enc28j60.c 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600
  1. /*
  2. * Microchip ENC28J60 ethernet driver (MAC + PHY)
  3. *
  4. * Copyright (C) 2007 Eurek srl
  5. * Author: Claudio Lanconelli <lanconelli.claudio@eptar.com>
  6. * based on enc28j60.c written by David Anders for 2.4 kernel version
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * $Id: enc28j60.c,v 1.22 2007/12/20 10:47:01 claudio Exp $
  14. */
  15. #include <linux/module.h>
  16. #include <linux/kernel.h>
  17. #include <linux/types.h>
  18. #include <linux/fcntl.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/slab.h>
  21. #include <linux/string.h>
  22. #include <linux/errno.h>
  23. #include <linux/init.h>
  24. #include <linux/netdevice.h>
  25. #include <linux/etherdevice.h>
  26. #include <linux/ethtool.h>
  27. #include <linux/tcp.h>
  28. #include <linux/skbuff.h>
  29. #include <linux/delay.h>
  30. #include <linux/spi/spi.h>
  31. #include "enc28j60_hw.h"
  32. #define DRV_NAME "enc28j60"
  33. #define DRV_VERSION "1.01"
  34. #define SPI_OPLEN 1
  35. #define ENC28J60_MSG_DEFAULT \
  36. (NETIF_MSG_PROBE | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN | NETIF_MSG_LINK)
  37. /* Buffer size required for the largest SPI transfer (i.e., reading a
  38. * frame). */
  39. #define SPI_TRANSFER_BUF_LEN (4 + MAX_FRAMELEN)
  40. #define TX_TIMEOUT (4 * HZ)
  41. /* Max TX retries in case of collision as suggested by errata datasheet */
  42. #define MAX_TX_RETRYCOUNT 16
  43. enum {
  44. RXFILTER_NORMAL,
  45. RXFILTER_MULTI,
  46. RXFILTER_PROMISC
  47. };
  48. /* Driver local data */
  49. struct enc28j60_net {
  50. struct net_device *netdev;
  51. struct spi_device *spi;
  52. struct mutex lock;
  53. struct sk_buff *tx_skb;
  54. struct work_struct tx_work;
  55. struct work_struct irq_work;
  56. struct work_struct setrx_work;
  57. struct work_struct restart_work;
  58. u8 bank; /* current register bank selected */
  59. u16 next_pk_ptr; /* next packet pointer within FIFO */
  60. u16 max_pk_counter; /* statistics: max packet counter */
  61. u16 tx_retry_count;
  62. bool hw_enable;
  63. bool full_duplex;
  64. int rxfilter;
  65. u32 msg_enable;
  66. u8 spi_transfer_buf[SPI_TRANSFER_BUF_LEN];
  67. };
  68. /* use ethtool to change the level for any given device */
  69. static struct {
  70. u32 msg_enable;
  71. } debug = { -1 };
  72. /*
  73. * SPI read buffer
  74. * wait for the SPI transfer and copy received data to destination
  75. */
  76. static int
  77. spi_read_buf(struct enc28j60_net *priv, int len, u8 *data)
  78. {
  79. u8 *rx_buf = priv->spi_transfer_buf + 4;
  80. u8 *tx_buf = priv->spi_transfer_buf;
  81. struct spi_transfer t = {
  82. .tx_buf = tx_buf,
  83. .rx_buf = rx_buf,
  84. .len = SPI_OPLEN + len,
  85. };
  86. struct spi_message msg;
  87. int ret;
  88. tx_buf[0] = ENC28J60_READ_BUF_MEM;
  89. tx_buf[1] = tx_buf[2] = tx_buf[3] = 0; /* don't care */
  90. spi_message_init(&msg);
  91. spi_message_add_tail(&t, &msg);
  92. ret = spi_sync(priv->spi, &msg);
  93. if (ret == 0) {
  94. memcpy(data, &rx_buf[SPI_OPLEN], len);
  95. ret = msg.status;
  96. }
  97. if (ret && netif_msg_drv(priv))
  98. printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n",
  99. __FUNCTION__, ret);
  100. return ret;
  101. }
  102. /*
  103. * SPI write buffer
  104. */
  105. static int spi_write_buf(struct enc28j60_net *priv, int len,
  106. const u8 *data)
  107. {
  108. int ret;
  109. if (len > SPI_TRANSFER_BUF_LEN - 1 || len <= 0)
  110. ret = -EINVAL;
  111. else {
  112. priv->spi_transfer_buf[0] = ENC28J60_WRITE_BUF_MEM;
  113. memcpy(&priv->spi_transfer_buf[1], data, len);
  114. ret = spi_write(priv->spi, priv->spi_transfer_buf, len + 1);
  115. if (ret && netif_msg_drv(priv))
  116. printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n",
  117. __FUNCTION__, ret);
  118. }
  119. return ret;
  120. }
  121. /*
  122. * basic SPI read operation
  123. */
  124. static u8 spi_read_op(struct enc28j60_net *priv, u8 op,
  125. u8 addr)
  126. {
  127. u8 tx_buf[2];
  128. u8 rx_buf[4];
  129. u8 val = 0;
  130. int ret;
  131. int slen = SPI_OPLEN;
  132. /* do dummy read if needed */
  133. if (addr & SPRD_MASK)
  134. slen++;
  135. tx_buf[0] = op | (addr & ADDR_MASK);
  136. ret = spi_write_then_read(priv->spi, tx_buf, 1, rx_buf, slen);
  137. if (ret)
  138. printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n",
  139. __FUNCTION__, ret);
  140. else
