921. exit_cnt++;
  4922. }
  4923. }
  4924. return ret;
  4925. }
  4926. /**
  4927. * write_eeprom - actually writes the relevant part of the data value.
  4928. * @sp : private member of the device structure, which is a pointer to the
  4929. * s2io_nic structure.
  4930. * @off : offset at which the data must be written
  4931. * @data : The data that is to be written
  4932. * @cnt : Number of bytes of the data that are actually to be written into
  4933. * the Eeprom. (max of 3)
  4934. * Description:
  4935. * Actually writes the relevant part of the data value into the Eeprom
  4936. * through the I2C bus.
  4937. * Return value:
  4938. * 0 on success, -1 on failure.
  4939. */
  4940. static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
  4941. {
  4942. int exit_cnt = 0, ret = -1;
  4943. u64 val64;
  4944. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4945. if (sp->device_type == XFRAME_I_DEVICE) {
  4946. val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
  4947. I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
  4948. I2C_CONTROL_CNTL_START;
  4949. SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
  4950. while (exit_cnt < 5) {
  4951. val64 = readq(&bar0->i2c_control);
  4952. if (I2C_CONTROL_CNTL_END(val64)) {
  4953. if (!(val64 & I2C_CONTROL_NACK))
  4954. ret = 0;
  4955. break;
  4956. }
  4957. msleep(50);
  4958. exit_cnt++;
  4959. }
  4960. }
  4961. if (sp->device_type == XFRAME_II_DEVICE) {
  4962. int write_cnt = (cnt == 8) ? 0 : cnt;
  4963. writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
  4964. val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
  4965. SPI_CONTROL_BYTECNT(write_cnt) |
  4966. SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
  4967. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4968. val64 |= SPI_CONTROL_REQ;
  4969. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4970. while (exit_cnt < 5) {
  4971. val64 = readq(&bar0->spi_control);
  4972. if (val64 & SPI_CONTROL_NACK) {
  4973. ret = 1;
  4974. break;
  4975. } else if (val64 & SPI_CONTROL_DONE) {
  4976. ret = 0;
  4977. break;
  4978. }
  4979. msleep(50);
  4980. exit_cnt++;
  4981. }
  4982. }
  4983. return ret;
  4984. }
  4985. static void s2io_vpd_read(struct s2io_nic *nic)
  4986. {
  4987. u8 *vpd_data;
  4988. u8 data;
  4989. int i=0, cnt, fail = 0;
  4990. int vpd_addr = 0x80;
  4991. if (nic->device_type == XFRAME_II_DEVICE) {
  4992. strcpy(nic->product_name, "Xframe II 10GbE network adapter");
  4993. vpd_addr = 0x80;
  4994. }
  4995. else {
  4996. strcpy(nic->product_name, "Xframe I 10GbE network adapter");
  4997. vpd_addr = 0x50;
  4998. }
  4999. strcpy(nic->serial_num, "NOT AVAILABLE");
  5000. vpd_data = kmalloc(256, GFP_KERNEL);
  5001. if (!vpd_data) {
  5002. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  5003. return;
  5004. }
  5005. nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
  5006. for (i = 0; i < 256; i +=4 ) {
  5007. pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
  5008. pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
  5009. pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
  5010. for (cnt = 0; cnt <5; cnt++) {
  5011. msleep(2);
  5012. pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
  5013. if (data == 0x80)
  5014. break;
  5015. }
  5016. if (cnt >= 5) {
  5017. DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
  5018. fail = 1;
  5019. break;
  5020. }
  5021. pci_read_config_dword(nic->pdev, (vpd_addr + 4),
  5022. (u32 *)&vpd_data[i]);
  5023. }
  5024. if(!fail) {
  5025. /* read serial number of adapter */
  5026. for (cnt = 0; cnt < 256; cnt++) {
  5027. if ((vpd_data[cnt] == 'S') &&
  5028. (vpd_data[cnt+1] == 'N') &&
  5029. (vpd_data[cnt+2] < VPD_STRING_LEN)) {
  5030. memset(nic->serial_num, 0, VPD_STRING_LEN);
  5031. memcpy(nic->serial_num, &vpd_data[cnt + 3],
  5032. vpd_data[cnt+2]);
  5033. break;
  5034. }
  5035. }
  5036. }
  5037. if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
  5038. memset(nic->product_name, 0, vpd_data[1]);
  5039. memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
  5040. }
  5041. kfree(vpd_data);
  5042. nic->mac_control.stats_info->sw_stat.mem_freed += 256;
  5043. }
  5044. /**
  5045. * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
  5046. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
  5047. * @eeprom : pointer to the user level structure provided by ethtool,
  5048. * containing all relevant information.
  5049. * @data_buf : user defined value to be written into Eeprom.
  5050. * Description: Reads the values stored in the Eeprom at given offset
  5051. * for a given length. Stores these values int the input argument data
  5052. * buffer 'data_buf' and returns these to the caller (ethtool.)
  5053. * Return value:
  5054. * int 0 on success
  5055. */
  5056. static int s2io_ethtool_geeprom(struct net_device *dev,
  5057. struct ethtool_eeprom *eeprom, u8 * data_buf)
  5058. {
  5059. u32 i, valid;
  5060. u64 data;
  5061. struct s2io_nic *sp = dev->priv;
  5062. eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
  5063. if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
  5064. eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
  5065. for (i = 0; i < eeprom->len; i += 4) {
  5066. if (read_eeprom(sp, (eeprom->offset + i), &data)) {
  5067. DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
  5068. return -EFAULT;
  5069. }
  5070. valid = INV(data);
  5071. memcpy((data_buf + i), &valid, 4);
  5072. }
  5073. return 0;
  5074. }
  5075. /**
  5076. * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
  5077. * @sp : private member of the device structure, which is a pointer to the
  5078. * s2io_nic structure.
  5079. * @eeprom : pointer to the user level structure provided by ethtool,
  5080. * containing all relevant information.
  5081. * @data_buf ; user defined value to be written into Eeprom.
  5082. * Description:
  5083. * Tries to write the user provided value in the Eeprom, at the offset
  5084. * given by the user.
  5085. * Return value:
  5086. * 0 on success, -EFAULT on failure.
  5087. */
  5088. static int s2io_ethtool_seeprom(struct net_device *dev,
  5089. struct ethtool_eeprom *eeprom,
  5090. u8 * data_buf)
  5091. {
  5092. int len = eeprom->len, cnt = 0;
  5093. u64 valid = 0, data;
  5094. struct s2io_nic *sp = dev->priv;
  5095. if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
  5096. DBG_PRINT(ERR_DBG,
  5097. "ETHTOOL_WRITE_EEPROM Err: Magic value ");
  5098. DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
  5099. eeprom->magic);
  5100. return -EFAULT;
  5101. }
  5102. while (len) {
  5103. data = (u32) data_buf[cnt] & 0x000000FF;
  5104. if (data) {
  5105. valid = (u32) (data << 24);
  5106. } else
  5107. valid = data;
  5108. if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
  5109. DBG_PRINT(ERR_DBG,
  5110. "ETHTOOL_WRITE_EEPROM Err: Cannot ");
  5111. DBG_PRINT(ERR_DBG,
  5112. "write into the specified offset\n");
  5113. return -EFAULT;
  5114. }
  5115. cnt++;
  5116. len--;
  5117. }
  5118. return 0;
  5119. }
  5120. /**
  5121. * s2io_register_test - reads and writes into all clock domains.
  5122. * @sp : private member of the device structure, which is a pointer to the
  5123. * s2io_nic structure.
  5124. * @data : variable that returns the result of each of the test conducted b
  5125. * by the driver.
  5126. * Description:
  5127. * Read and write into all clock domains. The NIC has 3 clock domains,
  5128. * see that registers in all the three regions are accessible.
  5129. * Return value:
  5130. * 0 on success.
  5131. */
  5132. static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
  5133. {
  5134. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5135. u64 val64 = 0, exp_val;
  5136. int fail = 0;
  5137. val64 = readq(&bar0->pif_rd_swapper_fb);
  5138. if (val64 != 0x123456789abcdefULL) {
  5139. fail = 1;
  5140. DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
  5141. }
  5142. val64 = readq(&bar0->rmac_pause_cfg);
  5143. if (val64 != 0xc000ffff00000000ULL) {
  5144. fail = 1;
  5145. DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
  5146. }
  5147. val64 = readq(&bar0->rx_queue_cfg);
  5148. if (sp->device_type == XFRAME_II_DEVICE)
  5149. exp_val = 0x0404040404040404ULL;
  5150. else
  5151. exp_val = 0x0808080808080808ULL;
  5152. if (val64 != exp_val) {
  5153. fail = 1;
  5154. DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
  5155. }
  5156. val64 = readq(&bar0->xgxs_efifo_cfg);
  5157. if (val64 != 0x000000001923141EULL) {
  5158. fail = 1;
  5159. DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
  5160. }
  5161. val64 = 0x5A5A5A5A5A5A5A5AULL;
  5162. writeq(val64, &bar0->xmsi_data);
  5163. val64 = readq(&bar0->xmsi_data);
  5164. if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
  5165. fail = 1;
  5166. DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
  5167. }
  5168. val64 = 0xA5A5A5A5A5A5A5A5ULL;
  5169. writeq(val64, &bar0->xmsi_data);
  5170. val64 = readq(&bar0->xmsi_data);
  5171. if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
  5172. fail = 1;
  5173. DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
  5174. }
  5175. *data = fail;
  5176. return fail;
  5177. }
  5178. /**
  5179. * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
  5180. * @sp : private member of the device structure, which is a pointer to the
  5181. * s2io_nic structure.
  5182. * @data:variable that returns the result of each of the test conducted by
  5183. * the driver.
  5184. * Description:
  5185. * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
  5186. * register.
  5187. * Return value:
  5188. * 0 on success.
  5189. */
  5190. static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
  5191. {
  5192. int fail = 0;
  5193. u64 ret_data, org_4F0, org_7F0;
  5194. u8 saved_4F0 = 0, saved_7F0 = 0;
  5195. struct net_device *dev = sp->dev;
  5196. /* Test Write Error at offset 0 */
  5197. /* Note that SPI interface allows write access to all areas
  5198. * of EEPROM. Hence doing all negative testing only for Xframe I.
  5199. */
  5200. if (sp->device_type == XFRAME_I_DEVICE)
  5201. if (!write_eeprom(sp, 0, 0, 3))
  5202. fail = 1;
  5203. /* Save current values at offsets 0x4F0 and 0x7F0 */
  5204. if (!read_eeprom(sp, 0x4F0, &org_4F0))
  5205. saved_4F0 = 1;
  5206. if (!read_eeprom(sp, 0x7F0, &org_7F0))
  5207. saved_7F0 = 1;
  5208. /* Test Write at offset 4f0 */
  5209. if (write_eeprom(sp, 0x4F0, 0x012345, 3))
  5210. fail = 1;
  5211. if (read_eeprom(sp, 0x4F0, &ret_data))
  5212. fail = 1;
  5213. if (ret_data != 0x012345) {
  5214. DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
  5215. "Data written %llx Data read %llx\n",
  5216. dev->name, (unsigned long long)0x12345,
  5217. (unsigned long long)ret_data);
  5218. fail = 1;
  5219. }
  5220. /* Reset the EEPROM data go FFFF */
  5221. write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
  5222. /* Test Write Request Error at offset 0x7c */
  5223. if (sp->device_type == XFRAME_I_DEVICE)
  5224. if (!write_eeprom(sp, 0x07C, 0, 3))
  5225. fail = 1;
  5226. /* Test Write Request at offset 0x7f0 */
  5227. if (write_eeprom(sp, 0x7F0, 0x012345, 3))
  5228. fail = 1;
  5229. if (read_eeprom(sp, 0x7F0, &ret_data))
  5230. fail = 1;
  5231. if (ret_data != 0x012345) {
  5232. DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
  5233. "Data written %llx Data read %llx\n",
  5234. dev->name, (unsigned long long)0x12345,
  5235. (unsigned long long)ret_data);
  5236. fail = 1;
  5237. }
  5238. /* Reset the EEPROM data go FFFF */
  5239. write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
  5240. if (sp->device_type == XFRAME_I_DEVICE) {
  5241. /* Test Write Error at offset 0x80 */
  5242. if (!write_eeprom(sp, 0x080, 0, 3))
  5243. fail = 1;
  5244. /* Test Write Error at offset 0xfc */
  5245. if (!write_eeprom(sp, 0x0FC, 0, 3))
  5246. fail = 1;
  5247. /* Test Write Error at offset 0x100 */
  5248. if (!write_eeprom(sp, 0x100, 0, 3))
  5249. fail = 1;
  5250. /* Test Write Error at offset 4ec */
  5251. if (!write_eeprom(sp, 0x4EC, 0, 3))
  5252. fail = 1;
  5253. }
  5254. /* Restore values at offsets 0x4F0 and 0x7F0 */
  5255. if (saved_4F0)
  5256. write_eeprom(sp, 0x4F0, org_4F0, 3);
  5257. if (saved_7F0)
  5258. write_eeprom(sp, 0x7F0, org_7F0, 3);
  5259. *data = fail;
  5260. return fail;
  5261. }
  5262. /**
  5263. * s2io_bist_test - invokes the MemBist test of the card .
