niu.c 192 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683
  1. /* niu.c: Neptune ethernet driver.
  2. *
  3. * Copyright (C) 2007 David S. Miller (davem@davemloft.net)
  4. */
  5. #include <linux/module.h>
  6. #include <linux/init.h>
  7. #include <linux/pci.h>
  8. #include <linux/dma-mapping.h>
  9. #include <linux/netdevice.h>
  10. #include <linux/ethtool.h>
  11. #include <linux/etherdevice.h>
  12. #include <linux/platform_device.h>
  13. #include <linux/delay.h>
  14. #include <linux/bitops.h>
  15. #include <linux/mii.h>
  16. #include <linux/if_ether.h>
  17. #include <linux/if_vlan.h>
  18. #include <linux/ip.h>
  19. #include <linux/in.h>
  20. #include <linux/ipv6.h>
  21. #include <linux/log2.h>
  22. #include <linux/jiffies.h>
  23. #include <linux/crc32.h>
  24. #include <linux/io.h>
  25. #ifdef CONFIG_SPARC64
  26. #include <linux/of_device.h>
  27. #endif
  28. #include "niu.h"
  29. #define DRV_MODULE_NAME "niu"
  30. #define PFX DRV_MODULE_NAME ": "
  31. #define DRV_MODULE_VERSION "0.7"
  32. #define DRV_MODULE_RELDATE "February 18, 2008"
  33. static char version[] __devinitdata =
  34. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  35. MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  36. MODULE_DESCRIPTION("NIU ethernet driver");
  37. MODULE_LICENSE("GPL");
  38. MODULE_VERSION(DRV_MODULE_VERSION);
  39. #ifndef DMA_44BIT_MASK
  40. #define DMA_44BIT_MASK 0x00000fffffffffffULL
  41. #endif
  42. #ifndef readq
  43. static u64 readq(void __iomem *reg)
  44. {
  45. return (((u64)readl(reg + 0x4UL) << 32) |
  46. (u64)readl(reg));
  47. }
  48. static void writeq(u64 val, void __iomem *reg)
  49. {
  50. writel(val & 0xffffffff, reg);
  51. writel(val >> 32, reg + 0x4UL);
  52. }
  53. #endif
  54. static struct pci_device_id niu_pci_tbl[] = {
  55. {PCI_DEVICE(PCI_VENDOR_ID_SUN, 0xabcd)},
  56. {}
  57. };
  58. MODULE_DEVICE_TABLE(pci, niu_pci_tbl);
  59. #define NIU_TX_TIMEOUT (5 * HZ)
  60. #define nr64(reg) readq(np->regs + (reg))
  61. #define nw64(reg, val) writeq((val), np->regs + (reg))
  62. #define nr64_mac(reg) readq(np->mac_regs + (reg))
  63. #define nw64_mac(reg, val) writeq((val), np->mac_regs + (reg))
  64. #define nr64_ipp(reg) readq(np->regs + np->ipp_off + (reg))
  65. #define nw64_ipp(reg, val) writeq((val), np->regs + np->ipp_off + (reg))
  66. #define nr64_pcs(reg) readq(np->regs + np->pcs_off + (reg))
  67. #define nw64_pcs(reg, val) writeq((val), np->regs + np->pcs_off + (reg))
  68. #define nr64_xpcs(reg) readq(np->regs + np->xpcs_off + (reg))
  69. #define nw64_xpcs(reg, val) writeq((val), np->regs + np->xpcs_off + (reg))
  70. #define NIU_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  71. static int niu_debug;
  72. static int debug = -1;
  73. module_param(debug, int, 0);
  74. MODULE_PARM_DESC(debug, "NIU debug level");
  75. #define niudbg(TYPE, f, a...) \
  76. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  77. printk(KERN_DEBUG PFX f, ## a); \
  78. } while (0)
  79. #define niuinfo(TYPE, f, a...) \
  80. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  81. printk(KERN_INFO PFX f, ## a); \
  82. } while (0)
  83. #define niuwarn(TYPE, f, a...) \
  84. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  85. printk(KERN_WARNING PFX f, ## a); \
  86. } while (0)
  87. #define niu_lock_parent(np, flags) \
  88. spin_lock_irqsave(&np->parent->lock, flags)
  89. #define niu_unlock_parent(np, flags) \
  90. spin_unlock_irqrestore(&np->parent->lock, flags)
  91. static int serdes_init_10g_serdes(struct niu *np);
  92. static int __niu_wait_bits_clear_mac(struct niu *np, unsigned long reg,
  93. u64 bits, int limit, int delay)
  94. {
  95. while (--limit >= 0) {
  96. u64 val = nr64_mac(reg);
  97. if (!(val & bits))
  98. break;
  99. udelay(delay);
  100. }
  101. if (limit < 0)
  102. return -ENODEV;
  103. return 0;
  104. }
  105. static int __niu_set_and_wait_clear_mac(struct niu *np, unsigned long reg,
  106. u64 bits, int limit, int delay,
  107. const char *reg_name)
  108. {
  109. int err;
  110. nw64_mac(reg, bits);
  111. err = __niu_wait_bits_clear_mac(np, reg, bits, limit, delay);
  112. if (err)
  113. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  114. "would not clear, val[%llx]\n",
  115. np->dev->name, (unsigned long long) bits, reg_name,
  116. (unsigned long long) nr64_mac(reg));
  117. return err;
  118. }
  119. #define niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  120. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  121. __niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  122. })
  123. static int __niu_wait_bits_clear_ipp(struct niu *np, unsigned long reg,
  124. u64 bits, int limit, int delay)
  125. {
  126. while (--limit >= 0) {
  127. u64 val = nr64_ipp(reg);
  128. if (!(val & bits))
  129. break;
  130. udelay(delay);
  131. }
  132. if (limit < 0)
  133. return -ENODEV;
  134. return 0;
  135. }
  136. static int __niu_set_and_wait_clear_ipp(struct niu *np, unsigned long reg,
  137. u64 bits, int limit, int delay,
  138. const char *reg_name)
  139. {
  140. int err;
  141. u64 val;
  142. val = nr64_ipp(reg);
  143. val |= bits;
  144. nw64_ipp(reg, val);
  145. err = __niu_wait_bits_clear_ipp(np, reg, bits, limit, delay);
  146. if (err)
  147. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  148. "would not clear, val[%llx]\n",
  149. np->dev->name, (unsigned long long) bits, reg_name,
  150. (unsigned long long) nr64_ipp(reg));
  151. return err;
  152. }
  153. #define niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  154. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  155. __niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  156. })
  157. static int __niu_wait_bits_clear(struct niu *np, unsigned long reg,
  158. u64 bits, int limit, int delay)
  159. {
  160. while (--limit >= 0) {
  161. u64 val = nr64(reg);
  162. if (!(val & bits))
  163. break;
  164. udelay(delay);
  165. }
  166. if (limit < 0)
  167. return -ENODEV;
  168. return 0;
  169. }
  170. #define niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY) \
  171. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  172. __niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY); \
  173. })
  174. static int __niu_set_and_wait_clear(struct niu *np, unsigned long reg,
  175. u64 bits, int limit, int delay,
  176. const char *reg_name)
  177. {
  178. int err;
  179. nw64(reg, bits);
  180. err = __niu_wait_bits_clear(np, reg, bits, limit, delay);
  181. if (err)
  182. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  183. "would not clear, val[%llx]\n",
  184. np->dev->name, (unsigned long long) bits, reg_name,
  185. (unsigned long long) nr64(reg));
  186. return err;
  187. }
  188. #define niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  189. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  190. __niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  191. })
  192. static void niu_ldg_rearm(struct niu *np, struct niu_ldg *lp, int on)
  193. {
  194. u64 val = (u64) lp->timer;
  195. if (on)
  196. val |= LDG_IMGMT_ARM;
  197. nw64(LDG_IMGMT(lp->ldg_num), val);
  198. }
  199. static int niu_ldn_irq_enable(struct niu *np, int ldn, int on)
  200. {
  201. unsigned long mask_reg, bits;
  202. u64 val;
  203. if (ldn < 0 || ldn > LDN_MAX)
  204. return -EINVAL;
  205. if (ldn < 64) {
  206. mask_reg = LD_IM0(ldn);
  207. bits = LD_IM0_MASK;
  208. } else {
  209. mask_reg = LD_IM1(ldn - 64);
  210. bits = LD_IM1_MASK;
  211. }
  212. val = nr64(mask_reg);
  213. if (on)
  214. val &= ~bits;
  215. else
  216. val |= bits;
  217. nw64(mask_reg, val);
  218. return 0;
  219. }
  220. static int niu_enable_ldn_in_ldg(struct niu *np, struct niu_ldg *lp, int on)
  221. {
  222. struct niu_parent *parent = np->parent;
  223. int i;
  224. for (i = 0; i <= LDN_MAX; i++) {
  225. int err;
  226. if (parent->ldg_map[i] != lp->ldg_num)
  227. continue;
  228. err = niu_ldn_irq_enable(np, i, on);
  229. if (err)
  230. return err;
  231. }
  232. return 0;
  233. }
  234. static int niu_enable_interrupts(struct niu *np, int on)
  235. {
  236. int i;
  237. for (i = 0; i < np->num_ldg; i++) {
  238. struct niu_ldg *lp = &np->ldg[i];
  239. int err;
  240. err = niu_enable_ldn_in_ldg(np, lp, on);
  241. if (err)
  242. return err;
  243. }
  244. for (i = 0; i < np->num_ldg; i++)
  245. niu_ldg_rearm(np, &np->ldg[i], on);
  246. return 0;
  247. }
  248. static u32 phy_encode(u32 type, int port)
  249. {
  250. return (type << (port * 2));
  251. }
  252. static u32 phy_decode(u32 val, int port)
  253. {
  254. return (val >> (port * 2)) & PORT_TYPE_MASK;
  255. }
  256. static int mdio_wait(struct niu *np)
  257. {
  258. int limit = 1000;
  259. u64 val;
  260. while (--limit > 0) {
  261. val = nr64(MIF_FRAME_OUTPUT);
  262. if ((val >> MIF_FRAME_OUTPUT_TA_SHIFT) & 0x1)
  263. return val & MIF_FRAME_OUTPUT_DATA;
  264. udelay(10);
  265. }
  266. return -ENODEV;
  267. }
  268. static int mdio_read(struct niu *np, int port, int dev, int reg)
  269. {
  270. int err;
  271. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  272. err = mdio_wait(np);
  273. if (err < 0)
  274. return err;
  275. nw64(MIF_FRAME_OUTPUT, MDIO_READ_OP(port, dev));
  276. return mdio_wait(np);
  277. }
  278. static int mdio_write(struct niu *np, int port, int dev, int reg, int data)
  279. {
  280. int err;
  281. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  282. err = mdio_wait(np);
  283. if (err < 0)
  284. return err;
  285. nw64(MIF_FRAME_OUTPUT, MDIO_WRITE_OP(port, dev, data));
  286. err = mdio_wait(np);
  287. if (err < 0)
  288. return err;
  289. return 0;
  290. }
  291. static int mii_read(struct niu *np, int port, int reg)
  292. {
  293. nw64(MIF_FRAME_OUTPUT, MII_READ_OP(port, reg));
  294. return mdio_wait(np);
  295. }
  296. static int mii_write(struct niu *np, int port, int reg, int data)
  297. {
  298. int err;
  299. nw64(MIF_FRAME_OUTPUT, MII_WRITE_OP(port, reg, data));
  300. err = mdio_wait(np);
  301. if (err < 0)
  302. return err;
  303. return 0;
  304. }
  305. static int esr2_set_tx_cfg(struct niu *np, unsigned long channel, u32 val)
  306. {
  307. int err;
  308. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  309. ESR2_TI_PLL_TX_CFG_L(channel),
  310. val & 0xffff);
  311. if (!err)
  312. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  313. ESR2_TI_PLL_TX_CFG_H(channel),
  314. val >> 16);
  315. return err;
  316. }
  317. static int esr2_set_rx_cfg(struct niu *np, unsigned long channel, u32 val)
  318. {
  319. int err;
  320. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  321. ESR2_TI_PLL_RX_CFG_L(channel),
  322. val & 0xffff);
  323. if (!err)
  324. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  325. ESR2_TI_PLL_RX_CFG_H(channel),
  326. val >> 16);
  327. return err;
  328. }
  329. /* Mode is always 10G fiber. */
  330. static int serdes_init_niu(struct niu *np)
  331. {
  332. struct niu_link_config *lp = &np->link_config;
  333. u32 tx_cfg, rx_cfg;
  334. unsigned long i;
  335. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  336. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  337. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  338. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  339. if (lp->loopback_mode == LOOPBACK_PHY) {
  340. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  341. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  342. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  343. tx_cfg |= PLL_TX_CFG_ENTEST;
  344. rx_cfg |= PLL_RX_CFG_ENTEST;
  345. }
  346. /* Initialize all 4 lanes of the SERDES. */
  347. for (i = 0; i < 4; i++) {
  348. int err = esr2_set_tx_cfg(np, i, tx_cfg);
  349. if (err)
  350. return err;
  351. }
  352. for (i = 0; i < 4; i++) {
  353. int err = esr2_set_rx_cfg(np, i, rx_cfg);
  354. if (err)
  355. return err;
  356. }
  357. return 0;
  358. }
  359. static int esr_read_rxtx_ctrl(struct niu *np, unsigned long chan, u32 *val)
  360. {
  361. int err;
  362. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_CTRL_L(chan));
  363. if (err >= 0) {
  364. *val = (err & 0xffff);
  365. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  366. ESR_RXTX_CTRL_H(chan));
  367. if (err >= 0)
  368. *val |= ((err & 0xffff) << 16);
  369. err = 0;
  370. }
  371. return err;
  372. }
  373. static int esr_read_glue0(struct niu *np, unsigned long chan, u32 *val)
  374. {
  375. int err;
  376. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  377. ESR_GLUE_CTRL0_L(chan));
  378. if (err >= 0) {
  379. *val = (err & 0xffff);
  380. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  381. ESR_GLUE_CTRL0_H(chan));
  382. if (err >= 0) {
  383. *val |= ((err & 0xffff) << 16);
  384. err = 0;
  385. }
  386. }
  387. return err;
  388. }
  389. static int esr_read_reset(struct niu *np, u32 *val)
  390. {
  391. int err;
  392. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  393. ESR_RXTX_RESET_CTRL_L);
  394. if (err >= 0) {
  395. *val = (err & 0xffff);
  396. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  397. ESR_RXTX_RESET_CTRL_H);
  398. if (err >= 0) {
  399. *val |= ((err & 0xffff) << 16);
  400. err = 0;
  401. }
  402. }
  403. return err;
  404. }
  405. static int esr_write_rxtx_ctrl(struct niu *np, unsigned long chan, u32 val)
  406. {
  407. int err;
  408. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  409. ESR_RXTX_CTRL_L(chan), val & 0xffff);
  410. if (!err)
  411. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  412. ESR_RXTX_CTRL_H(chan), (val >> 16));
  413. return err;
  414. }
  415. static int esr_write_glue0(struct niu *np, unsigned long chan, u32 val)
  416. {
  417. int err;
  418. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  419. ESR_GLUE_CTRL0_L(chan), val & 0xffff);
  420. if (!err)
  421. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  422. ESR_GLUE_CTRL0_H(chan), (val >> 16));
  423. return err;
  424. }
  425. static int esr_reset(struct niu *np)
  426. {
  427. u32 reset;
  428. int err;
  429. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  430. ESR_RXTX_RESET_CTRL_L, 0x0000);
  431. if (err)
  432. return err;
  433. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  434. ESR_RXTX_RESET_CTRL_H, 0xffff);
  435. if (err)
  436. return err;
  437. udelay(200);
  438. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  439. ESR_RXTX_RESET_CTRL_L, 0xffff);
  440. if (err)
  441. return err;
  442. udelay(200);
  443. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  444. ESR_RXTX_RESET_CTRL_H, 0x0000);
  445. if (err)
  446. return err;
  447. udelay(200);
  448. err = esr_read_reset(np, &reset);
  449. if (err)
  450. return err;
  451. if (reset != 0) {
  452. dev_err(np->device, PFX "Port %u ESR_RESET "
  453. "did not clear [%08x]\n",
  454. np->port, reset);
  455. return -ENODEV;
  456. }
  457. return 0;
  458. }
  459. static int serdes_init_10g(struct niu *np)
  460. {
  461. struct niu_link_config *lp = &np->link_config;
  462. unsigned long ctrl_reg, test_cfg_reg, i;
  463. u64 ctrl_val, test_cfg_val, sig, mask, val;
  464. int err;
  465. switch (np->port) {
  466. case 0:
  467. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  468. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  469. break;
  470. case 1:
  471. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  472. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  473. break;
  474. default:
  475. return -EINVAL;
  476. }
  477. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  478. ENET_SERDES_CTRL_SDET_1 |
  479. ENET_SERDES_CTRL_SDET_2 |
  480. ENET_SERDES_CTRL_SDET_3 |
  481. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  482. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  483. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  484. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  485. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  486. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  487. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  488. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  489. test_cfg_val = 0;
  490. if (lp->loopback_mode == LOOPBACK_PHY) {
  491. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  492. ENET_SERDES_TEST_MD_0_SHIFT) |
  493. (ENET_TEST_MD_PAD_LOOPBACK <<
  494. ENET_SERDES_TEST_MD_1_SHIFT) |
  495. (ENET_TEST_MD_PAD_LOOPBACK <<
  496. ENET_SERDES_TEST_MD_2_SHIFT) |
  497. (ENET_TEST_MD_PAD_LOOPBACK <<
  498. ENET_SERDES_TEST_MD_3_SHIFT));
  499. }
  500. nw64(ctrl_reg, ctrl_val);
  501. nw64(test_cfg_reg, test_cfg_val);
  502. /* Initialize all 4 lanes of the SERDES. */
  503. for (i = 0; i < 4; i++) {
  504. u32 rxtx_ctrl, glue0;
  505. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  506. if (err)
  507. return err;
  508. err = esr_read_glue0(np, i, &glue0);
  509. if (err)
  510. return err;
  511. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  512. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  513. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  514. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  515. ESR_GLUE_CTRL0_THCNT |
  516. ESR_GLUE_CTRL0_BLTIME);
  517. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  518. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  519. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  520. (BLTIME_300_CYCLES <<
  521. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  522. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  523. if (err)
  524. return err;
  525. err = esr_write_glue0(np, i, glue0);
  526. if (err)
  527. return err;
  528. }
  529. err = esr_reset(np);
  530. if (err)
  531. return err;
  532. sig = nr64(ESR_INT_SIGNALS);
  533. switch (np->port) {
  534. case 0:
  535. mask = ESR_INT_SIGNALS_P0_BITS;
  536. val = (ESR_INT_SRDY0_P0 |
  537. ESR_INT_DET0_P0 |
  538. ESR_INT_XSRDY_P0 |
  539. ESR_INT_XDP_P0_CH3 |
  540. ESR_INT_XDP_P0_CH2 |
  541. ESR_INT_XDP_P0_CH1 |
  542. ESR_INT_XDP_P0_CH0);
  543. break;
  544. case 1:
  545. mask = ESR_INT_SIGNALS_P1_BITS;
  546. val = (ESR_INT_SRDY0_P1 |
  547. ESR_INT_DET0_P1 |
  548. ESR_INT_XSRDY_P1 |
  549. ESR_INT_XDP_P1_CH3 |
  550. ESR_INT_XDP_P1_CH2 |
  551. ESR_INT_XDP_P1_CH1 |
  552. ESR_INT_XDP_P1_CH0);
  553. break;
  554. default:
  555. return -EINVAL;
  556. }
  557. if ((sig & mask) != val) {
  558. dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
  559. "[%08x]\n", np->port, (int) (sig & mask), (int) val);
  560. return -ENODEV;
  561. }
  562. return 0;
  563. }
  564. static int serdes_init_1g(struct niu *np)
  565. {
  566. u64 val;
  567. val = nr64(ENET_SERDES_1_PLL_CFG);
  568. val &= ~ENET_SERDES_PLL_FBDIV2;
  569. switch (np->port) {
  570. case 0:
  571. val |= ENET_SERDES_PLL_HRATE0;
  572. break;
  573. case 1:
  574. val |= ENET_SERDES_PLL_HRATE1;
  575. break;
  576. case 2:
  577. val |= ENET_SERDES_PLL_HRATE2;
  578. break;
  579. case 3:
  580. val |= ENET_SERDES_PLL_HRATE3;
  581. break;
  582. default:
  583. return -EINVAL;
  584. }
  585. nw64(ENET_SERDES_1_PLL_CFG, val);
  586. return 0;
  587. }
  588. static int serdes_init_1g_serdes(struct niu *np)
  589. {
  590. struct niu_link_config *lp = &np->link_config;
  591. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  592. u64 ctrl_val, test_cfg_val, sig, mask, val;
  593. int err;
  594. u64 reset_val, val_rd;
  595. val = ENET_SERDES_PLL_HRATE0 | ENET_SERDES_PLL_HRATE1 |
  596. ENET_SERDES_PLL_HRATE2 | ENET_SERDES_PLL_HRATE3 |
  597. ENET_SERDES_PLL_FBDIV0;
  598. switch (np->port) {
  599. case 0:
  600. reset_val = ENET_SERDES_RESET_0;
  601. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  602. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  603. pll_cfg = ENET_SERDES_0_PLL_CFG;
  604. break;
  605. case 1:
  606. reset_val = ENET_SERDES_RESET_1;
  607. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  608. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  609. pll_cfg = ENET_SERDES_1_PLL_CFG;
  610. break;
  611. default:
  612. return -EINVAL;
  613. }
  614. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  615. ENET_SERDES_CTRL_SDET_1 |
  616. ENET_SERDES_CTRL_SDET_2 |
  617. ENET_SERDES_CTRL_SDET_3 |
  618. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  619. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  620. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  621. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  622. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  623. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  624. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  625. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  626. test_cfg_val = 0;
  627. if (lp->loopback_mode == LOOPBACK_PHY) {
  628. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  629. ENET_SERDES_TEST_MD_0_SHIFT) |
  630. (ENET_TEST_MD_PAD_LOOPBACK <<
  631. ENET_SERDES_TEST_MD_1_SHIFT) |
  632. (ENET_TEST_MD_PAD_LOOPBACK <<
  633. ENET_SERDES_TEST_MD_2_SHIFT) |
  634. (ENET_TEST_MD_PAD_LOOPBACK <<
  635. ENET_SERDES_TEST_MD_3_SHIFT));
  636. }
  637. nw64(ENET_SERDES_RESET, reset_val);
  638. mdelay(20);
  639. val_rd = nr64(ENET_SERDES_RESET);
  640. val_rd &= ~reset_val;
  641. nw64(pll_cfg, val);
  642. nw64(ctrl_reg, ctrl_val);
  643. nw64(test_cfg_reg, test_cfg_val);
  644. nw64(ENET_SERDES_RESET, val_rd);
  645. mdelay(2000);
  646. /* Initialize all 4 lanes of the SERDES. */
  647. for (i = 0; i < 4; i++) {
  648. u32 rxtx_ctrl, glue0;
  649. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  650. if (err)
  651. return err;
  652. err = esr_read_glue0(np, i, &glue0);
  653. if (err)
  654. return err;
  655. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  656. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  657. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  658. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  659. ESR_GLUE_CTRL0_THCNT |
  660. ESR_GLUE_CTRL0_BLTIME);
  661. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  662. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  663. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  664. (BLTIME_300_CYCLES <<
  665. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  666. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  667. if (err)
  668. return err;
  669. err = esr_write_glue0(np, i, glue0);
  670. if (err)
  671. return err;
  672. }
  673. sig = nr64(ESR_INT_SIGNALS);
  674. switch (np->port) {
  675. case 0:
  676. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  677. mask = val;
  678. break;
  679. case 1:
  680. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  681. mask = val;
  682. break;
  683. default:
  684. return -EINVAL;
  685. }
  686. if ((sig & mask) != val) {
  687. dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
  688. "[%08x]\n", np->port, (int) (sig & mask), (int) val);
  689. return -ENODEV;
  690. }
  691. return 0;
  692. }
  693. static int link_status_1g_serdes(struct niu *np, int *link_up_p)
  694. {
  695. struct niu_link_config *lp = &np->link_config;
  696. int link_up;
  697. u64 val;
  698. u16 current_speed;
  699. unsigned long flags;
  700. u8 current_duplex;
  701. link_up = 0;
  702. current_speed = SPEED_INVALID;
  703. current_duplex = DUPLEX_INVALID;
  704. spin_lock_irqsave(&np->lock, flags);
  705. val = nr64_pcs(PCS_MII_STAT);
  706. if (val & PCS_MII_STAT_LINK_STATUS) {
  707. link_up = 1;
  708. current_speed = SPEED_1000;
  709. current_duplex = DUPLEX_FULL;
  710. }
  711. lp->active_speed = current_speed;
  712. lp->active_duplex = current_duplex;
  713. spin_unlock_irqrestore(&np->lock, flags);
  714. *link_up_p = link_up;
  715. return 0;
  716. }
  717. static int link_status_10g_serdes(struct niu *np, int *link_up_p)
  718. {
  719. unsigned long flags;
  720. struct niu_link_config *lp = &np->link_config;
  721. int link_up = 0;
  722. int link_ok = 1;
  723. u64 val, val2;
  724. u16 current_speed;
  725. u8 current_duplex;
  726. if (!(np->flags & NIU_FLAGS_10G))
  727. return link_status_1g_serdes(np, link_up_p);
  728. current_speed = SPEED_INVALID;
  729. current_duplex = DUPLEX_INVALID;
  730. spin_lock_irqsave(&np->lock, flags);
  731. val = nr64_xpcs(XPCS_STATUS(0));
  732. val2 = nr64_mac(XMAC_INTER2);
  733. if (val2 & 0x01000000)
  734. link_ok = 0;
  735. if ((val & 0x1000ULL) && link_ok) {
  736. link_up = 1;
  737. current_speed = SPEED_10000;
  738. current_duplex = DUPLEX_FULL;
  739. }
  740. lp->active_speed = current_speed;
  741. lp->active_duplex = current_duplex;
  742. spin_unlock_irqrestore(&np->lock, flags);
  743. *link_up_p = link_up;
  744. return 0;
  745. }
  746. static int link_status_1g_rgmii(struct niu *np, int *link_up_p)
  747. {
  748. struct niu_link_config *lp = &np->link_config;
  749. u16 current_speed, bmsr;
  750. unsigned long flags;
  751. u8 current_duplex;
  752. int err, link_up;
  753. link_up = 0;
  754. current_speed = SPEED_INVALID;
  755. current_duplex = DUPLEX_INVALID;
  756. spin_lock_irqsave(&np->lock, flags);
  757. err = -EINVAL;
  758. err = mii_read(np, np->phy_addr, MII_BMSR);
  759. if (err < 0)
  760. goto out;
  761. bmsr = err;
  762. if (bmsr & BMSR_LSTATUS) {
  763. u16 adv, lpa, common, estat;
  764. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  765. if (err < 0)
  766. goto out;
  767. adv = err;
  768. err = mii_read(np, np->phy_addr, MII_LPA);
  769. if (err < 0)
  770. goto out;
  771. lpa = err;
  772. common = adv & lpa;
  773. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  774. if (err < 0)
  775. goto out;
  776. estat = err;
  777. link_up = 1;
  778. current_speed = SPEED_1000;
  779. current_duplex = DUPLEX_FULL;
  780. }
  781. lp->active_speed = current_speed;
  782. lp->active_duplex = current_duplex;
  783. err = 0;
  784. out:
  785. spin_unlock_irqrestore(&np->lock, flags);
  786. *link_up_p = link_up;
  787. return err;
  788. }
  789. static int bcm8704_reset(struct niu *np)
  790. {
  791. int err, limit;
  792. err = mdio_read(np, np->phy_addr,
  793. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  794. if (err < 0)
  795. return err;
  796. err |= BMCR_RESET;
  797. err = mdio_write(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  798. MII_BMCR, err);
  799. if (err)
  800. return err;
  801. limit = 1000;
  802. while (--limit >= 0) {
  803. err = mdio_read(np, np->phy_addr,
  804. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  805. if (err < 0)
  806. return err;
  807. if (!(err & BMCR_RESET))
  808. break;
  809. }
  810. if (limit < 0) {
  811. dev_err(np->device, PFX "Port %u PHY will not reset "
  812. "(bmcr=%04x)\n", np->port, (err & 0xffff));
  813. return -ENODEV;
  814. }
  815. return 0;
  816. }
  817. /* When written, certain PHY registers need to be read back twice
  818. * in order for the bits to settle properly.
  819. */
  820. static int bcm8704_user_dev3_readback(struct niu *np, int reg)
  821. {
  822. int err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  823. if (err < 0)
  824. return err;
  825. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  826. if (err < 0)
  827. return err;
  828. return 0;
  829. }
  830. static int bcm8704_init_user_dev3(struct niu *np)
  831. {
  832. int err;
  833. err = mdio_write(np, np->phy_addr,
  834. BCM8704_USER_DEV3_ADDR, BCM8704_USER_CONTROL,
  835. (USER_CONTROL_OPTXRST_LVL |
  836. USER_CONTROL_OPBIASFLT_LVL |
  837. USER_CONTROL_OBTMPFLT_LVL |
  838. USER_CONTROL_OPPRFLT_LVL |
  839. USER_CONTROL_OPTXFLT_LVL |
  840. USER_CONTROL_OPRXLOS_LVL |
  841. USER_CONTROL_OPRXFLT_LVL |
  842. USER_CONTROL_OPTXON_LVL |
  843. (0x3f << USER_CONTROL_RES1_SHIFT)));
  844. if (err)
  845. return err;
  846. err = mdio_write(np, np->phy_addr,
  847. BCM8704_USER_DEV3_ADDR, BCM8704_USER_PMD_TX_CONTROL,
  848. (USER_PMD_TX_CTL_XFP_CLKEN |
  849. (1 << USER_PMD_TX_CTL_TX_DAC_TXD_SH) |
  850. (2 << USER_PMD_TX_CTL_TX_DAC_TXCK_SH) |
  851. USER_PMD_TX_CTL_TSCK_LPWREN));
  852. if (err)
  853. return err;
  854. err = bcm8704_user_dev3_readback(np, BCM8704_USER_CONTROL);
  855. if (err)
  856. return err;
  857. err = bcm8704_user_dev3_readback(np, BCM8704_USER_PMD_TX_CONTROL);
  858. if (err)
  859. return err;
  860. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  861. BCM8704_USER_OPT_DIGITAL_CTRL);
  862. if (err < 0)
  863. return err;
  864. err &= ~USER_ODIG_CTRL_GPIOS;
  865. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  866. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  867. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  868. if (err)
  869. return err;
  870. mdelay(1000);
  871. return 0;
  872. }
  873. static int mrvl88x2011_act_led(struct niu *np, int val)
  874. {
  875. int err;
  876. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  877. MRVL88X2011_LED_8_TO_11_CTL);
  878. if (err < 0)
  879. return err;
  880. err &= ~MRVL88X2011_LED(MRVL88X2011_LED_ACT,MRVL88X2011_LED_CTL_MASK);
  881. err |= MRVL88X2011_LED(MRVL88X2011_LED_ACT,val);
  882. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  883. MRVL88X2011_LED_8_TO_11_CTL, err);
  884. }
  885. static int mrvl88x2011_led_blink_rate(struct niu *np, int rate)
  886. {
  887. int err;
  888. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  889. MRVL88X2011_LED_BLINK_CTL);
  890. if (err >= 0) {
  891. err &= ~MRVL88X2011_LED_BLKRATE_MASK;
  892. err |= (rate << 4);
  893. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  894. MRVL88X2011_LED_BLINK_CTL, err);
  895. }
  896. return err;
  897. }
  898. static int xcvr_init_10g_mrvl88x2011(struct niu *np)
  899. {
  900. int err;
  901. /* Set LED functions */
  902. err = mrvl88x2011_led_blink_rate(np, MRVL88X2011_LED_BLKRATE_134MS);
  903. if (err)
  904. return err;
  905. /* led activity */
  906. err = mrvl88x2011_act_led(np, MRVL88X2011_LED_CTL_OFF);
  907. if (err)
  908. return err;
  909. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  910. MRVL88X2011_GENERAL_CTL);
  911. if (err < 0)
  912. return err;
  913. err |= MRVL88X2011_ENA_XFPREFCLK;
  914. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  915. MRVL88X2011_GENERAL_CTL, err);
  916. if (err < 0)
  917. return err;
  918. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  919. MRVL88X2011_PMA_PMD_CTL_1);
  920. if (err < 0)
  921. return err;
  922. if (np->link_config.loopback_mode == LOOPBACK_MAC)
  923. err |= MRVL88X2011_LOOPBACK;
  924. else
  925. err &= ~MRVL88X2011_LOOPBACK;
  926. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  927. MRVL88X2011_PMA_PMD_CTL_1, err);
  928. if (err < 0)
  929. return err;
  930. /* Enable PMD */
  931. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  932. MRVL88X2011_10G_PMD_TX_DIS, MRVL88X2011_ENA_PMDTX);
  933. }
  934. static int xcvr_init_10g_bcm8704(struct niu *np)
  935. {
  936. struct niu_link_config *lp = &np->link_config;
  937. u16 analog_stat0, tx_alarm_status;
  938. int err;
  939. err = bcm8704_reset(np);
  940. if (err)
  941. return err;
  942. err = bcm8704_init_user_dev3(np);
  943. if (err)
  944. return err;
  945. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  946. MII_BMCR);
  947. if (err < 0)
  948. return err;
  949. err &= ~BMCR_LOOPBACK;
  950. if (lp->loopback_mode == LOOPBACK_MAC)
  951. err |= BMCR_LOOPBACK;
  952. err = mdio_write(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  953. MII_BMCR, err);
  954. if (err)
  955. return err;
  956. #if 1
  957. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  958. MII_STAT1000);
  959. if (err < 0)
  960. return err;
  961. pr_info(PFX "Port %u PMA_PMD(MII_STAT1000) [%04x]\n",
  962. np->port, err);
  963. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, 0x20);
  964. if (err < 0)
  965. return err;
  966. pr_info(PFX "Port %u USER_DEV3(0x20) [%04x]\n",
  967. np->port, err);
  968. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  969. MII_NWAYTEST);
  970. if (err < 0)
  971. return err;
  972. pr_info(PFX "Port %u PHYXS(MII_NWAYTEST) [%04x]\n",
  973. np->port, err);
  974. #endif
  975. /* XXX dig this out it might not be so useful XXX */
  976. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  977. BCM8704_USER_ANALOG_STATUS0);
  978. if (err < 0)
  979. return err;
  980. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  981. BCM8704_USER_ANALOG_STATUS0);
  982. if (err < 0)
  983. return err;
  984. analog_stat0 = err;
  985. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  986. BCM8704_USER_TX_ALARM_STATUS);
  987. if (err < 0)
  988. return err;
  989. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  990. BCM8704_USER_TX_ALARM_STATUS);
  991. if (err < 0)
  992. return err;
  993. tx_alarm_status = err;
  994. if (analog_stat0 != 0x03fc) {
  995. if ((analog_stat0 == 0x43bc) && (tx_alarm_status != 0)) {
  996. pr_info(PFX "Port %u cable not connected "
  997. "or bad cable.\n", np->port);
  998. } else if (analog_stat0 == 0x639c) {
  999. pr_info(PFX "Port %u optical module is bad "
  1000. "or missing.\n", np->port);
  1001. }
  1002. }
  1003. return 0;
  1004. }
  1005. static int xcvr_init_10g(struct niu *np)
  1006. {
  1007. int phy_id, err;
  1008. u64 val;
  1009. val = nr64_mac(XMAC_CONFIG);
  1010. val &= ~XMAC_CONFIG_LED_POLARITY;
  1011. val |= XMAC_CONFIG_FORCE_LED_ON;
  1012. nw64_mac(XMAC_CONFIG, val);
  1013. /* XXX shared resource, lock parent XXX */
  1014. val = nr64(MIF_CONFIG);
  1015. val |= MIF_CONFIG_INDIRECT_MODE;
  1016. nw64(MIF_CONFIG, val);
  1017. phy_id = phy_decode(np->parent->port_phy, np->port);
  1018. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1019. /* handle different phy types */
  1020. switch (phy_id & NIU_PHY_ID_MASK) {
  1021. case NIU_PHY_ID_MRVL88X2011:
  1022. err = xcvr_init_10g_mrvl88x2011(np);
  1023. break;
  1024. default: /* bcom 8704 */
  1025. err = xcvr_init_10g_bcm8704(np);
  1026. break;
  1027. }
  1028. return 0;
  1029. }
  1030. static int mii_reset(struct niu *np)
  1031. {
  1032. int limit, err;
  1033. err = mii_write(np, np->phy_addr, MII_BMCR, BMCR_RESET);
  1034. if (err)
  1035. return err;
  1036. limit = 1000;
  1037. while (--limit >= 0) {
  1038. udelay(500);
  1039. err = mii_read(np, np->phy_addr, MII_BMCR);
  1040. if (err < 0)
  1041. return err;
  1042. if (!(err & BMCR_RESET))
  1043. break;
  1044. }
  1045. if (limit < 0) {
  1046. dev_err(np->device, PFX "Port %u MII would not reset, "
  1047. "bmcr[%04x]\n", np->port, err);
  1048. return -ENODEV;
  1049. }
  1050. return 0;
  1051. }
  1052. static int xcvr_init_1g_rgmii(struct niu *np)
  1053. {
  1054. int err;
  1055. u64 val;
  1056. u16 bmcr, bmsr, estat;
  1057. val = nr64(MIF_CONFIG);
  1058. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1059. nw64(MIF_CONFIG, val);
  1060. err = mii_reset(np);
  1061. if (err)
  1062. return err;
  1063. err = mii_read(np, np->phy_addr, MII_BMSR);
  1064. if (err < 0)
  1065. return err;
  1066. bmsr = err;
  1067. estat = 0;
  1068. if (bmsr & BMSR_ESTATEN) {
  1069. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1070. if (err < 0)
  1071. return err;
  1072. estat = err;
  1073. }
  1074. bmcr = 0;
  1075. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1076. if (err)
  1077. return err;
  1078. if (bmsr & BMSR_ESTATEN) {
  1079. u16 ctrl1000 = 0;
  1080. if (estat & ESTATUS_1000_TFULL)
  1081. ctrl1000 |= ADVERTISE_1000FULL;
  1082. err = mii_write(np, np->phy_addr, MII_CTRL1000, ctrl1000);
  1083. if (err)
  1084. return err;
  1085. }
  1086. bmcr = (BMCR_SPEED1000 | BMCR_FULLDPLX);
  1087. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1088. if (err)
  1089. return err;
  1090. err = mii_read(np, np->phy_addr, MII_BMCR);
  1091. if (err < 0)
  1092. return err;
  1093. bmcr = mii_read(np, np->phy_addr, MII_BMCR);
  1094. err = mii_read(np, np->phy_addr, MII_BMSR);
  1095. if (err < 0)
  1096. return err;
  1097. return 0;
  1098. }
  1099. static int mii_init_common(struct niu *np)
  1100. {
  1101. struct niu_link_config *lp = &np->link_config;
  1102. u16 bmcr, bmsr, adv, estat;
  1103. int err;
  1104. err = mii_reset(np);
  1105. if (err)
  1106. return err;
  1107. err = mii_read(np, np->phy_addr, MII_BMSR);
  1108. if (err < 0)
  1109. return err;
  1110. bmsr = err;
  1111. estat = 0;
  1112. if (bmsr & BMSR_ESTATEN) {
  1113. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1114. if (err < 0)
  1115. return err;
  1116. estat = err;
  1117. }
  1118. bmcr = 0;
  1119. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1120. if (err)
  1121. return err;
  1122. if (lp->loopback_mode == LOOPBACK_MAC) {
  1123. bmcr |= BMCR_LOOPBACK;
  1124. if (lp->active_speed == SPEED_1000)
  1125. bmcr |= BMCR_SPEED1000;
  1126. if (lp->active_duplex == DUPLEX_FULL)
  1127. bmcr |= BMCR_FULLDPLX;
  1128. }
  1129. if (lp->loopback_mode == LOOPBACK_PHY) {
  1130. u16 aux;
  1131. aux = (BCM5464R_AUX_CTL_EXT_LB |
  1132. BCM5464R_AUX_CTL_WRITE_1);
  1133. err = mii_write(np, np->phy_addr, BCM5464R_AUX_CTL, aux);
  1134. if (err)
  1135. return err;
  1136. }
  1137. /* XXX configurable XXX */
  1138. /* XXX for now don't advertise half-duplex or asym pause... XXX */
  1139. adv = ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP;
  1140. if (bmsr & BMSR_10FULL)
  1141. adv |= ADVERTISE_10FULL;
  1142. if (bmsr & BMSR_100FULL)
  1143. adv |= ADVERTISE_100FULL;
  1144. err = mii_write(np, np->phy_addr, MII_ADVERTISE, adv);
  1145. if (err)
  1146. return err;
  1147. if (bmsr & BMSR_ESTATEN) {
  1148. u16 ctrl1000 = 0;
  1149. if (estat & ESTATUS_1000_TFULL)
  1150. ctrl1000 |= ADVERTISE_1000FULL;
  1151. err = mii_write(np, np->phy_addr, MII_CTRL1000, ctrl1000);
  1152. if (err)
  1153. return err;
  1154. }
  1155. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  1156. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1157. if (err)
  1158. return err;
  1159. err = mii_read(np, np->phy_addr, MII_BMCR);
  1160. if (err < 0)
  1161. return err;
  1162. err = mii_read(np, np->phy_addr, MII_BMSR);
  1163. if (err < 0)
  1164. return err;
  1165. #if 0
  1166. pr_info(PFX "Port %u after MII init bmcr[%04x] bmsr[%04x]\n",
  1167. np->port, bmcr, bmsr);
  1168. #endif
  1169. return 0;
  1170. }
  1171. static int xcvr_init_1g(struct niu *np)
  1172. {
  1173. u64 val;
  1174. /* XXX shared resource, lock parent XXX */
  1175. val = nr64(MIF_CONFIG);
  1176. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1177. nw64(MIF_CONFIG, val);
  1178. return mii_init_common(np);
  1179. }
  1180. static int niu_xcvr_init(struct niu *np)
  1181. {
  1182. const struct niu_phy_ops *ops = np->phy_ops;
  1183. int err;
  1184. err = 0;
  1185. if (ops->xcvr_init)
  1186. err = ops->xcvr_init(np);
  1187. return err;
  1188. }
  1189. static int niu_serdes_init(struct niu *np)
  1190. {
  1191. const struct niu_phy_ops *ops = np->phy_ops;
  1192. int err;
  1193. err = 0;
  1194. if (ops->serdes_init)
  1195. err = ops->serdes_init(np);
  1196. return err;
  1197. }
  1198. static void niu_init_xif(struct niu *);
  1199. static void niu_handle_led(struct niu *, int status);
  1200. static int niu_link_status_common(struct niu *np, int link_up)
  1201. {
  1202. struct niu_link_config *lp = &np->link_config;
  1203. struct net_device *dev = np->dev;
  1204. unsigned long flags;
  1205. if (!netif_carrier_ok(dev) && link_up) {
  1206. niuinfo(LINK, "%s: Link is up at %s, %s duplex\n",
  1207. dev->name,
  1208. (lp->active_speed == SPEED_10000 ?