  141. val = rx_buf[slen - 1];
  142. return val;
  143. }
  144. /*
  145. * basic SPI write operation
  146. */
  147. static int spi_write_op(struct enc28j60_net *priv, u8 op,
  148. u8 addr, u8 val)
  149. {
  150. int ret;
  151. priv->spi_transfer_buf[0] = op | (addr & ADDR_MASK);
  152. priv->spi_transfer_buf[1] = val;
  153. ret = spi_write(priv->spi, priv->spi_transfer_buf, 2);
  154. if (ret && netif_msg_drv(priv))
  155. printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n",
  156. __FUNCTION__, ret);
  157. return ret;
  158. }
  159. static void enc28j60_soft_reset(struct enc28j60_net *priv)
  160. {
  161. if (netif_msg_hw(priv))
  162. printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __FUNCTION__);
  163. spi_write_op(priv, ENC28J60_SOFT_RESET, 0, ENC28J60_SOFT_RESET);
  164. /* Errata workaround #1, CLKRDY check is unreliable,
  165. * delay at least 1 mS instead */
  166. udelay(2000);
  167. }
  168. /*
  169. * select the current register bank if necessary
  170. */
  171. static void enc28j60_set_bank(struct enc28j60_net *priv, u8 addr)
  172. {
  173. if ((addr & BANK_MASK) != priv->bank) {
  174. u8 b = (addr & BANK_MASK) >> 5;
  175. if (b != (ECON1_BSEL1 | ECON1_BSEL0))
  176. spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, ECON1,
  177. ECON1_BSEL1 | ECON1_BSEL0);
  178. if (b != 0)
  179. spi_write_op(priv, ENC28J60_BIT_FIELD_SET, ECON1, b);
  180. priv->bank = (addr & BANK_MASK);
  181. }
  182. }
  183. /*
  184. * Register access routines through the SPI bus.
  185. * Every register access comes in two flavours:
  186. * - nolock_xxx: caller needs to invoke mutex_lock, usually to access
  187. * atomically more than one register
  188. * - locked_xxx: caller doesn't need to invoke mutex_lock, single access
  189. *
  190. * Some registers can be accessed through the bit field clear and
  191. * bit field set to avoid a read modify write cycle.
  192. */
  193. /*
  194. * Register bit field Set
  195. */
  196. static void nolock_reg_bfset(struct enc28j60_net *priv,
  197. u8 addr, u8 mask)
  198. {
  199. enc28j60_set_bank(priv, addr);
  200. spi_write_op(priv, ENC28J60_BIT_FIELD_SET, addr, mask);
  201. }
  202. static void locked_reg_bfset(struct enc28j60_net *priv,
  203. u8 addr, u8 mask)
  204. {
  205. mutex_lock(&priv->lock);
  206. nolock_reg_bfset(priv, addr, mask);
  207. mutex_unlock(&priv->lock);
  208. }
  209. /*
  210. * Register bit field Clear
  211. */
  212. static void nolock_reg_bfclr(struct enc28j60_net *priv,
  213. u8 addr, u8 mask)
  214. {
  215. enc28j60_set_bank(priv, addr);
  216. spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, addr, mask);
  217. }
  218. static void locked_reg_bfclr(struct enc28j60_net *priv,
  219. u8 addr, u8 mask)
  220. {
  221. mutex_lock(&priv->lock);
  222. nolock_reg_bfclr(priv, addr, mask);
  223. mutex_unlock(&priv->lock);
  224. }
  225. /*
  226. * Register byte read
  227. */
  228. static int nolock_regb_read(struct enc28j60_net *priv,
  229. u8 address)
  230. {
  231. enc28j60_set_bank(priv, address);
  232. return spi_read_op(priv, ENC28J60_READ_CTRL_REG, address);
  233. }
  234. static int locked_regb_read(struct enc28j60_net *priv,
  235. u8 address)
  236. {
  237. int ret;
  238. mutex_lock(&priv->lock);
  239. ret = nolock_regb_read(priv, address);
  240. mutex_unlock(&priv->lock);
  241. return ret;
  242. }
  243. /*
  244. * Register word read
  245. */
  246. static int nolock_regw_read(struct enc28j60_net *priv,
  247. u8 address)
  248. {
  249. int rl, rh;
  250. enc28j60_set_bank(priv, address);
  251. rl = spi_read_op(priv, ENC28J60_READ_CTRL_REG, address);
  252. rh = spi_read_op(priv, ENC28J60_READ_CTRL_REG, address + 1);
  253. return (rh << 8) | rl;
  254. }
  255. static int locked_regw_read(struct enc28j60_net *priv,
  256. u8 address)
  257. {
  258. int ret;
  259. mutex_lock(&priv->lock);
  260. ret = nolock_regw_read(priv, address);
  261. mutex_unlock(&priv->lock);
  262. return ret;
  263. }
  264. /*
  265. * Register byte write
  266. */
  267. static void nolock_regb_write(struct enc28j60_net *priv,
  268. u8 address, u8 data)
  269. {
  270. enc28j60_set_bank(priv, address);
  271. spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address, data);
  272. }
  273. static void locked_regb_write(struct enc28j60_net *priv,
  274. u8 address, u8 data)
  275. {
  276. mutex_lock(&priv->lock);
  277. nolock_regb_write(priv, address, data);
  278. mutex_unlock(&priv->lock);