  5264. * @sp : private member of the device structure, which is a pointer to the
  5265. * s2io_nic structure.
  5266. * @data:variable that returns the result of each of the test conducted by
  5267. * the driver.
  5268. * Description:
  5269. * This invokes the MemBist test of the card. We give around
  5270. * 2 secs time for the Test to complete. If it's still not complete
  5271. * within this peiod, we consider that the test failed.
  5272. * Return value:
  5273. * 0 on success and -1 on failure.
  5274. */
  5275. static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
  5276. {
  5277. u8 bist = 0;
  5278. int cnt = 0, ret = -1;
  5279. pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
  5280. bist |= PCI_BIST_START;
  5281. pci_write_config_word(sp->pdev, PCI_BIST, bist);
  5282. while (cnt < 20) {
  5283. pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
  5284. if (!(bist & PCI_BIST_START)) {
  5285. *data = (bist & PCI_BIST_CODE_MASK);
  5286. ret = 0;
  5287. break;
  5288. }
  5289. msleep(100);
  5290. cnt++;
  5291. }
  5292. return ret;
  5293. }
  5294. /**
  5295. * s2io-link_test - verifies the link state of the nic
  5296. * @sp ; private member of the device structure, which is a pointer to the
  5297. * s2io_nic structure.
  5298. * @data: variable that returns the result of each of the test conducted by
  5299. * the driver.
  5300. * Description:
  5301. * The function verifies the link state of the NIC and updates the input
  5302. * argument 'data' appropriately.
  5303. * Return value:
  5304. * 0 on success.
  5305. */
  5306. static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
  5307. {
  5308. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5309. u64 val64;
  5310. val64 = readq(&bar0->adapter_status);
  5311. if(!(LINK_IS_UP(val64)))
  5312. *data = 1;
  5313. else
  5314. *data = 0;
  5315. return *data;
  5316. }
  5317. /**
  5318. * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
  5319. * @sp - private member of the device structure, which is a pointer to the
  5320. * s2io_nic structure.
  5321. * @data - variable that returns the result of each of the test
  5322. * conducted by the driver.
  5323. * Description:
  5324. * This is one of the offline test that tests the read and write
  5325. * access to the RldRam chip on the NIC.
  5326. * Return value:
  5327. * 0 on success.
  5328. */
  5329. static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
  5330. {
  5331. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5332. u64 val64;
  5333. int cnt, iteration = 0, test_fail = 0;
  5334. val64 = readq(&bar0->adapter_control);
  5335. val64 &= ~ADAPTER_ECC_EN;
  5336. writeq(val64, &bar0->adapter_control);
  5337. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5338. val64 |= MC_RLDRAM_TEST_MODE;
  5339. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5340. val64 = readq(&bar0->mc_rldram_mrs);
  5341. val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
  5342. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  5343. val64 |= MC_RLDRAM_MRS_ENABLE;
  5344. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  5345. while (iteration < 2) {
  5346. val64 = 0x55555555aaaa0000ULL;
  5347. if (iteration == 1) {
  5348. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5349. }
  5350. writeq(val64, &bar0->mc_rldram_test_d0);
  5351. val64 = 0xaaaa5a5555550000ULL;
  5352. if (iteration == 1) {
  5353. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5354. }
  5355. writeq(val64, &bar0->mc_rldram_test_d1);
  5356. val64 = 0x55aaaaaaaa5a0000ULL;
  5357. if (iteration == 1) {
  5358. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5359. }
  5360. writeq(val64, &bar0->mc_rldram_test_d2);
  5361. val64 = (u64) (0x0000003ffffe0100ULL);
  5362. writeq(val64, &bar0->mc_rldram_test_add);
  5363. val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
  5364. MC_RLDRAM_TEST_GO;
  5365. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5366. for (cnt = 0; cnt < 5; cnt++) {
  5367. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5368. if (val64 & MC_RLDRAM_TEST_DONE)
  5369. break;
  5370. msleep(200);
  5371. }
  5372. if (cnt == 5)
  5373. break;
  5374. val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
  5375. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5376. for (cnt = 0; cnt < 5; cnt++) {
  5377. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5378. if (val64 & MC_RLDRAM_TEST_DONE)
  5379. break;
  5380. msleep(500);
  5381. }
  5382. if (cnt == 5)
  5383. break;
  5384. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5385. if (!(val64 & MC_RLDRAM_TEST_PASS))
  5386. test_fail = 1;
  5387. iteration++;
  5388. }
  5389. *data = test_fail;
  5390. /* Bring the adapter out of test mode */
  5391. SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
  5392. return test_fail;
  5393. }
  5394. /**
  5395. * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
  5396. * @sp : private member of the device structure, which is a pointer to the
  5397. * s2io_nic structure.
  5398. * @ethtest : pointer to a ethtool command specific structure that will be
  5399. * returned to the user.
  5400. * @data : variable that returns the result of each of the test
  5401. * conducted by the driver.
  5402. * Description:
  5403. * This function conducts 6 tests ( 4 offline and 2 online) to determine
  5404. * the health of the card.
  5405. * Return value:
  5406. * void
  5407. */
  5408. static void s2io_ethtool_test(struct net_device *dev,
  5409. struct ethtool_test *ethtest,
  5410. uint64_t * data)
  5411. {
  5412. struct s2io_nic *sp = dev->priv;
  5413. int orig_state = netif_running(sp->dev);
  5414. if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
  5415. /* Offline Tests. */
  5416. if (orig_state)
  5417. s2io_close(sp->dev);
  5418. if (s2io_register_test(sp, &data[0]))
  5419. ethtest->flags |= ETH_TEST_FL_FAILED;
  5420. s2io_reset(sp);
  5421. if (s2io_rldram_test(sp, &data[3]))
  5422. ethtest->flags |= ETH_TEST_FL_FAILED;
  5423. s2io_reset(sp);
  5424. if (s2io_eeprom_test(sp, &data[1]))
  5425. ethtest->flags |= ETH_TEST_FL_FAILED;
  5426. if (s2io_bist_test(sp, &data[4]))
  5427. ethtest->flags |= ETH_TEST_FL_FAILED;
  5428. if (orig_state)
  5429. s2io_open(sp->dev);
  5430. data[2] = 0;
  5431. } else {
  5432. /* Online Tests. */
  5433. if (!orig_state) {
  5434. DBG_PRINT(ERR_DBG,
  5435. "%s: is not up, cannot run test\n",
  5436. dev->name);
  5437. data[0] = -1;
  5438. data[1] = -1;
  5439. data[2] = -1;
  5440. data[3] = -1;
  5441. data[4] = -1;
  5442. }
  5443. if (s2io_link_test(sp, &data[2]))
  5444. ethtest->flags |= ETH_TEST_FL_FAILED;
  5445. data[0] = 0;
  5446. data[1] = 0;
  5447. data[3] = 0;
  5448. data[4] = 0;
  5449. }
  5450. }
  5451. static void s2io_get_ethtool_stats(struct net_device *dev,
  5452. struct ethtool_stats *estats,
  5453. u64 * tmp_stats)
  5454. {
  5455. int i = 0, k;
  5456. struct s2io_nic *sp = dev->priv;
  5457. struct stat_block *stat_info = sp->mac_control.stats_info;
  5458. s2io_updt_stats(sp);
  5459. tmp_stats[i++] =
  5460. (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
  5461. le32_to_cpu(stat_info->tmac_frms);
  5462. tmp_stats[i++] =
  5463. (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
  5464. le32_to_cpu(stat_info->tmac_data_octets);
  5465. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
  5466. tmp_stats[i++] =
  5467. (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
  5468. le32_to_cpu(stat_info->tmac_mcst_frms);
  5469. tmp_stats[i++] =
  5470. (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
  5471. le32_to_cpu(stat_info->tmac_bcst_frms);
  5472. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
  5473. tmp_stats[i++] =
  5474. (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
  5475. le32_to_cpu(stat_info->tmac_ttl_octets);
  5476. tmp_stats[i++] =
  5477. (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
  5478. le32_to_cpu(stat_info->tmac_ucst_frms);
  5479. tmp_stats[i++] =
  5480. (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
  5481. le32_to_cpu(stat_info->tmac_nucst_frms);
  5482. tmp_stats[i++] =
  5483. (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
  5484. le32_to_cpu(stat_info->tmac_any_err_frms);
  5485. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
  5486. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
  5487. tmp_stats[i++] =
  5488. (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
  5489. le32_to_cpu(stat_info->tmac_vld_ip);
  5490. tmp_stats[i++] =
  5491. (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
  5492. le32_to_cpu(stat_info->tmac_drop_ip);
  5493. tmp_stats[i++] =
  5494. (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
  5495. le32_to_cpu(stat_info->tmac_icmp);
  5496. tmp_stats[i++] =
  5497. (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
  5498. le32_to_cpu(stat_info->tmac_rst_tcp);
  5499. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
  5500. tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
  5501. le32_to_cpu(stat_info->tmac_udp);
  5502. tmp_stats[i++] =
  5503. (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
  5504. le32_to_cpu(stat_info->rmac_vld_frms);
  5505. tmp_stats[i++] =
  5506. (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
  5507. le32_to_cpu(stat_info->rmac_data_octets);
  5508. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
  5509. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
  5510. tmp_stats[i++] =
  5511. (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
  5512. le32_to_cpu(stat_info->rmac_vld_mcst_frms);
  5513. tmp_stats[i++] =
  5514. (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
  5515. le32_to_cpu(stat_info->rmac_vld_bcst_frms);
  5516. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
  5517. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
  5518. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
  5519. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
  5520. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
  5521. tmp_stats[i++] =
  5522. (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
  5523. le32_to_cpu(stat_info->rmac_ttl_octets);
  5524. tmp_stats[i++] =
  5525. (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
  5526. << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
  5527. tmp_stats[i++] =
  5528. (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
  5529. << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
  5530. tmp_stats[i++] =
  5531. (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
  5532. le32_to_cpu(stat_info->rmac_discarded_frms);
  5533. tmp_stats[i++] =
  5534. (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
  5535. << 32 | le32_to_cpu(stat_info->rmac_drop_events);
  5536. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
  5537. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
  5538. tmp_stats[i++] =
  5539. (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
  5540. le32_to_cpu(stat_info->rmac_usized_frms);
  5541. tmp_stats[i++] =
  5542. (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
  5543. le32_to_cpu(stat_info->rmac_osized_frms);
  5544. tmp_stats[i++] =
  5545. (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
  5546. le32_to_cpu(stat_info->rmac_frag_frms);
  5547. tmp_stats[i++] =
  5548. (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
  5549. le32_to_cpu(stat_info->rmac_jabber_frms);
  5550. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
  5551. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
  5552. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
  5553. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
  5554. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
  5555. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
  5556. tmp_stats[i++] =
  5557. (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
  5558. le32_to_cpu(stat_info->rmac_ip);
  5559. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
  5560. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
  5561. tmp_stats[i++] =
  5562. (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
  5563. le32_to_cpu(stat_info->rmac_drop_ip);
  5564. tmp_stats[i++] =
  5565. (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
  5566. le32_to_cpu(stat_info->rmac_icmp);
  5567. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
  5568. tmp_stats[i++] =
  5569. (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
  5570. le32_to_cpu(stat_info->rmac_udp);
  5571. tmp_stats[i++] =
  5572. (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
  5573. le32_to_cpu(stat_info->rmac_err_drp_udp);
  5574. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
  5575. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
  5576. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
  5577. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
  5578. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
  5579. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
  5580. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
  5581. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
  5582. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
  5583. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
  5584. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
  5585. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
  5586. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
  5587. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
  5588. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
  5589. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
  5590. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
  5591. tmp_stats[i++] =
  5592. (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
  5593. le32_to_cpu(stat_info->rmac_pause_cnt);
  5594. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
  5595. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
  5596. tmp_stats[i++] =
  5597. (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
  5598. le32_to_cpu(stat_info->rmac_accepted_ip);
  5599. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
  5600. tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
  5601. tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
  5602. tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
  5603. tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
  5604. tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
  5605. tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
  5606. tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
  5607. tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
  5608. tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
  5609. tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
  5610. tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
  5611. tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
  5612. tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
  5613. tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
  5614. tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
  5615. tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
  5616. tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
  5617. tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
  5618. /* Enhanced statistics exist only for Hercules */
  5619. if(sp->device_type == XFRAME_II_DEVICE) {
  5620. tmp_stats[i++] =
  5621. le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
  5622. tmp_stats[i++] =
  5623. le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
  5624. tmp_stats[i++] =
  5625. le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
  5626. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
  5627. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
  5628. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
  5629. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
  5630. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
  5631. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
  5632. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
  5633. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
  5634. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
  5635. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
  5636. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
  5637. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
  5638. tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
  5639. }
  5640. tmp_stats[i++] = 0;
  5641. tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
  5642. tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
  5643. tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
  5644. tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
  5645. tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
  5646. tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
  5647. for (k = 0; k < MAX_RX_RINGS; k++)
  5648. tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
  5649. tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
  5650. tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
  5651. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
  5652. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
  5653. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
  5654. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
  5655. tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
  5656. tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
  5657. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
  5658. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
  5659. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
  5660. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
  5661. tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
  5662. tmp_stats[i++] = stat_info->sw_stat.sending_both;
  5663. tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
  5664. tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
  5665. if (stat_info->sw_stat.num_aggregations) {
  5666. u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
  5667. int count = 0;
  5668. /*
  5669. * Since 64-bit divide does not work on all platforms,
  5670. * do repeated subtraction.