  1209. "10Gb/sec" :
  1210. (lp->active_speed == SPEED_1000 ?
  1211. "1Gb/sec" :
  1212. (lp->active_speed == SPEED_100 ?
  1213. "100Mbit/sec" : "10Mbit/sec"))),
  1214. (lp->active_duplex == DUPLEX_FULL ?
  1215. "full" : "half"));
  1216. spin_lock_irqsave(&np->lock, flags);
  1217. niu_init_xif(np);
  1218. niu_handle_led(np, 1);
  1219. spin_unlock_irqrestore(&np->lock, flags);
  1220. netif_carrier_on(dev);
  1221. } else if (netif_carrier_ok(dev) && !link_up) {
  1222. niuwarn(LINK, "%s: Link is down\n", dev->name);
  1223. spin_lock_irqsave(&np->lock, flags);
  1224. niu_handle_led(np, 0);
  1225. spin_unlock_irqrestore(&np->lock, flags);
  1226. netif_carrier_off(dev);
  1227. }
  1228. return 0;
  1229. }
  1230. static int link_status_10g_mrvl(struct niu *np, int *link_up_p)
  1231. {
  1232. int err, link_up, pma_status, pcs_status;
  1233. link_up = 0;
  1234. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1235. MRVL88X2011_10G_PMD_STATUS_2);
  1236. if (err < 0)
  1237. goto out;
  1238. /* Check PMA/PMD Register: 1.0001.2 == 1 */
  1239. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1240. MRVL88X2011_PMA_PMD_STATUS_1);
  1241. if (err < 0)
  1242. goto out;
  1243. pma_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1244. /* Check PMC Register : 3.0001.2 == 1: read twice */
  1245. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1246. MRVL88X2011_PMA_PMD_STATUS_1);
  1247. if (err < 0)
  1248. goto out;
  1249. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1250. MRVL88X2011_PMA_PMD_STATUS_1);
  1251. if (err < 0)
  1252. goto out;
  1253. pcs_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1254. /* Check XGXS Register : 4.0018.[0-3,12] */
  1255. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV4_ADDR,
  1256. MRVL88X2011_10G_XGXS_LANE_STAT);
  1257. if (err < 0)
  1258. goto out;
  1259. if (err == (PHYXS_XGXS_LANE_STAT_ALINGED | PHYXS_XGXS_LANE_STAT_LANE3 |
  1260. PHYXS_XGXS_LANE_STAT_LANE2 | PHYXS_XGXS_LANE_STAT_LANE1 |
  1261. PHYXS_XGXS_LANE_STAT_LANE0 | PHYXS_XGXS_LANE_STAT_MAGIC |
  1262. 0x800))
  1263. link_up = (pma_status && pcs_status) ? 1 : 0;
  1264. np->link_config.active_speed = SPEED_10000;
  1265. np->link_config.active_duplex = DUPLEX_FULL;
  1266. err = 0;
  1267. out:
  1268. mrvl88x2011_act_led(np, (link_up ?
  1269. MRVL88X2011_LED_CTL_PCS_ACT :
  1270. MRVL88X2011_LED_CTL_OFF));
  1271. *link_up_p = link_up;
  1272. return err;
  1273. }
  1274. static int link_status_10g_bcom(struct niu *np, int *link_up_p)
  1275. {
  1276. int err, link_up;
  1277. link_up = 0;
  1278. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1279. BCM8704_PMD_RCV_SIGDET);
  1280. if (err < 0)
  1281. goto out;
  1282. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1283. err = 0;
  1284. goto out;
  1285. }
  1286. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1287. BCM8704_PCS_10G_R_STATUS);
  1288. if (err < 0)
  1289. goto out;
  1290. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1291. err = 0;
  1292. goto out;
  1293. }
  1294. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1295. BCM8704_PHYXS_XGXS_LANE_STAT);
  1296. if (err < 0)
  1297. goto out;
  1298. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1299. PHYXS_XGXS_LANE_STAT_MAGIC |
  1300. PHYXS_XGXS_LANE_STAT_LANE3 |
  1301. PHYXS_XGXS_LANE_STAT_LANE2 |
  1302. PHYXS_XGXS_LANE_STAT_LANE1 |
  1303. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1304. err = 0;
  1305. goto out;
  1306. }
  1307. link_up = 1;
  1308. np->link_config.active_speed = SPEED_10000;
  1309. np->link_config.active_duplex = DUPLEX_FULL;
  1310. err = 0;
  1311. out:
  1312. *link_up_p = link_up;
  1313. return err;
  1314. }
  1315. static int link_status_10g(struct niu *np, int *link_up_p)
  1316. {
  1317. unsigned long flags;
  1318. int err = -EINVAL;
  1319. spin_lock_irqsave(&np->lock, flags);
  1320. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1321. int phy_id;
  1322. phy_id = phy_decode(np->parent->port_phy, np->port);
  1323. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1324. /* handle different phy types */
  1325. switch (phy_id & NIU_PHY_ID_MASK) {
  1326. case NIU_PHY_ID_MRVL88X2011:
  1327. err = link_status_10g_mrvl(np, link_up_p);
  1328. break;
  1329. default: /* bcom 8704 */
  1330. err = link_status_10g_bcom(np, link_up_p);
  1331. break;
  1332. }
  1333. }
  1334. spin_unlock_irqrestore(&np->lock, flags);
  1335. return err;
  1336. }
  1337. static int link_status_1g(struct niu *np, int *link_up_p)
  1338. {
  1339. struct niu_link_config *lp = &np->link_config;
  1340. u16 current_speed, bmsr;
  1341. unsigned long flags;
  1342. u8 current_duplex;
  1343. int err, link_up;
  1344. link_up = 0;
  1345. current_speed = SPEED_INVALID;
  1346. current_duplex = DUPLEX_INVALID;
  1347. spin_lock_irqsave(&np->lock, flags);
  1348. err = -EINVAL;
  1349. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  1350. goto out;
  1351. err = mii_read(np, np->phy_addr, MII_BMSR);
  1352. if (err < 0)
  1353. goto out;
  1354. bmsr = err;
  1355. if (bmsr & BMSR_LSTATUS) {
  1356. u16 adv, lpa, common, estat;
  1357. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  1358. if (err < 0)
  1359. goto out;
  1360. adv = err;
  1361. err = mii_read(np, np->phy_addr, MII_LPA);
  1362. if (err < 0)
  1363. goto out;
  1364. lpa = err;
  1365. common = adv & lpa;
  1366. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1367. if (err < 0)
  1368. goto out;
  1369. estat = err;
  1370. link_up = 1;
  1371. if (estat & (ESTATUS_1000_TFULL | ESTATUS_1000_THALF)) {
  1372. current_speed = SPEED_1000;
  1373. if (estat & ESTATUS_1000_TFULL)
  1374. current_duplex = DUPLEX_FULL;
  1375. else
  1376. current_duplex = DUPLEX_HALF;
  1377. } else {
  1378. if (common & ADVERTISE_100BASE4) {
  1379. current_speed = SPEED_100;
  1380. current_duplex = DUPLEX_HALF;
  1381. } else if (common & ADVERTISE_100FULL) {
  1382. current_speed = SPEED_100;
  1383. current_duplex = DUPLEX_FULL;
  1384. } else if (common & ADVERTISE_100HALF) {
  1385. current_speed = SPEED_100;
  1386. current_duplex = DUPLEX_HALF;
  1387. } else if (common & ADVERTISE_10FULL) {
  1388. current_speed = SPEED_10;
  1389. current_duplex = DUPLEX_FULL;
  1390. } else if (common & ADVERTISE_10HALF) {
  1391. current_speed = SPEED_10;
  1392. current_duplex = DUPLEX_HALF;
  1393. } else
  1394. link_up = 0;
  1395. }
  1396. }
  1397. lp->active_speed = current_speed;
  1398. lp->active_duplex = current_duplex;
  1399. err = 0;
  1400. out:
  1401. spin_unlock_irqrestore(&np->lock, flags);
  1402. *link_up_p = link_up;
  1403. return err;
  1404. }
  1405. static int niu_link_status(struct niu *np, int *link_up_p)
  1406. {
  1407. const struct niu_phy_ops *ops = np->phy_ops;
  1408. int err;
  1409. err = 0;
  1410. if (ops->link_status)
  1411. err = ops->link_status(np, link_up_p);
  1412. return err;
  1413. }
  1414. static void niu_timer(unsigned long __opaque)
  1415. {
  1416. struct niu *np = (struct niu *) __opaque;
  1417. unsigned long off;
  1418. int err, link_up;
  1419. err = niu_link_status(np, &link_up);
  1420. if (!err)
  1421. niu_link_status_common(np, link_up);
  1422. if (netif_carrier_ok(np->dev))
  1423. off = 5 * HZ;
  1424. else
  1425. off = 1 * HZ;
  1426. np->timer.expires = jiffies + off;
  1427. add_timer(&np->timer);
  1428. }
  1429. static const struct niu_phy_ops phy_ops_10g_serdes = {
  1430. .serdes_init = serdes_init_10g_serdes,
  1431. .link_status = link_status_10g_serdes,
  1432. };
  1433. static const struct niu_phy_ops phy_ops_1g_rgmii = {
  1434. .xcvr_init = xcvr_init_1g_rgmii,
  1435. .link_status = link_status_1g_rgmii,
  1436. };
  1437. static const struct niu_phy_ops phy_ops_10g_fiber_niu = {
  1438. .serdes_init = serdes_init_niu,
  1439. .xcvr_init = xcvr_init_10g,
  1440. .link_status = link_status_10g,
  1441. };
  1442. static const struct niu_phy_ops phy_ops_10g_fiber = {
  1443. .serdes_init = serdes_init_10g,
  1444. .xcvr_init = xcvr_init_10g,
  1445. .link_status = link_status_10g,
  1446. };
  1447. static const struct niu_phy_ops phy_ops_10g_copper = {
  1448. .serdes_init = serdes_init_10g,
  1449. .link_status = link_status_10g, /* XXX */
  1450. };
  1451. static const struct niu_phy_ops phy_ops_1g_fiber = {
  1452. .serdes_init = serdes_init_1g,
  1453. .xcvr_init = xcvr_init_1g,
  1454. .link_status = link_status_1g,
  1455. };
  1456. static const struct niu_phy_ops phy_ops_1g_copper = {
  1457. .xcvr_init = xcvr_init_1g,
  1458. .link_status = link_status_1g,
  1459. };
  1460. struct niu_phy_template {
  1461. const struct niu_phy_ops *ops;
  1462. u32 phy_addr_base;
  1463. };
  1464. static const struct niu_phy_template phy_template_niu = {
  1465. .ops = &phy_ops_10g_fiber_niu,
  1466. .phy_addr_base = 16,
  1467. };
  1468. static const struct niu_phy_template phy_template_10g_fiber = {
  1469. .ops = &phy_ops_10g_fiber,
  1470. .phy_addr_base = 8,
  1471. };
  1472. static const struct niu_phy_template phy_template_10g_copper = {
  1473. .ops = &phy_ops_10g_copper,
  1474. .phy_addr_base = 10,
  1475. };
  1476. static const struct niu_phy_template phy_template_1g_fiber = {
  1477. .ops = &phy_ops_1g_fiber,
  1478. .phy_addr_base = 0,
  1479. };
  1480. static const struct niu_phy_template phy_template_1g_copper = {
  1481. .ops = &phy_ops_1g_copper,
  1482. .phy_addr_base = 0,
  1483. };
  1484. static const struct niu_phy_template phy_template_1g_rgmii = {
  1485. .ops = &phy_ops_1g_rgmii,
  1486. .phy_addr_base = 0,
  1487. };
  1488. static const struct niu_phy_template phy_template_10g_serdes = {
  1489. .ops = &phy_ops_10g_serdes,
  1490. .phy_addr_base = 0,
  1491. };
  1492. static int niu_atca_port_num[4] = {
  1493. 0, 0, 11, 10
  1494. };
  1495. static int serdes_init_10g_serdes(struct niu *np)
  1496. {
  1497. struct niu_link_config *lp = &np->link_config;
  1498. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  1499. u64 ctrl_val, test_cfg_val, sig, mask, val;
  1500. int err;
  1501. u64 reset_val;
  1502. switch (np->port) {
  1503. case 0:
  1504. reset_val = ENET_SERDES_RESET_0;
  1505. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  1506. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  1507. pll_cfg = ENET_SERDES_0_PLL_CFG;
  1508. break;
  1509. case 1:
  1510. reset_val = ENET_SERDES_RESET_1;
  1511. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  1512. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  1513. pll_cfg = ENET_SERDES_1_PLL_CFG;
  1514. break;
  1515. default:
  1516. return -EINVAL;
  1517. }
  1518. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  1519. ENET_SERDES_CTRL_SDET_1 |
  1520. ENET_SERDES_CTRL_SDET_2 |
  1521. ENET_SERDES_CTRL_SDET_3 |
  1522. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  1523. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  1524. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  1525. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  1526. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  1527. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  1528. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  1529. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  1530. test_cfg_val = 0;
  1531. if (lp->loopback_mode == LOOPBACK_PHY) {
  1532. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  1533. ENET_SERDES_TEST_MD_0_SHIFT) |
  1534. (ENET_TEST_MD_PAD_LOOPBACK <<
  1535. ENET_SERDES_TEST_MD_1_SHIFT) |
  1536. (ENET_TEST_MD_PAD_LOOPBACK <<
  1537. ENET_SERDES_TEST_MD_2_SHIFT) |
  1538. (ENET_TEST_MD_PAD_LOOPBACK <<
  1539. ENET_SERDES_TEST_MD_3_SHIFT));
  1540. }
  1541. esr_reset(np);
  1542. nw64(pll_cfg, ENET_SERDES_PLL_FBDIV2);
  1543. nw64(ctrl_reg, ctrl_val);
  1544. nw64(test_cfg_reg, test_cfg_val);
  1545. /* Initialize all 4 lanes of the SERDES. */
  1546. for (i = 0; i < 4; i++) {
  1547. u32 rxtx_ctrl, glue0;
  1548. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  1549. if (err)
  1550. return err;
  1551. err = esr_read_glue0(np, i, &glue0);
  1552. if (err)
  1553. return err;
  1554. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  1555. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  1556. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  1557. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  1558. ESR_GLUE_CTRL0_THCNT |
  1559. ESR_GLUE_CTRL0_BLTIME);
  1560. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  1561. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  1562. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  1563. (BLTIME_300_CYCLES <<
  1564. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  1565. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  1566. if (err)
  1567. return err;
  1568. err = esr_write_glue0(np, i, glue0);
  1569. if (err)
  1570. return err;
  1571. }
  1572. sig = nr64(ESR_INT_SIGNALS);
  1573. switch (np->port) {
  1574. case 0:
  1575. mask = ESR_INT_SIGNALS_P0_BITS;
  1576. val = (ESR_INT_SRDY0_P0 |
  1577. ESR_INT_DET0_P0 |
  1578. ESR_INT_XSRDY_P0 |
  1579. ESR_INT_XDP_P0_CH3 |
  1580. ESR_INT_XDP_P0_CH2 |
  1581. ESR_INT_XDP_P0_CH1 |
  1582. ESR_INT_XDP_P0_CH0);
  1583. break;
  1584. case 1:
  1585. mask = ESR_INT_SIGNALS_P1_BITS;
  1586. val = (ESR_INT_SRDY0_P1 |
  1587. ESR_INT_DET0_P1 |
  1588. ESR_INT_XSRDY_P1 |
  1589. ESR_INT_XDP_P1_CH3 |
  1590. ESR_INT_XDP_P1_CH2 |
  1591. ESR_INT_XDP_P1_CH1 |
  1592. ESR_INT_XDP_P1_CH0);
  1593. break;
  1594. default:
  1595. return -EINVAL;
  1596. }
  1597. if ((sig & mask) != val) {
  1598. int err;
  1599. err = serdes_init_1g_serdes(np);
  1600. if (!err) {
  1601. np->flags &= ~NIU_FLAGS_10G;
  1602. np->mac_xcvr = MAC_XCVR_PCS;
  1603. } else {
  1604. dev_err(np->device, PFX "Port %u 10G/1G SERDES Link Failed \n",
  1605. np->port);
  1606. return -ENODEV;
  1607. }
  1608. }
  1609. return 0;
  1610. }
  1611. static int niu_determine_phy_disposition(struct niu *np)
  1612. {
  1613. struct niu_parent *parent = np->parent;
  1614. u8 plat_type = parent->plat_type;
  1615. const struct niu_phy_template *tp;
  1616. u32 phy_addr_off = 0;
  1617. if (plat_type == PLAT_TYPE_NIU) {
  1618. tp = &phy_template_niu;
  1619. phy_addr_off += np->port;
  1620. } else {
  1621. switch (np->flags &
  1622. (NIU_FLAGS_10G |
  1623. NIU_FLAGS_FIBER |
  1624. NIU_FLAGS_XCVR_SERDES)) {
  1625. case 0:
  1626. /* 1G copper */
  1627. tp = &phy_template_1g_copper;
  1628. if (plat_type == PLAT_TYPE_VF_P0)
  1629. phy_addr_off = 10;
  1630. else if (plat_type == PLAT_TYPE_VF_P1)
  1631. phy_addr_off = 26;
  1632. phy_addr_off += (np->port ^ 0x3);
  1633. break;
  1634. case NIU_FLAGS_10G:
  1635. /* 10G copper */
  1636. tp = &phy_template_1g_copper;
  1637. break;
  1638. case NIU_FLAGS_FIBER:
  1639. /* 1G fiber */
  1640. tp = &phy_template_1g_fiber;
  1641. break;
  1642. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  1643. /* 10G fiber */
  1644. tp = &phy_template_10g_fiber;
  1645. if (plat_type == PLAT_TYPE_VF_P0 ||
  1646. plat_type == PLAT_TYPE_VF_P1)
  1647. phy_addr_off = 8;
  1648. phy_addr_off += np->port;
  1649. break;
  1650. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  1651. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  1652. case NIU_FLAGS_XCVR_SERDES:
  1653. switch(np->port) {
  1654. case 0:
  1655. case 1:
  1656. tp = &phy_template_10g_serdes;
  1657. break;
  1658. case 2:
  1659. case 3:
  1660. tp = &phy_template_1g_rgmii;
  1661. break;
  1662. default:
  1663. return -EINVAL;
  1664. break;
  1665. }
  1666. phy_addr_off = niu_atca_port_num[np->port];
  1667. break;
  1668. default:
  1669. return -EINVAL;
  1670. }
  1671. }
  1672. np->phy_ops = tp->ops;
  1673. np->phy_addr = tp->phy_addr_base + phy_addr_off;
  1674. return 0;
  1675. }
  1676. static int niu_init_link(struct niu *np)
  1677. {
  1678. struct niu_parent *parent = np->parent;
  1679. int err, ignore;
  1680. if (parent->plat_type == PLAT_TYPE_NIU) {
  1681. err = niu_xcvr_init(np);
  1682. if (err)
  1683. return err;
  1684. msleep(200);
  1685. }
  1686. err = niu_serdes_init(np);
  1687. if (err)
  1688. return err;
  1689. msleep(200);
  1690. err = niu_xcvr_init(np);
  1691. if (!err)
  1692. niu_link_status(np, &ignore);
  1693. return 0;
  1694. }
  1695. static void niu_set_primary_mac(struct niu *np, unsigned char *addr)
  1696. {
  1697. u16 reg0 = addr[4] << 8 | addr[5];
  1698. u16 reg1 = addr[2] << 8 | addr[3];
  1699. u16 reg2 = addr[0] << 8 | addr[1];
  1700. if (np->flags & NIU_FLAGS_XMAC) {
  1701. nw64_mac(XMAC_ADDR0, reg0);
  1702. nw64_mac(XMAC_ADDR1, reg1);
  1703. nw64_mac(XMAC_ADDR2, reg2);
  1704. } else {
  1705. nw64_mac(BMAC_ADDR0, reg0);
  1706. nw64_mac(BMAC_ADDR1, reg1);
  1707. nw64_mac(BMAC_ADDR2, reg2);
  1708. }
  1709. }
  1710. static int niu_num_alt_addr(struct niu *np)
  1711. {
  1712. if (np->flags & NIU_FLAGS_XMAC)
  1713. return XMAC_NUM_ALT_ADDR;
  1714. else
  1715. return BMAC_NUM_ALT_ADDR;
  1716. }
  1717. static int niu_set_alt_mac(struct niu *np, int index, unsigned char *addr)
  1718. {
  1719. u16 reg0 = addr[4] << 8 | addr[5];
  1720. u16 reg1 = addr[2] << 8 | addr[3];
  1721. u16 reg2 = addr[0] << 8 | addr[1];
  1722. if (index >= niu_num_alt_addr(np))
  1723. return -EINVAL;
  1724. if (np->flags & NIU_FLAGS_XMAC) {
  1725. nw64_mac(XMAC_ALT_ADDR0(index), reg0);
  1726. nw64_mac(XMAC_ALT_ADDR1(index), reg1);
  1727. nw64_mac(XMAC_ALT_ADDR2(index), reg2);
  1728. } else {
  1729. nw64_mac(BMAC_ALT_ADDR0(index), reg0);
  1730. nw64_mac(BMAC_ALT_ADDR1(index), reg1);
  1731. nw64_mac(BMAC_ALT_ADDR2(index), reg2);
  1732. }
  1733. return 0;
  1734. }
  1735. static int niu_enable_alt_mac(struct niu *np, int index, int on)
  1736. {
  1737. unsigned long reg;
  1738. u64 val, mask;
  1739. if (index >= niu_num_alt_addr(np))
  1740. return -EINVAL;
  1741. if (np->flags & NIU_FLAGS_XMAC) {
  1742. reg = XMAC_ADDR_CMPEN;
  1743. mask = 1 << index;
  1744. } else {
  1745. reg = BMAC_ADDR_CMPEN;
  1746. mask = 1 << (index + 1);
  1747. }
  1748. val = nr64_mac(reg);
  1749. if (on)
  1750. val |= mask;
  1751. else
  1752. val &= ~mask;
  1753. nw64_mac(reg, val);
  1754. return 0;
  1755. }
  1756. static void __set_rdc_table_num_hw(struct niu *np, unsigned long reg,
  1757. int num, int mac_pref)
  1758. {
  1759. u64 val = nr64_mac(reg);
  1760. val &= ~(HOST_INFO_MACRDCTBLN | HOST_INFO_MPR);
  1761. val |= num;
  1762. if (mac_pref)
  1763. val |= HOST_INFO_MPR;
  1764. nw64_mac(reg, val);
  1765. }
  1766. static int __set_rdc_table_num(struct niu *np,
  1767. int xmac_index, int bmac_index,
  1768. int rdc_table_num, int mac_pref)
  1769. {
  1770. unsigned long reg;
  1771. if (rdc_table_num & ~HOST_INFO_MACRDCTBLN)
  1772. return -EINVAL;
  1773. if (np->flags & NIU_FLAGS_XMAC)
  1774. reg = XMAC_HOST_INFO(xmac_index);
  1775. else
  1776. reg = BMAC_HOST_INFO(bmac_index);
  1777. __set_rdc_table_num_hw(np, reg, rdc_table_num, mac_pref);
  1778. return 0;
  1779. }
  1780. static int niu_set_primary_mac_rdc_table(struct niu *np, int table_num,
  1781. int mac_pref)
  1782. {
  1783. return __set_rdc_table_num(np, 17, 0, table_num, mac_pref);
  1784. }
  1785. static int niu_set_multicast_mac_rdc_table(struct niu *np, int table_num,
  1786. int mac_pref)
  1787. {
  1788. return __set_rdc_table_num(np, 16, 8, table_num, mac_pref);
  1789. }
  1790. static int niu_set_alt_mac_rdc_table(struct niu *np, int idx,
  1791. int table_num, int mac_pref)
  1792. {
  1793. if (idx >= niu_num_alt_addr(np))
  1794. return -EINVAL;
  1795. return __set_rdc_table_num(np, idx, idx + 1, table_num, mac_pref);
  1796. }
  1797. static u64 vlan_entry_set_parity(u64 reg_val)
  1798. {
  1799. u64 port01_mask;
  1800. u64 port23_mask;
  1801. port01_mask = 0x00ff;
  1802. port23_mask = 0xff00;
  1803. if (hweight64(reg_val & port01_mask) & 1)
  1804. reg_val |= ENET_VLAN_TBL_PARITY0;
  1805. else
  1806. reg_val &= ~ENET_VLAN_TBL_PARITY0;
  1807. if (hweight64(reg_val & port23_mask) & 1)
  1808. reg_val |= ENET_VLAN_TBL_PARITY1;
  1809. else
  1810. reg_val &= ~ENET_VLAN_TBL_PARITY1;
  1811. return reg_val;
  1812. }
  1813. static void vlan_tbl_write(struct niu *np, unsigned long index,
  1814. int port, int vpr, int rdc_table)
  1815. {
  1816. u64 reg_val = nr64(ENET_VLAN_TBL(index));
  1817. reg_val &= ~((ENET_VLAN_TBL_VPR |
  1818. ENET_VLAN_TBL_VLANRDCTBLN) <<
  1819. ENET_VLAN_TBL_SHIFT(port));
  1820. if (vpr)
  1821. reg_val |= (ENET_VLAN_TBL_VPR <<
  1822. ENET_VLAN_TBL_SHIFT(port));
  1823. reg_val |= (rdc_table << ENET_VLAN_TBL_SHIFT(port));
  1824. reg_val = vlan_entry_set_parity(reg_val);
  1825. nw64(ENET_VLAN_TBL(index), reg_val);
  1826. }
  1827. static void vlan_tbl_clear(struct niu *np)
  1828. {
  1829. int i;
  1830. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++)
  1831. nw64(ENET_VLAN_TBL(i), 0);
  1832. }
  1833. static int tcam_wait_bit(struct niu *np, u64 bit)
  1834. {
  1835. int limit = 1000;
  1836. while (--limit > 0) {
  1837. if (nr64(TCAM_CTL) & bit)
  1838. break;
  1839. udelay(1);
  1840. }
  1841. if (limit < 0)
  1842. return -ENODEV;
  1843. return 0;
  1844. }
  1845. static int tcam_flush(struct niu *np, int index)
  1846. {
  1847. nw64(TCAM_KEY_0, 0x00);
  1848. nw64(TCAM_KEY_MASK_0, 0xff);
  1849. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  1850. return tcam_wait_bit(np, TCAM_CTL_STAT);
  1851. }
  1852. #if 0
  1853. static int tcam_read(struct niu *np, int index,
  1854. u64 *key, u64 *mask)
  1855. {
  1856. int err;
  1857. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_READ | index));
  1858. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  1859. if (!err) {
  1860. key[0] = nr64(TCAM_KEY_0);
  1861. key[1] = nr64(TCAM_KEY_1);
  1862. key[2] = nr64(TCAM_KEY_2);
  1863. key[3] = nr64(TCAM_KEY_3);
  1864. mask[0] = nr64(TCAM_KEY_MASK_0);
  1865. mask[1] = nr64(TCAM_KEY_MASK_1);
  1866. mask[2] = nr64(TCAM_KEY_MASK_2);
  1867. mask[3] = nr64(TCAM_KEY_MASK_3);
  1868. }
  1869. return err;
  1870. }
  1871. #endif
  1872. static int tcam_write(struct niu *np, int index,
  1873. u64 *key, u64 *mask)
  1874. {
  1875. nw64(TCAM_KEY_0, key[0]);
  1876. nw64(TCAM_KEY_1, key[1]);
  1877. nw64(TCAM_KEY_2, key[2]);
  1878. nw64(TCAM_KEY_3, key[3]);
  1879. nw64(TCAM_KEY_MASK_0, mask[0]);
  1880. nw64(TCAM_KEY_MASK_1, mask[1]);
  1881. nw64(TCAM_KEY_MASK_2, mask[2]);
  1882. nw64(TCAM_KEY_MASK_3, mask[3]);
  1883. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  1884. return tcam_wait_bit(np, TCAM_CTL_STAT);
  1885. }
  1886. #if 0
  1887. static int tcam_assoc_read(struct niu *np, int index, u64 *data)
  1888. {
  1889. int err;
  1890. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_READ | index));
  1891. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  1892. if (!err)
  1893. *data = nr64(TCAM_KEY_1);
  1894. return err;
  1895. }
  1896. #endif
  1897. static int tcam_assoc_write(struct niu *np, int index, u64 assoc_data)
  1898. {
  1899. nw64(TCAM_KEY_1, assoc_data);
  1900. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_WRITE | index));
  1901. return tcam_wait_bit(np, TCAM_CTL_STAT);
  1902. }
  1903. static void tcam_enable(struct niu *np, int on)
  1904. {
  1905. u64 val = nr64(FFLP_CFG_1);
  1906. if (on)
  1907. val &= ~FFLP_CFG_1_TCAM_DIS;
  1908. else
  1909. val |= FFLP_CFG_1_TCAM_DIS;
  1910. nw64(FFLP_CFG_1, val);
  1911. }
  1912. static void tcam_set_lat_and_ratio(struct niu *np, u64 latency, u64 ratio)
  1913. {
  1914. u64 val = nr64(FFLP_CFG_1);
  1915. val &= ~(FFLP_CFG_1_FFLPINITDONE |
  1916. FFLP_CFG_1_CAMLAT |
  1917. FFLP_CFG_1_CAMRATIO);
  1918. val |= (latency << FFLP_CFG_1_CAMLAT_SHIFT);
  1919. val |= (ratio << FFLP_CFG_1_CAMRATIO_SHIFT);
  1920. nw64(FFLP_CFG_1, val);
  1921. val = nr64(FFLP_CFG_1);
  1922. val |= FFLP_CFG_1_FFLPINITDONE;
  1923. nw64(FFLP_CFG_1, val);
  1924. }
  1925. static int tcam_user_eth_class_enable(struct niu *np, unsigned long class,
  1926. int on)
  1927. {
  1928. unsigned long reg;
  1929. u64 val;
  1930. if (class < CLASS_CODE_ETHERTYPE1 ||
  1931. class > CLASS_CODE_ETHERTYPE2)
  1932. return -EINVAL;
  1933. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  1934. val = nr64(reg);
  1935. if (on)
  1936. val |= L2_CLS_VLD;
  1937. else
  1938. val &= ~L2_CLS_VLD;
  1939. nw64(reg, val);
  1940. return 0;
  1941. }
  1942. #if 0
  1943. static int tcam_user_eth_class_set(struct niu *np, unsigned long class,
  1944. u64 ether_type)
  1945. {
  1946. unsigned long reg;
  1947. u64 val;
  1948. if (class < CLASS_CODE_ETHERTYPE1 ||
  1949. class > CLASS_CODE_ETHERTYPE2 ||
  1950. (ether_type & ~(u64)0xffff) != 0)
  1951. return -EINVAL;
  1952. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  1953. val = nr64(reg);
  1954. val &= ~L2_CLS_ETYPE;
  1955. val |= (ether_type << L2_CLS_ETYPE_SHIFT);
  1956. nw64(reg, val);
  1957. return 0;
  1958. }
  1959. #endif
  1960. static int tcam_user_ip_class_enable(struct niu *np, unsigned long class,
  1961. int on)
  1962. {
  1963. unsigned long reg;
  1964. u64 val;
  1965. if (class < CLASS_CODE_USER_PROG1 ||
  1966. class > CLASS_CODE_USER_PROG4)
  1967. return -EINVAL;
  1968. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  1969. val = nr64(reg);
  1970. if (on)
  1971. val |= L3_CLS_VALID;
  1972. else
  1973. val &= ~L3_CLS_VALID;
  1974. nw64(reg, val);
  1975. return 0;
  1976. }
  1977. #if 0
  1978. static int tcam_user_ip_class_set(struct niu *np, unsigned long class,
  1979. int ipv6, u64 protocol_id,
  1980. u64 tos_mask, u64 tos_val)
  1981. {
  1982. unsigned long reg;
  1983. u64 val;
  1984. if (class < CLASS_CODE_USER_PROG1 ||
  1985. class > CLASS_CODE_USER_PROG4 ||
  1986. (protocol_id & ~(u64)0xff) != 0 ||
  1987. (tos_mask & ~(u64)0xff) != 0 ||
  1988. (tos_val & ~(u64)0xff) != 0)
  1989. return -EINVAL;
  1990. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  1991. val = nr64(reg);
  1992. val &= ~(L3_CLS_IPVER | L3_CLS_PID |
  1993. L3_CLS_TOSMASK | L3_CLS_TOS);
  1994. if (ipv6)
  1995. val |= L3_CLS_IPVER;
  1996. val |= (protocol_id << L3_CLS_PID_SHIFT);
  1997. val |= (tos_mask << L3_CLS_TOSMASK_SHIFT);
  1998. val |= (tos_val << L3_CLS_TOS_SHIFT);
  1999. nw64(reg, val);
  2000. return 0;
  2001. }
  2002. #endif
  2003. static int tcam_early_init(struct niu *np)
  2004. {
  2005. unsigned long i;
  2006. int err;
  2007. tcam_enable(np, 0);
  2008. tcam_set_lat_and_ratio(np,
  2009. DEFAULT_TCAM_LATENCY,
  2010. DEFAULT_TCAM_ACCESS_RATIO);
  2011. for (i = CLASS_CODE_ETHERTYPE1; i <= CLASS_CODE_ETHERTYPE2; i++) {
  2012. err = tcam_user_eth_class_enable(np, i, 0);
  2013. if (err)
  2014. return err;
  2015. }
  2016. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_USER_PROG4; i++) {
  2017. err = tcam_user_ip_class_enable(np, i, 0);
  2018. if (err)
  2019. return err;
  2020. }
  2021. return 0;
  2022. }
  2023. static int tcam_flush_all(struct niu *np)
  2024. {
  2025. unsigned long i;
  2026. for (i = 0; i < np->parent->tcam_num_entries; i++) {
  2027. int err = tcam_flush(np, i);
  2028. if (err)
  2029. return err;
  2030. }
  2031. return 0;
  2032. }
  2033. static u64 hash_addr_regval(unsigned long index, unsigned long num_entries)
  2034. {
  2035. return ((u64)index | (num_entries == 1 ?