  279. }
  280. /*
  281. * Register word write
  282. */
  283. static void nolock_regw_write(struct enc28j60_net *priv,
  284. u8 address, u16 data)
  285. {
  286. enc28j60_set_bank(priv, address);
  287. spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address, (u8) data);
  288. spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address + 1,
  289. (u8) (data >> 8));
  290. }
  291. static void locked_regw_write(struct enc28j60_net *priv,
  292. u8 address, u16 data)
  293. {
  294. mutex_lock(&priv->lock);
  295. nolock_regw_write(priv, address, data);
  296. mutex_unlock(&priv->lock);
  297. }
  298. /*
  299. * Buffer memory read
  300. * Select the starting address and execute a SPI buffer read
  301. */
  302. static void enc28j60_mem_read(struct enc28j60_net *priv,
  303. u16 addr, int len, u8 *data)
  304. {
  305. mutex_lock(&priv->lock);
  306. nolock_regw_write(priv, ERDPTL, addr);
  307. #ifdef CONFIG_ENC28J60_WRITEVERIFY
  308. if (netif_msg_drv(priv)) {
  309. u16 reg;
  310. reg = nolock_regw_read(priv, ERDPTL);
  311. if (reg != addr)
  312. printk(KERN_DEBUG DRV_NAME ": %s() error writing ERDPT "
  313. "(0x%04x - 0x%04x)\n", __FUNCTION__, reg, addr);
  314. }
  315. #endif
  316. spi_read_buf(priv, len, data);
  317. mutex_unlock(&priv->lock);
  318. }
  319. /*
  320. * Write packet to enc28j60 TX buffer memory
  321. */
  322. static void
  323. enc28j60_packet_write(struct enc28j60_net *priv, int len, const u8 *data)
  324. {
  325. mutex_lock(&priv->lock);
  326. /* Set the write pointer to start of transmit buffer area */
  327. nolock_regw_write(priv, EWRPTL, TXSTART_INIT);
  328. #ifdef CONFIG_ENC28J60_WRITEVERIFY
  329. if (netif_msg_drv(priv)) {
  330. u16 reg;
  331. reg = nolock_regw_read(priv, EWRPTL);
  332. if (reg != TXSTART_INIT)
  333. printk(KERN_DEBUG DRV_NAME
  334. ": %s() ERWPT:0x%04x != 0x%04x\n",
  335. __FUNCTION__, reg, TXSTART_INIT);
  336. }
  337. #endif
  338. /* Set the TXND pointer to correspond to the packet size given */
  339. nolock_regw_write(priv, ETXNDL, TXSTART_INIT + len);
  340. /* write per-packet control byte */
  341. spi_write_op(priv, ENC28J60_WRITE_BUF_MEM, 0, 0x00);
  342. if (netif_msg_hw(priv))
  343. printk(KERN_DEBUG DRV_NAME
  344. ": %s() after control byte ERWPT:0x%04x\n",
  345. __FUNCTION__, nolock_regw_read(priv, EWRPTL));
  346. /* copy the packet into the transmit buffer */
  347. spi_write_buf(priv, len, data);
  348. if (netif_msg_hw(priv))
  349. printk(KERN_DEBUG DRV_NAME
  350. ": %s() after write packet ERWPT:0x%04x, len=%d\n",
  351. __FUNCTION__, nolock_regw_read(priv, EWRPTL), len);
  352. mutex_unlock(&priv->lock);
  353. }
  354. /*
  355. * Wait until the PHY operation is complete.
  356. */
  357. static int wait_phy_ready(struct enc28j60_net *priv)
  358. {
  359. unsigned long timeout = jiffies + 20 * HZ / 1000;
  360. int ret = 1;
  361. /* 20 msec timeout read */
  362. while (nolock_regb_read(priv, MISTAT) & MISTAT_BUSY) {
  363. if (time_after(jiffies, timeout)) {
  364. if (netif_msg_drv(priv))
  365. printk(KERN_DEBUG DRV_NAME
  366. ": PHY ready timeout!\n");
  367. ret = 0;
  368. break;
  369. }
  370. cpu_relax();
  371. }
  372. return ret;
  373. }
  374. /*
  375. * PHY register read
  376. * PHY registers are not accessed directly, but through the MII
  377. */
  378. static u16 enc28j60_phy_read(struct enc28j60_net *priv, u8 address)
  379. {
  380. u16 ret;
  381. mutex_lock(&priv->lock);
  382. /* set the PHY register address */
  383. nolock_regb_write(priv, MIREGADR, address);
  384. /* start the register read operation */
  385. nolock_regb_write(priv, MICMD, MICMD_MIIRD);
  386. /* wait until the PHY read completes */
  387. wait_phy_ready(priv);
  388. /* quit reading */
  389. nolock_regb_write(priv, MICMD, 0x00);
  390. /* return the data */
  391. ret = nolock_regw_read(priv, MIRDL);
  392. mutex_unlock(&priv->lock);
  393. return ret;
  394. }
  395. static int enc28j60_phy_write(struct enc28j60_net *priv, u8 address, u16 data)
  396. {
  397. int ret;
  398. mutex_lock(&priv->lock);
  399. /* set the PHY register address */
  400. nolock_regb_write(priv, MIREGADR, address);
  401. /* write the PHY data */
  402. nolock_regw_write(priv, MIWRL, data);
  403. /* wait until the PHY write completes and return */
  404. ret = wait_phy_ready(priv);
  405. mutex_unlock(&priv->lock);
  406. return ret;
  407. }
  408. /*
  409. * Program the hardware MAC address from dev->dev_addr.