  5671. */
  5672. while (tmp >= stat_info->sw_stat.num_aggregations) {
  5673. tmp -= stat_info->sw_stat.num_aggregations;
  5674. count++;
  5675. }
  5676. tmp_stats[i++] = count;
  5677. }
  5678. else
  5679. tmp_stats[i++] = 0;
  5680. tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
  5681. tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
  5682. tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
  5683. tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
  5684. tmp_stats[i++] = stat_info->sw_stat.mem_freed;
  5685. tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
  5686. tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
  5687. tmp_stats[i++] = stat_info->sw_stat.link_up_time;
  5688. tmp_stats[i++] = stat_info->sw_stat.link_down_time;
  5689. tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
  5690. tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
  5691. tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
  5692. tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
  5693. tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
  5694. tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
  5695. tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
  5696. tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
  5697. tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
  5698. tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
  5699. tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
  5700. tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
  5701. tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
  5702. tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
  5703. tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
  5704. tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
  5705. tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
  5706. tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
  5707. tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
  5708. tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
  5709. tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
  5710. tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
  5711. tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
  5712. tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
  5713. tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
  5714. tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
  5715. tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
  5716. tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
  5717. tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
  5718. tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
  5719. tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
  5720. }
  5721. static int s2io_ethtool_get_regs_len(struct net_device *dev)
  5722. {
  5723. return (XENA_REG_SPACE);
  5724. }
  5725. static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
  5726. {
  5727. struct s2io_nic *sp = dev->priv;
  5728. return (sp->rx_csum);
  5729. }
  5730. static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
  5731. {
  5732. struct s2io_nic *sp = dev->priv;
  5733. if (data)
  5734. sp->rx_csum = 1;
  5735. else
  5736. sp->rx_csum = 0;
  5737. return 0;
  5738. }
  5739. static int s2io_get_eeprom_len(struct net_device *dev)
  5740. {
  5741. return (XENA_EEPROM_SPACE);
  5742. }
  5743. static int s2io_get_sset_count(struct net_device *dev, int sset)
  5744. {
  5745. struct s2io_nic *sp = dev->priv;
  5746. switch (sset) {
  5747. case ETH_SS_TEST:
  5748. return S2IO_TEST_LEN;
  5749. case ETH_SS_STATS:
  5750. switch(sp->device_type) {
  5751. case XFRAME_I_DEVICE:
  5752. return XFRAME_I_STAT_LEN;
  5753. case XFRAME_II_DEVICE:
  5754. return XFRAME_II_STAT_LEN;
  5755. default:
  5756. return 0;
  5757. }
  5758. default:
  5759. return -EOPNOTSUPP;
  5760. }
  5761. }
  5762. static void s2io_ethtool_get_strings(struct net_device *dev,
  5763. u32 stringset, u8 * data)
  5764. {
  5765. int stat_size = 0;
  5766. struct s2io_nic *sp = dev->priv;
  5767. switch (stringset) {
  5768. case ETH_SS_TEST:
  5769. memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
  5770. break;
  5771. case ETH_SS_STATS:
  5772. stat_size = sizeof(ethtool_xena_stats_keys);
  5773. memcpy(data, &ethtool_xena_stats_keys,stat_size);
  5774. if(sp->device_type == XFRAME_II_DEVICE) {
  5775. memcpy(data + stat_size,
  5776. &ethtool_enhanced_stats_keys,
  5777. sizeof(ethtool_enhanced_stats_keys));
  5778. stat_size += sizeof(ethtool_enhanced_stats_keys);
  5779. }
  5780. memcpy(data + stat_size, &ethtool_driver_stats_keys,
  5781. sizeof(ethtool_driver_stats_keys));
  5782. }
  5783. }
  5784. static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
  5785. {
  5786. if (data)
  5787. dev->features |= NETIF_F_IP_CSUM;
  5788. else
  5789. dev->features &= ~NETIF_F_IP_CSUM;
  5790. return 0;
  5791. }
  5792. static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
  5793. {
  5794. return (dev->features & NETIF_F_TSO) != 0;
  5795. }
  5796. static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
  5797. {
  5798. if (data)
  5799. dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
  5800. else
  5801. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
  5802. return 0;
  5803. }
  5804. static const struct ethtool_ops netdev_ethtool_ops = {
  5805. .get_settings = s2io_ethtool_gset,
  5806. .set_settings = s2io_ethtool_sset,
  5807. .get_drvinfo = s2io_ethtool_gdrvinfo,
  5808. .get_regs_len = s2io_ethtool_get_regs_len,
  5809. .get_regs = s2io_ethtool_gregs,
  5810. .get_link = ethtool_op_get_link,
  5811. .get_eeprom_len = s2io_get_eeprom_len,
  5812. .get_eeprom = s2io_ethtool_geeprom,
  5813. .set_eeprom = s2io_ethtool_seeprom,
  5814. .get_ringparam = s2io_ethtool_gringparam,
  5815. .get_pauseparam = s2io_ethtool_getpause_data,
  5816. .set_pauseparam = s2io_ethtool_setpause_data,
  5817. .get_rx_csum = s2io_ethtool_get_rx_csum,
  5818. .set_rx_csum = s2io_ethtool_set_rx_csum,
  5819. .set_tx_csum = s2io_ethtool_op_set_tx_csum,
  5820. .set_sg = ethtool_op_set_sg,
  5821. .get_tso = s2io_ethtool_op_get_tso,
  5822. .set_tso = s2io_ethtool_op_set_tso,
  5823. .set_ufo = ethtool_op_set_ufo,
  5824. .self_test = s2io_ethtool_test,
  5825. .get_strings = s2io_ethtool_get_strings,
  5826. .phys_id = s2io_ethtool_idnic,
  5827. .get_ethtool_stats = s2io_get_ethtool_stats,
  5828. .get_sset_count = s2io_get_sset_count,
  5829. };
  5830. /**
  5831. * s2io_ioctl - Entry point for the Ioctl
  5832. * @dev : Device pointer.
  5833. * @ifr : An IOCTL specefic structure, that can contain a pointer to
  5834. * a proprietary structure used to pass information to the driver.
  5835. * @cmd : This is used to distinguish between the different commands that
  5836. * can be passed to the IOCTL functions.
  5837. * Description:
  5838. * Currently there are no special functionality supported in IOCTL, hence
  5839. * function always return EOPNOTSUPPORTED
  5840. */
  5841. static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  5842. {
  5843. return -EOPNOTSUPP;
  5844. }
  5845. /**
  5846. * s2io_change_mtu - entry point to change MTU size for the device.
  5847. * @dev : device pointer.
  5848. * @new_mtu : the new MTU size for the device.
  5849. * Description: A driver entry point to change MTU size for the device.
  5850. * Before changing the MTU the device must be stopped.
  5851. * Return value:
  5852. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  5853. * file on failure.
  5854. */
  5855. static int s2io_change_mtu(struct net_device *dev, int new_mtu)
  5856. {
  5857. struct s2io_nic *sp = dev->priv;
  5858. int ret = 0;
  5859. if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
  5860. DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
  5861. dev->name);
  5862. return -EPERM;
  5863. }
  5864. dev->mtu = new_mtu;
  5865. if (netif_running(dev)) {
  5866. s2io_card_down(sp);
  5867. netif_stop_queue(dev);
  5868. ret = s2io_card_up(sp);
  5869. if (ret) {
  5870. DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
  5871. __FUNCTION__);
  5872. return ret;
  5873. }
  5874. if (netif_queue_stopped(dev))
  5875. netif_wake_queue(dev);
  5876. } else { /* Device is down */
  5877. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5878. u64 val64 = new_mtu;
  5879. writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
  5880. }
  5881. return ret;
  5882. }
  5883. /**
  5884. * s2io_tasklet - Bottom half of the ISR.
  5885. * @dev_adr : address of the device structure in dma_addr_t format.
  5886. * Description:
  5887. * This is the tasklet or the bottom half of the ISR. This is
  5888. * an extension of the ISR which is scheduled by the scheduler to be run
  5889. * when the load on the CPU is low. All low priority tasks of the ISR can
  5890. * be pushed into the tasklet. For now the tasklet is used only to
  5891. * replenish the Rx buffers in the Rx buffer descriptors.
  5892. * Return value:
  5893. * void.
  5894. */
  5895. static void s2io_tasklet(unsigned long dev_addr)
  5896. {
  5897. struct net_device *dev = (struct net_device *) dev_addr;
  5898. struct s2io_nic *sp = dev->priv;
  5899. int i, ret;
  5900. struct mac_info *mac_control;
  5901. struct config_param *config;
  5902. mac_control = &sp->mac_control;
  5903. config = &sp->config;
  5904. if (!TASKLET_IN_USE) {
  5905. for (i = 0; i < config->rx_ring_num; i++) {
  5906. ret = fill_rx_buffers(sp, i);
  5907. if (ret == -ENOMEM) {
  5908. DBG_PRINT(INFO_DBG, "%s: Out of ",
  5909. dev->name);
  5910. DBG_PRINT(INFO_DBG, "memory in tasklet\n");
  5911. break;
  5912. } else if (ret == -EFILL) {
  5913. DBG_PRINT(INFO_DBG,
  5914. "%s: Rx Ring %d is full\n",
  5915. dev->name, i);
  5916. break;
  5917. }
  5918. }
  5919. clear_bit(0, (&sp->tasklet_status));
  5920. }
  5921. }
  5922. /**
  5923. * s2io_set_link - Set the LInk status
  5924. * @data: long pointer to device private structue
  5925. * Description: Sets the link status for the adapter
  5926. */
  5927. static void s2io_set_link(struct work_struct *work)
  5928. {
  5929. struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
  5930. struct net_device *dev = nic->dev;
  5931. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  5932. register u64 val64;
  5933. u16 subid;
  5934. rtnl_lock();
  5935. if (!netif_running(dev))
  5936. goto out_unlock;
  5937. if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
  5938. /* The card is being reset, no point doing anything */
  5939. goto out_unlock;
  5940. }
  5941. subid = nic->pdev->subsystem_device;
  5942. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  5943. /*
  5944. * Allow a small delay for the NICs self initiated
  5945. * cleanup to complete.