  2036. HASH_TBL_ADDR_AUTOINC : 0));
  2037. }
  2038. #if 0
  2039. static int hash_read(struct niu *np, unsigned long partition,
  2040. unsigned long index, unsigned long num_entries,
  2041. u64 *data)
  2042. {
  2043. u64 val = hash_addr_regval(index, num_entries);
  2044. unsigned long i;
  2045. if (partition >= FCRAM_NUM_PARTITIONS ||
  2046. index + num_entries > FCRAM_SIZE)
  2047. return -EINVAL;
  2048. nw64(HASH_TBL_ADDR(partition), val);
  2049. for (i = 0; i < num_entries; i++)
  2050. data[i] = nr64(HASH_TBL_DATA(partition));
  2051. return 0;
  2052. }
  2053. #endif
  2054. static int hash_write(struct niu *np, unsigned long partition,
  2055. unsigned long index, unsigned long num_entries,
  2056. u64 *data)
  2057. {
  2058. u64 val = hash_addr_regval(index, num_entries);
  2059. unsigned long i;
  2060. if (partition >= FCRAM_NUM_PARTITIONS ||
  2061. index + (num_entries * 8) > FCRAM_SIZE)
  2062. return -EINVAL;
  2063. nw64(HASH_TBL_ADDR(partition), val);
  2064. for (i = 0; i < num_entries; i++)
  2065. nw64(HASH_TBL_DATA(partition), data[i]);
  2066. return 0;
  2067. }
  2068. static void fflp_reset(struct niu *np)
  2069. {
  2070. u64 val;
  2071. nw64(FFLP_CFG_1, FFLP_CFG_1_PIO_FIO_RST);
  2072. udelay(10);
  2073. nw64(FFLP_CFG_1, 0);
  2074. val = FFLP_CFG_1_FCRAMOUTDR_NORMAL | FFLP_CFG_1_FFLPINITDONE;
  2075. nw64(FFLP_CFG_1, val);
  2076. }
  2077. static void fflp_set_timings(struct niu *np)
  2078. {
  2079. u64 val = nr64(FFLP_CFG_1);
  2080. val &= ~FFLP_CFG_1_FFLPINITDONE;
  2081. val |= (DEFAULT_FCRAMRATIO << FFLP_CFG_1_FCRAMRATIO_SHIFT);
  2082. nw64(FFLP_CFG_1, val);
  2083. val = nr64(FFLP_CFG_1);
  2084. val |= FFLP_CFG_1_FFLPINITDONE;
  2085. nw64(FFLP_CFG_1, val);
  2086. val = nr64(FCRAM_REF_TMR);
  2087. val &= ~(FCRAM_REF_TMR_MAX | FCRAM_REF_TMR_MIN);
  2088. val |= (DEFAULT_FCRAM_REFRESH_MAX << FCRAM_REF_TMR_MAX_SHIFT);
  2089. val |= (DEFAULT_FCRAM_REFRESH_MIN << FCRAM_REF_TMR_MIN_SHIFT);
  2090. nw64(FCRAM_REF_TMR, val);
  2091. }
  2092. static int fflp_set_partition(struct niu *np, u64 partition,
  2093. u64 mask, u64 base, int enable)
  2094. {
  2095. unsigned long reg;
  2096. u64 val;
  2097. if (partition >= FCRAM_NUM_PARTITIONS ||
  2098. (mask & ~(u64)0x1f) != 0 ||
  2099. (base & ~(u64)0x1f) != 0)
  2100. return -EINVAL;
  2101. reg = FLW_PRT_SEL(partition);
  2102. val = nr64(reg);
  2103. val &= ~(FLW_PRT_SEL_EXT | FLW_PRT_SEL_MASK | FLW_PRT_SEL_BASE);
  2104. val |= (mask << FLW_PRT_SEL_MASK_SHIFT);
  2105. val |= (base << FLW_PRT_SEL_BASE_SHIFT);
  2106. if (enable)
  2107. val |= FLW_PRT_SEL_EXT;
  2108. nw64(reg, val);
  2109. return 0;
  2110. }
  2111. static int fflp_disable_all_partitions(struct niu *np)
  2112. {
  2113. unsigned long i;
  2114. for (i = 0; i < FCRAM_NUM_PARTITIONS; i++) {
  2115. int err = fflp_set_partition(np, 0, 0, 0, 0);
  2116. if (err)
  2117. return err;
  2118. }
  2119. return 0;
  2120. }
  2121. static void fflp_llcsnap_enable(struct niu *np, int on)
  2122. {
  2123. u64 val = nr64(FFLP_CFG_1);
  2124. if (on)
  2125. val |= FFLP_CFG_1_LLCSNAP;
  2126. else
  2127. val &= ~FFLP_CFG_1_LLCSNAP;
  2128. nw64(FFLP_CFG_1, val);
  2129. }
  2130. static void fflp_errors_enable(struct niu *np, int on)
  2131. {
  2132. u64 val = nr64(FFLP_CFG_1);
  2133. if (on)
  2134. val &= ~FFLP_CFG_1_ERRORDIS;
  2135. else
  2136. val |= FFLP_CFG_1_ERRORDIS;
  2137. nw64(FFLP_CFG_1, val);
  2138. }
  2139. static int fflp_hash_clear(struct niu *np)
  2140. {
  2141. struct fcram_hash_ipv4 ent;
  2142. unsigned long i;
  2143. /* IPV4 hash entry with valid bit clear, rest is don't care. */
  2144. memset(&ent, 0, sizeof(ent));
  2145. ent.header = HASH_HEADER_EXT;
  2146. for (i = 0; i < FCRAM_SIZE; i += sizeof(ent)) {
  2147. int err = hash_write(np, 0, i, 1, (u64 *) &ent);
  2148. if (err)
  2149. return err;
  2150. }
  2151. return 0;
  2152. }
  2153. static int fflp_early_init(struct niu *np)
  2154. {
  2155. struct niu_parent *parent;
  2156. unsigned long flags;
  2157. int err;
  2158. niu_lock_parent(np, flags);
  2159. parent = np->parent;
  2160. err = 0;
  2161. if (!(parent->flags & PARENT_FLGS_CLS_HWINIT)) {
  2162. niudbg(PROBE, "fflp_early_init: Initting hw on port %u\n",
  2163. np->port);
  2164. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2165. fflp_reset(np);
  2166. fflp_set_timings(np);
  2167. err = fflp_disable_all_partitions(np);
  2168. if (err) {
  2169. niudbg(PROBE, "fflp_disable_all_partitions "
  2170. "failed, err=%d\n", err);
  2171. goto out;
  2172. }
  2173. }
  2174. err = tcam_early_init(np);
  2175. if (err) {
  2176. niudbg(PROBE, "tcam_early_init failed, err=%d\n",
  2177. err);
  2178. goto out;
  2179. }
  2180. fflp_llcsnap_enable(np, 1);
  2181. fflp_errors_enable(np, 0);
  2182. nw64(H1POLY, 0);
  2183. nw64(H2POLY, 0);
  2184. err = tcam_flush_all(np);
  2185. if (err) {
  2186. niudbg(PROBE, "tcam_flush_all failed, err=%d\n",
  2187. err);
  2188. goto out;
  2189. }
  2190. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2191. err = fflp_hash_clear(np);
  2192. if (err) {
  2193. niudbg(PROBE, "fflp_hash_clear failed, "
  2194. "err=%d\n", err);
  2195. goto out;
  2196. }
  2197. }
  2198. vlan_tbl_clear(np);
  2199. niudbg(PROBE, "fflp_early_init: Success\n");
  2200. parent->flags |= PARENT_FLGS_CLS_HWINIT;
  2201. }
  2202. out:
  2203. niu_unlock_parent(np, flags);
  2204. return err;
  2205. }
  2206. static int niu_set_flow_key(struct niu *np, unsigned long class_code, u64 key)
  2207. {
  2208. if (class_code < CLASS_CODE_USER_PROG1 ||
  2209. class_code > CLASS_CODE_SCTP_IPV6)
  2210. return -EINVAL;
  2211. nw64(FLOW_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2212. return 0;
  2213. }
  2214. static int niu_set_tcam_key(struct niu *np, unsigned long class_code, u64 key)
  2215. {
  2216. if (class_code < CLASS_CODE_USER_PROG1 ||
  2217. class_code > CLASS_CODE_SCTP_IPV6)
  2218. return -EINVAL;
  2219. nw64(TCAM_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2220. return 0;
  2221. }
  2222. static void niu_rx_skb_append(struct sk_buff *skb, struct page *page,
  2223. u32 offset, u32 size)
  2224. {
  2225. int i = skb_shinfo(skb)->nr_frags;
  2226. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2227. frag->page = page;
  2228. frag->page_offset = offset;
  2229. frag->size = size;
  2230. skb->len += size;
  2231. skb->data_len += size;
  2232. skb->truesize += size;
  2233. skb_shinfo(skb)->nr_frags = i + 1;
  2234. }
  2235. static unsigned int niu_hash_rxaddr(struct rx_ring_info *rp, u64 a)
  2236. {
  2237. a >>= PAGE_SHIFT;
  2238. a ^= (a >> ilog2(MAX_RBR_RING_SIZE));
  2239. return (a & (MAX_RBR_RING_SIZE - 1));
  2240. }
  2241. static struct page *niu_find_rxpage(struct rx_ring_info *rp, u64 addr,
  2242. struct page ***link)
  2243. {
  2244. unsigned int h = niu_hash_rxaddr(rp, addr);
  2245. struct page *p, **pp;
  2246. addr &= PAGE_MASK;
  2247. pp = &rp->rxhash[h];
  2248. for (; (p = *pp) != NULL; pp = (struct page **) &p->mapping) {
  2249. if (p->index == addr) {
  2250. *link = pp;
  2251. break;
  2252. }
  2253. }
  2254. return p;
  2255. }
  2256. static void niu_hash_page(struct rx_ring_info *rp, struct page *page, u64 base)
  2257. {
  2258. unsigned int h = niu_hash_rxaddr(rp, base);
  2259. page->index = base;
  2260. page->mapping = (struct address_space *) rp->rxhash[h];
  2261. rp->rxhash[h] = page;
  2262. }
  2263. static int niu_rbr_add_page(struct niu *np, struct rx_ring_info *rp,
  2264. gfp_t mask, int start_index)
  2265. {
  2266. struct page *page;
  2267. u64 addr;
  2268. int i;
  2269. page = alloc_page(mask);
  2270. if (!page)
  2271. return -ENOMEM;
  2272. addr = np->ops->map_page(np->device, page, 0,
  2273. PAGE_SIZE, DMA_FROM_DEVICE);
  2274. niu_hash_page(rp, page, addr);
  2275. if (rp->rbr_blocks_per_page > 1)
  2276. atomic_add(rp->rbr_blocks_per_page - 1,
  2277. &compound_head(page)->_count);
  2278. for (i = 0; i < rp->rbr_blocks_per_page; i++) {
  2279. __le32 *rbr = &rp->rbr[start_index + i];
  2280. *rbr = cpu_to_le32(addr >> RBR_DESCR_ADDR_SHIFT);
  2281. addr += rp->rbr_block_size;
  2282. }
  2283. return 0;
  2284. }
  2285. static void niu_rbr_refill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2286. {
  2287. int index = rp->rbr_index;
  2288. rp->rbr_pending++;
  2289. if ((rp->rbr_pending % rp->rbr_blocks_per_page) == 0) {
  2290. int err = niu_rbr_add_page(np, rp, mask, index);
  2291. if (unlikely(err)) {
  2292. rp->rbr_pending--;
  2293. return;
  2294. }
  2295. rp->rbr_index += rp->rbr_blocks_per_page;
  2296. BUG_ON(rp->rbr_index > rp->rbr_table_size);
  2297. if (rp->rbr_index == rp->rbr_table_size)
  2298. rp->rbr_index = 0;
  2299. if (rp->rbr_pending >= rp->rbr_kick_thresh) {
  2300. nw64(RBR_KICK(rp->rx_channel), rp->rbr_pending);
  2301. rp->rbr_pending = 0;
  2302. }
  2303. }
  2304. }
  2305. static int niu_rx_pkt_ignore(struct niu *np, struct rx_ring_info *rp)
  2306. {
  2307. unsigned int index = rp->rcr_index;
  2308. int num_rcr = 0;
  2309. rp->rx_dropped++;
  2310. while (1) {
  2311. struct page *page, **link;
  2312. u64 addr, val;
  2313. u32 rcr_size;
  2314. num_rcr++;
  2315. val = le64_to_cpup(&rp->rcr[index]);
  2316. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2317. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2318. page = niu_find_rxpage(rp, addr, &link);
  2319. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2320. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2321. if ((page->index + PAGE_SIZE) - rcr_size == addr) {
  2322. *link = (struct page *) page->mapping;
  2323. np->ops->unmap_page(np->device, page->index,
  2324. PAGE_SIZE, DMA_FROM_DEVICE);
  2325. page->index = 0;
  2326. page->mapping = NULL;
  2327. __free_page(page);
  2328. rp->rbr_refill_pending++;
  2329. }
  2330. index = NEXT_RCR(rp, index);
  2331. if (!(val & RCR_ENTRY_MULTI))
  2332. break;
  2333. }
  2334. rp->rcr_index = index;
  2335. return num_rcr;
  2336. }
  2337. static int niu_process_rx_pkt(struct niu *np, struct rx_ring_info *rp)
  2338. {
  2339. unsigned int index = rp->rcr_index;
  2340. struct sk_buff *skb;
  2341. int len, num_rcr;
  2342. skb = netdev_alloc_skb(np->dev, RX_SKB_ALLOC_SIZE);
  2343. if (unlikely(!skb))
  2344. return niu_rx_pkt_ignore(np, rp);
  2345. num_rcr = 0;
  2346. while (1) {
  2347. struct page *page, **link;
  2348. u32 rcr_size, append_size;
  2349. u64 addr, val, off;
  2350. num_rcr++;
  2351. val = le64_to_cpup(&rp->rcr[index]);
  2352. len = (val & RCR_ENTRY_L2_LEN) >>
  2353. RCR_ENTRY_L2_LEN_SHIFT;
  2354. len -= ETH_FCS_LEN;
  2355. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2356. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2357. page = niu_find_rxpage(rp, addr, &link);
  2358. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2359. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2360. off = addr & ~PAGE_MASK;
  2361. append_size = rcr_size;
  2362. if (num_rcr == 1) {
  2363. int ptype;
  2364. off += 2;
  2365. append_size -= 2;
  2366. ptype = (val >> RCR_ENTRY_PKT_TYPE_SHIFT);
  2367. if ((ptype == RCR_PKT_TYPE_TCP ||
  2368. ptype == RCR_PKT_TYPE_UDP) &&
  2369. !(val & (RCR_ENTRY_NOPORT |
  2370. RCR_ENTRY_ERROR)))
  2371. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2372. else
  2373. skb->ip_summed = CHECKSUM_NONE;
  2374. }
  2375. if (!(val & RCR_ENTRY_MULTI))
  2376. append_size = len - skb->len;
  2377. niu_rx_skb_append(skb, page, off, append_size);
  2378. if ((page->index + rp->rbr_block_size) - rcr_size == addr) {
  2379. *link = (struct page *) page->mapping;
  2380. np->ops->unmap_page(np->device, page->index,
  2381. PAGE_SIZE, DMA_FROM_DEVICE);
  2382. page->index = 0;
  2383. page->mapping = NULL;
  2384. rp->rbr_refill_pending++;
  2385. } else
  2386. get_page(page);
  2387. index = NEXT_RCR(rp, index);
  2388. if (!(val & RCR_ENTRY_MULTI))
  2389. break;
  2390. }
  2391. rp->rcr_index = index;
  2392. skb_reserve(skb, NET_IP_ALIGN);
  2393. __pskb_pull_tail(skb, min(len, NIU_RXPULL_MAX));
  2394. rp->rx_packets++;
  2395. rp->rx_bytes += skb->len;
  2396. skb->protocol = eth_type_trans(skb, np->dev);
  2397. netif_receive_skb(skb);
  2398. np->dev->last_rx = jiffies;
  2399. return num_rcr;
  2400. }
  2401. static int niu_rbr_fill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2402. {
  2403. int blocks_per_page = rp->rbr_blocks_per_page;
  2404. int err, index = rp->rbr_index;
  2405. err = 0;
  2406. while (index < (rp->rbr_table_size - blocks_per_page)) {
  2407. err = niu_rbr_add_page(np, rp, mask, index);
  2408. if (err)
  2409. break;
  2410. index += blocks_per_page;
  2411. }
  2412. rp->rbr_index = index;
  2413. return err;
  2414. }
  2415. static void niu_rbr_free(struct niu *np, struct rx_ring_info *rp)
  2416. {
  2417. int i;
  2418. for (i = 0; i < MAX_RBR_RING_SIZE; i++) {
  2419. struct page *page;
  2420. page = rp->rxhash[i];
  2421. while (page) {
  2422. struct page *next = (struct page *) page->mapping;
  2423. u64 base = page->index;
  2424. np->ops->unmap_page(np->device, base, PAGE_SIZE,
  2425. DMA_FROM_DEVICE);
  2426. page->index = 0;
  2427. page->mapping = NULL;
  2428. __free_page(page);
  2429. page = next;
  2430. }
  2431. }
  2432. for (i = 0; i < rp->rbr_table_size; i++)
  2433. rp->rbr[i] = cpu_to_le32(0);
  2434. rp->rbr_index = 0;
  2435. }
  2436. static int release_tx_packet(struct niu *np, struct tx_ring_info *rp, int idx)
  2437. {
  2438. struct tx_buff_info *tb = &rp->tx_buffs[idx];
  2439. struct sk_buff *skb = tb->skb;
  2440. struct tx_pkt_hdr *tp;
  2441. u64 tx_flags;
  2442. int i, len;
  2443. tp = (struct tx_pkt_hdr *) skb->data;
  2444. tx_flags = le64_to_cpup(&tp->flags);
  2445. rp->tx_packets++;
  2446. rp->tx_bytes += (((tx_flags & TXHDR_LEN) >> TXHDR_LEN_SHIFT) -
  2447. ((tx_flags & TXHDR_PAD) / 2));
  2448. len = skb_headlen(skb);
  2449. np->ops->unmap_single(np->device, tb->mapping,
  2450. len, DMA_TO_DEVICE);
  2451. if (le64_to_cpu(rp->descr[idx]) & TX_DESC_MARK)
  2452. rp->mark_pending--;
  2453. tb->skb = NULL;
  2454. do {
  2455. idx = NEXT_TX(rp, idx);
  2456. len -= MAX_TX_DESC_LEN;
  2457. } while (len > 0);
  2458. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2459. tb = &rp->tx_buffs[idx];
  2460. BUG_ON(tb->skb != NULL);
  2461. np->ops->unmap_page(np->device, tb->mapping,
  2462. skb_shinfo(skb)->frags[i].size,
  2463. DMA_TO_DEVICE);
  2464. idx = NEXT_TX(rp, idx);
  2465. }
  2466. dev_kfree_skb(skb);
  2467. return idx;
  2468. }
  2469. #define NIU_TX_WAKEUP_THRESH(rp) ((rp)->pending / 4)
  2470. static void niu_tx_work(struct niu *np, struct tx_ring_info *rp)
  2471. {
  2472. u16 pkt_cnt, tmp;
  2473. int cons;
  2474. u64 cs;
  2475. cs = rp->tx_cs;
  2476. if (unlikely(!(cs & (TX_CS_MK | TX_CS_MMK))))
  2477. goto out;
  2478. tmp = pkt_cnt = (cs & TX_CS_PKT_CNT) >> TX_CS_PKT_CNT_SHIFT;
  2479. pkt_cnt = (pkt_cnt - rp->last_pkt_cnt) &
  2480. (TX_CS_PKT_CNT >> TX_CS_PKT_CNT_SHIFT);
  2481. rp->last_pkt_cnt = tmp;
  2482. cons = rp->cons;
  2483. niudbg(TX_DONE, "%s: niu_tx_work() pkt_cnt[%u] cons[%d]\n",
  2484. np->dev->name, pkt_cnt, cons);
  2485. while (pkt_cnt--)
  2486. cons = release_tx_packet(np, rp, cons);
  2487. rp->cons = cons;
  2488. smp_mb();
  2489. out:
  2490. if (unlikely(netif_queue_stopped(np->dev) &&
  2491. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))) {
  2492. netif_tx_lock(np->dev);
  2493. if (netif_queue_stopped(np->dev) &&
  2494. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))
  2495. netif_wake_queue(np->dev);
  2496. netif_tx_unlock(np->dev);
  2497. }
  2498. }
  2499. static int niu_rx_work(struct niu *np, struct rx_ring_info *rp, int budget)
  2500. {
  2501. int qlen, rcr_done = 0, work_done = 0;
  2502. struct rxdma_mailbox *mbox = rp->mbox;
  2503. u64 stat;
  2504. #if 1
  2505. stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  2506. qlen = nr64(RCRSTAT_A(rp->rx_channel)) & RCRSTAT_A_QLEN;
  2507. #else
  2508. stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  2509. qlen = (le64_to_cpup(&mbox->rcrstat_a) & RCRSTAT_A_QLEN);
  2510. #endif
  2511. mbox->rx_dma_ctl_stat = 0;
  2512. mbox->rcrstat_a = 0;
  2513. niudbg(RX_STATUS, "%s: niu_rx_work(chan[%d]), stat[%llx] qlen=%d\n",
  2514. np->dev->name, rp->rx_channel, (unsigned long long) stat, qlen);
  2515. rcr_done = work_done = 0;
  2516. qlen = min(qlen, budget);
  2517. while (work_done < qlen) {
  2518. rcr_done += niu_process_rx_pkt(np, rp);
  2519. work_done++;
  2520. }
  2521. if (rp->rbr_refill_pending >= rp->rbr_kick_thresh) {
  2522. unsigned int i;
  2523. for (i = 0; i < rp->rbr_refill_pending; i++)
  2524. niu_rbr_refill(np, rp, GFP_ATOMIC);
  2525. rp->rbr_refill_pending = 0;
  2526. }
  2527. stat = (RX_DMA_CTL_STAT_MEX |
  2528. ((u64)work_done << RX_DMA_CTL_STAT_PKTREAD_SHIFT) |
  2529. ((u64)rcr_done << RX_DMA_CTL_STAT_PTRREAD_SHIFT));
  2530. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat);
  2531. return work_done;
  2532. }
  2533. static int niu_poll_core(struct niu *np, struct niu_ldg *lp, int budget)
  2534. {
  2535. u64 v0 = lp->v0;
  2536. u32 tx_vec = (v0 >> 32);
  2537. u32 rx_vec = (v0 & 0xffffffff);
  2538. int i, work_done = 0;
  2539. niudbg(INTR, "%s: niu_poll_core() v0[%016llx]\n",
  2540. np->dev->name, (unsigned long long) v0);
  2541. for (i = 0; i < np->num_tx_rings; i++) {
  2542. struct tx_ring_info *rp = &np->tx_rings[i];
  2543. if (tx_vec & (1 << rp->tx_channel))
  2544. niu_tx_work(np, rp);
  2545. nw64(LD_IM0(LDN_TXDMA(rp->tx_channel)), 0);
  2546. }
  2547. for (i = 0; i < np->num_rx_rings; i++) {
  2548. struct rx_ring_info *rp = &np->rx_rings[i];
  2549. if (rx_vec & (1 << rp->rx_channel)) {
  2550. int this_work_done;
  2551. this_work_done = niu_rx_work(np, rp,
  2552. budget);
  2553. budget -= this_work_done;
  2554. work_done += this_work_done;
  2555. }
  2556. nw64(LD_IM0(LDN_RXDMA(rp->rx_channel)), 0);
  2557. }
  2558. return work_done;
  2559. }
  2560. static int niu_poll(struct napi_struct *napi, int budget)
  2561. {
  2562. struct niu_ldg *lp = container_of(napi, struct niu_ldg, napi);
  2563. struct niu *np = lp->np;
  2564. int work_done;
  2565. work_done = niu_poll_core(np, lp, budget);
  2566. if (work_done < budget) {
  2567. netif_rx_complete(np->dev, napi);
  2568. niu_ldg_rearm(np, lp, 1);
  2569. }
  2570. return work_done;
  2571. }
  2572. static void niu_log_rxchan_errors(struct niu *np, struct rx_ring_info *rp,
  2573. u64 stat)
  2574. {
  2575. dev_err(np->device, PFX "%s: RX channel %u errors ( ",
  2576. np->dev->name, rp->rx_channel);
  2577. if (stat & RX_DMA_CTL_STAT_RBR_TMOUT)
  2578. printk("RBR_TMOUT ");
  2579. if (stat & RX_DMA_CTL_STAT_RSP_CNT_ERR)
  2580. printk("RSP_CNT ");
  2581. if (stat & RX_DMA_CTL_STAT_BYTE_EN_BUS)
  2582. printk("BYTE_EN_BUS ");
  2583. if (stat & RX_DMA_CTL_STAT_RSP_DAT_ERR)
  2584. printk("RSP_DAT ");
  2585. if (stat & RX_DMA_CTL_STAT_RCR_ACK_ERR)
  2586. printk("RCR_ACK ");
  2587. if (stat & RX_DMA_CTL_STAT_RCR_SHA_PAR)
  2588. printk("RCR_SHA_PAR ");
  2589. if (stat & RX_DMA_CTL_STAT_RBR_PRE_PAR)
  2590. printk("RBR_PRE_PAR ");
  2591. if (stat & RX_DMA_CTL_STAT_CONFIG_ERR)
  2592. printk("CONFIG ");
  2593. if (stat & RX_DMA_CTL_STAT_RCRINCON)
  2594. printk("RCRINCON ");
  2595. if (stat & RX_DMA_CTL_STAT_RCRFULL)
  2596. printk("RCRFULL ");
  2597. if (stat & RX_DMA_CTL_STAT_RBRFULL)
  2598. printk("RBRFULL ");
  2599. if (stat & RX_DMA_CTL_STAT_RBRLOGPAGE)
  2600. printk("RBRLOGPAGE ");
  2601. if (stat & RX_DMA_CTL_STAT_CFIGLOGPAGE)
  2602. printk("CFIGLOGPAGE ");
  2603. if (stat & RX_DMA_CTL_STAT_DC_FIFO_ERR)
  2604. printk("DC_FIDO ");
  2605. printk(")\n");
  2606. }
  2607. static int niu_rx_error(struct niu *np, struct rx_ring_info *rp)
  2608. {
  2609. u64 stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  2610. int err = 0;
  2611. if (stat & (RX_DMA_CTL_STAT_CHAN_FATAL |
  2612. RX_DMA_CTL_STAT_PORT_FATAL))
  2613. err = -EINVAL;
  2614. if (err) {
  2615. dev_err(np->device, PFX "%s: RX channel %u error, stat[%llx]\n",
  2616. np->dev->name, rp->rx_channel,
  2617. (unsigned long long) stat);
  2618. niu_log_rxchan_errors(np, rp, stat);
  2619. }
  2620. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  2621. stat & RX_DMA_CTL_WRITE_CLEAR_ERRS);
  2622. return err;
  2623. }
  2624. static void niu_log_txchan_errors(struct niu *np, struct tx_ring_info *rp,
  2625. u64 cs)
  2626. {
  2627. dev_err(np->device, PFX "%s: TX channel %u errors ( ",
  2628. np->dev->name, rp->tx_channel);
  2629. if (cs & TX_CS_MBOX_ERR)
  2630. printk("MBOX ");
  2631. if (cs & TX_CS_PKT_SIZE_ERR)
  2632. printk("PKT_SIZE ");
  2633. if (cs & TX_CS_TX_RING_OFLOW)
  2634. printk("TX_RING_OFLOW ");
  2635. if (cs & TX_CS_PREF_BUF_PAR_ERR)
  2636. printk("PREF_BUF_PAR ");
  2637. if (cs & TX_CS_NACK_PREF)
  2638. printk("NACK_PREF ");
  2639. if (cs & TX_CS_NACK_PKT_RD)
  2640. printk("NACK_PKT_RD ");
  2641. if (cs & TX_CS_CONF_PART_ERR)
  2642. printk("CONF_PART ");
  2643. if (cs & TX_CS_PKT_PRT_ERR)
  2644. printk("PKT_PTR ");
  2645. printk(")\n");
  2646. }
  2647. static int niu_tx_error(struct niu *np, struct tx_ring_info *rp)
  2648. {
  2649. u64 cs, logh, logl;
  2650. cs = nr64(TX_CS(rp->tx_channel));
  2651. logh = nr64(TX_RNG_ERR_LOGH(rp->tx_channel));
  2652. logl = nr64(TX_RNG_ERR_LOGL(rp->tx_channel));
  2653. dev_err(np->device, PFX "%s: TX channel %u error, "
  2654. "cs[%llx] logh[%llx] logl[%llx]\n",
  2655. np->dev->name, rp->tx_channel,
  2656. (unsigned long long) cs,
  2657. (unsigned long long) logh,
  2658. (unsigned long long) logl);
  2659. niu_log_txchan_errors(np, rp, cs);
  2660. return -ENODEV;
  2661. }
  2662. static int niu_mif_interrupt(struct niu *np)
  2663. {
  2664. u64 mif_status = nr64(MIF_STATUS);
  2665. int phy_mdint = 0;
  2666. if (np->flags & NIU_FLAGS_XMAC) {
  2667. u64 xrxmac_stat = nr64_mac(XRXMAC_STATUS);
  2668. if (xrxmac_stat & XRXMAC_STATUS_PHY_MDINT)
  2669. phy_mdint = 1;
  2670. }
  2671. dev_err(np->device, PFX "%s: MIF interrupt, "
  2672. "stat[%llx] phy_mdint(%d)\n",
  2673. np->dev->name, (unsigned long long) mif_status, phy_mdint);
  2674. return -ENODEV;
  2675. }
  2676. static void niu_xmac_interrupt(struct niu *np)
  2677. {
  2678. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  2679. u64 val;
  2680. val = nr64_mac(XTXMAC_STATUS);
  2681. if (val & XTXMAC_STATUS_FRAME_CNT_EXP)
  2682. mp->tx_frames += TXMAC_FRM_CNT_COUNT;
  2683. if (val & XTXMAC_STATUS_BYTE_CNT_EXP)
  2684. mp->tx_bytes += TXMAC_BYTE_CNT_COUNT;
  2685. if (val & XTXMAC_STATUS_TXFIFO_XFR_ERR)
  2686. mp->tx_fifo_errors++;
  2687. if (val & XTXMAC_STATUS_TXMAC_OFLOW)
  2688. mp->tx_overflow_errors++;
  2689. if (val & XTXMAC_STATUS_MAX_PSIZE_ERR)
  2690. mp->tx_max_pkt_size_errors++;
  2691. if (val & XTXMAC_STATUS_TXMAC_UFLOW)
  2692. mp->tx_underflow_errors++;
  2693. val = nr64_mac(XRXMAC_STATUS);
  2694. if (val & XRXMAC_STATUS_LCL_FLT_STATUS)
  2695. mp->rx_local_faults++;
  2696. if (val & XRXMAC_STATUS_RFLT_DET)
  2697. mp->rx_remote_faults++;
  2698. if (val & XRXMAC_STATUS_LFLT_CNT_EXP)
  2699. mp->rx_link_faults += LINK_FAULT_CNT_COUNT;
  2700. if (val & XRXMAC_STATUS_ALIGNERR_CNT_EXP)
  2701. mp->rx_align_errors += RXMAC_ALIGN_ERR_CNT_COUNT;
  2702. if (val & XRXMAC_STATUS_RXFRAG_CNT_EXP)
  2703. mp->rx_frags += RXMAC_FRAG_CNT_COUNT;
  2704. if (val & XRXMAC_STATUS_RXMULTF_CNT_EXP)
  2705. mp->rx_mcasts += RXMAC_MC_FRM_CNT_COUNT;
  2706. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  2707. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  2708. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  2709. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  2710. if (val & XRXMAC_STATUS_RXHIST1_CNT_EXP)
  2711. mp->rx_hist_cnt1 += RXMAC_HIST_CNT1_COUNT;
  2712. if (val & XRXMAC_STATUS_RXHIST2_CNT_EXP)
  2713. mp->rx_hist_cnt2 += RXMAC_HIST_CNT2_COUNT;
  2714. if (val & XRXMAC_STATUS_RXHIST3_CNT_EXP)
  2715. mp->rx_hist_cnt3 += RXMAC_HIST_CNT3_COUNT;
  2716. if (val & XRXMAC_STATUS_RXHIST4_CNT_EXP)
  2717. mp->rx_hist_cnt4 += RXMAC_HIST_CNT4_COUNT;
  2718. if (val & XRXMAC_STATUS_RXHIST5_CNT_EXP)
  2719. mp->rx_hist_cnt5 += RXMAC_HIST_CNT5_COUNT;
  2720. if (val & XRXMAC_STATUS_RXHIST6_CNT_EXP)
  2721. mp->rx_hist_cnt6 += RXMAC_HIST_CNT6_COUNT;
  2722. if (val & XRXMAC_STATUS_RXHIST7_CNT_EXP)
  2723. mp->rx_hist_cnt7 += RXMAC_HIST_CNT7_COUNT;
  2724. if (val & XRXMAC_STAT_MSK_RXOCTET_CNT_EXP)
  2725. mp->rx_octets += RXMAC_BT_CNT_COUNT;
  2726. if (val & XRXMAC_STATUS_CVIOLERR_CNT_EXP)
  2727. mp->rx_code_violations += RXMAC_CD_VIO_CNT_COUNT;
  2728. if (val & XRXMAC_STATUS_LENERR_CNT_EXP)
  2729. mp->rx_len_errors += RXMAC_MPSZER_CNT_COUNT;
  2730. if (val & XRXMAC_STATUS_CRCERR_CNT_EXP)
  2731. mp->rx_crc_errors += RXMAC_CRC_ER_CNT_COUNT;
  2732. if (val & XRXMAC_STATUS_RXUFLOW)
  2733. mp->rx_underflows++;
  2734. if (val & XRXMAC_STATUS_RXOFLOW)
  2735. mp->rx_overflows++;
  2736. val = nr64_mac(XMAC_FC_STAT);
  2737. if (val & XMAC_FC_STAT_TX_MAC_NPAUSE)
  2738. mp->pause_off_state++;
  2739. if (val & XMAC_FC_STAT_TX_MAC_PAUSE)
  2740. mp->pause_on_state++;
  2741. if (val & XMAC_FC_STAT_RX_MAC_RPAUSE)
  2742. mp->pause_received++;
  2743. }
  2744. static void niu_bmac_interrupt(struct niu *np)
  2745. {
  2746. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  2747. u64 val;
  2748. val = nr64_mac(BTXMAC_STATUS);
  2749. if (val & BTXMAC_STATUS_UNDERRUN)
  2750. mp->tx_underflow_errors++;
  2751. if (val & BTXMAC_STATUS_MAX_PKT_ERR)
  2752. mp->tx_max_pkt_size_errors++;
  2753. if (val & BTXMAC_STATUS_BYTE_CNT_EXP)
  2754. mp->tx_bytes += BTXMAC_BYTE_CNT_COUNT;
  2755. if (val & BTXMAC_STATUS_FRAME_CNT_EXP)
  2756. mp->tx_frames += BTXMAC_FRM_CNT_COUNT;
  2757. val = nr64_mac(BRXMAC_STATUS);
  2758. if (val & BRXMAC_STATUS_OVERFLOW)
  2759. mp->rx_overflows++;
  2760. if (val & BRXMAC_STATUS_FRAME_CNT_EXP)
  2761. mp->rx_frames += BRXMAC_FRAME_CNT_COUNT;
  2762. if (val & BRXMAC_STATUS_ALIGN_ERR_EXP)
  2763. mp->rx_align_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  2764. if (val & BRXMAC_STATUS_CRC_ERR_EXP)
  2765. mp->rx_crc_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  2766. if (val & BRXMAC_STATUS_LEN_ERR_EXP)
  2767. mp->rx_len_errors += BRXMAC_CODE_VIOL_ERR_CNT_COUNT;
  2768. val = nr64_mac(BMAC_CTRL_STATUS);
  2769. if (val & BMAC_CTRL_STATUS_NOPAUSE)
  2770. mp->pause_off_state++;
  2771. if (val & BMAC_CTRL_STATUS_PAUSE)
  2772. mp->pause_on_state++;
  2773. if (val & BMAC_CTRL_STATUS_PAUSE_RECV)
  2774. mp->pause_received++;
  2775. }
  2776. static int niu_mac_interrupt(struct niu *np)
  2777. {
  2778. if (np->flags & NIU_FLAGS_XMAC)
  2779. niu_xmac_interrupt(np);
  2780. else
  2781. niu_bmac_interrupt(np);
  2782. return 0;
  2783. }
  2784. static void niu_log_device_error(struct niu *np, u64 stat)
  2785. {
  2786. dev_err(np->device, PFX "%s: Core device errors ( ",
  2787. np->dev->name);
  2788. if (stat & SYS_ERR_MASK_META2)
  2789. printk("META2 ");
  2790. if (stat & SYS_ERR_MASK_META1)
  2791. printk("META1 ");
  2792. if (stat & SYS_ERR_MASK_PEU)
  2793. printk("PEU ");
  2794. if (stat & SYS_ERR_MASK_TXC)
  2795. printk("TXC ");
  2796. if (stat & SYS_ERR_MASK_RDMC)
  2797. printk("RDMC ");
  2798. if (stat & SYS_ERR_MASK_TDMC)
  2799. printk("TDMC ");
  2800. if (stat & SYS_ERR_MASK_ZCP)
  2801. printk("ZCP ");
  2802. if (stat & SYS_ERR_MASK_FFLP)
  2803. printk("FFLP ");
  2804. if (stat & SYS_ERR_MASK_IPP)
  2805. printk("IPP ");
  2806. if (stat & SYS_ERR_MASK_MAC)
  2807. printk("MAC ");
  2808. if (stat & SYS_ERR_MASK_SMX)
  2809. printk("SMX ");
  2810. printk(")\n");
  2811. }
  2812. static int niu_device_error(struct niu *np)
  2813. {
  2814. u64 stat = nr64(SYS_ERR_STAT);
  2815. dev_err(np->device, PFX "%s: Core device error, stat[%llx]\n",
  2816. np->dev->name, (unsigned long long) stat);
  2817. niu_log_device_error(np, stat);
  2818. return -ENODEV;
  2819. }
  2820. static int niu_slowpath_interrupt(struct niu *np, struct niu_ldg *lp,
  2821. u64 v0, u64 v1, u64 v2)
  2822. {
  2823. int i, err = 0;
  2824. lp->v0 = v0;
  2825. lp->v1 = v1;
  2826. lp->v2 = v2;
  2827. if (v1 & 0x00000000ffffffffULL) {
  2828. u32 rx_vec = (v1 & 0xffffffff);
  2829. for (i = 0; i < np->num_rx_rings; i++) {
  2830. struct rx_ring_info *rp = &np->rx_rings[i];
  2831. if (rx_vec & (1 << rp->rx_channel)) {
  2832. int r = niu_rx_error(np, rp);
  2833. if (r) {
  2834. err = r;
  2835. } else {
  2836. if (!v0)
  2837. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  2838. RX_DMA_CTL_STAT_MEX);
  2839. }
  2840. }
  2841. }
  2842. }
  2843. if (v1 & 0x7fffffff00000000ULL) {
  2844. u32 tx_vec = (v1 >> 32) & 0x7fffffff;
  2845. for (i = 0; i < np->num_tx_rings; i++) {
  2846. struct tx_ring_info *rp = &np->tx_rings[i];
  2847. if (tx_vec & (1 << rp->tx_channel)) {
  2848. int r = niu_tx_error(np, rp);
  2849. if (r)
  2850. err = r;
  2851. }
  2852. }
  2853. }
  2854. if ((v0 | v1) & 0x8000000000000000ULL) {
  2855. int r = niu_mif_interrupt(np);
  2856. if (r)
  2857. err = r;
  2858. }
  2859. if (v2) {
  2860. if (v2 & 0x01ef) {
  2861. int r = niu_mac_interrupt(np);
  2862. if (r)
  2863. err = r;
  2864. }
  2865. if (v2 & 0x0210) {
  2866. int r = niu_device_error(np);
  2867. if (r)
  2868. err = r;
  2869. }
  2870. }
  2871. if (err)
  2872. niu_enable_interrupts(np, 0);
  2873. return err;
  2874. }
  2875. static void niu_rxchan_intr(struct niu *np, struct rx_ring_info *rp,
  2876. int ldn)
  2877. {
  2878. struct rxdma_mailbox *mbox = rp->mbox;
  2879. u64 stat_write, stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  2880. stat_write = (RX_DMA_CTL_STAT_RCRTHRES |
  2881. RX_DMA_CTL_STAT_RCRTO);
  2882. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat_write);
  2883. niudbg(INTR, "%s: rxchan_intr stat[%llx]\n",
  2884. np->dev->name, (unsigned long long) stat);
  2885. }
  2886. static void niu_txchan_intr(struct niu *np, struct tx_ring_info *rp,
  2887. int ldn)
  2888. {
  2889. rp->tx_cs = nr64(TX_CS(rp->tx_channel));
  2890. niudbg(INTR, "%s: txchan_intr cs[%llx]\n",
  2891. np->dev->name, (unsigned long long) rp->tx_cs);
  2892. }
  2893. static void __niu_fastpath_interrupt(struct niu *np, int ldg, u64 v0)
  2894. {
  2895. struct niu_parent *parent = np->parent;
  2896. u32 rx_vec, tx_vec;
  2897. int i;
  2898. tx_vec = (v0 >> 32);
  2899. rx_vec = (v0 & 0xffffffff);
  2900. for (i = 0; i < np->num_rx_rings; i++) {
  2901. struct rx_ring_info *rp = &np->rx_rings[i];
  2902. int ldn = LDN_RXDMA(rp->rx_channel);
  2903. if (parent->ldg_map[ldn] != ldg)
  2904. continue;
  2905. nw64(LD_IM0(ldn), LD_IM0_MASK);
  2906. if (rx_vec & (1 << rp->rx_channel))
  2907. niu_rxchan_intr(np, rp, ldn);
  2908. }
  2909. for (i = 0; i < np->num_tx_rings; i++) {
  2910. struct tx_ring_info *rp = &np->tx_rings[i];
  2911. int ldn = LDN_TXDMA(rp->tx_channel);
  2912. if (parent->ldg_map[ldn] != ldg)
  2913. continue;
  2914. nw64(LD_IM0(ldn), LD_IM0_MASK);
  2915. if (tx_vec & (1 << rp->tx_channel))
  2916. niu_txchan_intr(np, rp, ldn);
  2917. }
  2918. }
  2919. static void niu_schedule_napi(struct niu *np, struct niu_ldg *lp,
  2920. u64 v0, u64 v1, u64 v2)
  2921. {
  2922. if (likely(netif_rx_schedule_prep(np->dev, &lp->napi))) {
  2923. lp->v0 = v0;
  2924. lp->v1 = v1;
  2925. lp->v2 = v2;
  2926. __niu_fastpath_interrupt(np, lp->ldg_num, v0);
  2927. __netif_rx_schedule(np->dev, &lp->napi);
  2928. }
  2929. }
  2930. static irqreturn_t niu_interrupt(int irq, void *dev_id)
  2931. {
  2932. struct niu_ldg *lp = dev_id;
  2933. struct niu *np = lp->np;
  2934. int ldg = lp->ldg_num;
  2935. unsigned long flags;
  2936. u64 v0, v1, v2;
  2937. if (netif_msg_intr(np))
  2938. printk(KERN_DEBUG PFX "niu_interrupt() ldg[%p](%d) ",
  2939. lp, ldg);
  2940. spin_lock_irqsave(&np->lock, flags);
  2941. v0 = nr64(LDSV0(ldg));
  2942. v1 = nr64(LDSV1(ldg));
  2943. v2 = nr64(LDSV2(ldg));
  2944. if (netif_msg_intr(np))
  2945. printk("v0[%llx] v1[%llx] v2[%llx]\n",
  2946. (unsigned long long) v0,
  2947. (unsigned long long) v1,
  2948. (unsigned long long) v2);
  2949. if (unlikely(!v0 && !v1 && !v2)) {
  2950. spin_unlock_irqrestore(&np->lock, flags);
  2951. return IRQ_NONE;
  2952. }
  2953. if (unlikely((v0 & ((u64)1 << LDN_MIF)) || v1 || v2)) {
  2954. int err = niu_slowpath_interrupt(np, lp, v0, v1, v2);
  2955. if (err)
  2956. goto out;
  2957. }
  2958. if (likely(v0 & ~((u64)1 << LDN_MIF)))
  2959. niu_schedule_napi(np, lp, v0, v1, v2);
  2960. else
  2961. niu_ldg_rearm(np, lp, 1);
  2962. out:
  2963. spin_unlock_irqrestore(&np->lock, flags);
  2964. return IRQ_HANDLED;
  2965. }
  2966. static void niu_free_rx_ring_info(struct niu *np, struct rx_ring_info *rp)
  2967. {
  2968. if (rp->mbox) {
  2969. np->ops->free_coherent(np->device,
  2970. sizeof(struct rxdma_mailbox),
  2971. rp->mbox, rp->mbox_dma);
  2972. rp->mbox = NULL;
  2973. }
  2974. if (rp->rcr) {
  2975. np->ops->free_coherent(np->device,
  2976. MAX_RCR_RING_SIZE * sizeof(__le64),
  2977. rp->rcr, rp->rcr_dma);
  2978. rp->rcr = NULL;
  2979. rp->rcr_table_size = 0;
  2980. rp->rcr_index = 0;
  2981. }
  2982. if (rp->rbr) {
  2983. niu_rbr_free(np, rp);
  2984. np->ops->free_coherent(np->device,
  2985. MAX_RBR_RING_SIZE * sizeof(__le32),
  2986. rp->rbr, rp->rbr_dma);
  2987. rp->rbr = NULL;
  2988. rp->rbr_table_size = 0;
  2989. rp->rbr_index = 0;
  2990. }
  2991. kfree(rp->rxhash);
  2992. rp->rxhash = NULL;
  2993. }
  2994. static void niu_free_tx_ring_info(struct niu *np, struct tx_ring_info *rp)
  2995. {
  2996. if (rp->mbox) {
  2997. np->ops->free_coherent(np->device,
  2998. sizeof(struct txdma_mailbox),
  2999. rp->mbox, rp->mbox_dma);
  3000. rp->mbox = NULL;
  3001. }
  3002. if (rp->descr) {
  3003. int i;
  3004. for (i = 0; i < MAX_TX_RING_SIZE; i++) {
  3005. if (rp->tx_buffs[i].skb)
  3006. (void) release_tx_packet(np, rp, i);
  3007. }
  3008. np->ops->free_coherent(np->device,
  3009. MAX_TX_RING_SIZE * sizeof(__le64),
  3010. rp->descr, rp->descr_dma);
  3011. rp->descr = NULL;
  3012. rp->pending = 0;
  3013. rp->prod = 0;
  3014. rp->cons = 0;
  3015. rp->wrap_bit = 0;
  3016. }
  3017. }
  3018. static void niu_free_channels(struct niu *np)
  3019. {
  3020. int i;
  3021. if (np->rx_rings) {
  3022. for (i = 0; i < np->num_rx_rings; i++) {
  3023. struct rx_ring_info *rp = &np->rx_rings[i];
  3024. niu_free_rx_ring_info(np, rp);
  3025. }
  3026. kfree(np->rx_rings);
  3027. np->rx_rings = NULL;
  3028. np->num_rx_rings = 0;
  3029. }
  3030. if (np->tx_rings) {
  3031. for (i = 0; i < np->num_tx_rings; i++) {
  3032. struct tx_ring_info *rp = &np->tx_rings[i];
  3033. niu_free_tx_ring_info(np, rp);
  3034. }
  3035. kfree(np->tx_rings);
  3036. np->tx_rings = NULL;
  3037. np->num_tx_rings = 0;
  3038. }
  3039. }
  3040. static int niu_alloc_rx_ring_info(struct niu *np,
  3041. struct rx_ring_info *rp)
  3042. {
  3043. BUILD_BUG_ON(sizeof(struct rxdma_mailbox) != 64);
  3044. rp->rxhash = kzalloc(MAX_RBR_RING_SIZE * sizeof(struct page *),
  3045. GFP_KERNEL);
  3046. if (!rp->rxhash)
  3047. return -ENOMEM;
  3048. rp->mbox = np->ops->alloc_coherent(np->device,
  3049. sizeof(struct rxdma_mailbox),
  3050. &rp->mbox_dma, GFP_KERNEL);
  3051. if (!rp->mbox)
  3052. return -ENOMEM;
  3053. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3054. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3055. "RXDMA mailbox %p\n", np->dev->name, rp->mbox);
  3056. return -EINVAL;
  3057. }
  3058. rp->rcr = np->ops->alloc_coherent(np->device,
  3059. MAX_RCR_RING_SIZE * sizeof(__le64),
  3060. &rp->rcr_dma, GFP_KERNEL);
  3061. if (!rp->rcr)
  3062. return -ENOMEM;
  3063. if ((unsigned long)rp->rcr & (64UL - 1)) {
  3064. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3065. "RXDMA RCR table %p\n", np->dev->name, rp->rcr);
  3066. return -EINVAL;
  3067. }
  3068. rp->rcr_table_size = MAX_RCR_RING_SIZE;
  3069. rp->rcr_index = 0;
  3070. rp->rbr = np->ops->alloc_coherent(np->device,
  3071. MAX_RBR_RING_SIZE * sizeof(__le32),
  3072. &rp->rbr_dma, GFP_KERNEL);
  3073. if (!rp->rbr)
  3074. return -ENOMEM;
  3075. if ((unsigned long)rp->rbr & (64UL - 1)) {
  3076. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3077. "RXDMA RBR table %p\n", np->dev->name, rp->rbr);
  3078. return -EINVAL;
  3079. }
  3080. rp->rbr_table_size = MAX_RBR_RING_SIZE;
  3081. rp->rbr_index = 0;
  3082. rp->rbr_pending = 0;
  3083. return 0;
  3084. }
  3085. static void niu_set_max_burst(struct niu *np, struct tx_ring_info *rp)
  3086. {
  3087. int mtu = np->dev->mtu;
  3088. /* These values are recommended by the HW designers for fair
  3089. * utilization of DRR amongst the rings.