  410. */
  411. static int enc28j60_set_hw_macaddr(struct net_device *ndev)
  412. {
  413. int ret;
  414. struct enc28j60_net *priv = netdev_priv(ndev);
  415. mutex_lock(&priv->lock);
  416. if (!priv->hw_enable) {
  417. if (netif_msg_drv(priv)) {
  418. DECLARE_MAC_BUF(mac);
  419. printk(KERN_INFO DRV_NAME
  420. ": %s: Setting MAC address to %s\n",
  421. ndev->name, print_mac(mac, ndev->dev_addr));
  422. }
  423. /* NOTE: MAC address in ENC28J60 is byte-backward */
  424. nolock_regb_write(priv, MAADR5, ndev->dev_addr[0]);
  425. nolock_regb_write(priv, MAADR4, ndev->dev_addr[1]);
  426. nolock_regb_write(priv, MAADR3, ndev->dev_addr[2]);
  427. nolock_regb_write(priv, MAADR2, ndev->dev_addr[3]);
  428. nolock_regb_write(priv, MAADR1, ndev->dev_addr[4]);
  429. nolock_regb_write(priv, MAADR0, ndev->dev_addr[5]);
  430. ret = 0;
  431. } else {
  432. if (netif_msg_drv(priv))
  433. printk(KERN_DEBUG DRV_NAME
  434. ": %s() Hardware must be disabled to set "
  435. "Mac address\n", __FUNCTION__);
  436. ret = -EBUSY;
  437. }
  438. mutex_unlock(&priv->lock);
  439. return ret;
  440. }
  441. /*
  442. * Store the new hardware address in dev->dev_addr, and update the MAC.
  443. */
  444. static int enc28j60_set_mac_address(struct net_device *dev, void *addr)
  445. {
  446. struct sockaddr *address = addr;
  447. if (netif_running(dev))
  448. return -EBUSY;
  449. if (!is_valid_ether_addr(address->sa_data))
  450. return -EADDRNOTAVAIL;
  451. memcpy(dev->dev_addr, address->sa_data, dev->addr_len);
  452. return enc28j60_set_hw_macaddr(dev);
  453. }
  454. /*
  455. * Debug routine to dump useful register contents
  456. */
  457. static void enc28j60_dump_regs(struct enc28j60_net *priv, const char *msg)
  458. {
  459. mutex_lock(&priv->lock);
  460. printk(KERN_DEBUG DRV_NAME " %s\n"
  461. "HwRevID: 0x%02x\n"
  462. "Cntrl: ECON1 ECON2 ESTAT EIR EIE\n"
  463. " 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x\n"
  464. "MAC : MACON1 MACON3 MACON4\n"
  465. " 0x%02x 0x%02x 0x%02x\n"
  466. "Rx : ERXST ERXND ERXWRPT ERXRDPT ERXFCON EPKTCNT MAMXFL\n"
  467. " 0x%04x 0x%04x 0x%04x 0x%04x "
  468. "0x%02x 0x%02x 0x%04x\n"
  469. "Tx : ETXST ETXND MACLCON1 MACLCON2 MAPHSUP\n"
  470. " 0x%04x 0x%04x 0x%02x 0x%02x 0x%02x\n",
  471. msg, nolock_regb_read(priv, EREVID),
  472. nolock_regb_read(priv, ECON1), nolock_regb_read(priv, ECON2),
  473. nolock_regb_read(priv, ESTAT), nolock_regb_read(priv, EIR),
  474. nolock_regb_read(priv, EIE), nolock_regb_read(priv, MACON1),
  475. nolock_regb_read(priv, MACON3), nolock_regb_read(priv, MACON4),
  476. nolock_regw_read(priv, ERXSTL), nolock_regw_read(priv, ERXNDL),
  477. nolock_regw_read(priv, ERXWRPTL),
  478. nolock_regw_read(priv, ERXRDPTL),
  479. nolock_regb_read(priv, ERXFCON),
  480. nolock_regb_read(priv, EPKTCNT),
  481. nolock_regw_read(priv, MAMXFLL), nolock_regw_read(priv, ETXSTL),
  482. nolock_regw_read(priv, ETXNDL),
  483. nolock_regb_read(priv, MACLCON1),
  484. nolock_regb_read(priv, MACLCON2),
  485. nolock_regb_read(priv, MAPHSUP));
  486. mutex_unlock(&priv->lock);
  487. }
  488. /*
  489. * ERXRDPT need to be set always at odd addresses, refer to errata datasheet
  490. */
  491. static u16 erxrdpt_workaround(u16 next_packet_ptr, u16 start, u16 end)
  492. {
  493. u16 erxrdpt;
  494. if ((next_packet_ptr - 1 < start) || (next_packet_ptr - 1 > end))
  495. erxrdpt = end;
  496. else
  497. erxrdpt = next_packet_ptr - 1;
  498. return erxrdpt;
  499. }
  500. static void nolock_rxfifo_init(struct enc28j60_net *priv, u16 start, u16 end)
  501. {
  502. u16 erxrdpt;
  503. if (start > 0x1FFF || end > 0x1FFF || start > end) {
  504. if (netif_msg_drv(priv))
  505. printk(KERN_ERR DRV_NAME ": %s(%d, %d) RXFIFO "
  506. "bad parameters!\n", __FUNCTION__, start, end);
  507. return;
  508. }
  509. /* set receive buffer start + end */
  510. priv->next_pk_ptr = start;
  511. nolock_regw_write(priv, ERXSTL, start);
  512. erxrdpt = erxrdpt_workaround(priv->next_pk_ptr, start, end);
  513. nolock_regw_write(priv, ERXRDPTL, erxrdpt);
  514. nolock_regw_write(priv, ERXNDL, end);
  515. }
  516. static void nolock_txfifo_init(struct enc28j60_net *priv, u16 start, u16 end)
  517. {
  518. if (start > 0x1FFF || end > 0x1FFF || start > end) {
  519. if (netif_msg_drv(priv))
  520. printk(KERN_ERR DRV_NAME ": %s(%d, %d) TXFIFO "
  521. "bad parameters!\n", __FUNCTION__, start, end);
  522. return;
  523. }
  524. /* set transmit buffer start + end */
  525. nolock_regw_write(priv, ETXSTL, start);
  526. nolock_regw_write(priv, ETXNDL, end);
  527. }
  528. static int enc28j60_hw_init(struct enc28j60_net *priv)
  529. {
  530. u8 reg;
  531. if (netif_msg_drv(priv))
  532. printk(KERN_DEBUG DRV_NAME ": %s() - %s\n", __FUNCTION__,
  533. priv->full_duplex ? "FullDuplex" : "HalfDuplex");
  534. mutex_lock(&priv->lock);
  535. /* first reset the chip */
  536. enc28j60_soft_reset(priv);
  537. /* Clear ECON1 */
  538. spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, ECON1, 0x00);
  539. priv->bank = 0;
  540. priv->hw_enable = false;
  541. priv->tx_retry_count = 0;
  542. priv->max_pk_counter = 0;
  543. priv->rxfilter = RXFILTER_NORMAL;
  544. /* enable address auto increment */
  545. nolock_regb_write(priv, ECON2, ECON2_AUTOINC);
  546. nolock_rxfifo_init(priv, RXSTART_INIT, RXEND_INIT);
  547. nolock_txfifo_init(priv, TXSTART_INIT, TXEND_INIT);
  548. mutex_unlock(&priv->lock);
  549. /*
  550. * Check the RevID.