  5946. */
  5947. msleep(100);
  5948. }
  5949. val64 = readq(&bar0->adapter_status);
  5950. if (LINK_IS_UP(val64)) {
  5951. if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
  5952. if (verify_xena_quiescence(nic)) {
  5953. val64 = readq(&bar0->adapter_control);
  5954. val64 |= ADAPTER_CNTL_EN;
  5955. writeq(val64, &bar0->adapter_control);
  5956. if (CARDS_WITH_FAULTY_LINK_INDICATORS(
  5957. nic->device_type, subid)) {
  5958. val64 = readq(&bar0->gpio_control);
  5959. val64 |= GPIO_CTRL_GPIO_0;
  5960. writeq(val64, &bar0->gpio_control);
  5961. val64 = readq(&bar0->gpio_control);
  5962. } else {
  5963. val64 |= ADAPTER_LED_ON;
  5964. writeq(val64, &bar0->adapter_control);
  5965. }
  5966. nic->device_enabled_once = TRUE;
  5967. } else {
  5968. DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
  5969. DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
  5970. netif_stop_queue(dev);
  5971. }
  5972. }
  5973. val64 = readq(&bar0->adapter_control);
  5974. val64 |= ADAPTER_LED_ON;
  5975. writeq(val64, &bar0->adapter_control);
  5976. s2io_link(nic, LINK_UP);
  5977. } else {
  5978. if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
  5979. subid)) {
  5980. val64 = readq(&bar0->gpio_control);
  5981. val64 &= ~GPIO_CTRL_GPIO_0;
  5982. writeq(val64, &bar0->gpio_control);
  5983. val64 = readq(&bar0->gpio_control);
  5984. }
  5985. /* turn off LED */
  5986. val64 = readq(&bar0->adapter_control);
  5987. val64 = val64 &(~ADAPTER_LED_ON);
  5988. writeq(val64, &bar0->adapter_control);
  5989. s2io_link(nic, LINK_DOWN);
  5990. }
  5991. clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
  5992. out_unlock:
  5993. rtnl_unlock();
  5994. }
  5995. static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
  5996. struct buffAdd *ba,
  5997. struct sk_buff **skb, u64 *temp0, u64 *temp1,
  5998. u64 *temp2, int size)
  5999. {
  6000. struct net_device *dev = sp->dev;
  6001. struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
  6002. if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
  6003. struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
  6004. /* allocate skb */
  6005. if (*skb) {
  6006. DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
  6007. /*
  6008. * As Rx frame are not going to be processed,
  6009. * using same mapped address for the Rxd
  6010. * buffer pointer
  6011. */
  6012. rxdp1->Buffer0_ptr = *temp0;
  6013. } else {
  6014. *skb = dev_alloc_skb(size);
  6015. if (!(*skb)) {
  6016. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  6017. DBG_PRINT(INFO_DBG, "memory to allocate ");
  6018. DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
  6019. sp->mac_control.stats_info->sw_stat. \
  6020. mem_alloc_fail_cnt++;
  6021. return -ENOMEM ;
  6022. }
  6023. sp->mac_control.stats_info->sw_stat.mem_allocated
  6024. += (*skb)->truesize;
  6025. /* storing the mapped addr in a temp variable
  6026. * such it will be used for next rxd whose
  6027. * Host Control is NULL
  6028. */
  6029. rxdp1->Buffer0_ptr = *temp0 =
  6030. pci_map_single( sp->pdev, (*skb)->data,
  6031. size - NET_IP_ALIGN,
  6032. PCI_DMA_FROMDEVICE);
  6033. if( (rxdp1->Buffer0_ptr == 0) ||
  6034. (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
  6035. goto memalloc_failed;
  6036. }
  6037. rxdp->Host_Control = (unsigned long) (*skb);
  6038. }
  6039. } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
  6040. struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
  6041. /* Two buffer Mode */
  6042. if (*skb) {
  6043. rxdp3->Buffer2_ptr = *temp2;
  6044. rxdp3->Buffer0_ptr = *temp0;
  6045. rxdp3->Buffer1_ptr = *temp1;
  6046. } else {
  6047. *skb = dev_alloc_skb(size);
  6048. if (!(*skb)) {
  6049. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  6050. DBG_PRINT(INFO_DBG, "memory to allocate ");
  6051. DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
  6052. sp->mac_control.stats_info->sw_stat. \
  6053. mem_alloc_fail_cnt++;
  6054. return -ENOMEM;
  6055. }
  6056. sp->mac_control.stats_info->sw_stat.mem_allocated
  6057. += (*skb)->truesize;
  6058. rxdp3->Buffer2_ptr = *temp2 =
  6059. pci_map_single(sp->pdev, (*skb)->data,
  6060. dev->mtu + 4,
  6061. PCI_DMA_FROMDEVICE);
  6062. if( (rxdp3->Buffer2_ptr == 0) ||
  6063. (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
  6064. goto memalloc_failed;
  6065. }
  6066. rxdp3->Buffer0_ptr = *temp0 =
  6067. pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
  6068. PCI_DMA_FROMDEVICE);
  6069. if( (rxdp3->Buffer0_ptr == 0) ||
  6070. (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
  6071. pci_unmap_single (sp->pdev,
  6072. (dma_addr_t)rxdp3->Buffer2_ptr,
  6073. dev->mtu + 4, PCI_DMA_FROMDEVICE);
  6074. goto memalloc_failed;
  6075. }
  6076. rxdp->Host_Control = (unsigned long) (*skb);
  6077. /* Buffer-1 will be dummy buffer not used */
  6078. rxdp3->Buffer1_ptr = *temp1 =
  6079. pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
  6080. PCI_DMA_FROMDEVICE);
  6081. if( (rxdp3->Buffer1_ptr == 0) ||
  6082. (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
  6083. pci_unmap_single (sp->pdev,
  6084. (dma_addr_t)rxdp3->Buffer0_ptr,
  6085. BUF0_LEN, PCI_DMA_FROMDEVICE);
  6086. pci_unmap_single (sp->pdev,
  6087. (dma_addr_t)rxdp3->Buffer2_ptr,
  6088. dev->mtu + 4, PCI_DMA_FROMDEVICE);
  6089. goto memalloc_failed;
  6090. }
  6091. }
  6092. }
  6093. return 0;
  6094. memalloc_failed:
  6095. stats->pci_map_fail_cnt++;
  6096. stats->mem_freed += (*skb)->truesize;
  6097. dev_kfree_skb(*skb);
  6098. return -ENOMEM;
  6099. }
  6100. static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
  6101. int size)
  6102. {
  6103. struct net_device *dev = sp->dev;
  6104. if (sp->rxd_mode == RXD_MODE_1) {
  6105. rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
  6106. } else if (sp->rxd_mode == RXD_MODE_3B) {
  6107. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  6108. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
  6109. rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
  6110. }
  6111. }
  6112. static int rxd_owner_bit_reset(struct s2io_nic *sp)
  6113. {
  6114. int i, j, k, blk_cnt = 0, size;
  6115. struct mac_info * mac_control = &sp->mac_control;
  6116. struct config_param *config = &sp->config;
  6117. struct net_device *dev = sp->dev;
  6118. struct RxD_t *rxdp = NULL;
  6119. struct sk_buff *skb = NULL;
  6120. struct buffAdd *ba = NULL;
  6121. u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
  6122. /* Calculate the size based on ring mode */
  6123. size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
  6124. HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
  6125. if (sp->rxd_mode == RXD_MODE_1)
  6126. size += NET_IP_ALIGN;
  6127. else if (sp->rxd_mode == RXD_MODE_3B)
  6128. size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
  6129. for (i = 0; i < config->rx_ring_num; i++) {
  6130. blk_cnt = config->rx_cfg[i].num_rxd /
  6131. (rxd_count[sp->rxd_mode] +1);
  6132. for (j = 0; j < blk_cnt; j++) {
  6133. for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
  6134. rxdp = mac_control->rings[i].
  6135. rx_blocks[j].rxds[k].virt_addr;
  6136. if(sp->rxd_mode == RXD_MODE_3B)
  6137. ba = &mac_control->rings[i].ba[j][k];
  6138. if (set_rxd_buffer_pointer(sp, rxdp, ba,
  6139. &skb,(u64 *)&temp0_64,
  6140. (u64 *)&temp1_64,
  6141. (u64 *)&temp2_64,
  6142. size) == ENOMEM) {
  6143. return 0;
  6144. }
  6145. set_rxd_buffer_size(sp, rxdp, size);
  6146. wmb();
  6147. /* flip the Ownership bit to Hardware */
  6148. rxdp->Control_1 |= RXD_OWN_XENA;
  6149. }
  6150. }
  6151. }
  6152. return 0;
  6153. }
  6154. static int s2io_add_isr(struct s2io_nic * sp)
  6155. {
  6156. int ret = 0;
  6157. struct net_device *dev = sp->dev;
  6158. int err = 0;
  6159. if (sp->config.intr_type == MSI_X)
  6160. ret = s2io_enable_msi_x(sp);
  6161. if (ret) {
  6162. DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
  6163. sp->config.intr_type = INTA;
  6164. }
  6165. /* Store the values of the MSIX table in the struct s2io_nic structure */
  6166. store_xmsi_data(sp);
  6167. /* After proper initialization of H/W, register ISR */
  6168. if (sp->config.intr_type == MSI_X) {
  6169. int i, msix_tx_cnt=0,msix_rx_cnt=0;
  6170. for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
  6171. if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
  6172. sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
  6173. dev->name, i);
  6174. err = request_irq(sp->entries[i].vector,
  6175. s2io_msix_fifo_handle, 0, sp->desc[i],
  6176. sp->s2io_entries[i].arg);
  6177. /* If either data or addr is zero print it */
  6178. if(!(sp->msix_info[i].addr &&
  6179. sp->msix_info[i].data)) {
  6180. DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx "
  6181. "Data:0x%lx\n",sp->desc[i],
  6182. (unsigned long long)
  6183. sp->msix_info[i].addr,
  6184. (unsigned long)
  6185. ntohl(sp->msix_info[i].data));
  6186. } else {
  6187. msix_tx_cnt++;
  6188. }
  6189. } else {
  6190. sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
  6191. dev->name, i);
  6192. err = request_irq(sp->entries[i].vector,
  6193. s2io_msix_ring_handle, 0, sp->desc[i],
  6194. sp->s2io_entries[i].arg);
  6195. /* If either data or addr is zero print it */
  6196. if(!(sp->msix_info[i].addr &&
  6197. sp->msix_info[i].data)) {
  6198. DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx "
  6199. "Data:0x%lx\n",sp->desc[i],
  6200. (unsigned long long)
  6201. sp->msix_info[i].addr,
  6202. (unsigned long)
  6203. ntohl(sp->msix_info[i].data));
  6204. } else {
  6205. msix_rx_cnt++;
  6206. }
  6207. }
  6208. if (err) {
  6209. remove_msix_isr(sp);
  6210. DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
  6211. "failed\n", dev->name, i);
  6212. DBG_PRINT(ERR_DBG, "%s: defaulting to INTA\n",
  6213. dev->name);
  6214. sp->config.intr_type = INTA;
  6215. break;
  6216. }
  6217. sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
  6218. }
  6219. if (!err) {
  6220. printk(KERN_INFO "MSI-X-TX %d entries enabled\n",
  6221. msix_tx_cnt);
  6222. printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
  6223. msix_rx_cnt);
  6224. }
  6225. }
  6226. if (sp->config.intr_type == INTA) {
  6227. err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
  6228. sp->name, dev);
  6229. if (err) {
  6230. DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
  6231. dev->name);
  6232. return -1;
  6233. }
  6234. }
  6235. return 0;
  6236. }
  6237. static void s2io_rem_isr(struct s2io_nic * sp)
  6238. {
  6239. if (sp->config.intr_type == MSI_X)
  6240. remove_msix_isr(sp);
  6241. else
  6242. remove_inta_isr(sp);
  6243. }
  6244. static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
  6245. {
  6246. int cnt = 0;
  6247. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  6248. unsigned long flags;
  6249. register u64 val64 = 0;
  6250. struct config_param *config;
  6251. config = &sp->config;
  6252. if (!is_s2io_card_up(sp))
  6253. return;
  6254. del_timer_sync(&sp->alarm_timer);
  6255. /* If s2io_set_link task is executing, wait till it completes. */