  3090. */
  3091. rp->max_burst = mtu + 32;
  3092. if (rp->max_burst > 4096)
  3093. rp->max_burst = 4096;
  3094. }
  3095. static int niu_alloc_tx_ring_info(struct niu *np,
  3096. struct tx_ring_info *rp)
  3097. {
  3098. BUILD_BUG_ON(sizeof(struct txdma_mailbox) != 64);
  3099. rp->mbox = np->ops->alloc_coherent(np->device,
  3100. sizeof(struct txdma_mailbox),
  3101. &rp->mbox_dma, GFP_KERNEL);
  3102. if (!rp->mbox)
  3103. return -ENOMEM;
  3104. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3105. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3106. "TXDMA mailbox %p\n", np->dev->name, rp->mbox);
  3107. return -EINVAL;
  3108. }
  3109. rp->descr = np->ops->alloc_coherent(np->device,
  3110. MAX_TX_RING_SIZE * sizeof(__le64),
  3111. &rp->descr_dma, GFP_KERNEL);
  3112. if (!rp->descr)
  3113. return -ENOMEM;
  3114. if ((unsigned long)rp->descr & (64UL - 1)) {
  3115. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3116. "TXDMA descr table %p\n", np->dev->name, rp->descr);
  3117. return -EINVAL;
  3118. }
  3119. rp->pending = MAX_TX_RING_SIZE;
  3120. rp->prod = 0;
  3121. rp->cons = 0;
  3122. rp->wrap_bit = 0;
  3123. /* XXX make these configurable... XXX */
  3124. rp->mark_freq = rp->pending / 4;
  3125. niu_set_max_burst(np, rp);
  3126. return 0;
  3127. }
  3128. static void niu_size_rbr(struct niu *np, struct rx_ring_info *rp)
  3129. {
  3130. u16 bss;
  3131. bss = min(PAGE_SHIFT, 15);
  3132. rp->rbr_block_size = 1 << bss;
  3133. rp->rbr_blocks_per_page = 1 << (PAGE_SHIFT-bss);
  3134. rp->rbr_sizes[0] = 256;
  3135. rp->rbr_sizes[1] = 1024;
  3136. if (np->dev->mtu > ETH_DATA_LEN) {
  3137. switch (PAGE_SIZE) {
  3138. case 4 * 1024:
  3139. rp->rbr_sizes[2] = 4096;
  3140. break;
  3141. default:
  3142. rp->rbr_sizes[2] = 8192;
  3143. break;
  3144. }
  3145. } else {
  3146. rp->rbr_sizes[2] = 2048;
  3147. }
  3148. rp->rbr_sizes[3] = rp->rbr_block_size;
  3149. }
  3150. static int niu_alloc_channels(struct niu *np)
  3151. {
  3152. struct niu_parent *parent = np->parent;
  3153. int first_rx_channel, first_tx_channel;
  3154. int i, port, err;
  3155. port = np->port;
  3156. first_rx_channel = first_tx_channel = 0;
  3157. for (i = 0; i < port; i++) {
  3158. first_rx_channel += parent->rxchan_per_port[i];
  3159. first_tx_channel += parent->txchan_per_port[i];
  3160. }
  3161. np->num_rx_rings = parent->rxchan_per_port[port];
  3162. np->num_tx_rings = parent->txchan_per_port[port];
  3163. np->rx_rings = kzalloc(np->num_rx_rings * sizeof(struct rx_ring_info),
  3164. GFP_KERNEL);
  3165. err = -ENOMEM;
  3166. if (!np->rx_rings)
  3167. goto out_err;
  3168. for (i = 0; i < np->num_rx_rings; i++) {
  3169. struct rx_ring_info *rp = &np->rx_rings[i];
  3170. rp->np = np;
  3171. rp->rx_channel = first_rx_channel + i;
  3172. err = niu_alloc_rx_ring_info(np, rp);
  3173. if (err)
  3174. goto out_err;
  3175. niu_size_rbr(np, rp);
  3176. /* XXX better defaults, configurable, etc... XXX */
  3177. rp->nonsyn_window = 64;
  3178. rp->nonsyn_threshold = rp->rcr_table_size - 64;
  3179. rp->syn_window = 64;
  3180. rp->syn_threshold = rp->rcr_table_size - 64;
  3181. rp->rcr_pkt_threshold = 16;
  3182. rp->rcr_timeout = 8;
  3183. rp->rbr_kick_thresh = RBR_REFILL_MIN;
  3184. if (rp->rbr_kick_thresh < rp->rbr_blocks_per_page)
  3185. rp->rbr_kick_thresh = rp->rbr_blocks_per_page;
  3186. err = niu_rbr_fill(np, rp, GFP_KERNEL);
  3187. if (err)
  3188. return err;
  3189. }
  3190. np->tx_rings = kzalloc(np->num_tx_rings * sizeof(struct tx_ring_info),
  3191. GFP_KERNEL);
  3192. err = -ENOMEM;
  3193. if (!np->tx_rings)
  3194. goto out_err;
  3195. for (i = 0; i < np->num_tx_rings; i++) {
  3196. struct tx_ring_info *rp = &np->tx_rings[i];
  3197. rp->np = np;
  3198. rp->tx_channel = first_tx_channel + i;
  3199. err = niu_alloc_tx_ring_info(np, rp);
  3200. if (err)
  3201. goto out_err;
  3202. }
  3203. return 0;
  3204. out_err:
  3205. niu_free_channels(np);
  3206. return err;
  3207. }
  3208. static int niu_tx_cs_sng_poll(struct niu *np, int channel)
  3209. {
  3210. int limit = 1000;
  3211. while (--limit > 0) {
  3212. u64 val = nr64(TX_CS(channel));
  3213. if (val & TX_CS_SNG_STATE)
  3214. return 0;
  3215. }
  3216. return -ENODEV;
  3217. }
  3218. static int niu_tx_channel_stop(struct niu *np, int channel)
  3219. {
  3220. u64 val = nr64(TX_CS(channel));
  3221. val |= TX_CS_STOP_N_GO;
  3222. nw64(TX_CS(channel), val);
  3223. return niu_tx_cs_sng_poll(np, channel);
  3224. }
  3225. static int niu_tx_cs_reset_poll(struct niu *np, int channel)
  3226. {
  3227. int limit = 1000;
  3228. while (--limit > 0) {
  3229. u64 val = nr64(TX_CS(channel));
  3230. if (!(val & TX_CS_RST))
  3231. return 0;
  3232. }
  3233. return -ENODEV;
  3234. }
  3235. static int niu_tx_channel_reset(struct niu *np, int channel)
  3236. {
  3237. u64 val = nr64(TX_CS(channel));
  3238. int err;
  3239. val |= TX_CS_RST;
  3240. nw64(TX_CS(channel), val);
  3241. err = niu_tx_cs_reset_poll(np, channel);
  3242. if (!err)
  3243. nw64(TX_RING_KICK(channel), 0);
  3244. return err;
  3245. }
  3246. static int niu_tx_channel_lpage_init(struct niu *np, int channel)
  3247. {
  3248. u64 val;
  3249. nw64(TX_LOG_MASK1(channel), 0);
  3250. nw64(TX_LOG_VAL1(channel), 0);
  3251. nw64(TX_LOG_MASK2(channel), 0);
  3252. nw64(TX_LOG_VAL2(channel), 0);
  3253. nw64(TX_LOG_PAGE_RELO1(channel), 0);
  3254. nw64(TX_LOG_PAGE_RELO2(channel), 0);
  3255. nw64(TX_LOG_PAGE_HDL(channel), 0);
  3256. val = (u64)np->port << TX_LOG_PAGE_VLD_FUNC_SHIFT;
  3257. val |= (TX_LOG_PAGE_VLD_PAGE0 | TX_LOG_PAGE_VLD_PAGE1);
  3258. nw64(TX_LOG_PAGE_VLD(channel), val);
  3259. /* XXX TXDMA 32bit mode? XXX */
  3260. return 0;
  3261. }
  3262. static void niu_txc_enable_port(struct niu *np, int on)
  3263. {
  3264. unsigned long flags;
  3265. u64 val, mask;
  3266. niu_lock_parent(np, flags);
  3267. val = nr64(TXC_CONTROL);
  3268. mask = (u64)1 << np->port;
  3269. if (on) {
  3270. val |= TXC_CONTROL_ENABLE | mask;
  3271. } else {
  3272. val &= ~mask;
  3273. if ((val & ~TXC_CONTROL_ENABLE) == 0)
  3274. val &= ~TXC_CONTROL_ENABLE;
  3275. }
  3276. nw64(TXC_CONTROL, val);
  3277. niu_unlock_parent(np, flags);
  3278. }
  3279. static void niu_txc_set_imask(struct niu *np, u64 imask)
  3280. {
  3281. unsigned long flags;
  3282. u64 val;
  3283. niu_lock_parent(np, flags);
  3284. val = nr64(TXC_INT_MASK);
  3285. val &= ~TXC_INT_MASK_VAL(np->port);
  3286. val |= (imask << TXC_INT_MASK_VAL_SHIFT(np->port));
  3287. niu_unlock_parent(np, flags);
  3288. }
  3289. static void niu_txc_port_dma_enable(struct niu *np, int on)
  3290. {
  3291. u64 val = 0;
  3292. if (on) {
  3293. int i;
  3294. for (i = 0; i < np->num_tx_rings; i++)
  3295. val |= (1 << np->tx_rings[i].tx_channel);
  3296. }
  3297. nw64(TXC_PORT_DMA(np->port), val);
  3298. }
  3299. static int niu_init_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  3300. {
  3301. int err, channel = rp->tx_channel;
  3302. u64 val, ring_len;
  3303. err = niu_tx_channel_stop(np, channel);
  3304. if (err)
  3305. return err;
  3306. err = niu_tx_channel_reset(np, channel);
  3307. if (err)
  3308. return err;
  3309. err = niu_tx_channel_lpage_init(np, channel);
  3310. if (err)
  3311. return err;
  3312. nw64(TXC_DMA_MAX(channel), rp->max_burst);
  3313. nw64(TX_ENT_MSK(channel), 0);
  3314. if (rp->descr_dma & ~(TX_RNG_CFIG_STADDR_BASE |
  3315. TX_RNG_CFIG_STADDR)) {
  3316. dev_err(np->device, PFX "%s: TX ring channel %d "
  3317. "DMA addr (%llx) is not aligned.\n",
  3318. np->dev->name, channel,
  3319. (unsigned long long) rp->descr_dma);
  3320. return -EINVAL;
  3321. }
  3322. /* The length field in TX_RNG_CFIG is measured in 64-byte
  3323. * blocks. rp->pending is the number of TX descriptors in
  3324. * our ring, 8 bytes each, thus we divide by 8 bytes more
  3325. * to get the proper value the chip wants.
  3326. */
  3327. ring_len = (rp->pending / 8);
  3328. val = ((ring_len << TX_RNG_CFIG_LEN_SHIFT) |
  3329. rp->descr_dma);
  3330. nw64(TX_RNG_CFIG(channel), val);
  3331. if (((rp->mbox_dma >> 32) & ~TXDMA_MBH_MBADDR) ||
  3332. ((u32)rp->mbox_dma & ~TXDMA_MBL_MBADDR)) {
  3333. dev_err(np->device, PFX "%s: TX ring channel %d "
  3334. "MBOX addr (%llx) is has illegal bits.\n",
  3335. np->dev->name, channel,
  3336. (unsigned long long) rp->mbox_dma);
  3337. return -EINVAL;
  3338. }
  3339. nw64(TXDMA_MBH(channel), rp->mbox_dma >> 32);
  3340. nw64(TXDMA_MBL(channel), rp->mbox_dma & TXDMA_MBL_MBADDR);
  3341. nw64(TX_CS(channel), 0);
  3342. rp->last_pkt_cnt = 0;
  3343. return 0;
  3344. }
  3345. static void niu_init_rdc_groups(struct niu *np)
  3346. {
  3347. struct niu_rdc_tables *tp = &np->parent->rdc_group_cfg[np->port];
  3348. int i, first_table_num = tp->first_table_num;
  3349. for (i = 0; i < tp->num_tables; i++) {
  3350. struct rdc_table *tbl = &tp->tables[i];
  3351. int this_table = first_table_num + i;
  3352. int slot;
  3353. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++)
  3354. nw64(RDC_TBL(this_table, slot),
  3355. tbl->rxdma_channel[slot]);
  3356. }
  3357. nw64(DEF_RDC(np->port), np->parent->rdc_default[np->port]);
  3358. }
  3359. static void niu_init_drr_weight(struct niu *np)
  3360. {
  3361. int type = phy_decode(np->parent->port_phy, np->port);
  3362. u64 val;
  3363. switch (type) {
  3364. case PORT_TYPE_10G:
  3365. val = PT_DRR_WEIGHT_DEFAULT_10G;
  3366. break;
  3367. case PORT_TYPE_1G:
  3368. default:
  3369. val = PT_DRR_WEIGHT_DEFAULT_1G;
  3370. break;
  3371. }
  3372. nw64(PT_DRR_WT(np->port), val);
  3373. }
  3374. static int niu_init_hostinfo(struct niu *np)
  3375. {
  3376. struct niu_parent *parent = np->parent;
  3377. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  3378. int i, err, num_alt = niu_num_alt_addr(np);
  3379. int first_rdc_table = tp->first_table_num;
  3380. err = niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  3381. if (err)
  3382. return err;
  3383. err = niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  3384. if (err)
  3385. return err;
  3386. for (i = 0; i < num_alt; i++) {
  3387. err = niu_set_alt_mac_rdc_table(np, i, first_rdc_table, 1);
  3388. if (err)
  3389. return err;
  3390. }
  3391. return 0;
  3392. }
  3393. static int niu_rx_channel_reset(struct niu *np, int channel)
  3394. {
  3395. return niu_set_and_wait_clear(np, RXDMA_CFIG1(channel),
  3396. RXDMA_CFIG1_RST, 1000, 10,
  3397. "RXDMA_CFIG1");
  3398. }
  3399. static int niu_rx_channel_lpage_init(struct niu *np, int channel)
  3400. {
  3401. u64 val;
  3402. nw64(RX_LOG_MASK1(channel), 0);
  3403. nw64(RX_LOG_VAL1(channel), 0);
  3404. nw64(RX_LOG_MASK2(channel), 0);
  3405. nw64(RX_LOG_VAL2(channel), 0);
  3406. nw64(RX_LOG_PAGE_RELO1(channel), 0);
  3407. nw64(RX_LOG_PAGE_RELO2(channel), 0);
  3408. nw64(RX_LOG_PAGE_HDL(channel), 0);
  3409. val = (u64)np->port << RX_LOG_PAGE_VLD_FUNC_SHIFT;
  3410. val |= (RX_LOG_PAGE_VLD_PAGE0 | RX_LOG_PAGE_VLD_PAGE1);
  3411. nw64(RX_LOG_PAGE_VLD(channel), val);
  3412. return 0;
  3413. }
  3414. static void niu_rx_channel_wred_init(struct niu *np, struct rx_ring_info *rp)
  3415. {
  3416. u64 val;
  3417. val = (((u64)rp->nonsyn_window << RDC_RED_PARA_WIN_SHIFT) |
  3418. ((u64)rp->nonsyn_threshold << RDC_RED_PARA_THRE_SHIFT) |
  3419. ((u64)rp->syn_window << RDC_RED_PARA_WIN_SYN_SHIFT) |
  3420. ((u64)rp->syn_threshold << RDC_RED_PARA_THRE_SYN_SHIFT));
  3421. nw64(RDC_RED_PARA(rp->rx_channel), val);
  3422. }
  3423. static int niu_compute_rbr_cfig_b(struct rx_ring_info *rp, u64 *ret)
  3424. {
  3425. u64 val = 0;
  3426. switch (rp->rbr_block_size) {
  3427. case 4 * 1024:
  3428. val |= (RBR_BLKSIZE_4K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3429. break;
  3430. case 8 * 1024:
  3431. val |= (RBR_BLKSIZE_8K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3432. break;
  3433. case 16 * 1024:
  3434. val |= (RBR_BLKSIZE_16K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3435. break;
  3436. case 32 * 1024:
  3437. val |= (RBR_BLKSIZE_32K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3438. break;
  3439. default:
  3440. return -EINVAL;
  3441. }
  3442. val |= RBR_CFIG_B_VLD2;
  3443. switch (rp->rbr_sizes[2]) {
  3444. case 2 * 1024:
  3445. val |= (RBR_BUFSZ2_2K << RBR_CFIG_B_BUFSZ2_SHIFT);
  3446. break;
  3447. case 4 * 1024:
  3448. val |= (RBR_BUFSZ2_4K << RBR_CFIG_B_BUFSZ2_SHIFT);
  3449. break;
  3450. case 8 * 1024:
  3451. val |= (RBR_BUFSZ2_8K << RBR_CFIG_B_BUFSZ2_SHIFT);
  3452. break;
  3453. case 16 * 1024:
  3454. val |= (RBR_BUFSZ2_16K << RBR_CFIG_B_BUFSZ2_SHIFT);
  3455. break;
  3456. default:
  3457. return -EINVAL;
  3458. }
  3459. val |= RBR_CFIG_B_VLD1;
  3460. switch (rp->rbr_sizes[1]) {
  3461. case 1 * 1024:
  3462. val |= (RBR_BUFSZ1_1K << RBR_CFIG_B_BUFSZ1_SHIFT);
  3463. break;
  3464. case 2 * 1024:
  3465. val |= (RBR_BUFSZ1_2K << RBR_CFIG_B_BUFSZ1_SHIFT);
  3466. break;
  3467. case 4 * 1024:
  3468. val |= (RBR_BUFSZ1_4K << RBR_CFIG_B_BUFSZ1_SHIFT);
  3469. break;
  3470. case 8 * 1024:
  3471. val |= (RBR_BUFSZ1_8K << RBR_CFIG_B_BUFSZ1_SHIFT);
  3472. break;
  3473. default:
  3474. return -EINVAL;
  3475. }
  3476. val |= RBR_CFIG_B_VLD0;
  3477. switch (rp->rbr_sizes[0]) {
  3478. case 256:
  3479. val |= (RBR_BUFSZ0_256 << RBR_CFIG_B_BUFSZ0_SHIFT);
  3480. break;
  3481. case 512:
  3482. val |= (RBR_BUFSZ0_512 << RBR_CFIG_B_BUFSZ0_SHIFT);
  3483. break;
  3484. case 1 * 1024:
  3485. val |= (RBR_BUFSZ0_1K << RBR_CFIG_B_BUFSZ0_SHIFT);
  3486. break;
  3487. case 2 * 1024:
  3488. val |= (RBR_BUFSZ0_2K << RBR_CFIG_B_BUFSZ0_SHIFT);
  3489. break;
  3490. default:
  3491. return -EINVAL;
  3492. }
  3493. *ret = val;
  3494. return 0;
  3495. }
  3496. static int niu_enable_rx_channel(struct niu *np, int channel, int on)
  3497. {
  3498. u64 val = nr64(RXDMA_CFIG1(channel));
  3499. int limit;
  3500. if (on)
  3501. val |= RXDMA_CFIG1_EN;
  3502. else
  3503. val &= ~RXDMA_CFIG1_EN;
  3504. nw64(RXDMA_CFIG1(channel), val);
  3505. limit = 1000;
  3506. while (--limit > 0) {
  3507. if (nr64(RXDMA_CFIG1(channel)) & RXDMA_CFIG1_QST)
  3508. break;
  3509. udelay(10);
  3510. }
  3511. if (limit <= 0)
  3512. return -ENODEV;
  3513. return 0;
  3514. }
  3515. static int niu_init_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  3516. {
  3517. int err, channel = rp->rx_channel;
  3518. u64 val;
  3519. err = niu_rx_channel_reset(np, channel);
  3520. if (err)
  3521. return err;
  3522. err = niu_rx_channel_lpage_init(np, channel);
  3523. if (err)
  3524. return err;
  3525. niu_rx_channel_wred_init(np, rp);
  3526. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_RBR_EMPTY);
  3527. nw64(RX_DMA_CTL_STAT(channel),
  3528. (RX_DMA_CTL_STAT_MEX |
  3529. RX_DMA_CTL_STAT_RCRTHRES |
  3530. RX_DMA_CTL_STAT_RCRTO |
  3531. RX_DMA_CTL_STAT_RBR_EMPTY));
  3532. nw64(RXDMA_CFIG1(channel), rp->mbox_dma >> 32);
  3533. nw64(RXDMA_CFIG2(channel), (rp->mbox_dma & 0x00000000ffffffc0));
  3534. nw64(RBR_CFIG_A(channel),
  3535. ((u64)rp->rbr_table_size << RBR_CFIG_A_LEN_SHIFT) |
  3536. (rp->rbr_dma & (RBR_CFIG_A_STADDR_BASE | RBR_CFIG_A_STADDR)));
  3537. err = niu_compute_rbr_cfig_b(rp, &val);
  3538. if (err)
  3539. return err;
  3540. nw64(RBR_CFIG_B(channel), val);
  3541. nw64(RCRCFIG_A(channel),
  3542. ((u64)rp->rcr_table_size << RCRCFIG_A_LEN_SHIFT) |
  3543. (rp->rcr_dma & (RCRCFIG_A_STADDR_BASE | RCRCFIG_A_STADDR)));
  3544. nw64(RCRCFIG_B(channel),
  3545. ((u64)rp->rcr_pkt_threshold << RCRCFIG_B_PTHRES_SHIFT) |
  3546. RCRCFIG_B_ENTOUT |
  3547. ((u64)rp->rcr_timeout << RCRCFIG_B_TIMEOUT_SHIFT));
  3548. err = niu_enable_rx_channel(np, channel, 1);
  3549. if (err)
  3550. return err;
  3551. nw64(RBR_KICK(channel), rp->rbr_index);
  3552. val = nr64(RX_DMA_CTL_STAT(channel));
  3553. val |= RX_DMA_CTL_STAT_RBR_EMPTY;
  3554. nw64(RX_DMA_CTL_STAT(channel), val);
  3555. return 0;
  3556. }
  3557. static int niu_init_rx_channels(struct niu *np)
  3558. {
  3559. unsigned long flags;
  3560. u64 seed = jiffies_64;
  3561. int err, i;
  3562. niu_lock_parent(np, flags);
  3563. nw64(RX_DMA_CK_DIV, np->parent->rxdma_clock_divider);
  3564. nw64(RED_RAN_INIT, RED_RAN_INIT_OPMODE | (seed & RED_RAN_INIT_VAL));
  3565. niu_unlock_parent(np, flags);
  3566. /* XXX RXDMA 32bit mode? XXX */
  3567. niu_init_rdc_groups(np);
  3568. niu_init_drr_weight(np);
  3569. err = niu_init_hostinfo(np);
  3570. if (err)
  3571. return err;
  3572. for (i = 0; i < np->num_rx_rings; i++) {
  3573. struct rx_ring_info *rp = &np->rx_rings[i];
  3574. err = niu_init_one_rx_channel(np, rp);
  3575. if (err)
  3576. return err;
  3577. }
  3578. return 0;
  3579. }
  3580. static int niu_set_ip_frag_rule(struct niu *np)
  3581. {
  3582. struct niu_parent *parent = np->parent;
  3583. struct niu_classifier *cp = &np->clas;
  3584. struct niu_tcam_entry *tp;
  3585. int index, err;
  3586. /* XXX fix this allocation scheme XXX */
  3587. index = cp->tcam_index;
  3588. tp = &parent->tcam[index];
  3589. /* Note that the noport bit is the same in both ipv4 and
  3590. * ipv6 format TCAM entries.