  551. * If it's 0x00 or 0xFF probably the enc28j60 is not mounted or
  552. * damaged
  553. */
  554. reg = locked_regb_read(priv, EREVID);
  555. if (netif_msg_drv(priv))
  556. printk(KERN_INFO DRV_NAME ": chip RevID: 0x%02x\n", reg);
  557. if (reg == 0x00 || reg == 0xff) {
  558. if (netif_msg_drv(priv))
  559. printk(KERN_DEBUG DRV_NAME ": %s() Invalid RevId %d\n",
  560. __FUNCTION__, reg);
  561. return 0;
  562. }
  563. /* default filter mode: (unicast OR broadcast) AND crc valid */
  564. locked_regb_write(priv, ERXFCON,
  565. ERXFCON_UCEN | ERXFCON_CRCEN | ERXFCON_BCEN);
  566. /* enable MAC receive */
  567. locked_regb_write(priv, MACON1,
  568. MACON1_MARXEN | MACON1_TXPAUS | MACON1_RXPAUS);
  569. /* enable automatic padding and CRC operations */
  570. if (priv->full_duplex) {
  571. locked_regb_write(priv, MACON3,
  572. MACON3_PADCFG0 | MACON3_TXCRCEN |
  573. MACON3_FRMLNEN | MACON3_FULDPX);
  574. /* set inter-frame gap (non-back-to-back) */
  575. locked_regb_write(priv, MAIPGL, 0x12);
  576. /* set inter-frame gap (back-to-back) */
  577. locked_regb_write(priv, MABBIPG, 0x15);
  578. } else {
  579. locked_regb_write(priv, MACON3,
  580. MACON3_PADCFG0 | MACON3_TXCRCEN |
  581. MACON3_FRMLNEN);
  582. locked_regb_write(priv, MACON4, 1 << 6); /* DEFER bit */
  583. /* set inter-frame gap (non-back-to-back) */
  584. locked_regw_write(priv, MAIPGL, 0x0C12);
  585. /* set inter-frame gap (back-to-back) */
  586. locked_regb_write(priv, MABBIPG, 0x12);
  587. }
  588. /*
  589. * MACLCON1 (default)
  590. * MACLCON2 (default)
  591. * Set the maximum packet size which the controller will accept
  592. */
  593. locked_regw_write(priv, MAMXFLL, MAX_FRAMELEN);
  594. /* Configure LEDs */
  595. if (!enc28j60_phy_write(priv, PHLCON, ENC28J60_LAMPS_MODE))
  596. return 0;
  597. if (priv->full_duplex) {
  598. if (!enc28j60_phy_write(priv, PHCON1, PHCON1_PDPXMD))
  599. return 0;
  600. if (!enc28j60_phy_write(priv, PHCON2, 0x00))
  601. return 0;
  602. } else {
  603. if (!enc28j60_phy_write(priv, PHCON1, 0x00))
  604. return 0;
  605. if (!enc28j60_phy_write(priv, PHCON2, PHCON2_HDLDIS))
  606. return 0;
  607. }
  608. if (netif_msg_hw(priv))
  609. enc28j60_dump_regs(priv, "Hw initialized.");
  610. return 1;
  611. }
  612. static void enc28j60_hw_enable(struct enc28j60_net *priv)
  613. {
  614. /* enable interrutps */
  615. if (netif_msg_hw(priv))
  616. printk(KERN_DEBUG DRV_NAME ": %s() enabling interrupts.\n",
  617. __FUNCTION__);
  618. enc28j60_phy_write(priv, PHIE, PHIE_PGEIE | PHIE_PLNKIE);
  619. mutex_lock(&priv->lock);
  620. nolock_reg_bfclr(priv, EIR, EIR_DMAIF | EIR_LINKIF |
  621. EIR_TXIF | EIR_TXERIF | EIR_RXERIF | EIR_PKTIF);
  622. nolock_regb_write(priv, EIE, EIE_INTIE | EIE_PKTIE | EIE_LINKIE |
  623. EIE_TXIE | EIE_TXERIE | EIE_RXERIE);
  624. /* enable receive logic */
  625. nolock_reg_bfset(priv, ECON1, ECON1_RXEN);
  626. priv->hw_enable = true;
  627. mutex_unlock(&priv->lock);
  628. }
  629. static void enc28j60_hw_disable(struct enc28j60_net *priv)
  630. {
  631. mutex_lock(&priv->lock);
  632. /* disable interrutps and packet reception */
  633. nolock_regb_write(priv, EIE, 0x00);
  634. nolock_reg_bfclr(priv, ECON1, ECON1_RXEN);
  635. priv->hw_enable = false;
  636. mutex_unlock(&priv->lock);
  637. }
  638. static int
  639. enc28j60_setlink(struct net_device *ndev, u8 autoneg, u16 speed, u8 duplex)
  640. {
  641. struct enc28j60_net *priv = netdev_priv(ndev);
  642. int ret = 0;
  643. if (!priv->hw_enable) {
  644. if (autoneg == AUTONEG_DISABLE && speed == SPEED_10) {
  645. priv->full_duplex = (duplex == DUPLEX_FULL);
  646. if (!enc28j60_hw_init(priv)) {
  647. if (netif_msg_drv(priv))
  648. dev_err(&ndev->dev,
  649. "hw_reset() failed\n");
  650. ret = -EINVAL;
  651. }
  652. } else {