  6256. while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
  6257. msleep(50);
  6258. }
  6259. clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
  6260. /* Disable napi */
  6261. if (config->napi)
  6262. napi_disable(&sp->napi);
  6263. /* disable Tx and Rx traffic on the NIC */
  6264. if (do_io)
  6265. stop_nic(sp);
  6266. s2io_rem_isr(sp);
  6267. /* Kill tasklet. */
  6268. tasklet_kill(&sp->task);
  6269. /* Check if the device is Quiescent and then Reset the NIC */
  6270. while(do_io) {
  6271. /* As per the HW requirement we need to replenish the
  6272. * receive buffer to avoid the ring bump. Since there is
  6273. * no intention of processing the Rx frame at this pointwe are
  6274. * just settting the ownership bit of rxd in Each Rx
  6275. * ring to HW and set the appropriate buffer size
  6276. * based on the ring mode
  6277. */
  6278. rxd_owner_bit_reset(sp);
  6279. val64 = readq(&bar0->adapter_status);
  6280. if (verify_xena_quiescence(sp)) {
  6281. if(verify_pcc_quiescent(sp, sp->device_enabled_once))
  6282. break;
  6283. }
  6284. msleep(50);
  6285. cnt++;
  6286. if (cnt == 10) {
  6287. DBG_PRINT(ERR_DBG,
  6288. "s2io_close:Device not Quiescent ");
  6289. DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
  6290. (unsigned long long) val64);
  6291. break;
  6292. }
  6293. }
  6294. if (do_io)
  6295. s2io_reset(sp);
  6296. /* Free all Tx buffers */
  6297. free_tx_buffers(sp);
  6298. /* Free all Rx buffers */
  6299. spin_lock_irqsave(&sp->rx_lock, flags);
  6300. free_rx_buffers(sp);
  6301. spin_unlock_irqrestore(&sp->rx_lock, flags);
  6302. clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
  6303. }
  6304. static void s2io_card_down(struct s2io_nic * sp)
  6305. {
  6306. do_s2io_card_down(sp, 1);
  6307. }
  6308. static int s2io_card_up(struct s2io_nic * sp)
  6309. {
  6310. int i, ret = 0;
  6311. struct mac_info *mac_control;
  6312. struct config_param *config;
  6313. struct net_device *dev = (struct net_device *) sp->dev;
  6314. u16 interruptible;
  6315. /* Initialize the H/W I/O registers */
  6316. ret = init_nic(sp);
  6317. if (ret != 0) {
  6318. DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
  6319. dev->name);
  6320. if (ret != -EIO)
  6321. s2io_reset(sp);
  6322. return ret;
  6323. }
  6324. /*
  6325. * Initializing the Rx buffers. For now we are considering only 1
  6326. * Rx ring and initializing buffers into 30 Rx blocks
  6327. */
  6328. mac_control = &sp->mac_control;
  6329. config = &sp->config;
  6330. for (i = 0; i < config->rx_ring_num; i++) {
  6331. if ((ret = fill_rx_buffers(sp, i))) {
  6332. DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
  6333. dev->name);
  6334. s2io_reset(sp);
  6335. free_rx_buffers(sp);
  6336. return -ENOMEM;
  6337. }
  6338. DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
  6339. atomic_read(&sp->rx_bufs_left[i]));
  6340. }
  6341. /* Initialise napi */
  6342. if (config->napi)
  6343. napi_enable(&sp->napi);
  6344. /* Maintain the state prior to the open */
  6345. if (sp->promisc_flg)
  6346. sp->promisc_flg = 0;
  6347. if (sp->m_cast_flg) {
  6348. sp->m_cast_flg = 0;
  6349. sp->all_multi_pos= 0;
  6350. }
  6351. /* Setting its receive mode */
  6352. s2io_set_multicast(dev);
  6353. if (sp->lro) {
  6354. /* Initialize max aggregatable pkts per session based on MTU */
  6355. sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
  6356. /* Check if we can use(if specified) user provided value */
  6357. if (lro_max_pkts < sp->lro_max_aggr_per_sess)
  6358. sp->lro_max_aggr_per_sess = lro_max_pkts;
  6359. }
  6360. /* Enable Rx Traffic and interrupts on the NIC */
  6361. if (start_nic(sp)) {
  6362. DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
  6363. s2io_reset(sp);
  6364. free_rx_buffers(sp);
  6365. return -ENODEV;
  6366. }
  6367. /* Add interrupt service routine */
  6368. if (s2io_add_isr(sp) != 0) {
  6369. if (sp->config.intr_type == MSI_X)
  6370. s2io_rem_isr(sp);
  6371. s2io_reset(sp);
  6372. free_rx_buffers(sp);
  6373. return -ENODEV;
  6374. }
  6375. S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
  6376. /* Enable tasklet for the device */
  6377. tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
  6378. /* Enable select interrupts */
  6379. en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
  6380. if (sp->config.intr_type != INTA)
  6381. en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
  6382. else {
  6383. interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
  6384. interruptible |= TX_PIC_INTR;
  6385. en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
  6386. }
  6387. set_bit(__S2IO_STATE_CARD_UP, &sp->state);
  6388. return 0;
  6389. }
  6390. /**
  6391. * s2io_restart_nic - Resets the NIC.
  6392. * @data : long pointer to the device private structure
  6393. * Description:
  6394. * This function is scheduled to be run by the s2io_tx_watchdog
  6395. * function after 0.5 secs to reset the NIC. The idea is to reduce
  6396. * the run time of the watch dog routine which is run holding a
  6397. * spin lock.
  6398. */
  6399. static void s2io_restart_nic(struct work_struct *work)
  6400. {
  6401. struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
  6402. struct net_device *dev = sp->dev;
  6403. rtnl_lock();
  6404. if (!netif_running(dev))
  6405. goto out_unlock;
  6406. s2io_card_down(sp);
  6407. if (s2io_card_up(sp)) {
  6408. DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
  6409. dev->name);
  6410. }
  6411. netif_wake_queue(dev);
  6412. DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
  6413. dev->name);
  6414. out_unlock:
  6415. rtnl_unlock();
  6416. }
  6417. /**
  6418. * s2io_tx_watchdog - Watchdog for transmit side.
  6419. * @dev : Pointer to net device structure
  6420. * Description:
  6421. * This function is triggered if the Tx Queue is stopped
  6422. * for a pre-defined amount of time when the Interface is still up.
  6423. * If the Interface is jammed in such a situation, the hardware is
  6424. * reset (by s2io_close) and restarted again (by s2io_open) to
  6425. * overcome any problem that might have been caused in the hardware.
  6426. * Return value:
  6427. * void
  6428. */
  6429. static void s2io_tx_watchdog(struct net_device *dev)
  6430. {
  6431. struct s2io_nic *sp = dev->priv;
  6432. if (netif_carrier_ok(dev)) {
  6433. sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
  6434. schedule_work(&sp->rst_timer_task);
  6435. sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
  6436. }
  6437. }
  6438. /**
  6439. * rx_osm_handler - To perform some OS related operations on SKB.
  6440. * @sp: private member of the device structure,pointer to s2io_nic structure.
  6441. * @skb : the socket buffer pointer.
  6442. * @len : length of the packet
  6443. * @cksum : FCS checksum of the frame.
  6444. * @ring_no : the ring from which this RxD was extracted.
  6445. * Description:
  6446. * This function is called by the Rx interrupt serivce routine to perform
  6447. * some OS related operations on the SKB before passing it to the upper
  6448. * layers. It mainly checks if the checksum is OK, if so adds it to the
  6449. * SKBs cksum variable, increments the Rx packet count and passes the SKB
  6450. * to the upper layer. If the checksum is wrong, it increments the Rx
  6451. * packet error count, frees the SKB and returns error.
  6452. * Return value:
  6453. * SUCCESS on success and -1 on failure.
  6454. */
  6455. static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
  6456. {
  6457. struct s2io_nic *sp = ring_data->nic;
  6458. struct net_device *dev = (struct net_device *) sp->dev;
  6459. struct sk_buff *skb = (struct sk_buff *)
  6460. ((unsigned long) rxdp->Host_Control);
  6461. int ring_no = ring_data->ring_no;
  6462. u16 l3_csum, l4_csum;
  6463. unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
  6464. struct lro *lro;
  6465. u8 err_mask;
  6466. skb->dev = dev;
  6467. if (err) {
  6468. /* Check for parity error */
  6469. if (err & 0x1) {
  6470. sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
  6471. }
  6472. err_mask = err >> 48;
  6473. switch(err_mask) {
  6474. case 1:
  6475. sp->mac_control.stats_info->sw_stat.
  6476. rx_parity_err_cnt++;
  6477. break;
  6478. case 2:
  6479. sp->mac_control.stats_info->sw_stat.
  6480. rx_abort_cnt++;
  6481. break;
  6482. case 3:
  6483. sp->mac_control.stats_info->sw_stat.
  6484. rx_parity_abort_cnt++;
  6485. break;
  6486. case 4:
  6487. sp->mac_control.stats_info->sw_stat.
  6488. rx_rda_fail_cnt++;
  6489. break;
  6490. case 5:
  6491. sp->mac_control.stats_info->sw_stat.
  6492. rx_unkn_prot_cnt++;
  6493. break;
  6494. case 6:
  6495. sp->mac_control.stats_info->sw_stat.
  6496. rx_fcs_err_cnt++;
  6497. break;
  6498. case 7:
  6499. sp->mac_control.stats_info->sw_stat.
  6500. rx_buf_size_err_cnt++;
  6501. break;
  6502. case 8:
  6503. sp->mac_control.stats_info->sw_stat.
  6504. rx_rxd_corrupt_cnt++;
  6505. break;
  6506. case 15:
  6507. sp->mac_control.stats_info->sw_stat.
  6508. rx_unkn_err_cnt++;
  6509. break;
  6510. }
  6511. /*
  6512. * Drop the packet if bad transfer code. Exception being
  6513. * 0x5, which could be due to unsupported IPv6 extension header.
  6514. * In this case, we let stack handle the packet.
  6515. * Note that in this case, since checksum will be incorrect,
  6516. * stack will validate the same.
  6517. */
  6518. if (err_mask != 0x5) {
  6519. DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
  6520. dev->name, err_mask);
  6521. sp->stats.rx_crc_errors++;
  6522. sp->mac_control.stats_info->sw_stat.mem_freed
  6523. += skb->truesize;
  6524. dev_kfree_skb(skb);
  6525. atomic_dec(&sp->rx_bufs_left[ring_no]);
  6526. rxdp->Host_Control = 0;
  6527. return 0;
  6528. }
  6529. }
  6530. /* Updating statistics */
  6531. sp->stats.rx_packets++;
  6532. rxdp->Host_Control = 0;
  6533. if (sp->rxd_mode == RXD_MODE_1) {
  6534. int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
  6535. sp->stats.rx_bytes += len;
  6536. skb_put(skb, len);
  6537. } else if (sp->rxd_mode == RXD_MODE_3B) {
  6538. int get_block = ring_data->rx_curr_get_info.block_index;
  6539. int get_off = ring_data->rx_curr_get_info.offset;
  6540. int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
  6541. int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
  6542. unsigned char *buff = skb_push(skb, buf0_len);
  6543. struct buffAdd *ba = &ring_data->ba[get_block][get_off];
  6544. sp->stats.rx_bytes += buf0_len + buf2_len;
  6545. memcpy(buff, ba->ba_0, buf0_len);
  6546. skb_put(skb, buf2_len);
  6547. }
  6548. if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
  6549. (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
  6550. (sp->rx_csum)) {
  6551. l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
  6552. l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
  6553. if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
  6554. /*
  6555. * NIC verifies if the Checksum of the received
  6556. * frame is Ok or not and accordingly returns
  6557. * a flag in the RxD.