  3591. */
  3592. memset(tp, 0, sizeof(*tp));
  3593. tp->key[1] = TCAM_V4KEY1_NOPORT;
  3594. tp->key_mask[1] = TCAM_V4KEY1_NOPORT;
  3595. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  3596. ((u64)0 << TCAM_ASSOCDATA_OFFSET_SHIFT));
  3597. err = tcam_write(np, index, tp->key, tp->key_mask);
  3598. if (err)
  3599. return err;
  3600. err = tcam_assoc_write(np, index, tp->assoc_data);
  3601. if (err)
  3602. return err;
  3603. return 0;
  3604. }
  3605. static int niu_init_classifier_hw(struct niu *np)
  3606. {
  3607. struct niu_parent *parent = np->parent;
  3608. struct niu_classifier *cp = &np->clas;
  3609. int i, err;
  3610. nw64(H1POLY, cp->h1_init);
  3611. nw64(H2POLY, cp->h2_init);
  3612. err = niu_init_hostinfo(np);
  3613. if (err)
  3614. return err;
  3615. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++) {
  3616. struct niu_vlan_rdc *vp = &cp->vlan_mappings[i];
  3617. vlan_tbl_write(np, i, np->port,
  3618. vp->vlan_pref, vp->rdc_num);
  3619. }
  3620. for (i = 0; i < cp->num_alt_mac_mappings; i++) {
  3621. struct niu_altmac_rdc *ap = &cp->alt_mac_mappings[i];
  3622. err = niu_set_alt_mac_rdc_table(np, ap->alt_mac_num,
  3623. ap->rdc_num, ap->mac_pref);
  3624. if (err)
  3625. return err;
  3626. }
  3627. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  3628. int index = i - CLASS_CODE_USER_PROG1;
  3629. err = niu_set_tcam_key(np, i, parent->tcam_key[index]);
  3630. if (err)
  3631. return err;
  3632. err = niu_set_flow_key(np, i, parent->flow_key[index]);
  3633. if (err)
  3634. return err;
  3635. }
  3636. err = niu_set_ip_frag_rule(np);
  3637. if (err)
  3638. return err;
  3639. tcam_enable(np, 1);
  3640. return 0;
  3641. }
  3642. static int niu_zcp_write(struct niu *np, int index, u64 *data)
  3643. {
  3644. nw64(ZCP_RAM_DATA0, data[0]);
  3645. nw64(ZCP_RAM_DATA1, data[1]);
  3646. nw64(ZCP_RAM_DATA2, data[2]);
  3647. nw64(ZCP_RAM_DATA3, data[3]);
  3648. nw64(ZCP_RAM_DATA4, data[4]);
  3649. nw64(ZCP_RAM_BE, ZCP_RAM_BE_VAL);
  3650. nw64(ZCP_RAM_ACC,
  3651. (ZCP_RAM_ACC_WRITE |
  3652. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  3653. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  3654. return niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  3655. 1000, 100);
  3656. }
  3657. static int niu_zcp_read(struct niu *np, int index, u64 *data)
  3658. {
  3659. int err;
  3660. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  3661. 1000, 100);
  3662. if (err) {
  3663. dev_err(np->device, PFX "%s: ZCP read busy won't clear, "
  3664. "ZCP_RAM_ACC[%llx]\n", np->dev->name,
  3665. (unsigned long long) nr64(ZCP_RAM_ACC));
  3666. return err;
  3667. }
  3668. nw64(ZCP_RAM_ACC,
  3669. (ZCP_RAM_ACC_READ |
  3670. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  3671. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  3672. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  3673. 1000, 100);
  3674. if (err) {
  3675. dev_err(np->device, PFX "%s: ZCP read busy2 won't clear, "
  3676. "ZCP_RAM_ACC[%llx]\n", np->dev->name,
  3677. (unsigned long long) nr64(ZCP_RAM_ACC));
  3678. return err;
  3679. }
  3680. data[0] = nr64(ZCP_RAM_DATA0);
  3681. data[1] = nr64(ZCP_RAM_DATA1);
  3682. data[2] = nr64(ZCP_RAM_DATA2);
  3683. data[3] = nr64(ZCP_RAM_DATA3);
  3684. data[4] = nr64(ZCP_RAM_DATA4);
  3685. return 0;
  3686. }
  3687. static void niu_zcp_cfifo_reset(struct niu *np)
  3688. {
  3689. u64 val = nr64(RESET_CFIFO);
  3690. val |= RESET_CFIFO_RST(np->port);
  3691. nw64(RESET_CFIFO, val);
  3692. udelay(10);
  3693. val &= ~RESET_CFIFO_RST(np->port);
  3694. nw64(RESET_CFIFO, val);
  3695. }
  3696. static int niu_init_zcp(struct niu *np)
  3697. {
  3698. u64 data[5], rbuf[5];
  3699. int i, max, err;
  3700. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  3701. if (np->port == 0 || np->port == 1)
  3702. max = ATLAS_P0_P1_CFIFO_ENTRIES;
  3703. else
  3704. max = ATLAS_P2_P3_CFIFO_ENTRIES;
  3705. } else
  3706. max = NIU_CFIFO_ENTRIES;
  3707. data[0] = 0;
  3708. data[1] = 0;
  3709. data[2] = 0;
  3710. data[3] = 0;
  3711. data[4] = 0;
  3712. for (i = 0; i < max; i++) {
  3713. err = niu_zcp_write(np, i, data);
  3714. if (err)
  3715. return err;
  3716. err = niu_zcp_read(np, i, rbuf);
  3717. if (err)
  3718. return err;
  3719. }
  3720. niu_zcp_cfifo_reset(np);
  3721. nw64(CFIFO_ECC(np->port), 0);
  3722. nw64(ZCP_INT_STAT, ZCP_INT_STAT_ALL);
  3723. (void) nr64(ZCP_INT_STAT);
  3724. nw64(ZCP_INT_MASK, ZCP_INT_MASK_ALL);
  3725. return 0;
  3726. }
  3727. static void niu_ipp_write(struct niu *np, int index, u64 *data)
  3728. {
  3729. u64 val = nr64_ipp(IPP_CFIG);
  3730. nw64_ipp(IPP_CFIG, val | IPP_CFIG_DFIFO_PIO_W);
  3731. nw64_ipp(IPP_DFIFO_WR_PTR, index);
  3732. nw64_ipp(IPP_DFIFO_WR0, data[0]);
  3733. nw64_ipp(IPP_DFIFO_WR1, data[1]);
  3734. nw64_ipp(IPP_DFIFO_WR2, data[2]);
  3735. nw64_ipp(IPP_DFIFO_WR3, data[3]);
  3736. nw64_ipp(IPP_DFIFO_WR4, data[4]);
  3737. nw64_ipp(IPP_CFIG, val & ~IPP_CFIG_DFIFO_PIO_W);
  3738. }
  3739. static void niu_ipp_read(struct niu *np, int index, u64 *data)
  3740. {
  3741. nw64_ipp(IPP_DFIFO_RD_PTR, index);
  3742. data[0] = nr64_ipp(IPP_DFIFO_RD0);
  3743. data[1] = nr64_ipp(IPP_DFIFO_RD1);
  3744. data[2] = nr64_ipp(IPP_DFIFO_RD2);
  3745. data[3] = nr64_ipp(IPP_DFIFO_RD3);
  3746. data[4] = nr64_ipp(IPP_DFIFO_RD4);
  3747. }
  3748. static int niu_ipp_reset(struct niu *np)
  3749. {
  3750. return niu_set_and_wait_clear_ipp(np, IPP_CFIG, IPP_CFIG_SOFT_RST,
  3751. 1000, 100, "IPP_CFIG");
  3752. }
  3753. static int niu_init_ipp(struct niu *np)
  3754. {
  3755. u64 data[5], rbuf[5], val;
  3756. int i, max, err;
  3757. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  3758. if (np->port == 0 || np->port == 1)
  3759. max = ATLAS_P0_P1_DFIFO_ENTRIES;
  3760. else
  3761. max = ATLAS_P2_P3_DFIFO_ENTRIES;
  3762. } else
  3763. max = NIU_DFIFO_ENTRIES;
  3764. data[0] = 0;
  3765. data[1] = 0;
  3766. data[2] = 0;
  3767. data[3] = 0;
  3768. data[4] = 0;
  3769. for (i = 0; i < max; i++) {
  3770. niu_ipp_write(np, i, data);
  3771. niu_ipp_read(np, i, rbuf);
  3772. }
  3773. (void) nr64_ipp(IPP_INT_STAT);
  3774. (void) nr64_ipp(IPP_INT_STAT);
  3775. err = niu_ipp_reset(np);
  3776. if (err)
  3777. return err;
  3778. (void) nr64_ipp(IPP_PKT_DIS);
  3779. (void) nr64_ipp(IPP_BAD_CS_CNT);
  3780. (void) nr64_ipp(IPP_ECC);
  3781. (void) nr64_ipp(IPP_INT_STAT);
  3782. nw64_ipp(IPP_MSK, ~IPP_MSK_ALL);
  3783. val = nr64_ipp(IPP_CFIG);
  3784. val &= ~IPP_CFIG_IP_MAX_PKT;
  3785. val |= (IPP_CFIG_IPP_ENABLE |
  3786. IPP_CFIG_DFIFO_ECC_EN |
  3787. IPP_CFIG_DROP_BAD_CRC |
  3788. IPP_CFIG_CKSUM_EN |
  3789. (0x1ffff << IPP_CFIG_IP_MAX_PKT_SHIFT));
  3790. nw64_ipp(IPP_CFIG, val);
  3791. return 0;
  3792. }
  3793. static void niu_handle_led(struct niu *np, int status)
  3794. {
  3795. u64 val;
  3796. val = nr64_mac(XMAC_CONFIG);
  3797. if ((np->flags & NIU_FLAGS_10G) != 0 &&
  3798. (np->flags & NIU_FLAGS_FIBER) != 0) {
  3799. if (status) {
  3800. val |= XMAC_CONFIG_LED_POLARITY;
  3801. val &= ~XMAC_CONFIG_FORCE_LED_ON;
  3802. } else {
  3803. val |= XMAC_CONFIG_FORCE_LED_ON;
  3804. val &= ~XMAC_CONFIG_LED_POLARITY;
  3805. }
  3806. }
  3807. nw64_mac(XMAC_CONFIG, val);
  3808. }
  3809. static void niu_init_xif_xmac(struct niu *np)
  3810. {
  3811. struct niu_link_config *lp = &np->link_config;
  3812. u64 val;
  3813. if (np->flags & NIU_FLAGS_XCVR_SERDES) {
  3814. val = nr64(MIF_CONFIG);
  3815. val |= MIF_CONFIG_ATCA_GE;
  3816. nw64(MIF_CONFIG, val);
  3817. }
  3818. val = nr64_mac(XMAC_CONFIG);
  3819. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  3820. val |= XMAC_CONFIG_TX_OUTPUT_EN;
  3821. if (lp->loopback_mode == LOOPBACK_MAC) {
  3822. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  3823. val |= XMAC_CONFIG_LOOPBACK;
  3824. } else {
  3825. val &= ~XMAC_CONFIG_LOOPBACK;
  3826. }
  3827. if (np->flags & NIU_FLAGS_10G) {
  3828. val &= ~XMAC_CONFIG_LFS_DISABLE;
  3829. } else {
  3830. val |= XMAC_CONFIG_LFS_DISABLE;
  3831. if (!(np->flags & NIU_FLAGS_FIBER) &&
  3832. !(np->flags & NIU_FLAGS_XCVR_SERDES))
  3833. val |= XMAC_CONFIG_1G_PCS_BYPASS;
  3834. else
  3835. val &= ~XMAC_CONFIG_1G_PCS_BYPASS;
  3836. }
  3837. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  3838. if (lp->active_speed == SPEED_100)
  3839. val |= XMAC_CONFIG_SEL_CLK_25MHZ;
  3840. else
  3841. val &= ~XMAC_CONFIG_SEL_CLK_25MHZ;
  3842. nw64_mac(XMAC_CONFIG, val);
  3843. val = nr64_mac(XMAC_CONFIG);
  3844. val &= ~XMAC_CONFIG_MODE_MASK;
  3845. if (np->flags & NIU_FLAGS_10G) {
  3846. val |= XMAC_CONFIG_MODE_XGMII;
  3847. } else {
  3848. if (lp->active_speed == SPEED_100)
  3849. val |= XMAC_CONFIG_MODE_MII;
  3850. else
  3851. val |= XMAC_CONFIG_MODE_GMII;
  3852. }
  3853. nw64_mac(XMAC_CONFIG, val);
  3854. }
  3855. static void niu_init_xif_bmac(struct niu *np)
  3856. {
  3857. struct niu_link_config *lp = &np->link_config;
  3858. u64 val;
  3859. val = BMAC_XIF_CONFIG_TX_OUTPUT_EN;
  3860. if (lp->loopback_mode == LOOPBACK_MAC)
  3861. val |= BMAC_XIF_CONFIG_MII_LOOPBACK;
  3862. else
  3863. val &= ~BMAC_XIF_CONFIG_MII_LOOPBACK;
  3864. if (lp->active_speed == SPEED_1000)
  3865. val |= BMAC_XIF_CONFIG_GMII_MODE;
  3866. else
  3867. val &= ~BMAC_XIF_CONFIG_GMII_MODE;
  3868. val &= ~(BMAC_XIF_CONFIG_LINK_LED |
  3869. BMAC_XIF_CONFIG_LED_POLARITY);
  3870. if (!(np->flags & NIU_FLAGS_10G) &&
  3871. !(np->flags & NIU_FLAGS_FIBER) &&
  3872. lp->active_speed == SPEED_100)
  3873. val |= BMAC_XIF_CONFIG_25MHZ_CLOCK;
  3874. else
  3875. val &= ~BMAC_XIF_CONFIG_25MHZ_CLOCK;
  3876. nw64_mac(BMAC_XIF_CONFIG, val);
  3877. }
  3878. static void niu_init_xif(struct niu *np)
  3879. {
  3880. if (np->flags & NIU_FLAGS_XMAC)
  3881. niu_init_xif_xmac(np);
  3882. else
  3883. niu_init_xif_bmac(np);
  3884. }
  3885. static void niu_pcs_mii_reset(struct niu *np)
  3886. {
  3887. int limit = 1000;
  3888. u64 val = nr64_pcs(PCS_MII_CTL);
  3889. val |= PCS_MII_CTL_RST;
  3890. nw64_pcs(PCS_MII_CTL, val);
  3891. while ((--limit >= 0) && (val & PCS_MII_CTL_RST)) {
  3892. udelay(100);
  3893. val = nr64_pcs(PCS_MII_CTL);
  3894. }
  3895. }
  3896. static void niu_xpcs_reset(struct niu *np)
  3897. {
  3898. int limit = 1000;
  3899. u64 val = nr64_xpcs(XPCS_CONTROL1);
  3900. val |= XPCS_CONTROL1_RESET;
  3901. nw64_xpcs(XPCS_CONTROL1, val);
  3902. while ((--limit >= 0) && (val & XPCS_CONTROL1_RESET)) {
  3903. udelay(100);
  3904. val = nr64_xpcs(XPCS_CONTROL1);
  3905. }
  3906. }
  3907. static int niu_init_pcs(struct niu *np)
  3908. {
  3909. struct niu_link_config *lp = &np->link_config;
  3910. u64 val;
  3911. switch (np->flags & (NIU_FLAGS_10G |
  3912. NIU_FLAGS_FIBER |
  3913. NIU_FLAGS_XCVR_SERDES)) {
  3914. case NIU_FLAGS_FIBER:
  3915. /* 1G fiber */
  3916. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  3917. nw64_pcs(PCS_DPATH_MODE, 0);
  3918. niu_pcs_mii_reset(np);
  3919. break;
  3920. case NIU_FLAGS_10G:
  3921. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  3922. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  3923. /* 10G SERDES */
  3924. if (!(np->flags & NIU_FLAGS_XMAC))
  3925. return -EINVAL;
  3926. /* 10G copper or fiber */
  3927. val = nr64_mac(XMAC_CONFIG);
  3928. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  3929. nw64_mac(XMAC_CONFIG, val);
  3930. niu_xpcs_reset(np);
  3931. val = nr64_xpcs(XPCS_CONTROL1);
  3932. if (lp->loopback_mode == LOOPBACK_PHY)
  3933. val |= XPCS_CONTROL1_LOOPBACK;
  3934. else
  3935. val &= ~XPCS_CONTROL1_LOOPBACK;
  3936. nw64_xpcs(XPCS_CONTROL1, val);
  3937. nw64_xpcs(XPCS_DESKEW_ERR_CNT, 0);
  3938. (void) nr64_xpcs(XPCS_SYMERR_CNT01);
  3939. (void) nr64_xpcs(XPCS_SYMERR_CNT23);
  3940. break;
  3941. case NIU_FLAGS_XCVR_SERDES:
  3942. /* 1G SERDES */
  3943. niu_pcs_mii_reset(np);
  3944. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  3945. nw64_pcs(PCS_DPATH_MODE, 0);
  3946. break;
  3947. case 0:
  3948. /* 1G copper */
  3949. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  3950. /* 1G RGMII FIBER */
  3951. nw64_pcs(PCS_DPATH_MODE, PCS_DPATH_MODE_MII);
  3952. niu_pcs_mii_reset(np);
  3953. break;
  3954. default:
  3955. return -EINVAL;
  3956. }
  3957. return 0;
  3958. }
  3959. static int niu_reset_tx_xmac(struct niu *np)
  3960. {
  3961. return niu_set_and_wait_clear_mac(np, XTXMAC_SW_RST,
  3962. (XTXMAC_SW_RST_REG_RS |
  3963. XTXMAC_SW_RST_SOFT_RST),
  3964. 1000, 100, "XTXMAC_SW_RST");
  3965. }
  3966. static int niu_reset_tx_bmac(struct niu *np)
  3967. {
  3968. int limit;
  3969. nw64_mac(BTXMAC_SW_RST, BTXMAC_SW_RST_RESET);
  3970. limit = 1000;
  3971. while (--limit >= 0) {
  3972. if (!(nr64_mac(BTXMAC_SW_RST) & BTXMAC_SW_RST_RESET))
  3973. break;
  3974. udelay(100);
  3975. }
  3976. if (limit < 0) {
  3977. dev_err(np->device, PFX "Port %u TX BMAC would not reset, "
  3978. "BTXMAC_SW_RST[%llx]\n",
  3979. np->port,
  3980. (unsigned long long) nr64_mac(BTXMAC_SW_RST));
  3981. return -ENODEV;
  3982. }
  3983. return 0;
  3984. }
  3985. static int niu_reset_tx_mac(struct niu *np)
  3986. {
  3987. if (np->flags & NIU_FLAGS_XMAC)
  3988. return niu_reset_tx_xmac(np);
  3989. else
  3990. return niu_reset_tx_bmac(np);
  3991. }
  3992. static void niu_init_tx_xmac(struct niu *np, u64 min, u64 max)
  3993. {
  3994. u64 val;
  3995. val = nr64_mac(XMAC_MIN);
  3996. val &= ~(XMAC_MIN_TX_MIN_PKT_SIZE |
  3997. XMAC_MIN_RX_MIN_PKT_SIZE);
  3998. val |= (min << XMAC_MIN_RX_MIN_PKT_SIZE_SHFT);
  3999. val |= (min << XMAC_MIN_TX_MIN_PKT_SIZE_SHFT);
  4000. nw64_mac(XMAC_MIN, val);
  4001. nw64_mac(XMAC_MAX, max);
  4002. nw64_mac(XTXMAC_STAT_MSK, ~(u64)0);
  4003. val = nr64_mac(XMAC_IPG);
  4004. if (np->flags & NIU_FLAGS_10G) {
  4005. val &= ~XMAC_IPG_IPG_XGMII;
  4006. val |= (IPG_12_15_XGMII << XMAC_IPG_IPG_XGMII_SHIFT);
  4007. } else {
  4008. val &= ~XMAC_IPG_IPG_MII_GMII;
  4009. val |= (IPG_12_MII_GMII << XMAC_IPG_IPG_MII_GMII_SHIFT);
  4010. }
  4011. nw64_mac(XMAC_IPG, val);
  4012. val = nr64_mac(XMAC_CONFIG);
  4013. val &= ~(XMAC_CONFIG_ALWAYS_NO_CRC |
  4014. XMAC_CONFIG_STRETCH_MODE |
  4015. XMAC_CONFIG_VAR_MIN_IPG_EN |
  4016. XMAC_CONFIG_TX_ENABLE);
  4017. nw64_mac(XMAC_CONFIG, val);
  4018. nw64_mac(TXMAC_FRM_CNT, 0);
  4019. nw64_mac(TXMAC_BYTE_CNT, 0);
  4020. }
  4021. static void niu_init_tx_bmac(struct niu *np, u64 min, u64 max)
  4022. {
  4023. u64 val;
  4024. nw64_mac(BMAC_MIN_FRAME, min);
  4025. nw64_mac(BMAC_MAX_FRAME, max);
  4026. nw64_mac(BTXMAC_STATUS_MASK, ~(u64)0);
  4027. nw64_mac(BMAC_CTRL_TYPE, 0x8808);
  4028. nw64_mac(BMAC_PREAMBLE_SIZE, 7);
  4029. val = nr64_mac(BTXMAC_CONFIG);
  4030. val &= ~(BTXMAC_CONFIG_FCS_DISABLE |
  4031. BTXMAC_CONFIG_ENABLE);
  4032. nw64_mac(BTXMAC_CONFIG, val);
  4033. }
  4034. static void niu_init_tx_mac(struct niu *np)
  4035. {
  4036. u64 min, max;
  4037. min = 64;
  4038. if (np->dev->mtu > ETH_DATA_LEN)
  4039. max = 9216;
  4040. else
  4041. max = 1522;
  4042. /* The XMAC_MIN register only accepts values for TX min which
  4043. * have the low 3 bits cleared.
  4044. */
  4045. BUILD_BUG_ON(min & 0x7);
  4046. if (np->flags & NIU_FLAGS_XMAC)
  4047. niu_init_tx_xmac(np, min, max);
  4048. else
  4049. niu_init_tx_bmac(np, min, max);
  4050. }
  4051. static int niu_reset_rx_xmac(struct niu *np)
  4052. {
  4053. int limit;
  4054. nw64_mac(XRXMAC_SW_RST,
  4055. XRXMAC_SW_RST_REG_RS | XRXMAC_SW_RST_SOFT_RST);
  4056. limit = 1000;
  4057. while (--limit >= 0) {
  4058. if (!(nr64_mac(XRXMAC_SW_RST) & (XRXMAC_SW_RST_REG_RS |
  4059. XRXMAC_SW_RST_SOFT_RST)))
  4060. break;
  4061. udelay(100);
  4062. }
  4063. if (limit < 0) {
  4064. dev_err(np->device, PFX "Port %u RX XMAC would not reset, "
  4065. "XRXMAC_SW_RST[%llx]\n",
  4066. np->port,
  4067. (unsigned long long) nr64_mac(XRXMAC_SW_RST));
  4068. return -ENODEV;
  4069. }
  4070. return 0;
  4071. }
  4072. static int niu_reset_rx_bmac(struct niu *np)
  4073. {
  4074. int limit;
  4075. nw64_mac(BRXMAC_SW_RST, BRXMAC_SW_RST_RESET);
  4076. limit = 1000;
  4077. while (--limit >= 0) {
  4078. if (!(nr64_mac(BRXMAC_SW_RST) & BRXMAC_SW_RST_RESET))
  4079. break;
  4080. udelay(100);
  4081. }
  4082. if (limit < 0) {
  4083. dev_err(np->device, PFX "Port %u RX BMAC would not reset, "
  4084. "BRXMAC_SW_RST[%llx]\n",
  4085. np->port,
  4086. (unsigned long long) nr64_mac(BRXMAC_SW_RST));
  4087. return -ENODEV;
  4088. }
  4089. return 0;
  4090. }
  4091. static int niu_reset_rx_mac(struct niu *np)
  4092. {
  4093. if (np->flags & NIU_FLAGS_XMAC)
  4094. return niu_reset_rx_xmac(np);
  4095. else
  4096. return niu_reset_rx_bmac(np);
  4097. }
  4098. static void niu_init_rx_xmac(struct niu *np)
  4099. {
  4100. struct niu_parent *parent = np->parent;
  4101. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4102. int first_rdc_table = tp->first_table_num;
  4103. unsigned long i;
  4104. u64 val;
  4105. nw64_mac(XMAC_ADD_FILT0, 0);
  4106. nw64_mac(XMAC_ADD_FILT1, 0);
  4107. nw64_mac(XMAC_ADD_FILT2, 0);
  4108. nw64_mac(XMAC_ADD_FILT12_MASK, 0);
  4109. nw64_mac(XMAC_ADD_FILT00_MASK, 0);
  4110. for (i = 0; i < MAC_NUM_HASH; i++)
  4111. nw64_mac(XMAC_HASH_TBL(i), 0);
  4112. nw64_mac(XRXMAC_STAT_MSK, ~(u64)0);
  4113. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4114. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4115. val = nr64_mac(XMAC_CONFIG);
  4116. val &= ~(XMAC_CONFIG_RX_MAC_ENABLE |
  4117. XMAC_CONFIG_PROMISCUOUS |
  4118. XMAC_CONFIG_PROMISC_GROUP |
  4119. XMAC_CONFIG_ERR_CHK_DIS |
  4120. XMAC_CONFIG_RX_CRC_CHK_DIS |
  4121. XMAC_CONFIG_RESERVED_MULTICAST |
  4122. XMAC_CONFIG_RX_CODEV_CHK_DIS |
  4123. XMAC_CONFIG_ADDR_FILTER_EN |
  4124. XMAC_CONFIG_RCV_PAUSE_ENABLE |
  4125. XMAC_CONFIG_STRIP_CRC |
  4126. XMAC_CONFIG_PASS_FLOW_CTRL |
  4127. XMAC_CONFIG_MAC2IPP_PKT_CNT_EN);
  4128. val |= (XMAC_CONFIG_HASH_FILTER_EN);
  4129. nw64_mac(XMAC_CONFIG, val);
  4130. nw64_mac(RXMAC_BT_CNT, 0);
  4131. nw64_mac(RXMAC_BC_FRM_CNT, 0);
  4132. nw64_mac(RXMAC_MC_FRM_CNT, 0);
  4133. nw64_mac(RXMAC_FRAG_CNT, 0);
  4134. nw64_mac(RXMAC_HIST_CNT1, 0);
  4135. nw64_mac(RXMAC_HIST_CNT2, 0);
  4136. nw64_mac(RXMAC_HIST_CNT3, 0);
  4137. nw64_mac(RXMAC_HIST_CNT4, 0);
  4138. nw64_mac(RXMAC_HIST_CNT5, 0);
  4139. nw64_mac(RXMAC_HIST_CNT6, 0);
  4140. nw64_mac(RXMAC_HIST_CNT7, 0);
  4141. nw64_mac(RXMAC_MPSZER_CNT, 0);
  4142. nw64_mac(RXMAC_CRC_ER_CNT, 0);
  4143. nw64_mac(RXMAC_CD_VIO_CNT, 0);
  4144. nw64_mac(LINK_FAULT_CNT, 0);
  4145. }
  4146. static void niu_init_rx_bmac(struct niu *np)
  4147. {
  4148. struct niu_parent *parent = np->parent;
  4149. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4150. int first_rdc_table = tp->first_table_num;
  4151. unsigned long i;
  4152. u64 val;
  4153. nw64_mac(BMAC_ADD_FILT0, 0);
  4154. nw64_mac(BMAC_ADD_FILT1, 0);
  4155. nw64_mac(BMAC_ADD_FILT2, 0);
  4156. nw64_mac(BMAC_ADD_FILT12_MASK, 0);
  4157. nw64_mac(BMAC_ADD_FILT00_MASK, 0);
  4158. for (i = 0; i < MAC_NUM_HASH; i++)
  4159. nw64_mac(BMAC_HASH_TBL(i), 0);
  4160. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4161. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4162. nw64_mac(BRXMAC_STATUS_MASK, ~(u64)0);
  4163. val = nr64_mac(BRXMAC_CONFIG);
  4164. val &= ~(BRXMAC_CONFIG_ENABLE |
  4165. BRXMAC_CONFIG_STRIP_PAD |
  4166. BRXMAC_CONFIG_STRIP_FCS |
  4167. BRXMAC_CONFIG_PROMISC |
  4168. BRXMAC_CONFIG_PROMISC_GRP |
  4169. BRXMAC_CONFIG_ADDR_FILT_EN |
  4170. BRXMAC_CONFIG_DISCARD_DIS);
  4171. val |= (BRXMAC_CONFIG_HASH_FILT_EN);
  4172. nw64_mac(BRXMAC_CONFIG, val);
  4173. val = nr64_mac(BMAC_ADDR_CMPEN);
  4174. val |= BMAC_ADDR_CMPEN_EN0;
  4175. nw64_mac(BMAC_ADDR_CMPEN, val);
  4176. }
  4177. static void niu_init_rx_mac(struct niu *np)
  4178. {
  4179. niu_set_primary_mac(np, np->dev->dev_addr);
  4180. if (np->flags & NIU_FLAGS_XMAC)
  4181. niu_init_rx_xmac(np);
  4182. else
  4183. niu_init_rx_bmac(np);
  4184. }
  4185. static void niu_enable_tx_xmac(struct niu *np, int on)
  4186. {
  4187. u64 val = nr64_mac(XMAC_CONFIG);
  4188. if (on)
  4189. val |= XMAC_CONFIG_TX_ENABLE;
  4190. else
  4191. val &= ~XMAC_CONFIG_TX_ENABLE;
  4192. nw64_mac(XMAC_CONFIG, val);
  4193. }
  4194. static void niu_enable_tx_bmac(struct niu *np, int on)
  4195. {
  4196. u64 val = nr64_mac(BTXMAC_CONFIG);
  4197. if (on)
  4198. val |= BTXMAC_CONFIG_ENABLE;
  4199. else
  4200. val &= ~BTXMAC_CONFIG_ENABLE;
  4201. nw64_mac(BTXMAC_CONFIG, val);
  4202. }
  4203. static void niu_enable_tx_mac(struct niu *np, int on)
  4204. {
  4205. if (np->flags & NIU_FLAGS_XMAC)
  4206. niu_enable_tx_xmac(np, on);
  4207. else
  4208. niu_enable_tx_bmac(np, on);
  4209. }
  4210. static void niu_enable_rx_xmac(struct niu *np, int on)
  4211. {
  4212. u64 val = nr64_mac(XMAC_CONFIG);
  4213. val &= ~(XMAC_CONFIG_HASH_FILTER_EN |
  4214. XMAC_CONFIG_PROMISCUOUS);
  4215. if (np->flags & NIU_FLAGS_MCAST)
  4216. val |= XMAC_CONFIG_HASH_FILTER_EN;
  4217. if (np->flags & NIU_FLAGS_PROMISC)
  4218. val |= XMAC_CONFIG_PROMISCUOUS;
  4219. if (on)
  4220. val |= XMAC_CONFIG_RX_MAC_ENABLE;
  4221. else
  4222. val &= ~XMAC_CONFIG_RX_MAC_ENABLE;
  4223. nw64_mac(XMAC_CONFIG, val);
  4224. }
  4225. static void niu_enable_rx_bmac(struct niu *np, int on)
  4226. {
  4227. u64 val = nr64_mac(BRXMAC_CONFIG);
  4228. val &= ~(BRXMAC_CONFIG_HASH_FILT_EN |
  4229. BRXMAC_CONFIG_PROMISC);
  4230. if (np->flags & NIU_FLAGS_MCAST)
  4231. val |= BRXMAC_CONFIG_HASH_FILT_EN;
  4232. if (np->flags & NIU_FLAGS_PROMISC)
  4233. val |= BRXMAC_CONFIG_PROMISC;
  4234. if (on)
  4235. val |= BRXMAC_CONFIG_ENABLE;
  4236. else
  4237. val &= ~BRXMAC_CONFIG_ENABLE;
  4238. nw64_mac(BRXMAC_CONFIG, val);
  4239. }
  4240. static void niu_enable_rx_mac(struct niu *np, int on)
  4241. {
  4242. if (np->flags & NIU_FLAGS_XMAC)
  4243. niu_enable_rx_xmac(np, on);
  4244. else
  4245. niu_enable_rx_bmac(np, on);
  4246. }
  4247. static int niu_init_mac(struct niu *np)
  4248. {
  4249. int err;
  4250. niu_init_xif(np);
  4251. err = niu_init_pcs(np);
  4252. if (err)
  4253. return err;
  4254. err = niu_reset_tx_mac(np);
  4255. if (err)
  4256. return err;
  4257. niu_init_tx_mac(np);
  4258. err = niu_reset_rx_mac(np);
  4259. if (err)
  4260. return err;
  4261. niu_init_rx_mac(np);
  4262. /* This looks hookey but the RX MAC reset we just did will
  4263. * undo some of the state we setup in niu_init_tx_mac() so we
  4264. * have to call it again. In particular, the RX MAC reset will
  4265. * set the XMAC_MAX register back to it's default value.