  653. if (netif_msg_link(priv))
  654. dev_warn(&ndev->dev,
  655. "unsupported link setting\n");
  656. ret = -EOPNOTSUPP;
  657. }
  658. } else {
  659. if (netif_msg_link(priv))
  660. dev_warn(&ndev->dev, "Warning: hw must be disabled "
  661. "to set link mode\n");
  662. ret = -EBUSY;
  663. }
  664. return ret;
  665. }
  666. /*
  667. * Read the Transmit Status Vector
  668. */
  669. static void enc28j60_read_tsv(struct enc28j60_net *priv, u8 tsv[TSV_SIZE])
  670. {
  671. int endptr;
  672. endptr = locked_regw_read(priv, ETXNDL);
  673. if (netif_msg_hw(priv))
  674. printk(KERN_DEBUG DRV_NAME ": reading TSV at addr:0x%04x\n",
  675. endptr + 1);
  676. enc28j60_mem_read(priv, endptr + 1, sizeof(tsv), tsv);
  677. }
  678. static void enc28j60_dump_tsv(struct enc28j60_net *priv, const char *msg,
  679. u8 tsv[TSV_SIZE])
  680. {
  681. u16 tmp1, tmp2;
  682. printk(KERN_DEBUG DRV_NAME ": %s - TSV:\n", msg);
  683. tmp1 = tsv[1];
  684. tmp1 <<= 8;
  685. tmp1 |= tsv[0];
  686. tmp2 = tsv[5];
  687. tmp2 <<= 8;
  688. tmp2 |= tsv[4];
  689. printk(KERN_DEBUG DRV_NAME ": ByteCount: %d, CollisionCount: %d,"
  690. " TotByteOnWire: %d\n", tmp1, tsv[2] & 0x0f, tmp2);
  691. printk(KERN_DEBUG DRV_NAME ": TxDone: %d, CRCErr:%d, LenChkErr: %d,"
  692. " LenOutOfRange: %d\n", TSV_GETBIT(tsv, TSV_TXDONE),
  693. TSV_GETBIT(tsv, TSV_TXCRCERROR),
  694. TSV_GETBIT(tsv, TSV_TXLENCHKERROR),
  695. TSV_GETBIT(tsv, TSV_TXLENOUTOFRANGE));
  696. printk(KERN_DEBUG DRV_NAME ": Multicast: %d, Broadcast: %d, "
  697. "PacketDefer: %d, ExDefer: %d\n",
  698. TSV_GETBIT(tsv, TSV_TXMULTICAST),
  699. TSV_GETBIT(tsv, TSV_TXBROADCAST),
  700. TSV_GETBIT(tsv, TSV_TXPACKETDEFER),
  701. TSV_GETBIT(tsv, TSV_TXEXDEFER));
  702. printk(KERN_DEBUG DRV_NAME ": ExCollision: %d, LateCollision: %d, "
  703. "Giant: %d, Underrun: %d\n",
  704. TSV_GETBIT(tsv, TSV_TXEXCOLLISION),
  705. TSV_GETBIT(tsv, TSV_TXLATECOLLISION),
  706. TSV_GETBIT(tsv, TSV_TXGIANT), TSV_GETBIT(tsv, TSV_TXUNDERRUN));
  707. printk(KERN_DEBUG DRV_NAME ": ControlFrame: %d, PauseFrame: %d, "
  708. "BackPressApp: %d, VLanTagFrame: %d\n",
  709. TSV_GETBIT(tsv, TSV_TXCONTROLFRAME),
  710. TSV_GETBIT(tsv, TSV_TXPAUSEFRAME),
  711. TSV_GETBIT(tsv, TSV_BACKPRESSUREAPP),
  712. TSV_GETBIT(tsv, TSV_TXVLANTAGFRAME));
  713. }
  714. /*
  715. * Receive Status vector
  716. */
  717. static void enc28j60_dump_rsv(struct enc28j60_net *priv, const char *msg,
  718. u16 pk_ptr, int len, u16 sts)
  719. {
  720. printk(KERN_DEBUG DRV_NAME ": %s - NextPk: 0x%04x - RSV:\n",
  721. msg, pk_ptr);
  722. printk(KERN_DEBUG DRV_NAME ": ByteCount: %d, DribbleNibble: %d\n", len,
  723. RSV_GETBIT(sts, RSV_DRIBBLENIBBLE));
  724. printk(KERN_DEBUG DRV_NAME ": RxOK: %d, CRCErr:%d, LenChkErr: %d,"
  725. " LenOutOfRange: %d\n", RSV_GETBIT(sts, RSV_RXOK),
  726. RSV_GETBIT(sts, RSV_CRCERROR),
  727. RSV_GETBIT(sts, RSV_LENCHECKERR),
  728. RSV_GETBIT(sts, RSV_LENOUTOFRANGE));
  729. printk(KERN_DEBUG DRV_NAME ": Multicast: %d, Broadcast: %d, "
  730. "LongDropEvent: %d, CarrierEvent: %d\n",
  731. RSV_GETBIT(sts, RSV_RXMULTICAST),
  732. RSV_GETBIT(sts, RSV_RXBROADCAST),
  733. RSV_GETBIT(sts, RSV_RXLONGEVDROPEV),
  734. RSV_GETBIT(sts, RSV_CARRIEREV));
  735. printk(KERN_DEBUG DRV_NAME ": ControlFrame: %d, PauseFrame: %d,"
  736. " UnknownOp: %d, VLanTagFrame: %d\n",
  737. RSV_GETBIT(sts, RSV_RXCONTROLFRAME),
  738. RSV_GETBIT(sts, RSV_RXPAUSEFRAME),
  739. RSV_GETBIT(sts, RSV_RXUNKNOWNOPCODE),
  740. RSV_GETBIT(sts, RSV_RXTYPEVLAN));
  741. }
  742. static void dump_packet(const char *msg, int len, const char *data)
  743. {
  744. printk(KERN_DEBUG DRV_NAME ": %s - packet len:%d\n", msg, len);
  745. print_hex_dump(KERN_DEBUG, "pk data: ", DUMP_PREFIX_OFFSET, 16, 1,
  746. data, len, true);
  747. }
  748. /*
  749. * Hardware receive function.