  6558. */
  6559. skb->ip_summed = CHECKSUM_UNNECESSARY;
  6560. if (sp->lro) {
  6561. u32 tcp_len;
  6562. u8 *tcp;
  6563. int ret = 0;
  6564. ret = s2io_club_tcp_session(skb->data, &tcp,
  6565. &tcp_len, &lro,
  6566. rxdp, sp);
  6567. switch (ret) {
  6568. case 3: /* Begin anew */
  6569. lro->parent = skb;
  6570. goto aggregate;
  6571. case 1: /* Aggregate */
  6572. {
  6573. lro_append_pkt(sp, lro,
  6574. skb, tcp_len);
  6575. goto aggregate;
  6576. }
  6577. case 4: /* Flush session */
  6578. {
  6579. lro_append_pkt(sp, lro,
  6580. skb, tcp_len);
  6581. queue_rx_frame(lro->parent);
  6582. clear_lro_session(lro);
  6583. sp->mac_control.stats_info->
  6584. sw_stat.flush_max_pkts++;
  6585. goto aggregate;
  6586. }
  6587. case 2: /* Flush both */
  6588. lro->parent->data_len =
  6589. lro->frags_len;
  6590. sp->mac_control.stats_info->
  6591. sw_stat.sending_both++;
  6592. queue_rx_frame(lro->parent);
  6593. clear_lro_session(lro);
  6594. goto send_up;
  6595. case 0: /* sessions exceeded */
  6596. case -1: /* non-TCP or not
  6597. * L2 aggregatable
  6598. */
  6599. case 5: /*
  6600. * First pkt in session not
  6601. * L3/L4 aggregatable
  6602. */
  6603. break;
  6604. default:
  6605. DBG_PRINT(ERR_DBG,
  6606. "%s: Samadhana!!\n",
  6607. __FUNCTION__);
  6608. BUG();
  6609. }
  6610. }
  6611. } else {
  6612. /*
  6613. * Packet with erroneous checksum, let the
  6614. * upper layers deal with it.
  6615. */
  6616. skb->ip_summed = CHECKSUM_NONE;
  6617. }
  6618. } else {
  6619. skb->ip_summed = CHECKSUM_NONE;
  6620. }
  6621. sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  6622. if (!sp->lro) {
  6623. skb->protocol = eth_type_trans(skb, dev);
  6624. if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
  6625. vlan_strip_flag)) {
  6626. /* Queueing the vlan frame to the upper layer */
  6627. if (napi)
  6628. vlan_hwaccel_receive_skb(skb, sp->vlgrp,
  6629. RXD_GET_VLAN_TAG(rxdp->Control_2));
  6630. else
  6631. vlan_hwaccel_rx(skb, sp->vlgrp,
  6632. RXD_GET_VLAN_TAG(rxdp->Control_2));
  6633. } else {
  6634. if (napi)
  6635. netif_receive_skb(skb);
  6636. else
  6637. netif_rx(skb);
  6638. }
  6639. } else {
  6640. send_up:
  6641. queue_rx_frame(skb);
  6642. }
  6643. dev->last_rx = jiffies;
  6644. aggregate:
  6645. atomic_dec(&sp->rx_bufs_left[ring_no]);
  6646. return SUCCESS;
  6647. }
  6648. /**
  6649. * s2io_link - stops/starts the Tx queue.
  6650. * @sp : private member of the device structure, which is a pointer to the
  6651. * s2io_nic structure.
  6652. * @link : inidicates whether link is UP/DOWN.
  6653. * Description:
  6654. * This function stops/starts the Tx queue depending on whether the link
  6655. * status of the NIC is is down or up. This is called by the Alarm
  6656. * interrupt handler whenever a link change interrupt comes up.
  6657. * Return value:
  6658. * void.
  6659. */
  6660. static void s2io_link(struct s2io_nic * sp, int link)
  6661. {
  6662. struct net_device *dev = (struct net_device *) sp->dev;
  6663. if (link != sp->last_link_state) {
  6664. init_tti(sp, link);
  6665. if (link == LINK_DOWN) {
  6666. DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
  6667. netif_carrier_off(dev);
  6668. if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
  6669. sp->mac_control.stats_info->sw_stat.link_up_time =
  6670. jiffies - sp->start_time;
  6671. sp->mac_control.stats_info->sw_stat.link_down_cnt++;
  6672. } else {
  6673. DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
  6674. if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
  6675. sp->mac_control.stats_info->sw_stat.link_down_time =
  6676. jiffies - sp->start_time;
  6677. sp->mac_control.stats_info->sw_stat.link_up_cnt++;
  6678. netif_carrier_on(dev);
  6679. }
  6680. }
  6681. sp->last_link_state = link;
  6682. sp->start_time = jiffies;
  6683. }
  6684. /**
  6685. * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
  6686. * @sp : private member of the device structure, which is a pointer to the
  6687. * s2io_nic structure.
  6688. * Description:
  6689. * This function initializes a few of the PCI and PCI-X configuration registers
  6690. * with recommended values.
  6691. * Return value:
  6692. * void
  6693. */
  6694. static void s2io_init_pci(struct s2io_nic * sp)
  6695. {
  6696. u16 pci_cmd = 0, pcix_cmd = 0;
  6697. /* Enable Data Parity Error Recovery in PCI-X command register. */
  6698. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6699. &(pcix_cmd));
  6700. pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6701. (pcix_cmd | 1));
  6702. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6703. &(pcix_cmd));
  6704. /* Set the PErr Response bit in PCI command register. */
  6705. pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
  6706. pci_write_config_word(sp->pdev, PCI_COMMAND,
  6707. (pci_cmd | PCI_COMMAND_PARITY));
  6708. pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
  6709. }
  6710. static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
  6711. {
  6712. if ((tx_fifo_num > MAX_TX_FIFOS) ||
  6713. (tx_fifo_num < FIFO_DEFAULT_NUM)) {
  6714. DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
  6715. "(%d) not supported\n", tx_fifo_num);
  6716. tx_fifo_num =
  6717. ((tx_fifo_num > MAX_TX_FIFOS)? MAX_TX_FIFOS :
  6718. ((tx_fifo_num < FIFO_DEFAULT_NUM) ? FIFO_DEFAULT_NUM :
  6719. tx_fifo_num));
  6720. DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
  6721. DBG_PRINT(ERR_DBG, "tx fifos\n");
  6722. }
  6723. if ( rx_ring_num > 8) {
  6724. DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
  6725. "supported\n");
  6726. DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
  6727. rx_ring_num = 8;
  6728. }
  6729. if (*dev_intr_type != INTA)
  6730. napi = 0;
  6731. if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
  6732. DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
  6733. "Defaulting to INTA\n");
  6734. *dev_intr_type = INTA;
  6735. }
  6736. if ((*dev_intr_type == MSI_X) &&
  6737. ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
  6738. (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
  6739. DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
  6740. "Defaulting to INTA\n");
  6741. *dev_intr_type = INTA;
  6742. }
  6743. if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
  6744. DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
  6745. DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
  6746. rx_ring_mode = 1;
  6747. }
  6748. return SUCCESS;
  6749. }
  6750. /**
  6751. * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
  6752. * or Traffic class respectively.
  6753. * @nic: device private variable
  6754. * Description: The function configures the receive steering to
  6755. * desired receive ring.
  6756. * Return Value: SUCCESS on success and
  6757. * '-1' on failure (endian settings incorrect).
  6758. */
  6759. static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
  6760. {
  6761. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  6762. register u64 val64 = 0;
  6763. if (ds_codepoint > 63)
  6764. return FAILURE;
  6765. val64 = RTS_DS_MEM_DATA(ring);
  6766. writeq(val64, &bar0->rts_ds_mem_data);
  6767. val64 = RTS_DS_MEM_CTRL_WE |
  6768. RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
  6769. RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
  6770. writeq(val64, &bar0->rts_ds_mem_ctrl);
  6771. return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
  6772. RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
  6773. S2IO_BIT_RESET);
  6774. }
  6775. /**
  6776. * s2io_init_nic - Initialization of the adapter .
  6777. * @pdev : structure containing the PCI related information of the device.
  6778. * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
  6779. * Description:
  6780. * The function initializes an adapter identified by the pci_dec structure.
  6781. * All OS related initialization including memory and device structure and
  6782. * initlaization of the device private variable is done. Also the swapper
  6783. * control register is initialized to enable read and write into the I/O
  6784. * registers of the device.
  6785. * Return value:
  6786. * returns 0 on success and negative on failure.
  6787. */
  6788. static int __devinit
  6789. s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
  6790. {
  6791. struct s2io_nic *sp;
  6792. struct net_device *dev;
  6793. int i, j, ret;
  6794. int dma_flag = FALSE;
  6795. u32 mac_up, mac_down;
  6796. u64 val64 = 0, tmp64 = 0;
  6797. struct XENA_dev_config __iomem *bar0 = NULL;
  6798. u16 subid;
  6799. struct mac_info *mac_control;
  6800. struct config_param *config;
  6801. int mode;
  6802. u8 dev_intr_type = intr_type;
  6803. DECLARE_MAC_BUF(mac);
  6804. if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
  6805. return ret;
  6806. if ((ret = pci_enable_device(pdev))) {
  6807. DBG_PRINT(ERR_DBG,
  6808. "s2io_init_nic: pci_enable_device failed\n");
  6809. return ret;
  6810. }
  6811. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  6812. DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
  6813. dma_flag = TRUE;
  6814. if (pci_set_consistent_dma_mask
  6815. (pdev, DMA_64BIT_MASK)) {
  6816. DBG_PRINT(ERR_DBG,
  6817. "Unable to obtain 64bit DMA for \
  6818. consistent allocations\n");
  6819. pci_disable_device(pdev);
  6820. return -ENOMEM;
  6821. }
  6822. } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
  6823. DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
  6824. } else {
  6825. pci_disable_device(pdev);
  6826. return -ENOMEM;
  6827. }
  6828. if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
  6829. DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
  6830. pci_disable_device(pdev);
  6831. return -ENODEV;
  6832. }
  6833. dev = alloc_etherdev(sizeof(struct s2io_nic));
  6834. if (dev == NULL) {
  6835. DBG_PRINT(ERR_DBG, "Device allocation failed\n");
  6836. pci_disable_device(pdev);
  6837. pci_release_regions(pdev);
  6838. return -ENODEV;
  6839. }
  6840. pci_set_master(pdev);
  6841. pci_set_drvdata(pdev, dev);
  6842. SET_NETDEV_DEV(dev, &pdev->dev);
  6843. /* Private member variable initialized to s2io NIC structure */
  6844. sp = dev->priv;
  6845. memset(sp, 0, sizeof(struct s2io_nic));
  6846. sp->dev = dev;
  6847. sp->pdev = pdev;
  6848. sp->high_dma_flag = dma_flag;
  6849. sp->device_enabled_once = FALSE;
  6850. if (rx_ring_mode == 1)
  6851. sp->rxd_mode = RXD_MODE_1;
  6852. if (rx_ring_mode == 2)
  6853. sp->rxd_mode = RXD_MODE_3B;
  6854. sp->config.intr_type = dev_intr_type;
  6855. if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
  6856. (pdev->device == PCI_DEVICE_ID_HERC_UNI))
  6857. sp->device_type = XFRAME_II_DEVICE;
  6858. else
  6859. sp->device_type = XFRAME_I_DEVICE;
  6860. sp->lro = lro_enable;
  6861. /* Initialize some PCI/PCI-X fields of the NIC. */
  6862. s2io_init_pci(sp);
  6863. /*
  6864. * Setting the device configuration parameters.
  6865. * Most of these parameters can be specified by the user during
  6866. * module insertion as they are module loadable parameters. If
  6867. * these parameters are not not specified during load time, they
  6868. * are initialized with default values.