  4266. */
  4267. niu_init_tx_mac(np);
  4268. niu_enable_tx_mac(np, 1);
  4269. niu_enable_rx_mac(np, 1);
  4270. return 0;
  4271. }
  4272. static void niu_stop_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4273. {
  4274. (void) niu_tx_channel_stop(np, rp->tx_channel);
  4275. }
  4276. static void niu_stop_tx_channels(struct niu *np)
  4277. {
  4278. int i;
  4279. for (i = 0; i < np->num_tx_rings; i++) {
  4280. struct tx_ring_info *rp = &np->tx_rings[i];
  4281. niu_stop_one_tx_channel(np, rp);
  4282. }
  4283. }
  4284. static void niu_reset_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4285. {
  4286. (void) niu_tx_channel_reset(np, rp->tx_channel);
  4287. }
  4288. static void niu_reset_tx_channels(struct niu *np)
  4289. {
  4290. int i;
  4291. for (i = 0; i < np->num_tx_rings; i++) {
  4292. struct tx_ring_info *rp = &np->tx_rings[i];
  4293. niu_reset_one_tx_channel(np, rp);
  4294. }
  4295. }
  4296. static void niu_stop_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4297. {
  4298. (void) niu_enable_rx_channel(np, rp->rx_channel, 0);
  4299. }
  4300. static void niu_stop_rx_channels(struct niu *np)
  4301. {
  4302. int i;
  4303. for (i = 0; i < np->num_rx_rings; i++) {
  4304. struct rx_ring_info *rp = &np->rx_rings[i];
  4305. niu_stop_one_rx_channel(np, rp);
  4306. }
  4307. }
  4308. static void niu_reset_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4309. {
  4310. int channel = rp->rx_channel;
  4311. (void) niu_rx_channel_reset(np, channel);
  4312. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_ALL);
  4313. nw64(RX_DMA_CTL_STAT(channel), 0);
  4314. (void) niu_enable_rx_channel(np, channel, 0);
  4315. }
  4316. static void niu_reset_rx_channels(struct niu *np)
  4317. {
  4318. int i;
  4319. for (i = 0; i < np->num_rx_rings; i++) {
  4320. struct rx_ring_info *rp = &np->rx_rings[i];
  4321. niu_reset_one_rx_channel(np, rp);
  4322. }
  4323. }
  4324. static void niu_disable_ipp(struct niu *np)
  4325. {
  4326. u64 rd, wr, val;
  4327. int limit;
  4328. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4329. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4330. limit = 100;
  4331. while (--limit >= 0 && (rd != wr)) {
  4332. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4333. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4334. }
  4335. if (limit < 0 &&
  4336. (rd != 0 && wr != 1)) {
  4337. dev_err(np->device, PFX "%s: IPP would not quiesce, "
  4338. "rd_ptr[%llx] wr_ptr[%llx]\n",
  4339. np->dev->name,
  4340. (unsigned long long) nr64_ipp(IPP_DFIFO_RD_PTR),
  4341. (unsigned long long) nr64_ipp(IPP_DFIFO_WR_PTR));
  4342. }
  4343. val = nr64_ipp(IPP_CFIG);
  4344. val &= ~(IPP_CFIG_IPP_ENABLE |
  4345. IPP_CFIG_DFIFO_ECC_EN |
  4346. IPP_CFIG_DROP_BAD_CRC |
  4347. IPP_CFIG_CKSUM_EN);
  4348. nw64_ipp(IPP_CFIG, val);
  4349. (void) niu_ipp_reset(np);
  4350. }
  4351. static int niu_init_hw(struct niu *np)
  4352. {
  4353. int i, err;
  4354. niudbg(IFUP, "%s: Initialize TXC\n", np->dev->name);
  4355. niu_txc_enable_port(np, 1);
  4356. niu_txc_port_dma_enable(np, 1);
  4357. niu_txc_set_imask(np, 0);
  4358. niudbg(IFUP, "%s: Initialize TX channels\n", np->dev->name);
  4359. for (i = 0; i < np->num_tx_rings; i++) {
  4360. struct tx_ring_info *rp = &np->tx_rings[i];
  4361. err = niu_init_one_tx_channel(np, rp);
  4362. if (err)
  4363. return err;
  4364. }
  4365. niudbg(IFUP, "%s: Initialize RX channels\n", np->dev->name);
  4366. err = niu_init_rx_channels(np);
  4367. if (err)
  4368. goto out_uninit_tx_channels;
  4369. niudbg(IFUP, "%s: Initialize classifier\n", np->dev->name);
  4370. err = niu_init_classifier_hw(np);
  4371. if (err)
  4372. goto out_uninit_rx_channels;
  4373. niudbg(IFUP, "%s: Initialize ZCP\n", np->dev->name);
  4374. err = niu_init_zcp(np);
  4375. if (err)
  4376. goto out_uninit_rx_channels;
  4377. niudbg(IFUP, "%s: Initialize IPP\n", np->dev->name);
  4378. err = niu_init_ipp(np);
  4379. if (err)
  4380. goto out_uninit_rx_channels;
  4381. niudbg(IFUP, "%s: Initialize MAC\n", np->dev->name);
  4382. err = niu_init_mac(np);
  4383. if (err)
  4384. goto out_uninit_ipp;
  4385. return 0;
  4386. out_uninit_ipp:
  4387. niudbg(IFUP, "%s: Uninit IPP\n", np->dev->name);
  4388. niu_disable_ipp(np);
  4389. out_uninit_rx_channels:
  4390. niudbg(IFUP, "%s: Uninit RX channels\n", np->dev->name);
  4391. niu_stop_rx_channels(np);
  4392. niu_reset_rx_channels(np);
  4393. out_uninit_tx_channels:
  4394. niudbg(IFUP, "%s: Uninit TX channels\n", np->dev->name);
  4395. niu_stop_tx_channels(np);
  4396. niu_reset_tx_channels(np);
  4397. return err;
  4398. }
  4399. static void niu_stop_hw(struct niu *np)
  4400. {
  4401. niudbg(IFDOWN, "%s: Disable interrupts\n", np->dev->name);
  4402. niu_enable_interrupts(np, 0);
  4403. niudbg(IFDOWN, "%s: Disable RX MAC\n", np->dev->name);
  4404. niu_enable_rx_mac(np, 0);
  4405. niudbg(IFDOWN, "%s: Disable IPP\n", np->dev->name);
  4406. niu_disable_ipp(np);
  4407. niudbg(IFDOWN, "%s: Stop TX channels\n", np->dev->name);
  4408. niu_stop_tx_channels(np);
  4409. niudbg(IFDOWN, "%s: Stop RX channels\n", np->dev->name);
  4410. niu_stop_rx_channels(np);
  4411. niudbg(IFDOWN, "%s: Reset TX channels\n", np->dev->name);
  4412. niu_reset_tx_channels(np);
  4413. niudbg(IFDOWN, "%s: Reset RX channels\n", np->dev->name);
  4414. niu_reset_rx_channels(np);
  4415. }
  4416. static int niu_request_irq(struct niu *np)
  4417. {
  4418. int i, j, err;
  4419. err = 0;
  4420. for (i = 0; i < np->num_ldg; i++) {
  4421. struct niu_ldg *lp = &np->ldg[i];
  4422. err = request_irq(lp->irq, niu_interrupt,
  4423. IRQF_SHARED | IRQF_SAMPLE_RANDOM,
  4424. np->dev->name, lp);
  4425. if (err)
  4426. goto out_free_irqs;
  4427. }
  4428. return 0;
  4429. out_free_irqs:
  4430. for (j = 0; j < i; j++) {
  4431. struct niu_ldg *lp = &np->ldg[j];
  4432. free_irq(lp->irq, lp);
  4433. }
  4434. return err;
  4435. }
  4436. static void niu_free_irq(struct niu *np)
  4437. {
  4438. int i;
  4439. for (i = 0; i < np->num_ldg; i++) {
  4440. struct niu_ldg *lp = &np->ldg[i];
  4441. free_irq(lp->irq, lp);
  4442. }
  4443. }
  4444. static void niu_enable_napi(struct niu *np)
  4445. {
  4446. int i;
  4447. for (i = 0; i < np->num_ldg; i++)
  4448. napi_enable(&np->ldg[i].napi);
  4449. }
  4450. static void niu_disable_napi(struct niu *np)
  4451. {
  4452. int i;
  4453. for (i = 0; i < np->num_ldg; i++)
  4454. napi_disable(&np->ldg[i].napi);
  4455. }
  4456. static int niu_open(struct net_device *dev)
  4457. {
  4458. struct niu *np = netdev_priv(dev);
  4459. int err;
  4460. netif_carrier_off(dev);
  4461. err = niu_alloc_channels(np);
  4462. if (err)
  4463. goto out_err;
  4464. err = niu_enable_interrupts(np, 0);
  4465. if (err)
  4466. goto out_free_channels;
  4467. err = niu_request_irq(np);
  4468. if (err)
  4469. goto out_free_channels;
  4470. niu_enable_napi(np);
  4471. spin_lock_irq(&np->lock);
  4472. err = niu_init_hw(np);
  4473. if (!err) {
  4474. init_timer(&np->timer);
  4475. np->timer.expires = jiffies + HZ;
  4476. np->timer.data = (unsigned long) np;
  4477. np->timer.function = niu_timer;
  4478. err = niu_enable_interrupts(np, 1);
  4479. if (err)
  4480. niu_stop_hw(np);
  4481. }
  4482. spin_unlock_irq(&np->lock);
  4483. if (err) {
  4484. niu_disable_napi(np);
  4485. goto out_free_irq;
  4486. }
  4487. netif_start_queue(dev);
  4488. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  4489. netif_carrier_on(dev);
  4490. add_timer(&np->timer);
  4491. return 0;
  4492. out_free_irq:
  4493. niu_free_irq(np);
  4494. out_free_channels:
  4495. niu_free_channels(np);
  4496. out_err:
  4497. return err;
  4498. }
  4499. static void niu_full_shutdown(struct niu *np, struct net_device *dev)
  4500. {
  4501. cancel_work_sync(&np->reset_task);
  4502. niu_disable_napi(np);
  4503. netif_stop_queue(dev);
  4504. del_timer_sync(&np->timer);
  4505. spin_lock_irq(&np->lock);
  4506. niu_stop_hw(np);
  4507. spin_unlock_irq(&np->lock);
  4508. }
  4509. static int niu_close(struct net_device *dev)
  4510. {
  4511. struct niu *np = netdev_priv(dev);
  4512. niu_full_shutdown(np, dev);
  4513. niu_free_irq(np);
  4514. niu_free_channels(np);
  4515. niu_handle_led(np, 0);
  4516. return 0;
  4517. }
  4518. static void niu_sync_xmac_stats(struct niu *np)
  4519. {
  4520. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  4521. mp->tx_frames += nr64_mac(TXMAC_FRM_CNT);
  4522. mp->tx_bytes += nr64_mac(TXMAC_BYTE_CNT);
  4523. mp->rx_link_faults += nr64_mac(LINK_FAULT_CNT);
  4524. mp->rx_align_errors += nr64_mac(RXMAC_ALIGN_ERR_CNT);
  4525. mp->rx_frags += nr64_mac(RXMAC_FRAG_CNT);
  4526. mp->rx_mcasts += nr64_mac(RXMAC_MC_FRM_CNT);
  4527. mp->rx_bcasts += nr64_mac(RXMAC_BC_FRM_CNT);
  4528. mp->rx_hist_cnt1 += nr64_mac(RXMAC_HIST_CNT1);
  4529. mp->rx_hist_cnt2 += nr64_mac(RXMAC_HIST_CNT2);
  4530. mp->rx_hist_cnt3 += nr64_mac(RXMAC_HIST_CNT3);
  4531. mp->rx_hist_cnt4 += nr64_mac(RXMAC_HIST_CNT4);
  4532. mp->rx_hist_cnt5 += nr64_mac(RXMAC_HIST_CNT5);
  4533. mp->rx_hist_cnt6 += nr64_mac(RXMAC_HIST_CNT6);
  4534. mp->rx_hist_cnt7 += nr64_mac(RXMAC_HIST_CNT7);
  4535. mp->rx_octets += nr64_mac(RXMAC_BT_CNT);
  4536. mp->rx_code_violations += nr64_mac(RXMAC_CD_VIO_CNT);
  4537. mp->rx_len_errors += nr64_mac(RXMAC_MPSZER_CNT);
  4538. mp->rx_crc_errors += nr64_mac(RXMAC_CRC_ER_CNT);
  4539. }
  4540. static void niu_sync_bmac_stats(struct niu *np)
  4541. {
  4542. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  4543. mp->tx_bytes += nr64_mac(BTXMAC_BYTE_CNT);
  4544. mp->tx_frames += nr64_mac(BTXMAC_FRM_CNT);
  4545. mp->rx_frames += nr64_mac(BRXMAC_FRAME_CNT);
  4546. mp->rx_align_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  4547. mp->rx_crc_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  4548. mp->rx_len_errors += nr64_mac(BRXMAC_CODE_VIOL_ERR_CNT);
  4549. }
  4550. static void niu_sync_mac_stats(struct niu *np)
  4551. {
  4552. if (np->flags & NIU_FLAGS_XMAC)
  4553. niu_sync_xmac_stats(np);
  4554. else
  4555. niu_sync_bmac_stats(np);
  4556. }
  4557. static void niu_get_rx_stats(struct niu *np)
  4558. {
  4559. unsigned long pkts, dropped, errors, bytes;
  4560. int i;
  4561. pkts = dropped = errors = bytes = 0;
  4562. for (i = 0; i < np->num_rx_rings; i++) {
  4563. struct rx_ring_info *rp = &np->rx_rings[i];
  4564. pkts += rp->rx_packets;
  4565. bytes += rp->rx_bytes;
  4566. dropped += rp->rx_dropped;
  4567. errors += rp->rx_errors;
  4568. }
  4569. np->net_stats.rx_packets = pkts;
  4570. np->net_stats.rx_bytes = bytes;
  4571. np->net_stats.rx_dropped = dropped;
  4572. np->net_stats.rx_errors = errors;
  4573. }
  4574. static void niu_get_tx_stats(struct niu *np)
  4575. {
  4576. unsigned long pkts, errors, bytes;
  4577. int i;
  4578. pkts = errors = bytes = 0;
  4579. for (i = 0; i < np->num_tx_rings; i++) {
  4580. struct tx_ring_info *rp = &np->tx_rings[i];
  4581. pkts += rp->tx_packets;
  4582. bytes += rp->tx_bytes;
  4583. errors += rp->tx_errors;
  4584. }
  4585. np->net_stats.tx_packets = pkts;
  4586. np->net_stats.tx_bytes = bytes;
  4587. np->net_stats.tx_errors = errors;
  4588. }
  4589. static struct net_device_stats *niu_get_stats(struct net_device *dev)
  4590. {
  4591. struct niu *np = netdev_priv(dev);
  4592. niu_get_rx_stats(np);
  4593. niu_get_tx_stats(np);
  4594. return &np->net_stats;
  4595. }
  4596. static void niu_load_hash_xmac(struct niu *np, u16 *hash)
  4597. {
  4598. int i;
  4599. for (i = 0; i < 16; i++)
  4600. nw64_mac(XMAC_HASH_TBL(i), hash[i]);
  4601. }
  4602. static void niu_load_hash_bmac(struct niu *np, u16 *hash)
  4603. {
  4604. int i;
  4605. for (i = 0; i < 16; i++)
  4606. nw64_mac(BMAC_HASH_TBL(i), hash[i]);
  4607. }
  4608. static void niu_load_hash(struct niu *np, u16 *hash)
  4609. {
  4610. if (np->flags & NIU_FLAGS_XMAC)
  4611. niu_load_hash_xmac(np, hash);
  4612. else
  4613. niu_load_hash_bmac(np, hash);
  4614. }
  4615. static void niu_set_rx_mode(struct net_device *dev)
  4616. {
  4617. struct niu *np = netdev_priv(dev);
  4618. int i, alt_cnt, err;
  4619. struct dev_addr_list *addr;
  4620. unsigned long flags;
  4621. u16 hash[16] = { 0, };
  4622. spin_lock_irqsave(&np->lock, flags);
  4623. niu_enable_rx_mac(np, 0);
  4624. np->flags &= ~(NIU_FLAGS_MCAST | NIU_FLAGS_PROMISC);
  4625. if (dev->flags & IFF_PROMISC)
  4626. np->flags |= NIU_FLAGS_PROMISC;
  4627. if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 0))
  4628. np->flags |= NIU_FLAGS_MCAST;
  4629. alt_cnt = dev->uc_count;
  4630. if (alt_cnt > niu_num_alt_addr(np)) {
  4631. alt_cnt = 0;
  4632. np->flags |= NIU_FLAGS_PROMISC;
  4633. }
  4634. if (alt_cnt) {
  4635. int index = 0;
  4636. for (addr = dev->uc_list; addr; addr = addr->next) {
  4637. err = niu_set_alt_mac(np, index,
  4638. addr->da_addr);
  4639. if (err)
  4640. printk(KERN_WARNING PFX "%s: Error %d "
  4641. "adding alt mac %d\n",
  4642. dev->name, err, index);
  4643. err = niu_enable_alt_mac(np, index, 1);
  4644. if (err)
  4645. printk(KERN_WARNING PFX "%s: Error %d "
  4646. "enabling alt mac %d\n",
  4647. dev->name, err, index);
  4648. index++;
  4649. }
  4650. } else {
  4651. int alt_start;
  4652. if (np->flags & NIU_FLAGS_XMAC)
  4653. alt_start = 0;
  4654. else
  4655. alt_start = 1;
  4656. for (i = alt_start; i < niu_num_alt_addr(np); i++) {
  4657. err = niu_enable_alt_mac(np, i, 0);
  4658. if (err)
  4659. printk(KERN_WARNING PFX "%s: Error %d "
  4660. "disabling alt mac %d\n",
  4661. dev->name, err, i);
  4662. }
  4663. }
  4664. if (dev->flags & IFF_ALLMULTI) {
  4665. for (i = 0; i < 16; i++)
  4666. hash[i] = 0xffff;
  4667. } else if (dev->mc_count > 0) {
  4668. for (addr = dev->mc_list; addr; addr = addr->next) {
  4669. u32 crc = ether_crc_le(ETH_ALEN, addr->da_addr);
  4670. crc >>= 24;
  4671. hash[crc >> 4] |= (1 << (15 - (crc & 0xf)));
  4672. }
  4673. }
  4674. if (np->flags & NIU_FLAGS_MCAST)
  4675. niu_load_hash(np, hash);
  4676. niu_enable_rx_mac(np, 1);
  4677. spin_unlock_irqrestore(&np->lock, flags);
  4678. }
  4679. static int niu_set_mac_addr(struct net_device *dev, void *p)
  4680. {
  4681. struct niu *np = netdev_priv(dev);
  4682. struct sockaddr *addr = p;
  4683. unsigned long flags;
  4684. if (!is_valid_ether_addr(addr->sa_data))
  4685. return -EINVAL;
  4686. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  4687. if (!netif_running(dev))
  4688. return 0;
  4689. spin_lock_irqsave(&np->lock, flags);
  4690. niu_enable_rx_mac(np, 0);
  4691. niu_set_primary_mac(np, dev->dev_addr);
  4692. niu_enable_rx_mac(np, 1);
  4693. spin_unlock_irqrestore(&np->lock, flags);
  4694. return 0;
  4695. }
  4696. static int niu_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  4697. {
  4698. return -EOPNOTSUPP;
  4699. }
  4700. static void niu_netif_stop(struct niu *np)
  4701. {
  4702. np->dev->trans_start = jiffies; /* prevent tx timeout */
  4703. niu_disable_napi(np);
  4704. netif_tx_disable(np->dev);
  4705. }
  4706. static void niu_netif_start(struct niu *np)
  4707. {
  4708. /* NOTE: unconditional netif_wake_queue is only appropriate
  4709. * so long as all callers are assured to have free tx slots
  4710. * (such as after niu_init_hw).
  4711. */
  4712. netif_wake_queue(np->dev);
  4713. niu_enable_napi(np);
  4714. niu_enable_interrupts(np, 1);
  4715. }
  4716. static void niu_reset_task(struct work_struct *work)
  4717. {
  4718. struct niu *np = container_of(work, struct niu, reset_task);
  4719. unsigned long flags;
  4720. int err;
  4721. spin_lock_irqsave(&np->lock, flags);
  4722. if (!netif_running(np->dev)) {
  4723. spin_unlock_irqrestore(&np->lock, flags);
  4724. return;
  4725. }
  4726. spin_unlock_irqrestore(&np->lock, flags);
  4727. del_timer_sync(&np->timer);
  4728. niu_netif_stop(np);
  4729. spin_lock_irqsave(&np->lock, flags);
  4730. niu_stop_hw(np);
  4731. err = niu_init_hw(np);
  4732. if (!err) {
  4733. np->timer.expires = jiffies + HZ;
  4734. add_timer(&np->timer);
  4735. niu_netif_start(np);
  4736. }
  4737. spin_unlock_irqrestore(&np->lock, flags);
  4738. }
  4739. static void niu_tx_timeout(struct net_device *dev)
  4740. {
  4741. struct niu *np = netdev_priv(dev);
  4742. dev_err(np->device, PFX "%s: Transmit timed out, resetting\n",
  4743. dev->name);
  4744. schedule_work(&np->reset_task);
  4745. }
  4746. static void niu_set_txd(struct tx_ring_info *rp, int index,
  4747. u64 mapping, u64 len, u64 mark,
  4748. u64 n_frags)
  4749. {
  4750. __le64 *desc = &rp->descr[index];
  4751. *desc = cpu_to_le64(mark |
  4752. (n_frags << TX_DESC_NUM_PTR_SHIFT) |
  4753. (len << TX_DESC_TR_LEN_SHIFT) |
  4754. (mapping & TX_DESC_SAD));
  4755. }
  4756. static u64 niu_compute_tx_flags(struct sk_buff *skb, struct ethhdr *ehdr,
  4757. u64 pad_bytes, u64 len)
  4758. {
  4759. u16 eth_proto, eth_proto_inner;
  4760. u64 csum_bits, l3off, ihl, ret;
  4761. u8 ip_proto;
  4762. int ipv6;
  4763. eth_proto = be16_to_cpu(ehdr->h_proto);
  4764. eth_proto_inner = eth_proto;
  4765. if (eth_proto == ETH_P_8021Q) {
  4766. struct vlan_ethhdr *vp = (struct vlan_ethhdr *) ehdr;
  4767. __be16 val = vp->h_vlan_encapsulated_proto;
  4768. eth_proto_inner = be16_to_cpu(val);
  4769. }
  4770. ipv6 = ihl = 0;
  4771. switch (skb->protocol) {
  4772. case __constant_htons(ETH_P_IP):
  4773. ip_proto = ip_hdr(skb)->protocol;
  4774. ihl = ip_hdr(skb)->ihl;
  4775. break;
  4776. case __constant_htons(ETH_P_IPV6):
  4777. ip_proto = ipv6_hdr(skb)->nexthdr;
  4778. ihl = (40 >> 2);
  4779. ipv6 = 1;
  4780. break;
  4781. default:
  4782. ip_proto = ihl = 0;
  4783. break;
  4784. }
  4785. csum_bits = TXHDR_CSUM_NONE;
  4786. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  4787. u64 start, stuff;
  4788. csum_bits = (ip_proto == IPPROTO_TCP ?
  4789. TXHDR_CSUM_TCP :
  4790. (ip_proto == IPPROTO_UDP ?
  4791. TXHDR_CSUM_UDP : TXHDR_CSUM_SCTP));
  4792. start = skb_transport_offset(skb) -
  4793. (pad_bytes + sizeof(struct tx_pkt_hdr));
  4794. stuff = start + skb->csum_offset;
  4795. csum_bits |= (start / 2) << TXHDR_L4START_SHIFT;
  4796. csum_bits |= (stuff / 2) << TXHDR_L4STUFF_SHIFT;
  4797. }
  4798. l3off = skb_network_offset(skb) -
  4799. (pad_bytes + sizeof(struct tx_pkt_hdr));
  4800. ret = (((pad_bytes / 2) << TXHDR_PAD_SHIFT) |
  4801. (len << TXHDR_LEN_SHIFT) |
  4802. ((l3off / 2) << TXHDR_L3START_SHIFT) |
  4803. (ihl << TXHDR_IHL_SHIFT) |
  4804. ((eth_proto_inner < 1536) ? TXHDR_LLC : 0) |
  4805. ((eth_proto == ETH_P_8021Q) ? TXHDR_VLAN : 0) |
  4806. (ipv6 ? TXHDR_IP_VER : 0) |
  4807. csum_bits);
  4808. return ret;
  4809. }
  4810. static struct tx_ring_info *tx_ring_select(struct niu *np, struct sk_buff *skb)
  4811. {
  4812. return &np->tx_rings[0];
  4813. }
  4814. static int niu_start_xmit(struct sk_buff *skb, struct net_device *dev)
  4815. {
  4816. struct niu *np = netdev_priv(dev);
  4817. unsigned long align, headroom;
  4818. struct tx_ring_info *rp;
  4819. struct tx_pkt_hdr *tp;
  4820. unsigned int len, nfg;
  4821. struct ethhdr *ehdr;
  4822. int prod, i, tlen;
  4823. u64 mapping, mrk;
  4824. rp = tx_ring_select(np, skb);
  4825. if (niu_tx_avail(rp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  4826. netif_stop_queue(dev);
  4827. dev_err(np->device, PFX "%s: BUG! Tx ring full when "
  4828. "queue awake!\n", dev->name);
  4829. rp->tx_errors++;
  4830. return NETDEV_TX_BUSY;
  4831. }
  4832. if (skb->len < ETH_ZLEN) {
  4833. unsigned int pad_bytes = ETH_ZLEN - skb->len;
  4834. if (skb_pad(skb, pad_bytes))
  4835. goto out;
  4836. skb_put(skb, pad_bytes);
  4837. }
  4838. len = sizeof(struct tx_pkt_hdr) + 15;
  4839. if (skb_headroom(skb) < len) {
  4840. struct sk_buff *skb_new;
  4841. skb_new = skb_realloc_headroom(skb, len);
  4842. if (!skb_new) {
  4843. rp->tx_errors++;
  4844. goto out_drop;
  4845. }
  4846. kfree_skb(skb);
  4847. skb = skb_new;
  4848. } else
  4849. skb_orphan(skb);
  4850. align = ((unsigned long) skb->data & (16 - 1));
  4851. headroom = align + sizeof(struct tx_pkt_hdr);
  4852. ehdr = (struct ethhdr *) skb->data;
  4853. tp = (struct tx_pkt_hdr *) skb_push(skb, headroom);
  4854. len = skb->len - sizeof(struct tx_pkt_hdr);
  4855. tp->flags = cpu_to_le64(niu_compute_tx_flags(skb, ehdr, align, len));
  4856. tp->resv = 0;
  4857. len = skb_headlen(skb);
  4858. mapping = np->ops->map_single(np->device, skb->data,
  4859. len, DMA_TO_DEVICE);
  4860. prod = rp->prod;
  4861. rp->tx_buffs[prod].skb = skb;
  4862. rp->tx_buffs[prod].mapping = mapping;
  4863. mrk = TX_DESC_SOP;
  4864. if (++rp->mark_counter == rp->mark_freq) {
  4865. rp->mark_counter = 0;
  4866. mrk |= TX_DESC_MARK;
  4867. rp->mark_pending++;
  4868. }
  4869. tlen = len;
  4870. nfg = skb_shinfo(skb)->nr_frags;
  4871. while (tlen > 0) {
  4872. tlen -= MAX_TX_DESC_LEN;
  4873. nfg++;
  4874. }
  4875. while (len > 0) {
  4876. unsigned int this_len = len;
  4877. if (this_len > MAX_TX_DESC_LEN)
  4878. this_len = MAX_TX_DESC_LEN;
  4879. niu_set_txd(rp, prod, mapping, this_len, mrk, nfg);
  4880. mrk = nfg = 0;
  4881. prod = NEXT_TX(rp, prod);
  4882. mapping += this_len;
  4883. len -= this_len;
  4884. }
  4885. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  4886. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  4887. len = frag->size;
  4888. mapping = np->ops->map_page(np->device, frag->page,
  4889. frag->page_offset, len,
  4890. DMA_TO_DEVICE);
  4891. rp->tx_buffs[prod].skb = NULL;
  4892. rp->tx_buffs[prod].mapping = mapping;
  4893. niu_set_txd(rp, prod, mapping, len, 0, 0);
  4894. prod = NEXT_TX(rp, prod);
  4895. }
  4896. if (prod < rp->prod)
  4897. rp->wrap_bit ^= TX_RING_KICK_WRAP;
  4898. rp->prod = prod;
  4899. nw64(TX_RING_KICK(rp->tx_channel), rp->wrap_bit | (prod << 3));
  4900. if (unlikely(niu_tx_avail(rp) <= (MAX_SKB_FRAGS + 1))) {
  4901. netif_stop_queue(dev);
  4902. if (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp))
  4903. netif_wake_queue(dev);
  4904. }
  4905. dev->trans_start = jiffies;
  4906. out:
  4907. return NETDEV_TX_OK;
  4908. out_drop:
  4909. rp->tx_errors++;
  4910. kfree_skb(skb);
  4911. goto out;
  4912. }
  4913. static int niu_change_mtu(struct net_device *dev, int new_mtu)
  4914. {
  4915. struct niu *np = netdev_priv(dev);
  4916. int err, orig_jumbo, new_jumbo;
  4917. if (new_mtu < 68 || new_mtu > NIU_MAX_MTU)
  4918. return -EINVAL;
  4919. orig_jumbo = (dev->mtu > ETH_DATA_LEN);
  4920. new_jumbo = (new_mtu > ETH_DATA_LEN);
  4921. dev->mtu = new_mtu;
  4922. if (!netif_running(dev) ||
  4923. (orig_jumbo == new_jumbo))
  4924. return 0;
  4925. niu_full_shutdown(np, dev);
  4926. niu_free_channels(np);
  4927. niu_enable_napi(np);
  4928. err = niu_alloc_channels(np);
  4929. if (err)
  4930. return err;
  4931. spin_lock_irq(&np->lock);
  4932. err = niu_init_hw(np);
  4933. if (!err) {
  4934. init_timer(&np->timer);
  4935. np->timer.expires = jiffies + HZ;
  4936. np->timer.data = (unsigned long) np;
  4937. np->timer.function = niu_timer;
  4938. err = niu_enable_interrupts(np, 1);
  4939. if (err)
  4940. niu_stop_hw(np);
  4941. }
  4942. spin_unlock_irq(&np->lock);
  4943. if (!err) {
  4944. netif_start_queue(dev);
  4945. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  4946. netif_carrier_on(dev);
  4947. add_timer(&np->timer);
  4948. }
  4949. return err;
  4950. }
  4951. static void niu_get_drvinfo(struct net_device *dev,
  4952. struct ethtool_drvinfo *info)
  4953. {
  4954. struct niu *np = netdev_priv(dev);
  4955. struct niu_vpd *vpd = &np->vpd;
  4956. strcpy(info->driver, DRV_MODULE_NAME);
  4957. strcpy(info->version, DRV_MODULE_VERSION);
  4958. sprintf(info->fw_version, "%d.%d",
  4959. vpd->fcode_major, vpd->fcode_minor);
  4960. if (np->parent->plat_type != PLAT_TYPE_NIU)
  4961. strcpy(info->bus_info, pci_name(np->pdev));
  4962. }
  4963. static int niu_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  4964. {
  4965. struct niu *np = netdev_priv(dev);
  4966. struct niu_link_config *lp;
  4967. lp = &np->link_config;
  4968. memset(cmd, 0, sizeof(*cmd));
  4969. cmd->phy_address = np->phy_addr;
  4970. cmd->supported = lp->supported;
  4971. cmd->advertising = lp->advertising;
  4972. cmd->autoneg = lp->autoneg;
  4973. cmd->speed = lp->active_speed;
  4974. cmd->duplex = lp->active_duplex;
  4975. return 0;
  4976. }
  4977. static int niu_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  4978. {
  4979. return -EINVAL;
  4980. }
  4981. static u32 niu_get_msglevel(struct net_device *dev)
  4982. {
  4983. struct niu *np = netdev_priv(dev);
  4984. return np->msg_enable;
  4985. }
  4986. static void niu_set_msglevel(struct net_device *dev, u32 value)
  4987. {
  4988. struct niu *np = netdev_priv(dev);
  4989. np->msg_enable = value;
  4990. }
  4991. static int niu_get_eeprom_len(struct net_device *dev)
  4992. {
  4993. struct niu *np = netdev_priv(dev);
  4994. return np->eeprom_len;
  4995. }
  4996. static int niu_get_eeprom(struct net_device *dev,
  4997. struct ethtool_eeprom *eeprom, u8 *data)
  4998. {
  4999. struct niu *np = netdev_priv(dev);
  5000. u32 offset, len, val;
  5001. offset = eeprom->offset;
  5002. len = eeprom->len;
  5003. if (offset + len < offset)
  5004. return -EINVAL;
  5005. if (offset >= np->eeprom_len)
  5006. return -EINVAL;
  5007. if (offset + len > np->eeprom_len)
  5008. len = eeprom->len = np->eeprom_len - offset;
  5009. if (offset & 3) {
  5010. u32 b_offset, b_count;
  5011. b_offset = offset & 3;
  5012. b_count = 4 - b_offset;
  5013. if (b_count > len)
  5014. b_count = len;
  5015. val = nr64(ESPC_NCR((offset - b_offset) / 4));
  5016. memcpy(data, ((char *)&val) + b_offset, b_count);
  5017. data += b_count;
  5018. len -= b_count;
  5019. offset += b_count;
  5020. }
  5021. while (len >= 4) {
  5022. val = nr64(ESPC_NCR(offset / 4));
  5023. memcpy(data, &val, 4);
  5024. data += 4;
  5025. len -= 4;
  5026. offset += 4;
  5027. }
  5028. if (len) {
  5029. val = nr64(ESPC_NCR(offset / 4));
  5030. memcpy(data, &val, len);
  5031. }
  5032. return 0;
  5033. }
  5034. static const struct {
  5035. const char string[ETH_GSTRING_LEN];
  5036. } niu_xmac_stat_keys[] = {
  5037. { "tx_frames" },
  5038. { "tx_bytes" },
  5039. { "tx_fifo_errors" },
  5040. { "tx_overflow_errors" },
  5041. { "tx_max_pkt_size_errors" },
  5042. { "tx_underflow_errors" },
  5043. { "rx_local_faults" },
  5044. { "rx_remote_faults" },
  5045. { "rx_link_faults" },
  5046. { "rx_align_errors" },
  5047. { "rx_frags" },
  5048. { "rx_mcasts" },
  5049. { "rx_bcasts" },
  5050. { "rx_hist_cnt1" },
  5051. { "rx_hist_cnt2" },
  5052. { "rx_hist_cnt3" },
  5053. { "rx_hist_cnt4" },
  5054. { "rx_hist_cnt5" },
  5055. { "rx_hist_cnt6" },
  5056. { "rx_hist_cnt7" },
  5057. { "rx_octets" },
  5058. { "rx_code_violations" },
  5059. { "rx_len_errors" },
  5060. { "rx_crc_errors" },
  5061. { "rx_underflows" },
  5062. { "rx_overflows" },
  5063. { "pause_off_state" },
  5064. { "pause_on_state" },
  5065. { "pause_received" },
  5066. };
  5067. #define NUM_XMAC_STAT_KEYS ARRAY_SIZE(niu_xmac_stat_keys)
  5068. static const struct {
  5069. const char string[ETH_GSTRING_LEN];
  5070. } niu_bmac_stat_keys[] = {
  5071. { "tx_underflow_errors" },
  5072. { "tx_max_pkt_size_errors" },
  5073. { "tx_bytes" },
  5074. { "tx_frames" },
  5075. { "rx_overflows" },
  5076. { "rx_frames" },
  5077. { "rx_align_errors" },
  5078. { "rx_crc_errors" },
  5079. { "rx_len_errors" },
  5080. { "pause_off_state" },
  5081. { "pause_on_state" },
  5082. { "pause_received" },
  5083. };
  5084. #define NUM_BMAC_STAT_KEYS ARRAY_SIZE(niu_bmac_stat_keys)
  5085. static const struct {
  5086. const char string[ETH_GSTRING_LEN];
  5087. } niu_rxchan_stat_keys[] = {
  5088. { "rx_channel" },
  5089. { "rx_packets" },
  5090. { "rx_bytes" },
  5091. { "rx_dropped" },
  5092. { "rx_errors" },
  5093. };
  5094. #define NUM_RXCHAN_STAT_KEYS ARRAY_SIZE(niu_rxchan_stat_keys)
  5095. static const struct {
  5096. const char string[ETH_GSTRING_LEN];
  5097. } niu_txchan_stat_keys[] = {
  5098. { "tx_channel" },
  5099. { "tx_packets" },
  5100. { "tx_bytes" },
  5101. { "tx_errors" },
  5102. };
  5103. #define NUM_TXCHAN_STAT_KEYS ARRAY_SIZE(niu_txchan_stat_keys)
  5104. static void niu_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  5105. {
  5106. struct niu *np = netdev_priv(dev);
  5107. int i;
  5108. if (stringset != ETH_SS_STATS)
  5109. return;
  5110. if (np->flags & NIU_FLAGS_XMAC) {
  5111. memcpy(data, niu_xmac_stat_keys,
  5112. sizeof(niu_xmac_stat_keys));
  5113. data += sizeof(niu_xmac_stat_keys);
  5114. } else {
  5115. memcpy(data, niu_bmac_stat_keys,
  5116. sizeof(niu_bmac_stat_keys));
  5117. data += sizeof(niu_bmac_stat_keys);
  5118. }
  5119. for (i = 0; i < np->num_rx_rings; i++) {
  5120. memcpy(data, niu_rxchan_stat_keys,
  5121. sizeof(niu_rxchan_stat_keys));
  5122. data += sizeof(niu_rxchan_stat_keys);
  5123. }
  5124. for (i = 0; i < np->num_tx_rings; i++) {
  5125. memcpy(data, niu_txchan_stat_keys,
  5126. sizeof(niu_txchan_stat_keys));
  5127. data += sizeof(niu_txchan_stat_keys);
  5128. }
  5129. }
  5130. static int niu_get_stats_count(struct net_device *dev)
  5131. {
  5132. struct niu *np = netdev_priv(dev);
  5133. return ((np->flags & NIU_FLAGS_XMAC ?
  5134. NUM_XMAC_STAT_KEYS :
  5135. NUM_BMAC_STAT_KEYS) +
  5136. (np->num_rx_rings * NUM_RXCHAN_STAT_KEYS) +
  5137. (np->num_tx_rings * NUM_TXCHAN_STAT_KEYS));
  5138. }
  5139. static void niu_get_ethtool_stats(struct net_device *dev,
  5140. struct ethtool_stats *stats, u64 *data)
  5141. {
  5142. struct niu *np = netdev_priv(dev);
  5143. int i;
  5144. niu_sync_mac_stats(np);
  5145. if (np->flags & NIU_FLAGS_XMAC) {
  5146. memcpy(data, &np->mac_stats.xmac,
  5147. sizeof(struct niu_xmac_stats));
  5148. data += (sizeof(struct niu_xmac_stats) / sizeof(u64));
  5149. } else {
  5150. memcpy(data, &np->mac_stats.bmac,
  5151. sizeof(struct niu_bmac_stats));
  5152. data += (sizeof(struct niu_bmac_stats) / sizeof(u64));
  5153. }
  5154. for (i = 0; i < np->num_rx_rings; i++) {
  5155. struct rx_ring_info *rp = &np->rx_rings[i];
  5156. data[0] = rp->rx_channel;
  5157. data[1] = rp->rx_packets;
  5158. data[2] = rp->rx_bytes;
  5159. data[3] = rp->rx_dropped;
  5160. data[4] = rp->rx_errors;
  5161. data += 5;
  5162. }
  5163. for (i = 0; i < np->num_tx_rings; i++) {
  5164. struct tx_ring_info *rp = &np->tx_rings[i];
  5165. data[0] = rp->tx_channel;
  5166. data[1] = rp->tx_packets;
  5167. data[2] = rp->tx_bytes;
  5168. data[3] = rp->tx_errors;
  5169. data += 4;
  5170. }
  5171. }
  5172. static u64 niu_led_state_save(struct niu *np)
  5173. {
  5174. if (np->flags & NIU_FLAGS_XMAC)
  5175. return nr64_mac(XMAC_CONFIG);
  5176. else
  5177. return nr64_mac(BMAC_XIF_CONFIG);
  5178. }
  5179. static void niu_led_state_restore(struct niu *np, u64 val)
  5180. {
  5181. if (np->flags & NIU_FLAGS_XMAC)
  5182. nw64_mac(XMAC_CONFIG, val);
  5183. else
  5184. nw64_mac(BMAC_XIF_CONFIG, val);
  5185. }
  5186. static void niu_force_led(struct niu *np, int on)
  5187. {
  5188. u64 val, reg, bit;
  5189. if (np->flags & NIU_FLAGS_XMAC) {
  5190. reg = XMAC_CONFIG;
  5191. bit = XMAC_CONFIG_FORCE_LED_ON;
  5192. } else {
  5193. reg = BMAC_XIF_CONFIG;
  5194. bit = BMAC_XIF_CONFIG_LINK_LED;
  5195. }
  5196. val = nr64_mac(reg);
  5197. if (on)
  5198. val |= bit;
  5199. else
  5200. val &= ~bit;
  5201. nw64_mac(reg, val);
  5202. }
  5203. static int niu_phys_id(struct net_device *dev, u32 data)
  5204. {
  5205. struct niu *np = netdev_priv(dev);
  5206. u64 orig_led_state;
  5207. int i;
  5208. if (!netif_running(dev))
  5209. return -EAGAIN;
  5210. if (data == 0)
  5211. data = 2;
  5212. orig_led_state = niu_led_state_save(np);
  5213. for (i = 0; i < (data * 2); i++) {
  5214. int on = ((i % 2) == 0);
  5215. niu_force_led(np, on);
  5216. if (msleep_interruptible(500))
  5217. break;
  5218. }
  5219. niu_led_state_restore(np, orig_led_state);
  5220. return 0;
  5221. }
  5222. static const struct ethtool_ops niu_ethtool_ops = {
  5223. .get_drvinfo = niu_get_drvinfo,
  5224. .get_link = ethtool_op_get_link,
  5225. .get_msglevel = niu_get_msglevel,
  5226. .set_msglevel = niu_set_msglevel,
  5227. .get_eeprom_len = niu_get_eeprom_len,
  5228. .get_eeprom = niu_get_eeprom,
  5229. .get_settings = niu_get_settings,
  5230. .set_settings = niu_set_settings,
  5231. .get_strings = niu_get_strings,
  5232. .get_stats_count = niu_get_stats_count,
  5233. .get_ethtool_stats = niu_get_ethtool_stats,
  5234. .phys_id = niu_phys_id,
  5235. };
  5236. static int niu_ldg_assign_ldn(struct niu *np, struct niu_parent *parent,
  5237. int ldg, int ldn)
  5238. {
  5239. if (ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX)
  5240. return -EINVAL;
  5241. if (ldn < 0 || ldn > LDN_MAX)
  5242. return -EINVAL;
  5243. parent->ldg_map[ldn] = ldg;
  5244. if (np->parent->plat_type == PLAT_TYPE_NIU) {
  5245. /* On N2 NIU, the ldn-->ldg assignments are setup and fixed by
  5246. * the firmware, and we're not supposed to change them.
  5247. * Validate the mapping, because if it's wrong we probably
  5248. * won't get any interrupts and that's painful to debug.