  750. * Read the buffer memory, update the FIFO pointer to free the buffer,
  751. * check the status vector and decrement the packet counter.
  752. */
  753. static void enc28j60_hw_rx(struct net_device *ndev)
  754. {
  755. struct enc28j60_net *priv = netdev_priv(ndev);
  756. struct sk_buff *skb = NULL;
  757. u16 erxrdpt, next_packet, rxstat;
  758. u8 rsv[RSV_SIZE];
  759. int len;
  760. if (netif_msg_rx_status(priv))
  761. printk(KERN_DEBUG DRV_NAME ": RX pk_addr:0x%04x\n",
  762. priv->next_pk_ptr);
  763. if (unlikely(priv->next_pk_ptr > RXEND_INIT)) {
  764. if (netif_msg_rx_err(priv))
  765. dev_err(&ndev->dev,
  766. "%s() Invalid packet address!! 0x%04x\n",
  767. __FUNCTION__, priv->next_pk_ptr);
  768. /* packet address corrupted: reset RX logic */
  769. mutex_lock(&priv->lock);
  770. nolock_reg_bfclr(priv, ECON1, ECON1_RXEN);
  771. nolock_reg_bfset(priv, ECON1, ECON1_RXRST);
  772. nolock_reg_bfclr(priv, ECON1, ECON1_RXRST);
  773. nolock_rxfifo_init(priv, RXSTART_INIT, RXEND_INIT);
  774. nolock_reg_bfclr(priv, EIR, EIR_RXERIF);
  775. nolock_reg_bfset(priv, ECON1, ECON1_RXEN);
  776. mutex_unlock(&priv->lock);
  777. ndev->stats.rx_errors++;
  778. return;
  779. }
  780. /* Read next packet pointer and rx status vector */
  781. enc28j60_mem_read(priv, priv->next_pk_ptr, sizeof(rsv), rsv);
  782. next_packet = rsv[1];
  783. next_packet <<= 8;
  784. next_packet |= rsv[0];
  785. len = rsv[3];
  786. len <<= 8;
  787. len |= rsv[2];
  788. rxstat = rsv[5];
  789. rxstat <<= 8;
  790. rxstat |= rsv[4];
  791. if (netif_msg_rx_status(priv))
  792. enc28j60_dump_rsv(priv, __FUNCTION__, next_packet, len, rxstat);
  793. if (!RSV_GETBIT(rxstat, RSV_RXOK)) {
  794. if (netif_msg_rx_err(priv))
  795. dev_err(&ndev->dev, "Rx Error (%04x)\n", rxstat);
  796. ndev->stats.rx_errors++;
  797. if (RSV_GETBIT(rxstat, RSV_CRCERROR))
  798. ndev->stats.rx_crc_errors++;
  799. if (RSV_GETBIT(rxstat, RSV_LENCHECKERR))
  800. ndev->stats.rx_frame_errors++;
  801. } else {
  802. skb = dev_alloc_skb(len);
  803. if (!skb) {
  804. if (netif_msg_rx_err(priv))
  805. dev_err(&ndev->dev,
  806. "out of memory for Rx'd frame\n");
  807. ndev->stats.rx_dropped++;
  808. } else {
  809. skb->dev = ndev;
  810. /* copy the packet from the receive buffer */
  811. enc28j60_mem_read(priv, priv->next_pk_ptr + sizeof(rsv),
  812. len, skb_put(skb, len));
  813. if (netif_msg_pktdata(priv))
  814. dump_packet(__FUNCTION__, skb->len, skb->data);
  815. skb->protocol = eth_type_trans(skb, ndev);
  816. /* update statistics */
  817. ndev->stats.rx_packets++;
  818. ndev->stats.rx_bytes += len;
  819. ndev->last_rx = jiffies;
  820. netif_rx(skb);
  821. }
  822. }
  823. /*
  824. * Move the RX read pointer to the start of the next
  825. * received packet.