  6869. */
  6870. mac_control = &sp->mac_control;
  6871. config = &sp->config;
  6872. config->napi = napi;
  6873. /* Tx side parameters. */
  6874. config->tx_fifo_num = tx_fifo_num;
  6875. for (i = 0; i < MAX_TX_FIFOS; i++) {
  6876. config->tx_cfg[i].fifo_len = tx_fifo_len[i];
  6877. config->tx_cfg[i].fifo_priority = i;
  6878. }
  6879. /* mapping the QoS priority to the configured fifos */
  6880. for (i = 0; i < MAX_TX_FIFOS; i++)
  6881. config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
  6882. config->tx_intr_type = TXD_INT_TYPE_UTILZ;
  6883. for (i = 0; i < config->tx_fifo_num; i++) {
  6884. config->tx_cfg[i].f_no_snoop =
  6885. (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
  6886. if (config->tx_cfg[i].fifo_len < 65) {
  6887. config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
  6888. break;
  6889. }
  6890. }
  6891. /* + 2 because one Txd for skb->data and one Txd for UFO */
  6892. config->max_txds = MAX_SKB_FRAGS + 2;
  6893. /* Rx side parameters. */
  6894. config->rx_ring_num = rx_ring_num;
  6895. for (i = 0; i < MAX_RX_RINGS; i++) {
  6896. config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
  6897. (rxd_count[sp->rxd_mode] + 1);
  6898. config->rx_cfg[i].ring_priority = i;
  6899. }
  6900. for (i = 0; i < rx_ring_num; i++) {
  6901. config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
  6902. config->rx_cfg[i].f_no_snoop =
  6903. (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
  6904. }
  6905. /* Setting Mac Control parameters */
  6906. mac_control->rmac_pause_time = rmac_pause_time;
  6907. mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
  6908. mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
  6909. /* Initialize Ring buffer parameters. */
  6910. for (i = 0; i < config->rx_ring_num; i++)
  6911. atomic_set(&sp->rx_bufs_left[i], 0);
  6912. /* initialize the shared memory used by the NIC and the host */
  6913. if (init_shared_mem(sp)) {
  6914. DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
  6915. dev->name);
  6916. ret = -ENOMEM;
  6917. goto mem_alloc_failed;
  6918. }
  6919. sp->bar0 = ioremap(pci_resource_start(pdev, 0),
  6920. pci_resource_len(pdev, 0));
  6921. if (!sp->bar0) {
  6922. DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
  6923. dev->name);
  6924. ret = -ENOMEM;
  6925. goto bar0_remap_failed;
  6926. }
  6927. sp->bar1 = ioremap(pci_resource_start(pdev, 2),
  6928. pci_resource_len(pdev, 2));
  6929. if (!sp->bar1) {
  6930. DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
  6931. dev->name);
  6932. ret = -ENOMEM;
  6933. goto bar1_remap_failed;
  6934. }
  6935. dev->irq = pdev->irq;
  6936. dev->base_addr = (unsigned long) sp->bar0;
  6937. /* Initializing the BAR1 address as the start of the FIFO pointer. */
  6938. for (j = 0; j < MAX_TX_FIFOS; j++) {
  6939. mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
  6940. (sp->bar1 + (j * 0x00020000));
  6941. }
  6942. /* Driver entry points */
  6943. dev->open = &s2io_open;
  6944. dev->stop = &s2io_close;
  6945. dev->hard_start_xmit = &s2io_xmit;
  6946. dev->get_stats = &s2io_get_stats;
  6947. dev->set_multicast_list = &s2io_set_multicast;
  6948. dev->do_ioctl = &s2io_ioctl;
  6949. dev->set_mac_address = &s2io_set_mac_addr;
  6950. dev->change_mtu = &s2io_change_mtu;
  6951. SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
  6952. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  6953. dev->vlan_rx_register = s2io_vlan_rx_register;
  6954. /*
  6955. * will use eth_mac_addr() for dev->set_mac_address
  6956. * mac address will be set every time dev->open() is called
  6957. */
  6958. netif_napi_add(dev, &sp->napi, s2io_poll, 32);
  6959. #ifdef CONFIG_NET_POLL_CONTROLLER
  6960. dev->poll_controller = s2io_netpoll;
  6961. #endif
  6962. dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
  6963. if (sp->high_dma_flag == TRUE)
  6964. dev->features |= NETIF_F_HIGHDMA;
  6965. dev->features |= NETIF_F_TSO;
  6966. dev->features |= NETIF_F_TSO6;
  6967. if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
  6968. dev->features |= NETIF_F_UFO;
  6969. dev->features |= NETIF_F_HW_CSUM;
  6970. }
  6971. dev->tx_timeout = &s2io_tx_watchdog;
  6972. dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
  6973. INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
  6974. INIT_WORK(&sp->set_link_task, s2io_set_link);
  6975. pci_save_state(sp->pdev);
  6976. /* Setting swapper control on the NIC, for proper reset operation */
  6977. if (s2io_set_swapper(sp)) {
  6978. DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
  6979. dev->name);
  6980. ret = -EAGAIN;
  6981. goto set_swap_failed;
  6982. }
  6983. /* Verify if the Herc works on the slot its placed into */
  6984. if (sp->device_type & XFRAME_II_DEVICE) {
  6985. mode = s2io_verify_pci_mode(sp);
  6986. if (mode < 0) {
  6987. DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
  6988. DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
  6989. ret = -EBADSLT;
  6990. goto set_swap_failed;
  6991. }
  6992. }
  6993. /* Not needed for Herc */
  6994. if (sp->device_type & XFRAME_I_DEVICE) {
  6995. /*
  6996. * Fix for all "FFs" MAC address problems observed on
  6997. * Alpha platforms
  6998. */
  6999. fix_mac_address(sp);
  7000. s2io_reset(sp);
  7001. }
  7002. /*
  7003. * MAC address initialization.
  7004. * For now only one mac address will be read and used.
  7005. */
  7006. bar0 = sp->bar0;
  7007. val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  7008. RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
  7009. writeq(val64, &bar0->rmac_addr_cmd_mem);
  7010. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  7011. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
  7012. tmp64 = readq(&bar0->rmac_addr_data0_mem);
  7013. mac_down = (u32) tmp64;
  7014. mac_up = (u32) (tmp64 >> 32);
  7015. sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
  7016. sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
  7017. sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
  7018. sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
  7019. sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
  7020. sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
  7021. /* Set the factory defined MAC address initially */
  7022. dev->addr_len = ETH_ALEN;
  7023. memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
  7024. memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
  7025. /* initialize number of multicast & unicast MAC entries variables */
  7026. if (sp->device_type == XFRAME_I_DEVICE) {
  7027. config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
  7028. config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
  7029. config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
  7030. } else if (sp->device_type == XFRAME_II_DEVICE) {
  7031. config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
  7032. config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
  7033. config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
  7034. }
  7035. /* store mac addresses from CAM to s2io_nic structure */
  7036. do_s2io_store_unicast_mc(sp);
  7037. /* Store the values of the MSIX table in the s2io_nic structure */
  7038. store_xmsi_data(sp);
  7039. /* reset Nic and bring it to known state */
  7040. s2io_reset(sp);
  7041. /*
  7042. * Initialize the tasklet status and link state flags
  7043. * and the card state parameter
  7044. */
  7045. sp->tasklet_status = 0;
  7046. sp->state = 0;
  7047. /* Initialize spinlocks */
  7048. for (i = 0; i < sp->config.tx_fifo_num; i++)
  7049. spin_lock_init(&mac_control->fifos[i].tx_lock);
  7050. if (!napi)
  7051. spin_lock_init(&sp->put_lock);
  7052. spin_lock_init(&sp->rx_lock);
  7053. /*
  7054. * SXE-002: Configure link and activity LED to init state
  7055. * on driver load.
  7056. */
  7057. subid = sp->pdev->subsystem_device;
  7058. if ((subid & 0xFF) >= 0x07) {
  7059. val64 = readq(&bar0->gpio_control);
  7060. val64 |= 0x0000800000000000ULL;
  7061. writeq(val64, &bar0->gpio_control);
  7062. val64 = 0x0411040400000000ULL;
  7063. writeq(val64, (void __iomem *) bar0 + 0x2700);
  7064. val64 = readq(&bar0->gpio_control);
  7065. }
  7066. sp->rx_csum = 1; /* Rx chksum verify enabled by default */
  7067. if (register_netdev(dev)) {
  7068. DBG_PRINT(ERR_DBG, "Device registration failed\n");
  7069. ret = -ENODEV;
  7070. goto register_failed;
  7071. }
  7072. s2io_vpd_read(sp);
  7073. DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
  7074. DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
  7075. sp->product_name, pdev->revision);
  7076. DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
  7077. s2io_driver_version);
  7078. DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
  7079. dev->name, print_mac(mac, dev->dev_addr));
  7080. DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
  7081. if (sp->device_type & XFRAME_II_DEVICE) {
  7082. mode = s2io_print_pci_mode(sp);
  7083. if (mode < 0) {
  7084. DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
  7085. ret = -EBADSLT;
  7086. unregister_netdev(dev);
  7087. goto set_swap_failed;
  7088. }
  7089. }
  7090. switch(sp->rxd_mode) {
  7091. case RXD_MODE_1:
  7092. DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
  7093. dev->name);
  7094. break;
  7095. case RXD_MODE_3B:
  7096. DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
  7097. dev->name);
  7098. break;
  7099. }
  7100. if (napi)
  7101. DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
  7102. switch(sp->config.intr_type) {
  7103. case INTA:
  7104. DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
  7105. break;
  7106. case MSI_X:
  7107. DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
  7108. break;
  7109. }
  7110. if (sp->lro)
  7111. DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
  7112. dev->name);
  7113. if (ufo)
  7114. DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
  7115. " enabled\n", dev->name);
  7116. /* Initialize device name */
  7117. sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
  7118. /*
  7119. * Make Link state as off at this point, when the Link change
  7120. * interrupt comes the state will be automatically changed to
  7121. * the right state.
  7122. */
  7123. netif_carrier_off(dev);
  7124. return 0;
  7125. register_failed:
  7126. set_swap_failed:
  7127. iounmap(sp->bar1);
  7128. bar1_remap_failed:
  7129. iounmap(sp->bar0);
  7130. bar0_remap_failed:
  7131. mem_alloc_failed:
  7132. free_shared_mem(sp);
  7133. pci_disable_device(pdev);
  7134. pci_release_regions(pdev);
  7135. pci_set_drvdata(pdev, NULL);
  7136. free_netdev(dev);
  7137. return ret;
  7138. }
  7139. /**
  7140. * s2io_rem_nic - Free the PCI device
  7141. * @pdev: structure containing the PCI related information of the device.
  7142. * Description: This function is called by the Pci subsystem to release a
  7143. * PCI device and free up all resource held up by the device. This could
  7144. * be in response to a Hot plug event or when the driver is to be removed
  7145. * from memory.
  7146. */
  7147. static void __devexit s2io_rem_nic(struct pci_dev *pdev)
  7148. {
  7149. struct net_device *dev =
  7150. (struct net_device *) pci_get_drvdata(pdev);
  7151. struct s2io_nic *sp;
  7152. if (dev == NULL) {
  7153. DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
  7154. return;
  7155. }
  7156. flush_scheduled_work();
  7157. sp = dev->priv;
  7158. unregister_netdev(dev);
  7159. free_shared_mem(sp);
  7160. iounmap(sp->bar0);
  7161. iounmap(sp->bar1);
  7162. pci_release_regions(pdev);
  7163. pci_set_drvdata(pdev, NULL);
  7164. free_netdev(dev);
  7165. pci_disable_device(pdev);
  7166. }
  7167. /**
  7168. * s2io_starter - Entry point for the driver
  7169. * Description: This function is the entry point for the driver. It verifies
  7170. * the module loadable parameters and initializes PCI configuration space.