  5249. */
  5250. if (nr64(LDG_NUM(ldn)) != ldg) {
  5251. dev_err(np->device, PFX "Port %u, mis-matched "
  5252. "LDG assignment "
  5253. "for ldn %d, should be %d is %llu\n",
  5254. np->port, ldn, ldg,
  5255. (unsigned long long) nr64(LDG_NUM(ldn)));
  5256. return -EINVAL;
  5257. }
  5258. } else
  5259. nw64(LDG_NUM(ldn), ldg);
  5260. return 0;
  5261. }
  5262. static int niu_set_ldg_timer_res(struct niu *np, int res)
  5263. {
  5264. if (res < 0 || res > LDG_TIMER_RES_VAL)
  5265. return -EINVAL;
  5266. nw64(LDG_TIMER_RES, res);
  5267. return 0;
  5268. }
  5269. static int niu_set_ldg_sid(struct niu *np, int ldg, int func, int vector)
  5270. {
  5271. if ((ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX) ||
  5272. (func < 0 || func > 3) ||
  5273. (vector < 0 || vector > 0x1f))
  5274. return -EINVAL;
  5275. nw64(SID(ldg), (func << SID_FUNC_SHIFT) | vector);
  5276. return 0;
  5277. }
  5278. static int __devinit niu_pci_eeprom_read(struct niu *np, u32 addr)
  5279. {
  5280. u64 frame, frame_base = (ESPC_PIO_STAT_READ_START |
  5281. (addr << ESPC_PIO_STAT_ADDR_SHIFT));
  5282. int limit;
  5283. if (addr > (ESPC_PIO_STAT_ADDR >> ESPC_PIO_STAT_ADDR_SHIFT))
  5284. return -EINVAL;
  5285. frame = frame_base;
  5286. nw64(ESPC_PIO_STAT, frame);
  5287. limit = 64;
  5288. do {
  5289. udelay(5);
  5290. frame = nr64(ESPC_PIO_STAT);
  5291. if (frame & ESPC_PIO_STAT_READ_END)
  5292. break;
  5293. } while (limit--);
  5294. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  5295. dev_err(np->device, PFX "EEPROM read timeout frame[%llx]\n",
  5296. (unsigned long long) frame);
  5297. return -ENODEV;
  5298. }
  5299. frame = frame_base;
  5300. nw64(ESPC_PIO_STAT, frame);
  5301. limit = 64;
  5302. do {
  5303. udelay(5);
  5304. frame = nr64(ESPC_PIO_STAT);
  5305. if (frame & ESPC_PIO_STAT_READ_END)
  5306. break;
  5307. } while (limit--);
  5308. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  5309. dev_err(np->device, PFX "EEPROM read timeout frame[%llx]\n",
  5310. (unsigned long long) frame);
  5311. return -ENODEV;
  5312. }
  5313. frame = nr64(ESPC_PIO_STAT);
  5314. return (frame & ESPC_PIO_STAT_DATA) >> ESPC_PIO_STAT_DATA_SHIFT;
  5315. }
  5316. static int __devinit niu_pci_eeprom_read16(struct niu *np, u32 off)
  5317. {
  5318. int err = niu_pci_eeprom_read(np, off);
  5319. u16 val;
  5320. if (err < 0)
  5321. return err;
  5322. val = (err << 8);
  5323. err = niu_pci_eeprom_read(np, off + 1);
  5324. if (err < 0)
  5325. return err;
  5326. val |= (err & 0xff);
  5327. return val;
  5328. }
  5329. static int __devinit niu_pci_eeprom_read16_swp(struct niu *np, u32 off)
  5330. {
  5331. int err = niu_pci_eeprom_read(np, off);
  5332. u16 val;
  5333. if (err < 0)
  5334. return err;
  5335. val = (err & 0xff);
  5336. err = niu_pci_eeprom_read(np, off + 1);
  5337. if (err < 0)
  5338. return err;
  5339. val |= (err & 0xff) << 8;
  5340. return val;
  5341. }
  5342. static int __devinit niu_pci_vpd_get_propname(struct niu *np,
  5343. u32 off,
  5344. char *namebuf,
  5345. int namebuf_len)
  5346. {
  5347. int i;
  5348. for (i = 0; i < namebuf_len; i++) {
  5349. int err = niu_pci_eeprom_read(np, off + i);
  5350. if (err < 0)
  5351. return err;
  5352. *namebuf++ = err;
  5353. if (!err)
  5354. break;
  5355. }
  5356. if (i >= namebuf_len)
  5357. return -EINVAL;
  5358. return i + 1;
  5359. }
  5360. static void __devinit niu_vpd_parse_version(struct niu *np)
  5361. {
  5362. struct niu_vpd *vpd = &np->vpd;
  5363. int len = strlen(vpd->version) + 1;
  5364. const char *s = vpd->version;
  5365. int i;
  5366. for (i = 0; i < len - 5; i++) {
  5367. if (!strncmp(s + i, "FCode ", 5))
  5368. break;
  5369. }
  5370. if (i >= len - 5)
  5371. return;
  5372. s += i + 5;
  5373. sscanf(s, "%d.%d", &vpd->fcode_major, &vpd->fcode_minor);
  5374. niudbg(PROBE, "VPD_SCAN: FCODE major(%d) minor(%d)\n",
  5375. vpd->fcode_major, vpd->fcode_minor);
  5376. if (vpd->fcode_major > NIU_VPD_MIN_MAJOR ||
  5377. (vpd->fcode_major == NIU_VPD_MIN_MAJOR &&
  5378. vpd->fcode_minor >= NIU_VPD_MIN_MINOR))
  5379. np->flags |= NIU_FLAGS_VPD_VALID;
  5380. }
  5381. /* ESPC_PIO_EN_ENABLE must be set */
  5382. static int __devinit niu_pci_vpd_scan_props(struct niu *np,
  5383. u32 start, u32 end)
  5384. {
  5385. unsigned int found_mask = 0;
  5386. #define FOUND_MASK_MODEL 0x00000001
  5387. #define FOUND_MASK_BMODEL 0x00000002
  5388. #define FOUND_MASK_VERS 0x00000004
  5389. #define FOUND_MASK_MAC 0x00000008
  5390. #define FOUND_MASK_NMAC 0x00000010
  5391. #define FOUND_MASK_PHY 0x00000020
  5392. #define FOUND_MASK_ALL 0x0000003f
  5393. niudbg(PROBE, "VPD_SCAN: start[%x] end[%x]\n",
  5394. start, end);
  5395. while (start < end) {
  5396. int len, err, instance, type, prop_len;
  5397. char namebuf[64];
  5398. u8 *prop_buf;
  5399. int max_len;
  5400. if (found_mask == FOUND_MASK_ALL) {
  5401. niu_vpd_parse_version(np);
  5402. return 1;
  5403. }
  5404. err = niu_pci_eeprom_read(np, start + 2);
  5405. if (err < 0)
  5406. return err;
  5407. len = err;
  5408. start += 3;
  5409. instance = niu_pci_eeprom_read(np, start);
  5410. type = niu_pci_eeprom_read(np, start + 3);
  5411. prop_len = niu_pci_eeprom_read(np, start + 4);
  5412. err = niu_pci_vpd_get_propname(np, start + 5, namebuf, 64);
  5413. if (err < 0)
  5414. return err;
  5415. prop_buf = NULL;
  5416. max_len = 0;
  5417. if (!strcmp(namebuf, "model")) {
  5418. prop_buf = np->vpd.model;
  5419. max_len = NIU_VPD_MODEL_MAX;
  5420. found_mask |= FOUND_MASK_MODEL;
  5421. } else if (!strcmp(namebuf, "board-model")) {
  5422. prop_buf = np->vpd.board_model;
  5423. max_len = NIU_VPD_BD_MODEL_MAX;
  5424. found_mask |= FOUND_MASK_BMODEL;
  5425. } else if (!strcmp(namebuf, "version")) {
  5426. prop_buf = np->vpd.version;
  5427. max_len = NIU_VPD_VERSION_MAX;
  5428. found_mask |= FOUND_MASK_VERS;
  5429. } else if (!strcmp(namebuf, "local-mac-address")) {
  5430. prop_buf = np->vpd.local_mac;
  5431. max_len = ETH_ALEN;
  5432. found_mask |= FOUND_MASK_MAC;
  5433. } else if (!strcmp(namebuf, "num-mac-addresses")) {
  5434. prop_buf = &np->vpd.mac_num;
  5435. max_len = 1;
  5436. found_mask |= FOUND_MASK_NMAC;
  5437. } else if (!strcmp(namebuf, "phy-type")) {
  5438. prop_buf = np->vpd.phy_type;
  5439. max_len = NIU_VPD_PHY_TYPE_MAX;
  5440. found_mask |= FOUND_MASK_PHY;
  5441. }
  5442. if (max_len && prop_len > max_len) {
  5443. dev_err(np->device, PFX "Property '%s' length (%d) is "
  5444. "too long.\n", namebuf, prop_len);
  5445. return -EINVAL;
  5446. }
  5447. if (prop_buf) {
  5448. u32 off = start + 5 + err;
  5449. int i;
  5450. niudbg(PROBE, "VPD_SCAN: Reading in property [%s] "
  5451. "len[%d]\n", namebuf, prop_len);
  5452. for (i = 0; i < prop_len; i++)
  5453. *prop_buf++ = niu_pci_eeprom_read(np, off + i);
  5454. }
  5455. start += len;
  5456. }
  5457. return 0;
  5458. }
  5459. /* ESPC_PIO_EN_ENABLE must be set */
  5460. static void __devinit niu_pci_vpd_fetch(struct niu *np, u32 start)
  5461. {
  5462. u32 offset;
  5463. int err;
  5464. err = niu_pci_eeprom_read16_swp(np, start + 1);
  5465. if (err < 0)
  5466. return;
  5467. offset = err + 3;
  5468. while (start + offset < ESPC_EEPROM_SIZE) {
  5469. u32 here = start + offset;
  5470. u32 end;
  5471. err = niu_pci_eeprom_read(np, here);
  5472. if (err != 0x90)
  5473. return;
  5474. err = niu_pci_eeprom_read16_swp(np, here + 1);
  5475. if (err < 0)
  5476. return;
  5477. here = start + offset + 3;
  5478. end = start + offset + err;
  5479. offset += err;
  5480. err = niu_pci_vpd_scan_props(np, here, end);
  5481. if (err < 0 || err == 1)
  5482. return;
  5483. }
  5484. }
  5485. /* ESPC_PIO_EN_ENABLE must be set */
  5486. static u32 __devinit niu_pci_vpd_offset(struct niu *np)
  5487. {
  5488. u32 start = 0, end = ESPC_EEPROM_SIZE, ret;
  5489. int err;
  5490. while (start < end) {
  5491. ret = start;
  5492. /* ROM header signature? */
  5493. err = niu_pci_eeprom_read16(np, start + 0);
  5494. if (err != 0x55aa)
  5495. return 0;
  5496. /* Apply offset to PCI data structure. */
  5497. err = niu_pci_eeprom_read16(np, start + 23);
  5498. if (err < 0)
  5499. return 0;
  5500. start += err;
  5501. /* Check for "PCIR" signature. */
  5502. err = niu_pci_eeprom_read16(np, start + 0);
  5503. if (err != 0x5043)
  5504. return 0;
  5505. err = niu_pci_eeprom_read16(np, start + 2);
  5506. if (err != 0x4952)
  5507. return 0;
  5508. /* Check for OBP image type. */
  5509. err = niu_pci_eeprom_read(np, start + 20);
  5510. if (err < 0)
  5511. return 0;
  5512. if (err != 0x01) {
  5513. err = niu_pci_eeprom_read(np, ret + 2);
  5514. if (err < 0)
  5515. return 0;
  5516. start = ret + (err * 512);
  5517. continue;
  5518. }
  5519. err = niu_pci_eeprom_read16_swp(np, start + 8);
  5520. if (err < 0)
  5521. return err;
  5522. ret += err;
  5523. err = niu_pci_eeprom_read(np, ret + 0);
  5524. if (err != 0x82)
  5525. return 0;
  5526. return ret;
  5527. }
  5528. return 0;
  5529. }
  5530. static int __devinit niu_phy_type_prop_decode(struct niu *np,
  5531. const char *phy_prop)
  5532. {
  5533. if (!strcmp(phy_prop, "mif")) {
  5534. /* 1G copper, MII */
  5535. np->flags &= ~(NIU_FLAGS_FIBER |
  5536. NIU_FLAGS_10G);
  5537. np->mac_xcvr = MAC_XCVR_MII;
  5538. } else if (!strcmp(phy_prop, "xgf")) {
  5539. /* 10G fiber, XPCS */
  5540. np->flags |= (NIU_FLAGS_10G |
  5541. NIU_FLAGS_FIBER);
  5542. np->mac_xcvr = MAC_XCVR_XPCS;
  5543. } else if (!strcmp(phy_prop, "pcs")) {
  5544. /* 1G fiber, PCS */
  5545. np->flags &= ~NIU_FLAGS_10G;
  5546. np->flags |= NIU_FLAGS_FIBER;
  5547. np->mac_xcvr = MAC_XCVR_PCS;
  5548. } else if (!strcmp(phy_prop, "xgc")) {
  5549. /* 10G copper, XPCS */
  5550. np->flags |= NIU_FLAGS_10G;
  5551. np->flags &= ~NIU_FLAGS_FIBER;
  5552. np->mac_xcvr = MAC_XCVR_XPCS;
  5553. } else {
  5554. return -EINVAL;
  5555. }
  5556. return 0;
  5557. }
  5558. static void __devinit niu_pci_vpd_validate(struct niu *np)
  5559. {
  5560. struct net_device *dev = np->dev;
  5561. struct niu_vpd *vpd = &np->vpd;
  5562. u8 val8;
  5563. if (!is_valid_ether_addr(&vpd->local_mac[0])) {
  5564. dev_err(np->device, PFX "VPD MAC invalid, "
  5565. "falling back to SPROM.\n");
  5566. np->flags &= ~NIU_FLAGS_VPD_VALID;
  5567. return;
  5568. }
  5569. if (!strcmp(np->vpd.model, "SUNW,CP3220") ||
  5570. !strcmp(np->vpd.model, "SUNW,CP3260")) {
  5571. np->flags |= NIU_FLAGS_10G;
  5572. np->flags &= ~NIU_FLAGS_FIBER;
  5573. np->flags |= NIU_FLAGS_XCVR_SERDES;
  5574. np->mac_xcvr = MAC_XCVR_PCS;
  5575. if (np->port > 1) {
  5576. np->flags |= NIU_FLAGS_FIBER;
  5577. np->flags &= ~NIU_FLAGS_10G;
  5578. }
  5579. if (np->flags & NIU_FLAGS_10G)
  5580. np->mac_xcvr = MAC_XCVR_XPCS;
  5581. } else if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  5582. dev_err(np->device, PFX "Illegal phy string [%s].\n",
  5583. np->vpd.phy_type);
  5584. dev_err(np->device, PFX "Falling back to SPROM.\n");
  5585. np->flags &= ~NIU_FLAGS_VPD_VALID;
  5586. return;
  5587. }
  5588. memcpy(dev->perm_addr, vpd->local_mac, ETH_ALEN);
  5589. val8 = dev->perm_addr[5];
  5590. dev->perm_addr[5] += np->port;
  5591. if (dev->perm_addr[5] < val8)
  5592. dev->perm_addr[4]++;
  5593. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  5594. }
  5595. static int __devinit niu_pci_probe_sprom(struct niu *np)
  5596. {
  5597. struct net_device *dev = np->dev;
  5598. int len, i;
  5599. u64 val, sum;
  5600. u8 val8;
  5601. val = (nr64(ESPC_VER_IMGSZ) & ESPC_VER_IMGSZ_IMGSZ);
  5602. val >>= ESPC_VER_IMGSZ_IMGSZ_SHIFT;
  5603. len = val / 4;
  5604. np->eeprom_len = len;
  5605. niudbg(PROBE, "SPROM: Image size %llu\n", (unsigned long long) val);
  5606. sum = 0;
  5607. for (i = 0; i < len; i++) {
  5608. val = nr64(ESPC_NCR(i));
  5609. sum += (val >> 0) & 0xff;
  5610. sum += (val >> 8) & 0xff;
  5611. sum += (val >> 16) & 0xff;
  5612. sum += (val >> 24) & 0xff;
  5613. }
  5614. niudbg(PROBE, "SPROM: Checksum %x\n", (int)(sum & 0xff));
  5615. if ((sum & 0xff) != 0xab) {
  5616. dev_err(np->device, PFX "Bad SPROM checksum "
  5617. "(%x, should be 0xab)\n", (int) (sum & 0xff));
  5618. return -EINVAL;
  5619. }
  5620. val = nr64(ESPC_PHY_TYPE);
  5621. switch (np->port) {
  5622. case 0:
  5623. val8 = (val & ESPC_PHY_TYPE_PORT0) >>
  5624. ESPC_PHY_TYPE_PORT0_SHIFT;
  5625. break;
  5626. case 1:
  5627. val8 = (val & ESPC_PHY_TYPE_PORT1) >>
  5628. ESPC_PHY_TYPE_PORT1_SHIFT;
  5629. break;
  5630. case 2:
  5631. val8 = (val & ESPC_PHY_TYPE_PORT2) >>
  5632. ESPC_PHY_TYPE_PORT2_SHIFT;
  5633. break;
  5634. case 3:
  5635. val8 = (val & ESPC_PHY_TYPE_PORT3) >>
  5636. ESPC_PHY_TYPE_PORT3_SHIFT;
  5637. break;
  5638. default:
  5639. dev_err(np->device, PFX "Bogus port number %u\n",
  5640. np->port);
  5641. return -EINVAL;
  5642. }
  5643. niudbg(PROBE, "SPROM: PHY type %x\n", val8);
  5644. switch (val8) {
  5645. case ESPC_PHY_TYPE_1G_COPPER:
  5646. /* 1G copper, MII */
  5647. np->flags &= ~(NIU_FLAGS_FIBER |
  5648. NIU_FLAGS_10G);
  5649. np->mac_xcvr = MAC_XCVR_MII;
  5650. break;
  5651. case ESPC_PHY_TYPE_1G_FIBER:
  5652. /* 1G fiber, PCS */
  5653. np->flags &= ~NIU_FLAGS_10G;
  5654. np->flags |= NIU_FLAGS_FIBER;
  5655. np->mac_xcvr = MAC_XCVR_PCS;
  5656. break;
  5657. case ESPC_PHY_TYPE_10G_COPPER:
  5658. /* 10G copper, XPCS */
  5659. np->flags |= NIU_FLAGS_10G;
  5660. np->flags &= ~NIU_FLAGS_FIBER;
  5661. np->mac_xcvr = MAC_XCVR_XPCS;
  5662. break;
  5663. case ESPC_PHY_TYPE_10G_FIBER:
  5664. /* 10G fiber, XPCS */
  5665. np->flags |= (NIU_FLAGS_10G |
  5666. NIU_FLAGS_FIBER);
  5667. np->mac_xcvr = MAC_XCVR_XPCS;
  5668. break;
  5669. default:
  5670. dev_err(np->device, PFX "Bogus SPROM phy type %u\n", val8);
  5671. return -EINVAL;
  5672. }
  5673. val = nr64(ESPC_MAC_ADDR0);
  5674. niudbg(PROBE, "SPROM: MAC_ADDR0[%08llx]\n",
  5675. (unsigned long long) val);
  5676. dev->perm_addr[0] = (val >> 0) & 0xff;
  5677. dev->perm_addr[1] = (val >> 8) & 0xff;
  5678. dev->perm_addr[2] = (val >> 16) & 0xff;
  5679. dev->perm_addr[3] = (val >> 24) & 0xff;
  5680. val = nr64(ESPC_MAC_ADDR1);
  5681. niudbg(PROBE, "SPROM: MAC_ADDR1[%08llx]\n",
  5682. (unsigned long long) val);
  5683. dev->perm_addr[4] = (val >> 0) & 0xff;
  5684. dev->perm_addr[5] = (val >> 8) & 0xff;
  5685. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  5686. dev_err(np->device, PFX "SPROM MAC address invalid\n");
  5687. dev_err(np->device, PFX "[ \n");
  5688. for (i = 0; i < 6; i++)
  5689. printk("%02x ", dev->perm_addr[i]);
  5690. printk("]\n");
  5691. return -EINVAL;
  5692. }
  5693. val8 = dev->perm_addr[5];
  5694. dev->perm_addr[5] += np->port;
  5695. if (dev->perm_addr[5] < val8)
  5696. dev->perm_addr[4]++;
  5697. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  5698. val = nr64(ESPC_MOD_STR_LEN);
  5699. niudbg(PROBE, "SPROM: MOD_STR_LEN[%llu]\n",
  5700. (unsigned long long) val);
  5701. if (val >= 8 * 4)
  5702. return -EINVAL;
  5703. for (i = 0; i < val; i += 4) {
  5704. u64 tmp = nr64(ESPC_NCR(5 + (i / 4)));
  5705. np->vpd.model[i + 3] = (tmp >> 0) & 0xff;
  5706. np->vpd.model[i + 2] = (tmp >> 8) & 0xff;
  5707. np->vpd.model[i + 1] = (tmp >> 16) & 0xff;
  5708. np->vpd.model[i + 0] = (tmp >> 24) & 0xff;
  5709. }
  5710. np->vpd.model[val] = '\0';
  5711. val = nr64(ESPC_BD_MOD_STR_LEN);
  5712. niudbg(PROBE, "SPROM: BD_MOD_STR_LEN[%llu]\n",
  5713. (unsigned long long) val);
  5714. if (val >= 4 * 4)
  5715. return -EINVAL;
  5716. for (i = 0; i < val; i += 4) {
  5717. u64 tmp = nr64(ESPC_NCR(14 + (i / 4)));
  5718. np->vpd.board_model[i + 3] = (tmp >> 0) & 0xff;
  5719. np->vpd.board_model[i + 2] = (tmp >> 8) & 0xff;
  5720. np->vpd.board_model[i + 1] = (tmp >> 16) & 0xff;
  5721. np->vpd.board_model[i + 0] = (tmp >> 24) & 0xff;
  5722. }
  5723. np->vpd.board_model[val] = '\0';
  5724. np->vpd.mac_num =
  5725. nr64(ESPC_NUM_PORTS_MACS) & ESPC_NUM_PORTS_MACS_VAL;
  5726. niudbg(PROBE, "SPROM: NUM_PORTS_MACS[%d]\n",
  5727. np->vpd.mac_num);
  5728. return 0;
  5729. }
  5730. static int __devinit niu_get_and_validate_port(struct niu *np)
  5731. {
  5732. struct niu_parent *parent = np->parent;
  5733. if (np->port <= 1)
  5734. np->flags |= NIU_FLAGS_XMAC;
  5735. if (!parent->num_ports) {
  5736. if (parent->plat_type == PLAT_TYPE_NIU) {
  5737. parent->num_ports = 2;
  5738. } else {
  5739. parent->num_ports = nr64(ESPC_NUM_PORTS_MACS) &
  5740. ESPC_NUM_PORTS_MACS_VAL;
  5741. if (!parent->num_ports)
  5742. parent->num_ports = 4;
  5743. }
  5744. }
  5745. niudbg(PROBE, "niu_get_and_validate_port: port[%d] num_ports[%d]\n",
  5746. np->port, parent->num_ports);
  5747. if (np->port >= parent->num_ports)
  5748. return -ENODEV;
  5749. return 0;
  5750. }
  5751. static int __devinit phy_record(struct niu_parent *parent,
  5752. struct phy_probe_info *p,
  5753. int dev_id_1, int dev_id_2, u8 phy_port,
  5754. int type)
  5755. {
  5756. u32 id = (dev_id_1 << 16) | dev_id_2;
  5757. u8 idx;
  5758. if (dev_id_1 < 0 || dev_id_2 < 0)
  5759. return 0;
  5760. if (type == PHY_TYPE_PMA_PMD || type == PHY_TYPE_PCS) {
  5761. if (((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8704) &&
  5762. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_MRVL88X2011))
  5763. return 0;
  5764. } else {
  5765. if ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM5464R)
  5766. return 0;
  5767. }
  5768. pr_info("niu%d: Found PHY %08x type %s at phy_port %u\n",
  5769. parent->index, id,
  5770. (type == PHY_TYPE_PMA_PMD ?
  5771. "PMA/PMD" :
  5772. (type == PHY_TYPE_PCS ?
  5773. "PCS" : "MII")),
  5774. phy_port);
  5775. if (p->cur[type] >= NIU_MAX_PORTS) {
  5776. printk(KERN_ERR PFX "Too many PHY ports.\n");
  5777. return -EINVAL;
  5778. }
  5779. idx = p->cur[type];
  5780. p->phy_id[type][idx] = id;
  5781. p->phy_port[type][idx] = phy_port;
  5782. p->cur[type] = idx + 1;
  5783. return 0;
  5784. }
  5785. static int __devinit port_has_10g(struct phy_probe_info *p, int port)
  5786. {
  5787. int i;
  5788. for (i = 0; i < p->cur[PHY_TYPE_PMA_PMD]; i++) {
  5789. if (p->phy_port[PHY_TYPE_PMA_PMD][i] == port)
  5790. return 1;
  5791. }
  5792. for (i = 0; i < p->cur[PHY_TYPE_PCS]; i++) {
  5793. if (p->phy_port[PHY_TYPE_PCS][i] == port)
  5794. return 1;
  5795. }
  5796. return 0;
  5797. }
  5798. static int __devinit count_10g_ports(struct phy_probe_info *p, int *lowest)
  5799. {
  5800. int port, cnt;
  5801. cnt = 0;
  5802. *lowest = 32;
  5803. for (port = 8; port < 32; port++) {
  5804. if (port_has_10g(p, port)) {
  5805. if (!cnt)
  5806. *lowest = port;
  5807. cnt++;
  5808. }
  5809. }
  5810. return cnt;
  5811. }
  5812. static int __devinit count_1g_ports(struct phy_probe_info *p, int *lowest)
  5813. {
  5814. *lowest = 32;
  5815. if (p->cur[PHY_TYPE_MII])
  5816. *lowest = p->phy_port[PHY_TYPE_MII][0];
  5817. return p->cur[PHY_TYPE_MII];
  5818. }
  5819. static void __devinit niu_n2_divide_channels(struct niu_parent *parent)
  5820. {
  5821. int num_ports = parent->num_ports;
  5822. int i;
  5823. for (i = 0; i < num_ports; i++) {
  5824. parent->rxchan_per_port[i] = (16 / num_ports);
  5825. parent->txchan_per_port[i] = (16 / num_ports);
  5826. pr_info(PFX "niu%d: Port %u [%u RX chans] "
  5827. "[%u TX chans]\n",
  5828. parent->index, i,
  5829. parent->rxchan_per_port[i],
  5830. parent->txchan_per_port[i]);
  5831. }
  5832. }
  5833. static void __devinit niu_divide_channels(struct niu_parent *parent,
  5834. int num_10g, int num_1g)
  5835. {
  5836. int num_ports = parent->num_ports;
  5837. int rx_chans_per_10g, rx_chans_per_1g;
  5838. int tx_chans_per_10g, tx_chans_per_1g;
  5839. int i, tot_rx, tot_tx;
  5840. if (!num_10g || !num_1g) {
  5841. rx_chans_per_10g = rx_chans_per_1g =
  5842. (NIU_NUM_RXCHAN / num_ports);
  5843. tx_chans_per_10g = tx_chans_per_1g =
  5844. (NIU_NUM_TXCHAN / num_ports);
  5845. } else {
  5846. rx_chans_per_1g = NIU_NUM_RXCHAN / 8;
  5847. rx_chans_per_10g = (NIU_NUM_RXCHAN -
  5848. (rx_chans_per_1g * num_1g)) /
  5849. num_10g;
  5850. tx_chans_per_1g = NIU_NUM_TXCHAN / 6;
  5851. tx_chans_per_10g = (NIU_NUM_TXCHAN -
  5852. (tx_chans_per_1g * num_1g)) /
  5853. num_10g;
  5854. }
  5855. tot_rx = tot_tx = 0;
  5856. for (i = 0; i < num_ports; i++) {
  5857. int type = phy_decode(parent->port_phy, i);
  5858. if (type == PORT_TYPE_10G) {
  5859. parent->rxchan_per_port[i] = rx_chans_per_10g;
  5860. parent->txchan_per_port[i] = tx_chans_per_10g;
  5861. } else {
  5862. parent->rxchan_per_port[i] = rx_chans_per_1g;
  5863. parent->txchan_per_port[i] = tx_chans_per_1g;
  5864. }
  5865. pr_info(PFX "niu%d: Port %u [%u RX chans] "
  5866. "[%u TX chans]\n",
  5867. parent->index, i,
  5868. parent->rxchan_per_port[i],
  5869. parent->txchan_per_port[i]);
  5870. tot_rx += parent->rxchan_per_port[i];
  5871. tot_tx += parent->txchan_per_port[i];
  5872. }
  5873. if (tot_rx > NIU_NUM_RXCHAN) {
  5874. printk(KERN_ERR PFX "niu%d: Too many RX channels (%d), "
  5875. "resetting to one per port.\n",
  5876. parent->index, tot_rx);
  5877. for (i = 0; i < num_ports; i++)
  5878. parent->rxchan_per_port[i] = 1;
  5879. }
  5880. if (tot_tx > NIU_NUM_TXCHAN) {
  5881. printk(KERN_ERR PFX "niu%d: Too many TX channels (%d), "
  5882. "resetting to one per port.\n",
  5883. parent->index, tot_tx);
  5884. for (i = 0; i < num_ports; i++)
  5885. parent->txchan_per_port[i] = 1;
  5886. }
  5887. if (tot_rx < NIU_NUM_RXCHAN || tot_tx < NIU_NUM_TXCHAN) {
  5888. printk(KERN_WARNING PFX "niu%d: Driver bug, wasted channels, "
  5889. "RX[%d] TX[%d]\n",
  5890. parent->index, tot_rx, tot_tx);
  5891. }
  5892. }
  5893. static void __devinit niu_divide_rdc_groups(struct niu_parent *parent,
  5894. int num_10g, int num_1g)
  5895. {
  5896. int i, num_ports = parent->num_ports;
  5897. int rdc_group, rdc_groups_per_port;
  5898. int rdc_channel_base;
  5899. rdc_group = 0;
  5900. rdc_groups_per_port = NIU_NUM_RDC_TABLES / num_ports;
  5901. rdc_channel_base = 0;
  5902. for (i = 0; i < num_ports; i++) {
  5903. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[i];
  5904. int grp, num_channels = parent->rxchan_per_port[i];
  5905. int this_channel_offset;
  5906. tp->first_table_num = rdc_group;
  5907. tp->num_tables = rdc_groups_per_port;
  5908. this_channel_offset = 0;
  5909. for (grp = 0; grp < tp->num_tables; grp++) {
  5910. struct rdc_table *rt = &tp->tables[grp];
  5911. int slot;
  5912. pr_info(PFX "niu%d: Port %d RDC tbl(%d) [ ",
  5913. parent->index, i, tp->first_table_num + grp);
  5914. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++) {
  5915. rt->rxdma_channel[slot] =
  5916. rdc_channel_base + this_channel_offset;
  5917. printk("%d ", rt->rxdma_channel[slot]);
  5918. if (++this_channel_offset == num_channels)
  5919. this_channel_offset = 0;
  5920. }
  5921. printk("]\n");
  5922. }
  5923. parent->rdc_default[i] = rdc_channel_base;
  5924. rdc_channel_base += num_channels;
  5925. rdc_group += rdc_groups_per_port;
  5926. }
  5927. }
  5928. static int __devinit fill_phy_probe_info(struct niu *np,
  5929. struct niu_parent *parent,
  5930. struct phy_probe_info *info)
  5931. {
  5932. unsigned long flags;
  5933. int port, err;
  5934. memset(info, 0, sizeof(*info));
  5935. /* Port 0 to 7 are reserved for onboard Serdes, probe the rest. */
  5936. niu_lock_parent(np, flags);
  5937. err = 0;
  5938. for (port = 8; port < 32; port++) {
  5939. int dev_id_1, dev_id_2;
  5940. dev_id_1 = mdio_read(np, port,
  5941. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID1);
  5942. dev_id_2 = mdio_read(np, port,
  5943. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID2);
  5944. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  5945. PHY_TYPE_PMA_PMD);
  5946. if (err)
  5947. break;
  5948. dev_id_1 = mdio_read(np, port,
  5949. NIU_PCS_DEV_ADDR, MII_PHYSID1);
  5950. dev_id_2 = mdio_read(np, port,
  5951. NIU_PCS_DEV_ADDR, MII_PHYSID2);
  5952. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  5953. PHY_TYPE_PCS);
  5954. if (err)
  5955. break;
  5956. dev_id_1 = mii_read(np, port, MII_PHYSID1);
  5957. dev_id_2 = mii_read(np, port, MII_PHYSID2);
  5958. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  5959. PHY_TYPE_MII);
  5960. if (err)
  5961. break;
  5962. }
  5963. niu_unlock_parent(np, flags);
  5964. return err;
  5965. }
  5966. static int __devinit walk_phys(struct niu *np, struct niu_parent *parent)
  5967. {
  5968. struct phy_probe_info *info = &parent->phy_probe_info;
  5969. int lowest_10g, lowest_1g;
  5970. int num_10g, num_1g;
  5971. u32 val;
  5972. int err;
  5973. if (!strcmp(np->vpd.model, "SUNW,CP3220") ||
  5974. !strcmp(np->vpd.model, "SUNW,CP3260")) {
  5975. num_10g = 0;
  5976. num_1g = 2;
  5977. parent->plat_type = PLAT_TYPE_ATCA_CP3220;
  5978. parent->num_ports = 4;
  5979. val = (phy_encode(PORT_TYPE_1G, 0) |
  5980. phy_encode(PORT_TYPE_1G, 1) |
  5981. phy_encode(PORT_TYPE_1G, 2) |
  5982. phy_encode(PORT_TYPE_1G, 3));
  5983. } else {
  5984. err = fill_phy_probe_info(np, parent, info);
  5985. if (err)
  5986. return err;
  5987. num_10g = count_10g_ports(info, &lowest_10g);
  5988. num_1g = count_1g_ports(info, &lowest_1g);
  5989. switch ((num_10g << 4) | num_1g) {
  5990. case 0x24:
  5991. if (lowest_1g == 10)
  5992. parent->plat_type = PLAT_TYPE_VF_P0;
  5993. else if (lowest_1g == 26)
  5994. parent->plat_type = PLAT_TYPE_VF_P1;
  5995. else
  5996. goto unknown_vg_1g_port;
  5997. /* fallthru */
  5998. case 0x22:
  5999. val = (phy_encode(PORT_TYPE_10G, 0) |
  6000. phy_encode(PORT_TYPE_10G, 1) |
  6001. phy_encode(PORT_TYPE_1G, 2) |
  6002. phy_encode(PORT_TYPE_1G, 3));
  6003. break;
  6004. case 0x20:
  6005. val = (phy_encode(PORT_TYPE_10G, 0) |
  6006. phy_encode(PORT_TYPE_10G, 1));
  6007. break;
  6008. case 0x10:
  6009. val = phy_encode(PORT_TYPE_10G, np->port);
  6010. break;
  6011. case 0x14:
  6012. if (lowest_1g == 10)
  6013. parent->plat_type = PLAT_TYPE_VF_P0;
  6014. else if (lowest_1g == 26)
  6015. parent->plat_type = PLAT_TYPE_VF_P1;
  6016. else
  6017. goto unknown_vg_1g_port;
  6018. /* fallthru */
  6019. case 0x13:
  6020. if ((lowest_10g & 0x7) == 0)
  6021. val = (phy_encode(PORT_TYPE_10G, 0) |
  6022. phy_encode(PORT_TYPE_1G, 1) |
  6023. phy_encode(PORT_TYPE_1G, 2) |
  6024. phy_encode(PORT_TYPE_1G, 3));
  6025. else
  6026. val = (phy_encode(PORT_TYPE_1G, 0) |
  6027. phy_encode(PORT_TYPE_10G, 1) |
  6028. phy_encode(PORT_TYPE_1G, 2) |
  6029. phy_encode(PORT_TYPE_1G, 3));
  6030. break;
  6031. case 0x04:
  6032. if (lowest_1g == 10)
  6033. parent->plat_type = PLAT_TYPE_VF_P0;
  6034. else if (lowest_1g == 26)
  6035. parent->plat_type = PLAT_TYPE_VF_P1;
  6036. else
  6037. goto unknown_vg_1g_port;
  6038. val = (phy_encode(PORT_TYPE_1G, 0) |
  6039. phy_encode(PORT_TYPE_1G, 1) |
  6040. phy_encode(PORT_TYPE_1G, 2) |
  6041. phy_encode(PORT_TYPE_1G, 3));
  6042. break;
  6043. default:
  6044. printk(KERN_ERR PFX "Unsupported port config "
  6045. "10G[%d] 1G[%d]\n",
  6046. num_10g, num_1g);
  6047. return -EINVAL;
  6048. }
  6049. }
  6050. parent->port_phy = val;
  6051. if (parent->plat_type == PLAT_TYPE_NIU)
  6052. niu_n2_divide_channels(parent);
  6053. else
  6054. niu_divide_channels(parent, num_10g, num_1g);
  6055. niu_divide_rdc_groups(parent, num_10g, num_1g);
  6056. return 0;
  6057. unknown_vg_1g_port:
  6058. printk(KERN_ERR PFX "Cannot identify platform type, 1gport=%d\n",
  6059. lowest_1g);
  6060. return -EINVAL;
  6061. }
  6062. static int __devinit niu_probe_ports(struct niu *np)
  6063. {
  6064. struct niu_parent *parent = np->parent;
  6065. int err, i;
  6066. niudbg(PROBE, "niu_probe_ports(): port_phy[%08x]\n",
  6067. parent->port_phy);
  6068. if (parent->port_phy == PORT_PHY_UNKNOWN) {
  6069. err = walk_phys(np, parent);
  6070. if (err)
  6071. return err;
  6072. niu_set_ldg_timer_res(np, 2);
  6073. for (i = 0; i <= LDN_MAX; i++)
  6074. niu_ldn_irq_enable(np, i, 0);
  6075. }
  6076. if (parent->port_phy == PORT_PHY_INVALID)
  6077. return -EINVAL;
  6078. return 0;
  6079. }
  6080. static int __devinit niu_classifier_swstate_init(struct niu *np)
  6081. {
  6082. struct niu_classifier *cp = &np->clas;
  6083. niudbg(PROBE, "niu_classifier_swstate_init: num_tcam(%d)\n",
  6084. np->parent->tcam_num_entries);
  6085. cp->tcam_index = (u16) np->port;
  6086. cp->h1_init = 0xffffffff;
  6087. cp->h2_init = 0xffff;
  6088. return fflp_early_init(np);
  6089. }
  6090. static void __devinit niu_link_config_init(struct niu *np)
  6091. {
  6092. struct niu_link_config *lp = &np->link_config;
  6093. lp->advertising = (ADVERTISED_10baseT_Half |
  6094. ADVERTISED_10baseT_Full |
  6095. ADVERTISED_100baseT_Half |
  6096. ADVERTISED_100baseT_Full |
  6097. ADVERTISED_1000baseT_Half |
  6098. ADVERTISED_1000baseT_Full |
  6099. ADVERTISED_10000baseT_Full |
  6100. ADVERTISED_Autoneg);
  6101. lp->speed = lp->active_speed = SPEED_INVALID;
  6102. lp->duplex = lp->active_duplex = DUPLEX_INVALID;
  6103. #if 0
  6104. lp->loopback_mode = LOOPBACK_MAC;
  6105. lp->active_speed = SPEED_10000;
  6106. lp->active_duplex = DUPLEX_FULL;
  6107. #else
  6108. lp->loopback_mode = LOOPBACK_DISABLED;
  6109. #endif
  6110. }
  6111. static int __devinit niu_init_mac_ipp_pcs_base(struct niu *np)
  6112. {
  6113. switch (np->port) {
  6114. case 0:
  6115. np->mac_regs = np->regs + XMAC_PORT0_OFF;
  6116. np->ipp_off = 0x00000;
  6117. np->pcs_off = 0x04000;
  6118. np->xpcs_off = 0x02000;
  6119. break;
  6120. case 1:
  6121. np->mac_regs = np->regs + XMAC_PORT1_OFF;
  6122. np->ipp_off = 0x08000;
  6123. np->pcs_off = 0x0a000;
  6124. np->xpcs_off = 0x08000;
  6125. break;
  6126. case 2:
  6127. np->mac_regs = np->regs + BMAC_PORT2_OFF;
  6128. np->ipp_off = 0x04000;
  6129. np->pcs_off = 0x0e000;
  6130. np->xpcs_off = ~0UL;
  6131. break;
  6132. case 3:
  6133. np->mac_regs = np->regs + BMAC_PORT3_OFF;
  6134. np->ipp_off = 0x0c000;
  6135. np->pcs_off = 0x12000;
  6136. np->xpcs_off = ~0UL;
  6137. break;
  6138. default:
  6139. dev_err(np->device, PFX "Port %u is invalid, cannot "
  6140. "compute MAC block offset.\n", np->port);
  6141. return -EINVAL;
  6142. }
  6143. return 0;
  6144. }
  6145. static void __devinit niu_try_msix(struct niu *np, u8 *ldg_num_map)
  6146. {
  6147. struct msix_entry msi_vec[NIU_NUM_LDG];
  6148. struct niu_parent *parent = np->parent;
  6149. struct pci_dev *pdev = np->pdev;
  6150. int i, num_irqs, err;
  6151. u8 first_ldg;
  6152. first_ldg = (NIU_NUM_LDG / parent->num_ports) * np->port;
  6153. for (i = 0; i < (NIU_NUM_LDG / parent->num_ports); i++)
  6154. ldg_num_map[i] = first_ldg + i;
  6155. num_irqs = (parent->rxchan_per_port[np->port] +
  6156. parent->txchan_per_port[np->port] +
  6157. (np->port == 0 ? 3 : 1));
  6158. BUG_ON(num_irqs > (NIU_NUM_LDG / parent->num_ports));
  6159. retry:
  6160. for (i = 0; i < num_irqs; i++) {
  6161. msi_vec[i].vector = 0;
  6162. msi_vec[i].entry = i;
  6163. }
  6164. err = pci_enable_msix(pdev, msi_vec, num_irqs);
  6165. if (err < 0) {
  6166. np->flags &= ~NIU_FLAGS_MSIX;
  6167. return;
  6168. }
  6169. if (err > 0) {
  6170. num_irqs = err;
  6171. goto retry;
  6172. }
  6173. np->flags |= NIU_FLAGS_MSIX;
  6174. for (i = 0; i < num_irqs; i++)
  6175. np->ldg[i].irq = msi_vec[i].vector;
  6176. np->num_ldg = num_irqs;
  6177. }
  6178. static int __devinit niu_n2_irq_init(struct niu *np, u8 *ldg_num_map)
  6179. {
  6180. #ifdef CONFIG_SPARC64
  6181. struct of_device *op = np->op;
  6182. const u32 *int_prop;
  6183. int i;
  6184. int_prop = of_get_property(op->node, "interrupts", NULL);
  6185. if (!int_prop)
  6186. return -ENODEV;
  6187. for (i = 0; i < op->num_irqs; i++) {
  6188. ldg_num_map[i] = int_prop[i];
  6189. np->ldg[i].irq = op->irqs[i];
  6190. }
  6191. np->num_ldg = op->num_irqs;
  6192. return 0;
  6193. #else
  6194. return -EINVAL;
  6195. #endif
  6196. }
  6197. static int __devinit niu_ldg_init(struct niu *np)
  6198. {
  6199. struct niu_parent *parent = np->parent;
  6200. u8 ldg_num_map[NIU_NUM_LDG];
  6201. int first_chan, num_chan;
  6202. int i, err, ldg_rotor;
  6203. u8 port;
  6204. np->num_ldg = 1;
  6205. np->ldg[0].irq = np->dev->irq;
  6206. if (parent->plat_type == PLAT_TYPE_NIU) {
  6207. err = niu_n2_irq_init(np, ldg_num_map);
  6208. if (err)
  6209. return err;
  6210. } else
  6211. niu_try_msix(np, ldg_num_map);
  6212. port = np->port;
  6213. for (i = 0; i < np->num_ldg; i++) {
  6214. struct niu_ldg *lp = &np->ldg[i];
  6215. netif_napi_add(np->dev, &lp->napi, niu_poll, 64);
  6216. lp->np = np;
  6217. lp->ldg_num = ldg_num_map[i];
  6218. lp->timer = 2; /* XXX */
  6219. /* On N2 NIU the firmware has setup the SID mappings so they go
  6220. * to the correct values that will route the LDG to the proper
  6221. * interrupt in the NCU interrupt table.