  7171. */
  7172. static int __init s2io_starter(void)
  7173. {
  7174. return pci_register_driver(&s2io_driver);
  7175. }
  7176. /**
  7177. * s2io_closer - Cleanup routine for the driver
  7178. * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
  7179. */
  7180. static __exit void s2io_closer(void)
  7181. {
  7182. pci_unregister_driver(&s2io_driver);
  7183. DBG_PRINT(INIT_DBG, "cleanup done\n");
  7184. }
  7185. module_init(s2io_starter);
  7186. module_exit(s2io_closer);
  7187. static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
  7188. struct tcphdr **tcp, struct RxD_t *rxdp)
  7189. {
  7190. int ip_off;
  7191. u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
  7192. if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
  7193. DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
  7194. __FUNCTION__);
  7195. return -1;
  7196. }
  7197. /* TODO:
  7198. * By default the VLAN field in the MAC is stripped by the card, if this
  7199. * feature is turned off in rx_pa_cfg register, then the ip_off field
  7200. * has to be shifted by a further 2 bytes
  7201. */
  7202. switch (l2_type) {
  7203. case 0: /* DIX type */
  7204. case 4: /* DIX type with VLAN */
  7205. ip_off = HEADER_ETHERNET_II_802_3_SIZE;
  7206. break;
  7207. /* LLC, SNAP etc are considered non-mergeable */
  7208. default:
  7209. return -1;
  7210. }
  7211. *ip = (struct iphdr *)((u8 *)buffer + ip_off);
  7212. ip_len = (u8)((*ip)->ihl);
  7213. ip_len <<= 2;
  7214. *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
  7215. return 0;
  7216. }
  7217. static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
  7218. struct tcphdr *tcp)
  7219. {
  7220. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7221. if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
  7222. (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
  7223. return -1;
  7224. return 0;
  7225. }
  7226. static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
  7227. {
  7228. return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
  7229. }
  7230. static void initiate_new_session(struct lro *lro, u8 *l2h,
  7231. struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
  7232. {
  7233. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7234. lro->l2h = l2h;
  7235. lro->iph = ip;
  7236. lro->tcph = tcp;
  7237. lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
  7238. lro->tcp_ack = tcp->ack_seq;
  7239. lro->sg_num = 1;
  7240. lro->total_len = ntohs(ip->tot_len);
  7241. lro->frags_len = 0;
  7242. /*
  7243. * check if we saw TCP timestamp. Other consistency checks have
  7244. * already been done.
  7245. */
  7246. if (tcp->doff == 8) {
  7247. __be32 *ptr;
  7248. ptr = (__be32 *)(tcp+1);
  7249. lro->saw_ts = 1;
  7250. lro->cur_tsval = ntohl(*(ptr+1));
  7251. lro->cur_tsecr = *(ptr+2);
  7252. }
  7253. lro->in_use = 1;
  7254. }
  7255. static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
  7256. {
  7257. struct iphdr *ip = lro->iph;
  7258. struct tcphdr *tcp = lro->tcph;
  7259. __sum16 nchk;
  7260. struct stat_block *statinfo = sp->mac_control.stats_info;
  7261. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7262. /* Update L3 header */
  7263. ip->tot_len = htons(lro->total_len);
  7264. ip->check = 0;
  7265. nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
  7266. ip->check = nchk;
  7267. /* Update L4 header */
  7268. tcp->ack_seq = lro->tcp_ack;
  7269. tcp->window = lro->window;
  7270. /* Update tsecr field if this session has timestamps enabled */
  7271. if (lro->saw_ts) {
  7272. __be32 *ptr = (__be32 *)(tcp + 1);
  7273. *(ptr+2) = lro->cur_tsecr;
  7274. }
  7275. /* Update counters required for calculation of
  7276. * average no. of packets aggregated.
  7277. */
  7278. statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
  7279. statinfo->sw_stat.num_aggregations++;
  7280. }
  7281. static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
  7282. struct tcphdr *tcp, u32 l4_pyld)
  7283. {
  7284. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7285. lro->total_len += l4_pyld;
  7286. lro->frags_len += l4_pyld;
  7287. lro->tcp_next_seq += l4_pyld;
  7288. lro->sg_num++;
  7289. /* Update ack seq no. and window ad(from this pkt) in LRO object */
  7290. lro->tcp_ack = tcp->ack_seq;
  7291. lro->window = tcp->window;
  7292. if (lro->saw_ts) {
  7293. __be32 *ptr;
  7294. /* Update tsecr and tsval from this packet */
  7295. ptr = (__be32 *)(tcp+1);
  7296. lro->cur_tsval = ntohl(*(ptr+1));
  7297. lro->cur_tsecr = *(ptr + 2);
  7298. }
  7299. }
  7300. static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
  7301. struct tcphdr *tcp, u32 tcp_pyld_len)
  7302. {
  7303. u8 *ptr;
  7304. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7305. if (!tcp_pyld_len) {
  7306. /* Runt frame or a pure ack */
  7307. return -1;
  7308. }
  7309. if (ip->ihl != 5) /* IP has options */
  7310. return -1;
  7311. /* If we see CE codepoint in IP header, packet is not mergeable */
  7312. if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
  7313. return -1;
  7314. /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
  7315. if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
  7316. tcp->ece || tcp->cwr || !tcp->ack) {
  7317. /*
  7318. * Currently recognize only the ack control word and
  7319. * any other control field being set would result in
  7320. * flushing the LRO session
  7321. */
  7322. return -1;
  7323. }
  7324. /*
  7325. * Allow only one TCP timestamp option. Don't aggregate if
  7326. * any other options are detected.
  7327. */
  7328. if (tcp->doff != 5 && tcp->doff != 8)
  7329. return -1;
  7330. if (tcp->doff == 8) {
  7331. ptr = (u8 *)(tcp + 1);
  7332. while (*ptr == TCPOPT_NOP)
  7333. ptr++;
  7334. if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
  7335. return -1;
  7336. /* Ensure timestamp value increases monotonically */
  7337. if (l_lro)
  7338. if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
  7339. return -1;
  7340. /* timestamp echo reply should be non-zero */
  7341. if (*((__be32 *)(ptr+6)) == 0)
  7342. return -1;
  7343. }
  7344. return 0;
  7345. }
  7346. static int
  7347. s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
  7348. struct RxD_t *rxdp, struct s2io_nic *sp)
  7349. {
  7350. struct iphdr *ip;
  7351. struct tcphdr *tcph;
  7352. int ret = 0, i;
  7353. if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
  7354. rxdp))) {
  7355. DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
  7356. ip->saddr, ip->daddr);
  7357. } else {
  7358. return ret;
  7359. }
  7360. tcph = (struct tcphdr *)*tcp;
  7361. *tcp_len = get_l4_pyld_length(ip, tcph);
  7362. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  7363. struct lro *l_lro = &sp->lro0_n[i];
  7364. if (l_lro->in_use) {
  7365. if (check_for_socket_match(l_lro, ip, tcph))
  7366. continue;
  7367. /* Sock pair matched */
  7368. *lro = l_lro;
  7369. if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
  7370. DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
  7371. "0x%x, actual 0x%x\n", __FUNCTION__,
  7372. (*lro)->tcp_next_seq,
  7373. ntohl(tcph->seq));
  7374. sp->mac_control.stats_info->
  7375. sw_stat.outof_sequence_pkts++;
  7376. ret = 2;
  7377. break;
  7378. }
  7379. if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
  7380. ret = 1; /* Aggregate */
  7381. else
  7382. ret = 2; /* Flush both */
  7383. break;
  7384. }
  7385. }
  7386. if (ret == 0) {
  7387. /* Before searching for available LRO objects,
  7388. * check if the pkt is L3/L4 aggregatable. If not
  7389. * don't create new LRO session. Just send this
  7390. * packet up.
  7391. */
  7392. if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
  7393. return 5;
  7394. }
  7395. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  7396. struct lro *l_lro = &sp->lro0_n[i];
  7397. if (!(l_lro->in_use)) {
  7398. *lro = l_lro;
  7399. ret = 3; /* Begin anew */
  7400. break;
  7401. }
  7402. }
  7403. }
  7404. if (ret == 0) { /* sessions exceeded */
  7405. DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
  7406. __FUNCTION__);
  7407. *lro = NULL;
  7408. return ret;
  7409. }
  7410. switch (ret) {
  7411. case 3:
  7412. initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
  7413. break;
  7414. case 2:
  7415. update_L3L4_header(sp, *lro);
  7416. break;
  7417. case 1:
  7418. aggregate_new_rx(*lro, ip, tcph, *tcp_len);
  7419. if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
  7420. update_L3L4_header(sp, *lro);
  7421. ret = 4; /* Flush the LRO */
  7422. }
  7423. break;
  7424. default:
  7425. DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
  7426. __FUNCTION__);
  7427. break;
  7428. }
  7429. return ret;
  7430. }
  7431. static void clear_lro_session(struct lro *lro)
  7432. {
  7433. static u16 lro_struct_size = sizeof(struct lro);
  7434. memset(lro, 0, lro_struct_size);
  7435. }
  7436. static void queue_rx_frame(struct sk_buff *skb)
  7437. {
  7438. struct net_device *dev = skb->dev;
  7439. skb->protocol = eth_type_trans(skb, dev);
  7440. if (napi)
  7441. netif_receive_skb(skb);
  7442. else
  7443. netif_rx(skb);
  7444. }
  7445. static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
  7446. struct sk_buff *skb,
  7447. u32 tcp_len)
  7448. {
  7449. struct sk_buff *first = lro->parent;
  7450. first->len += tcp_len;
  7451. first->data_len = lro->frags_len;
  7452. skb_pull(skb, (skb->len - tcp_len));
  7453. if (skb_shinfo(first)->frag_list)
  7454. lro->last_frag->next = skb;
  7455. else
  7456. skb_shinfo(first)->frag_list = skb;
  7457. first->truesize += skb->truesize;
  7458. lro->last_frag = skb;
  7459. sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
  7460. return;
  7461. }
  7462. /**
  7463. * s2io_io_error_detected - called when PCI error is detected
  7464. * @pdev: Pointer to PCI device
  7465. * @state: The current pci connection state
  7466. *
  7467. * This function is called after a PCI bus error affecting
  7468. * this device has been detected.
  7469. */
  7470. static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
  7471. pci_channel_state_t state)
  7472. {
  7473. struct net_device *netdev = pci_get_drvdata(pdev);
  7474. struct s2io_nic *sp = netdev->priv;
  7475. netif_device_detach(netdev);
  7476. if (netif_running(netdev)) {
  7477. /* Bring down the card, while avoiding PCI I/O */
  7478. do_s2io_card_down(sp, 0);
  7479. }
  7480. pci_disable_device(pdev);
  7481. return PCI_ERS_RESULT_NEED_RESET;
  7482. }
  7483. /**
  7484. * s2io_io_slot_reset - called after the pci bus has been reset.
  7485. * @pdev: Pointer to PCI device
  7486. *
  7487. * Restart the card from scratch, as if from a cold-boot.
  7488. * At this point, the card has exprienced a hard reset,
  7489. * followed by fixups by BIOS, and has its config space
  7490. * set up identically to what it was at cold boot.
  7491. */
  7492. static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
  7493. {
  7494. struct net_device *netdev = pci_get_drvdata(pdev);
  7495. struct s2io_nic *sp = netdev->priv;
  7496. if (pci_enable_device(pdev)) {
  7497. printk(KERN_ERR "s2io: "
  7498. "Cannot re-enable PCI device after reset.\n");
  7499. return PCI_ERS_RESULT_DISCONNECT;
  7500. }
  7501. pci_set_master(pdev);
  7502. s2io_reset(sp);
  7503. return PCI_ERS_RESULT_RECOVERED;
  7504. }
  7505. /**
  7506. * s2io_io_resume - called when traffic can start flowing again.
  7507. * @pdev: Pointer to PCI device
  7508. *
  7509. * This callback is called when the error recovery driver tells
  7510. * us that its OK to resume normal operation.
  7511. */
  7512. static void s2io_io_resume(struct pci_dev *pdev)
  7513. {
  7514. struct net_device *netdev = pci_get_drvdata(pdev);
  7515. struct s2io_nic *sp = netdev->priv;
  7516. if (netif_running(netdev)) {
  7517. if (s2io_card_up(sp)) {
  7518. printk(KERN_ERR "s2io: "
  7519. "Can't bring device back up after reset.\n");
  7520. return;
  7521. }
  7522. if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
  7523. s2io_card_down(sp);
  7524. printk(KERN_ERR "s2io: "
  7525. "Can't resetore mac addr after reset.\n");
  7526. return;
  7527. }
  7528. }
  7529. netif_device_attach(netdev);
  7530. netif_wake_queue(netdev);
  7531. }