  6222. */
  6223. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  6224. err = niu_set_ldg_sid(np, lp->ldg_num, port, i);
  6225. if (err)
  6226. return err;
  6227. }
  6228. }
  6229. /* We adopt the LDG assignment ordering used by the N2 NIU
  6230. * 'interrupt' properties because that simplifies a lot of
  6231. * things. This ordering is:
  6232. *
  6233. * MAC
  6234. * MIF (if port zero)
  6235. * SYSERR (if port zero)
  6236. * RX channels
  6237. * TX channels
  6238. */
  6239. ldg_rotor = 0;
  6240. err = niu_ldg_assign_ldn(np, parent, ldg_num_map[ldg_rotor],
  6241. LDN_MAC(port));
  6242. if (err)
  6243. return err;
  6244. ldg_rotor++;
  6245. if (ldg_rotor == np->num_ldg)
  6246. ldg_rotor = 0;
  6247. if (port == 0) {
  6248. err = niu_ldg_assign_ldn(np, parent,
  6249. ldg_num_map[ldg_rotor],
  6250. LDN_MIF);
  6251. if (err)
  6252. return err;
  6253. ldg_rotor++;
  6254. if (ldg_rotor == np->num_ldg)
  6255. ldg_rotor = 0;
  6256. err = niu_ldg_assign_ldn(np, parent,
  6257. ldg_num_map[ldg_rotor],
  6258. LDN_DEVICE_ERROR);
  6259. if (err)
  6260. return err;
  6261. ldg_rotor++;
  6262. if (ldg_rotor == np->num_ldg)
  6263. ldg_rotor = 0;
  6264. }
  6265. first_chan = 0;
  6266. for (i = 0; i < port; i++)
  6267. first_chan += parent->rxchan_per_port[port];
  6268. num_chan = parent->rxchan_per_port[port];
  6269. for (i = first_chan; i < (first_chan + num_chan); i++) {
  6270. err = niu_ldg_assign_ldn(np, parent,
  6271. ldg_num_map[ldg_rotor],
  6272. LDN_RXDMA(i));
  6273. if (err)
  6274. return err;
  6275. ldg_rotor++;
  6276. if (ldg_rotor == np->num_ldg)
  6277. ldg_rotor = 0;
  6278. }
  6279. first_chan = 0;
  6280. for (i = 0; i < port; i++)
  6281. first_chan += parent->txchan_per_port[port];
  6282. num_chan = parent->txchan_per_port[port];
  6283. for (i = first_chan; i < (first_chan + num_chan); i++) {
  6284. err = niu_ldg_assign_ldn(np, parent,
  6285. ldg_num_map[ldg_rotor],
  6286. LDN_TXDMA(i));
  6287. if (err)
  6288. return err;
  6289. ldg_rotor++;
  6290. if (ldg_rotor == np->num_ldg)
  6291. ldg_rotor = 0;
  6292. }
  6293. return 0;
  6294. }
  6295. static void __devexit niu_ldg_free(struct niu *np)
  6296. {
  6297. if (np->flags & NIU_FLAGS_MSIX)
  6298. pci_disable_msix(np->pdev);
  6299. }
  6300. static int __devinit niu_get_of_props(struct niu *np)
  6301. {
  6302. #ifdef CONFIG_SPARC64
  6303. struct net_device *dev = np->dev;
  6304. struct device_node *dp;
  6305. const char *phy_type;
  6306. const u8 *mac_addr;
  6307. int prop_len;
  6308. if (np->parent->plat_type == PLAT_TYPE_NIU)
  6309. dp = np->op->node;
  6310. else
  6311. dp = pci_device_to_OF_node(np->pdev);
  6312. phy_type = of_get_property(dp, "phy-type", &prop_len);
  6313. if (!phy_type) {
  6314. dev_err(np->device, PFX "%s: OF node lacks "
  6315. "phy-type property\n",
  6316. dp->full_name);
  6317. return -EINVAL;
  6318. }
  6319. if (!strcmp(phy_type, "none"))
  6320. return -ENODEV;
  6321. strcpy(np->vpd.phy_type, phy_type);
  6322. if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  6323. dev_err(np->device, PFX "%s: Illegal phy string [%s].\n",
  6324. dp->full_name, np->vpd.phy_type);
  6325. return -EINVAL;
  6326. }
  6327. mac_addr = of_get_property(dp, "local-mac-address", &prop_len);
  6328. if (!mac_addr) {
  6329. dev_err(np->device, PFX "%s: OF node lacks "
  6330. "local-mac-address property\n",
  6331. dp->full_name);
  6332. return -EINVAL;
  6333. }
  6334. if (prop_len != dev->addr_len) {
  6335. dev_err(np->device, PFX "%s: OF MAC address prop len (%d) "
  6336. "is wrong.\n",
  6337. dp->full_name, prop_len);
  6338. }
  6339. memcpy(dev->perm_addr, mac_addr, dev->addr_len);
  6340. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  6341. int i;
  6342. dev_err(np->device, PFX "%s: OF MAC address is invalid\n",
  6343. dp->full_name);
  6344. dev_err(np->device, PFX "%s: [ \n",
  6345. dp->full_name);
  6346. for (i = 0; i < 6; i++)
  6347. printk("%02x ", dev->perm_addr[i]);
  6348. printk("]\n");
  6349. return -EINVAL;
  6350. }
  6351. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  6352. return 0;
  6353. #else
  6354. return -EINVAL;
  6355. #endif
  6356. }
  6357. static int __devinit niu_get_invariants(struct niu *np)
  6358. {
  6359. int err, have_props;
  6360. u32 offset;
  6361. err = niu_get_of_props(np);
  6362. if (err == -ENODEV)
  6363. return err;
  6364. have_props = !err;
  6365. err = niu_get_and_validate_port(np);
  6366. if (err)
  6367. return err;
  6368. err = niu_init_mac_ipp_pcs_base(np);
  6369. if (err)
  6370. return err;
  6371. if (!have_props) {
  6372. if (np->parent->plat_type == PLAT_TYPE_NIU)
  6373. return -EINVAL;
  6374. nw64(ESPC_PIO_EN, ESPC_PIO_EN_ENABLE);
  6375. offset = niu_pci_vpd_offset(np);
  6376. niudbg(PROBE, "niu_get_invariants: VPD offset [%08x]\n",
  6377. offset);
  6378. if (offset)
  6379. niu_pci_vpd_fetch(np, offset);
  6380. nw64(ESPC_PIO_EN, 0);
  6381. if (np->flags & NIU_FLAGS_VPD_VALID)
  6382. niu_pci_vpd_validate(np);
  6383. if (!(np->flags & NIU_FLAGS_VPD_VALID)) {
  6384. err = niu_pci_probe_sprom(np);
  6385. if (err)
  6386. return err;
  6387. }
  6388. }
  6389. err = niu_probe_ports(np);
  6390. if (err)
  6391. return err;
  6392. niu_ldg_init(np);
  6393. niu_classifier_swstate_init(np);
  6394. niu_link_config_init(np);
  6395. err = niu_determine_phy_disposition(np);
  6396. if (!err)
  6397. err = niu_init_link(np);
  6398. return err;
  6399. }
  6400. static LIST_HEAD(niu_parent_list);
  6401. static DEFINE_MUTEX(niu_parent_lock);
  6402. static int niu_parent_index;
  6403. static ssize_t show_port_phy(struct device *dev,
  6404. struct device_attribute *attr, char *buf)
  6405. {
  6406. struct platform_device *plat_dev = to_platform_device(dev);
  6407. struct niu_parent *p = plat_dev->dev.platform_data;
  6408. u32 port_phy = p->port_phy;
  6409. char *orig_buf = buf;
  6410. int i;
  6411. if (port_phy == PORT_PHY_UNKNOWN ||
  6412. port_phy == PORT_PHY_INVALID)
  6413. return 0;
  6414. for (i = 0; i < p->num_ports; i++) {
  6415. const char *type_str;
  6416. int type;
  6417. type = phy_decode(port_phy, i);
  6418. if (type == PORT_TYPE_10G)
  6419. type_str = "10G";
  6420. else
  6421. type_str = "1G";
  6422. buf += sprintf(buf,
  6423. (i == 0) ? "%s" : " %s",
  6424. type_str);
  6425. }
  6426. buf += sprintf(buf, "\n");
  6427. return buf - orig_buf;
  6428. }
  6429. static ssize_t show_plat_type(struct device *dev,
  6430. struct device_attribute *attr, char *buf)
  6431. {
  6432. struct platform_device *plat_dev = to_platform_device(dev);
  6433. struct niu_parent *p = plat_dev->dev.platform_data;
  6434. const char *type_str;
  6435. switch (p->plat_type) {
  6436. case PLAT_TYPE_ATLAS:
  6437. type_str = "atlas";
  6438. break;
  6439. case PLAT_TYPE_NIU:
  6440. type_str = "niu";
  6441. break;
  6442. case PLAT_TYPE_VF_P0:
  6443. type_str = "vf_p0";
  6444. break;
  6445. case PLAT_TYPE_VF_P1:
  6446. type_str = "vf_p1";
  6447. break;
  6448. default:
  6449. type_str = "unknown";
  6450. break;
  6451. }
  6452. return sprintf(buf, "%s\n", type_str);
  6453. }
  6454. static ssize_t __show_chan_per_port(struct device *dev,
  6455. struct device_attribute *attr, char *buf,
  6456. int rx)
  6457. {
  6458. struct platform_device *plat_dev = to_platform_device(dev);
  6459. struct niu_parent *p = plat_dev->dev.platform_data;
  6460. char *orig_buf = buf;
  6461. u8 *arr;
  6462. int i;
  6463. arr = (rx ? p->rxchan_per_port : p->txchan_per_port);
  6464. for (i = 0; i < p->num_ports; i++) {
  6465. buf += sprintf(buf,
  6466. (i == 0) ? "%d" : " %d",
  6467. arr[i]);
  6468. }
  6469. buf += sprintf(buf, "\n");
  6470. return buf - orig_buf;
  6471. }
  6472. static ssize_t show_rxchan_per_port(struct device *dev,
  6473. struct device_attribute *attr, char *buf)
  6474. {
  6475. return __show_chan_per_port(dev, attr, buf, 1);
  6476. }
  6477. static ssize_t show_txchan_per_port(struct device *dev,
  6478. struct device_attribute *attr, char *buf)
  6479. {
  6480. return __show_chan_per_port(dev, attr, buf, 1);
  6481. }
  6482. static ssize_t show_num_ports(struct device *dev,
  6483. struct device_attribute *attr, char *buf)
  6484. {
  6485. struct platform_device *plat_dev = to_platform_device(dev);
  6486. struct niu_parent *p = plat_dev->dev.platform_data;
  6487. return sprintf(buf, "%d\n", p->num_ports);
  6488. }
  6489. static struct device_attribute niu_parent_attributes[] = {
  6490. __ATTR(port_phy, S_IRUGO, show_port_phy, NULL),
  6491. __ATTR(plat_type, S_IRUGO, show_plat_type, NULL),
  6492. __ATTR(rxchan_per_port, S_IRUGO, show_rxchan_per_port, NULL),
  6493. __ATTR(txchan_per_port, S_IRUGO, show_txchan_per_port, NULL),
  6494. __ATTR(num_ports, S_IRUGO, show_num_ports, NULL),
  6495. {}
  6496. };
  6497. static struct niu_parent * __devinit niu_new_parent(struct niu *np,
  6498. union niu_parent_id *id,
  6499. u8 ptype)
  6500. {
  6501. struct platform_device *plat_dev;
  6502. struct niu_parent *p;
  6503. int i;
  6504. niudbg(PROBE, "niu_new_parent: Creating new parent.\n");
  6505. plat_dev = platform_device_register_simple("niu", niu_parent_index,
  6506. NULL, 0);
  6507. if (!plat_dev)
  6508. return NULL;
  6509. for (i = 0; attr_name(niu_parent_attributes[i]); i++) {
  6510. int err = device_create_file(&plat_dev->dev,
  6511. &niu_parent_attributes[i]);
  6512. if (err)
  6513. goto fail_unregister;
  6514. }
  6515. p = kzalloc(sizeof(*p), GFP_KERNEL);
  6516. if (!p)
  6517. goto fail_unregister;
  6518. p->index = niu_parent_index++;
  6519. plat_dev->dev.platform_data = p;
  6520. p->plat_dev = plat_dev;
  6521. memcpy(&p->id, id, sizeof(*id));
  6522. p->plat_type = ptype;
  6523. INIT_LIST_HEAD(&p->list);
  6524. atomic_set(&p->refcnt, 0);
  6525. list_add(&p->list, &niu_parent_list);
  6526. spin_lock_init(&p->lock);
  6527. p->rxdma_clock_divider = 7500;
  6528. p->tcam_num_entries = NIU_PCI_TCAM_ENTRIES;
  6529. if (p->plat_type == PLAT_TYPE_NIU)
  6530. p->tcam_num_entries = NIU_NONPCI_TCAM_ENTRIES;
  6531. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  6532. int index = i - CLASS_CODE_USER_PROG1;
  6533. p->tcam_key[index] = TCAM_KEY_TSEL;
  6534. p->flow_key[index] = (FLOW_KEY_IPSA |
  6535. FLOW_KEY_IPDA |
  6536. FLOW_KEY_PROTO |
  6537. (FLOW_KEY_L4_BYTE12 <<
  6538. FLOW_KEY_L4_0_SHIFT) |
  6539. (FLOW_KEY_L4_BYTE12 <<
  6540. FLOW_KEY_L4_1_SHIFT));
  6541. }
  6542. for (i = 0; i < LDN_MAX + 1; i++)
  6543. p->ldg_map[i] = LDG_INVALID;
  6544. return p;
  6545. fail_unregister:
  6546. platform_device_unregister(plat_dev);
  6547. return NULL;
  6548. }
  6549. static struct niu_parent * __devinit niu_get_parent(struct niu *np,
  6550. union niu_parent_id *id,
  6551. u8 ptype)
  6552. {
  6553. struct niu_parent *p, *tmp;
  6554. int port = np->port;
  6555. niudbg(PROBE, "niu_get_parent: platform_type[%u] port[%u]\n",
  6556. ptype, port);
  6557. mutex_lock(&niu_parent_lock);
  6558. p = NULL;
  6559. list_for_each_entry(tmp, &niu_parent_list, list) {
  6560. if (!memcmp(id, &tmp->id, sizeof(*id))) {
  6561. p = tmp;
  6562. break;
  6563. }
  6564. }
  6565. if (!p)
  6566. p = niu_new_parent(np, id, ptype);
  6567. if (p) {
  6568. char port_name[6];
  6569. int err;
  6570. sprintf(port_name, "port%d", port);
  6571. err = sysfs_create_link(&p->plat_dev->dev.kobj,
  6572. &np->device->kobj,
  6573. port_name);
  6574. if (!err) {
  6575. p->ports[port] = np;
  6576. atomic_inc(&p->refcnt);
  6577. }
  6578. }
  6579. mutex_unlock(&niu_parent_lock);
  6580. return p;
  6581. }
  6582. static void niu_put_parent(struct niu *np)
  6583. {
  6584. struct niu_parent *p = np->parent;
  6585. u8 port = np->port;
  6586. char port_name[6];
  6587. BUG_ON(!p || p->ports[port] != np);
  6588. niudbg(PROBE, "niu_put_parent: port[%u]\n", port);
  6589. sprintf(port_name, "port%d", port);
  6590. mutex_lock(&niu_parent_lock);
  6591. sysfs_remove_link(&p->plat_dev->dev.kobj, port_name);
  6592. p->ports[port] = NULL;
  6593. np->parent = NULL;
  6594. if (atomic_dec_and_test(&p->refcnt)) {
  6595. list_del(&p->list);
  6596. platform_device_unregister(p->plat_dev);
  6597. }
  6598. mutex_unlock(&niu_parent_lock);
  6599. }
  6600. static void *niu_pci_alloc_coherent(struct device *dev, size_t size,
  6601. u64 *handle, gfp_t flag)
  6602. {
  6603. dma_addr_t dh;
  6604. void *ret;
  6605. ret = dma_alloc_coherent(dev, size, &dh, flag);
  6606. if (ret)
  6607. *handle = dh;
  6608. return ret;
  6609. }
  6610. static void niu_pci_free_coherent(struct device *dev, size_t size,
  6611. void *cpu_addr, u64 handle)
  6612. {
  6613. dma_free_coherent(dev, size, cpu_addr, handle);
  6614. }
  6615. static u64 niu_pci_map_page(struct device *dev, struct page *page,
  6616. unsigned long offset, size_t size,
  6617. enum dma_data_direction direction)
  6618. {
  6619. return dma_map_page(dev, page, offset, size, direction);
  6620. }
  6621. static void niu_pci_unmap_page(struct device *dev, u64 dma_address,
  6622. size_t size, enum dma_data_direction direction)
  6623. {
  6624. return dma_unmap_page(dev, dma_address, size, direction);
  6625. }
  6626. static u64 niu_pci_map_single(struct device *dev, void *cpu_addr,
  6627. size_t size,
  6628. enum dma_data_direction direction)
  6629. {
  6630. return dma_map_single(dev, cpu_addr, size, direction);
  6631. }
  6632. static void niu_pci_unmap_single(struct device *dev, u64 dma_address,
  6633. size_t size,
  6634. enum dma_data_direction direction)
  6635. {
  6636. dma_unmap_single(dev, dma_address, size, direction);
  6637. }
  6638. static const struct niu_ops niu_pci_ops = {
  6639. .alloc_coherent = niu_pci_alloc_coherent,
  6640. .free_coherent = niu_pci_free_coherent,
  6641. .map_page = niu_pci_map_page,
  6642. .unmap_page = niu_pci_unmap_page,
  6643. .map_single = niu_pci_map_single,
  6644. .unmap_single = niu_pci_unmap_single,
  6645. };
  6646. static void __devinit niu_driver_version(void)
  6647. {
  6648. static int niu_version_printed;
  6649. if (niu_version_printed++ == 0)
  6650. pr_info("%s", version);
  6651. }
  6652. static struct net_device * __devinit niu_alloc_and_init(
  6653. struct device *gen_dev, struct pci_dev *pdev,
  6654. struct of_device *op, const struct niu_ops *ops,
  6655. u8 port)
  6656. {
  6657. struct net_device *dev = alloc_etherdev(sizeof(struct niu));
  6658. struct niu *np;
  6659. if (!dev) {
  6660. dev_err(gen_dev, PFX "Etherdev alloc failed, aborting.\n");
  6661. return NULL;
  6662. }
  6663. SET_NETDEV_DEV(dev, gen_dev);
  6664. np = netdev_priv(dev);
  6665. np->dev = dev;
  6666. np->pdev = pdev;
  6667. np->op = op;
  6668. np->device = gen_dev;
  6669. np->ops = ops;
  6670. np->msg_enable = niu_debug;
  6671. spin_lock_init(&np->lock);
  6672. INIT_WORK(&np->reset_task, niu_reset_task);
  6673. np->port = port;
  6674. return dev;
  6675. }
  6676. static void __devinit niu_assign_netdev_ops(struct net_device *dev)
  6677. {
  6678. dev->open = niu_open;
  6679. dev->stop = niu_close;
  6680. dev->get_stats = niu_get_stats;
  6681. dev->set_multicast_list = niu_set_rx_mode;
  6682. dev->set_mac_address = niu_set_mac_addr;
  6683. dev->do_ioctl = niu_ioctl;
  6684. dev->tx_timeout = niu_tx_timeout;
  6685. dev->hard_start_xmit = niu_start_xmit;
  6686. dev->ethtool_ops = &niu_ethtool_ops;
  6687. dev->watchdog_timeo = NIU_TX_TIMEOUT;
  6688. dev->change_mtu = niu_change_mtu;
  6689. }
  6690. static void __devinit niu_device_announce(struct niu *np)
  6691. {
  6692. struct net_device *dev = np->dev;
  6693. DECLARE_MAC_BUF(mac);
  6694. pr_info("%s: NIU Ethernet %s\n",
  6695. dev->name, print_mac(mac, dev->dev_addr));
  6696. if (np->parent->plat_type == PLAT_TYPE_ATCA_CP3220) {
  6697. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  6698. dev->name,
  6699. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  6700. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  6701. (np->flags & NIU_FLAGS_FIBER ? "RGMII FIBER" : "SERDES"),
  6702. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  6703. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  6704. np->vpd.phy_type);
  6705. } else {
  6706. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  6707. dev->name,
  6708. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  6709. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  6710. (np->flags & NIU_FLAGS_FIBER ? "FIBER" : "COPPER"),
  6711. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  6712. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  6713. np->vpd.phy_type);
  6714. }
  6715. }
  6716. static int __devinit niu_pci_init_one(struct pci_dev *pdev,
  6717. const struct pci_device_id *ent)
  6718. {
  6719. unsigned long niureg_base, niureg_len;
  6720. union niu_parent_id parent_id;
  6721. struct net_device *dev;
  6722. struct niu *np;
  6723. int err, pos;
  6724. u64 dma_mask;
  6725. u16 val16;
  6726. niu_driver_version();
  6727. err = pci_enable_device(pdev);
  6728. if (err) {
  6729. dev_err(&pdev->dev, PFX "Cannot enable PCI device, "
  6730. "aborting.\n");
  6731. return err;
  6732. }
  6733. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM) ||
  6734. !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
  6735. dev_err(&pdev->dev, PFX "Cannot find proper PCI device "
  6736. "base addresses, aborting.\n");
  6737. err = -ENODEV;
  6738. goto err_out_disable_pdev;
  6739. }
  6740. err = pci_request_regions(pdev, DRV_MODULE_NAME);
  6741. if (err) {
  6742. dev_err(&pdev->dev, PFX "Cannot obtain PCI resources, "
  6743. "aborting.\n");
  6744. goto err_out_disable_pdev;
  6745. }
  6746. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  6747. if (pos <= 0) {
  6748. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  6749. "aborting.\n");
  6750. goto err_out_free_res;
  6751. }
  6752. dev = niu_alloc_and_init(&pdev->dev, pdev, NULL,
  6753. &niu_pci_ops, PCI_FUNC(pdev->devfn));
  6754. if (!dev) {
  6755. err = -ENOMEM;
  6756. goto err_out_free_res;
  6757. }
  6758. np = netdev_priv(dev);
  6759. memset(&parent_id, 0, sizeof(parent_id));
  6760. parent_id.pci.domain = pci_domain_nr(pdev->bus);
  6761. parent_id.pci.bus = pdev->bus->number;
  6762. parent_id.pci.device = PCI_SLOT(pdev->devfn);
  6763. np->parent = niu_get_parent(np, &parent_id,
  6764. PLAT_TYPE_ATLAS);
  6765. if (!np->parent) {
  6766. err = -ENOMEM;
  6767. goto err_out_free_dev;
  6768. }
  6769. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  6770. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  6771. val16 |= (PCI_EXP_DEVCTL_CERE |
  6772. PCI_EXP_DEVCTL_NFERE |
  6773. PCI_EXP_DEVCTL_FERE |
  6774. PCI_EXP_DEVCTL_URRE |
  6775. PCI_EXP_DEVCTL_RELAX_EN);
  6776. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  6777. dma_mask = DMA_44BIT_MASK;
  6778. err = pci_set_dma_mask(pdev, dma_mask);
  6779. if (!err) {
  6780. dev->features |= NETIF_F_HIGHDMA;
  6781. err = pci_set_consistent_dma_mask(pdev, dma_mask);
  6782. if (err) {
  6783. dev_err(&pdev->dev, PFX "Unable to obtain 44 bit "
  6784. "DMA for consistent allocations, "
  6785. "aborting.\n");
  6786. goto err_out_release_parent;
  6787. }
  6788. }
  6789. if (err || dma_mask == DMA_32BIT_MASK) {
  6790. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  6791. if (err) {
  6792. dev_err(&pdev->dev, PFX "No usable DMA configuration, "
  6793. "aborting.\n");
  6794. goto err_out_release_parent;
  6795. }
  6796. }
  6797. dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM);
  6798. niureg_base = pci_resource_start(pdev, 0);
  6799. niureg_len = pci_resource_len(pdev, 0);
  6800. np->regs = ioremap_nocache(niureg_base, niureg_len);
  6801. if (!np->regs) {
  6802. dev_err(&pdev->dev, PFX "Cannot map device registers, "
  6803. "aborting.\n");
  6804. err = -ENOMEM;
  6805. goto err_out_release_parent;
  6806. }
  6807. pci_set_master(pdev);
  6808. pci_save_state(pdev);
  6809. dev->irq = pdev->irq;
  6810. niu_assign_netdev_ops(dev);
  6811. err = niu_get_invariants(np);
  6812. if (err) {
  6813. if (err != -ENODEV)
  6814. dev_err(&pdev->dev, PFX "Problem fetching invariants "
  6815. "of chip, aborting.\n");
  6816. goto err_out_iounmap;
  6817. }
  6818. err = register_netdev(dev);
  6819. if (err) {
  6820. dev_err(&pdev->dev, PFX "Cannot register net device, "
  6821. "aborting.\n");
  6822. goto err_out_iounmap;
  6823. }
  6824. pci_set_drvdata(pdev, dev);
  6825. niu_device_announce(np);
  6826. return 0;
  6827. err_out_iounmap:
  6828. if (np->regs) {
  6829. iounmap(np->regs);
  6830. np->regs = NULL;
  6831. }
  6832. err_out_release_parent:
  6833. niu_put_parent(np);
  6834. err_out_free_dev:
  6835. free_netdev(dev);
  6836. err_out_free_res:
  6837. pci_release_regions(pdev);
  6838. err_out_disable_pdev:
  6839. pci_disable_device(pdev);
  6840. pci_set_drvdata(pdev, NULL);
  6841. return err;
  6842. }
  6843. static void __devexit niu_pci_remove_one(struct pci_dev *pdev)
  6844. {
  6845. struct net_device *dev = pci_get_drvdata(pdev);
  6846. if (dev) {
  6847. struct niu *np = netdev_priv(dev);
  6848. unregister_netdev(dev);
  6849. if (np->regs) {
  6850. iounmap(np->regs);
  6851. np->regs = NULL;
  6852. }
  6853. niu_ldg_free(np);
  6854. niu_put_parent(np);
  6855. free_netdev(dev);
  6856. pci_release_regions(pdev);
  6857. pci_disable_device(pdev);
  6858. pci_set_drvdata(pdev, NULL);
  6859. }
  6860. }
  6861. static int niu_suspend(struct pci_dev *pdev, pm_message_t state)
  6862. {
  6863. struct net_device *dev = pci_get_drvdata(pdev);
  6864. struct niu *np = netdev_priv(dev);
  6865. unsigned long flags;
  6866. if (!netif_running(dev))
  6867. return 0;
  6868. flush_scheduled_work();
  6869. niu_netif_stop(np);
  6870. del_timer_sync(&np->timer);
  6871. spin_lock_irqsave(&np->lock, flags);
  6872. niu_enable_interrupts(np, 0);
  6873. spin_unlock_irqrestore(&np->lock, flags);
  6874. netif_device_detach(dev);
  6875. spin_lock_irqsave(&np->lock, flags);
  6876. niu_stop_hw(np);
  6877. spin_unlock_irqrestore(&np->lock, flags);
  6878. pci_save_state(pdev);
  6879. return 0;
  6880. }
  6881. static int niu_resume(struct pci_dev *pdev)
  6882. {
  6883. struct net_device *dev = pci_get_drvdata(pdev);
  6884. struct niu *np = netdev_priv(dev);
  6885. unsigned long flags;
  6886. int err;
  6887. if (!netif_running(dev))
  6888. return 0;
  6889. pci_restore_state(pdev);
  6890. netif_device_attach(dev);
  6891. spin_lock_irqsave(&np->lock, flags);
  6892. err = niu_init_hw(np);
  6893. if (!err) {
  6894. np->timer.expires = jiffies + HZ;
  6895. add_timer(&np->timer);
  6896. niu_netif_start(np);
  6897. }
  6898. spin_unlock_irqrestore(&np->lock, flags);
  6899. return err;
  6900. }
  6901. static struct pci_driver niu_pci_driver = {
  6902. .name = DRV_MODULE_NAME,
  6903. .id_table = niu_pci_tbl,
  6904. .probe = niu_pci_init_one,
  6905. .remove = __devexit_p(niu_pci_remove_one),
  6906. .suspend = niu_suspend,
  6907. .resume = niu_resume,
  6908. };
  6909. #ifdef CONFIG_SPARC64
  6910. static void *niu_phys_alloc_coherent(struct device *dev, size_t size,
  6911. u64 *dma_addr, gfp_t flag)
  6912. {
  6913. unsigned long order = get_order(size);
  6914. unsigned long page = __get_free_pages(flag, order);
  6915. if (page == 0UL)
  6916. return NULL;
  6917. memset((char *)page, 0, PAGE_SIZE << order);
  6918. *dma_addr = __pa(page);
  6919. return (void *) page;
  6920. }
  6921. static void niu_phys_free_coherent(struct device *dev, size_t size,
  6922. void *cpu_addr, u64 handle)
  6923. {
  6924. unsigned long order = get_order(size);
  6925. free_pages((unsigned long) cpu_addr, order);
  6926. }
  6927. static u64 niu_phys_map_page(struct device *dev, struct page *page,
  6928. unsigned long offset, size_t size,
  6929. enum dma_data_direction direction)
  6930. {
  6931. return page_to_phys(page) + offset;
  6932. }
  6933. static void niu_phys_unmap_page(struct device *dev, u64 dma_address,
  6934. size_t size, enum dma_data_direction direction)
  6935. {
  6936. /* Nothing to do. */
  6937. }
  6938. static u64 niu_phys_map_single(struct device *dev, void *cpu_addr,
  6939. size_t size,
  6940. enum dma_data_direction direction)
  6941. {
  6942. return __pa(cpu_addr);
  6943. }
  6944. static void niu_phys_unmap_single(struct device *dev, u64 dma_address,
  6945. size_t size,
  6946. enum dma_data_direction direction)
  6947. {
  6948. /* Nothing to do. */
  6949. }
  6950. static const struct niu_ops niu_phys_ops = {
  6951. .alloc_coherent = niu_phys_alloc_coherent,
  6952. .free_coherent = niu_phys_free_coherent,
  6953. .map_page = niu_phys_map_page,
  6954. .unmap_page = niu_phys_unmap_page,
  6955. .map_single = niu_phys_map_single,
  6956. .unmap_single = niu_phys_unmap_single,
  6957. };
  6958. static unsigned long res_size(struct resource *r)
  6959. {
  6960. return r->end - r->start + 1UL;
  6961. }
  6962. static int __devinit niu_of_probe(struct of_device *op,
  6963. const struct of_device_id *match)
  6964. {
  6965. union niu_parent_id parent_id;
  6966. struct net_device *dev;
  6967. struct niu *np;
  6968. const u32 *reg;
  6969. int err;
  6970. niu_driver_version();
  6971. reg = of_get_property(op->node, "reg", NULL);
  6972. if (!reg) {
  6973. dev_err(&op->dev, PFX "%s: No 'reg' property, aborting.\n",
  6974. op->node->full_name);
  6975. return -ENODEV;
  6976. }
  6977. dev = niu_alloc_and_init(&op->dev, NULL, op,
  6978. &niu_phys_ops, reg[0] & 0x1);
  6979. if (!dev) {
  6980. err = -ENOMEM;
  6981. goto err_out;
  6982. }
  6983. np = netdev_priv(dev);
  6984. memset(&parent_id, 0, sizeof(parent_id));
  6985. parent_id.of = of_get_parent(op->node);
  6986. np->parent = niu_get_parent(np, &parent_id,
  6987. PLAT_TYPE_NIU);
  6988. if (!np->parent) {
  6989. err = -ENOMEM;
  6990. goto err_out_free_dev;
  6991. }
  6992. dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM);
  6993. np->regs = of_ioremap(&op->resource[1], 0,
  6994. res_size(&op->resource[1]),
  6995. "niu regs");
  6996. if (!np->regs) {
  6997. dev_err(&op->dev, PFX "Cannot map device registers, "
  6998. "aborting.\n");
  6999. err = -ENOMEM;
  7000. goto err_out_release_parent;
  7001. }
  7002. np->vir_regs_1 = of_ioremap(&op->resource[2], 0,
  7003. res_size(&op->resource[2]),
  7004. "niu vregs-1");
  7005. if (!np->vir_regs_1) {
  7006. dev_err(&op->dev, PFX "Cannot map device vir registers 1, "
  7007. "aborting.\n");
  7008. err = -ENOMEM;
  7009. goto err_out_iounmap;
  7010. }
  7011. np->vir_regs_2 = of_ioremap(&op->resource[3], 0,
  7012. res_size(&op->resource[3]),
  7013. "niu vregs-2");
  7014. if (!np->vir_regs_2) {
  7015. dev_err(&op->dev, PFX "Cannot map device vir registers 2, "
  7016. "aborting.\n");
  7017. err = -ENOMEM;
  7018. goto err_out_iounmap;
  7019. }
  7020. niu_assign_netdev_ops(dev);
  7021. err = niu_get_invariants(np);
  7022. if (err) {
  7023. if (err != -ENODEV)
  7024. dev_err(&op->dev, PFX "Problem fetching invariants "
  7025. "of chip, aborting.\n");
  7026. goto err_out_iounmap;
  7027. }
  7028. err = register_netdev(dev);
  7029. if (err) {
  7030. dev_err(&op->dev, PFX "Cannot register net device, "
  7031. "aborting.\n");
  7032. goto err_out_iounmap;
  7033. }
  7034. dev_set_drvdata(&op->dev, dev);
  7035. niu_device_announce(np);
  7036. return 0;
  7037. err_out_iounmap:
  7038. if (np->vir_regs_1) {
  7039. of_iounmap(&op->resource[2], np->vir_regs_1,
  7040. res_size(&op->resource[2]));
  7041. np->vir_regs_1 = NULL;
  7042. }
  7043. if (np->vir_regs_2) {
  7044. of_iounmap(&op->resource[3], np->vir_regs_2,
  7045. res_size(&op->resource[3]));
  7046. np->vir_regs_2 = NULL;
  7047. }
  7048. if (np->regs) {
  7049. of_iounmap(&op->resource[1], np->regs,
  7050. res_size(&op->resource[1]));
  7051. np->regs = NULL;
  7052. }
  7053. err_out_release_parent:
  7054. niu_put_parent(np);
  7055. err_out_free_dev:
  7056. free_netdev(dev);
  7057. err_out:
  7058. return err;
  7059. }
  7060. static int __devexit niu_of_remove(struct of_device *op)
  7061. {
  7062. struct net_device *dev = dev_get_drvdata(&op->dev);
  7063. if (dev) {
  7064. struct niu *np = netdev_priv(dev);
  7065. unregister_netdev(dev);
  7066. if (np->vir_regs_1) {
  7067. of_iounmap(&op->resource[2], np->vir_regs_1,
  7068. res_size(&op->resource[2]));
  7069. np->vir_regs_1 = NULL;
  7070. }
  7071. if (np->vir_regs_2) {
  7072. of_iounmap(&op->resource[3], np->vir_regs_2,
  7073. res_size(&op->resource[3]));
  7074. np->vir_regs_2 = NULL;
  7075. }
  7076. if (np->regs) {
  7077. of_iounmap(&op->resource[1], np->regs,
  7078. res_size(&op->resource[1]));
  7079. np->regs = NULL;
  7080. }
  7081. niu_ldg_free(np);
  7082. niu_put_parent(np);
  7083. free_netdev(dev);
  7084. dev_set_drvdata(&op->dev, NULL);
  7085. }
  7086. return 0;
  7087. }
  7088. static struct of_device_id niu_match[] = {
  7089. {
  7090. .name = "network",
  7091. .compatible = "SUNW,niusl",
  7092. },
  7093. {},
  7094. };
  7095. MODULE_DEVICE_TABLE(of, niu_match);
  7096. static struct of_platform_driver niu_of_driver = {
  7097. .name = "niu",
  7098. .match_table = niu_match,
  7099. .probe = niu_of_probe,
  7100. .remove = __devexit_p(niu_of_remove),
  7101. };
  7102. #endif /* CONFIG_SPARC64 */
  7103. static int __init niu_init(void)
  7104. {
  7105. int err = 0;
  7106. BUILD_BUG_ON(PAGE_SIZE < 4 * 1024);
  7107. niu_debug = netif_msg_init(debug, NIU_MSG_DEFAULT);
  7108. #ifdef CONFIG_SPARC64
  7109. err = of_register_driver(&niu_of_driver, &of_bus_type);
  7110. #endif
  7111. if (!err) {
  7112. err = pci_register_driver(&niu_pci_driver);
  7113. #ifdef CONFIG_SPARC64
  7114. if (err)
  7115. of_unregister_driver(&niu_of_driver);
  7116. #endif
  7117. }
  7118. return err;
  7119. }
  7120. static void __exit niu_exit(void)
  7121. {
  7122. pci_unregister_driver(&niu_pci_driver);
  7123. #ifdef CONFIG_SPARC64
  7124. of_unregister_driver(&niu_of_driver);
  7125. #endif
  7126. }
  7127. module_init(niu_init);
  7128. module_exit(niu_exit);