  826. * This frees the memory we just read out
  827. */
  828. erxrdpt = erxrdpt_workaround(next_packet, RXSTART_INIT, RXEND_INIT);
  829. if (netif_msg_hw(priv))
  830. printk(KERN_DEBUG DRV_NAME ": %s() ERXRDPT:0x%04x\n",
  831. __FUNCTION__, erxrdpt);
  832. mutex_lock(&priv->lock);
  833. nolock_regw_write(priv, ERXRDPTL, erxrdpt);
  834. #ifdef CONFIG_ENC28J60_WRITEVERIFY
  835. if (netif_msg_drv(priv)) {
  836. u16 reg;
  837. reg = nolock_regw_read(priv, ERXRDPTL);
  838. if (reg != erxrdpt)
  839. printk(KERN_DEBUG DRV_NAME ": %s() ERXRDPT verify "
  840. "error (0x%04x - 0x%04x)\n", __FUNCTION__,
  841. reg, erxrdpt);
  842. }
  843. #endif
  844. priv->next_pk_ptr = next_packet;
  845. /* we are done with this packet, decrement the packet counter */
  846. nolock_reg_bfset(priv, ECON2, ECON2_PKTDEC);
  847. mutex_unlock(&priv->lock);
  848. }
  849. /*
  850. * Calculate free space in RxFIFO
  851. */
  852. static int enc28j60_get_free_rxfifo(struct enc28j60_net *priv)
  853. {
  854. int epkcnt, erxst, erxnd, erxwr, erxrd;
  855. int free_space;
  856. mutex_lock(&priv->lock);
  857. epkcnt = nolock_regb_read(priv, EPKTCNT);
  858. if (epkcnt >= 255)
  859. free_space = -1;
  860. else {
  861. erxst = nolock_regw_read(priv, ERXSTL);
  862. erxnd = nolock_regw_read(priv, ERXNDL);
  863. erxwr = nolock_regw_read(priv, ERXWRPTL);
  864. erxrd = nolock_regw_read(priv, ERXRDPTL);
  865. if (erxwr > erxrd)
  866. free_space = (erxnd - erxst) - (erxwr - erxrd);
  867. else if (erxwr == erxrd)
  868. free_space = (erxnd - erxst);
  869. else
  870. free_space = erxrd - erxwr - 1;
  871. }
  872. mutex_unlock(&priv->lock);
  873. if (netif_msg_rx_status(priv))
  874. printk(KERN_DEBUG DRV_NAME ": %s() free_space = %d\n",
  875. __FUNCTION__, free_space);
  876. return free_space;
  877. }
  878. /*
  879. * Access the PHY to determine link status
  880. */
  881. static void enc28j60_check_link_status(struct net_device *ndev)
  882. {
  883. struct enc28j60_net *priv = netdev_priv(ndev);
  884. u16 reg;
  885. int duplex;
  886. reg = enc28j60_phy_read(priv, PHSTAT2);
  887. if (netif_msg_hw(priv))
  888. printk(KERN_DEBUG DRV_NAME ": %s() PHSTAT1: %04x, "
  889. "PHSTAT2: %04x\n", __FUNCTION__,
  890. enc28j60_phy_read(priv, PHSTAT1), reg);
  891. duplex = reg & PHSTAT2_DPXSTAT;
  892. if (reg & PHSTAT2_LSTAT) {
  893. netif_carrier_on(ndev);
  894. if (netif_msg_ifup(priv))
  895. dev_info(&ndev->dev, "link up - %s\n",
  896. duplex ? "Full duplex" : "Half duplex");
  897. } else {
  898. if (netif_msg_ifdown(priv))
  899. dev_info(&ndev->dev, "link down\n");
  900. netif_carrier_off(ndev);
  901. }
  902. }
  903. static void enc28j60_tx_clear(struct net_device *ndev, bool err)
  904. {
  905. struct enc28j60_net *priv = netdev_priv(ndev);
  906. if (err)
  907. ndev->stats.tx_errors++;
  908. else
  909. ndev->stats.tx_packets++;
  910. if (priv->tx_skb) {
  911. if (!err)
  912. ndev->stats.tx_bytes += priv->tx_skb->len;
  913. dev_kfree_skb(priv->tx_skb);
  914. priv->tx_skb = NULL;
  915. }
  916. locked_reg_bfclr(priv, ECON1, ECON1_TXRTS);
  917. netif_wake_queue(ndev);
  918. }
  919. /*
  920. * RX handler
  921. * ignore PKTIF because is unreliable! (look at the errata datasheet)
  922. * check EPKTCNT is the suggested workaround.
  923. * We don't need to clear interrupt flag, automatically done when
  924. * enc28j60_hw_rx() decrements the packet counter.
  925. * Returns how many packet processed.
  926. */
  927. static int enc28j60_rx_interrupt(struct net_device *ndev)
  928. {
  929. struct enc28j60_net *priv = netdev_priv(ndev);
  930. int pk_counter, ret;
  931. pk_counter = locked_regb_read(priv, EPKTCNT);
  932. if (pk_counter && netif_msg_intr(priv))
  933. printk(KERN_DEBUG DRV_NAME ": intRX, pk_cnt: %d\n", pk_counter);
  934. if (pk_counter > priv->max_pk_counter) {
  935. /* update statistics */
  936. priv->max_pk_counter = pk_counter;
  937. if (netif_msg_rx_status(priv) && priv->max_pk_counter > 1)
  938. printk(KERN_DEBUG DRV_NAME ": RX max_pk_cnt: %d\n",
  939. priv->max_pk_counter);
  940. }
  941. ret = pk_counter;
  942. while (pk_counter-- > 0)
  943. enc28j60_hw_rx(ndev);
  944. return ret;
  945. }
  946. static void enc28j60_irq_work_handler(struct work_struct *work)
  947. {
  948. struct enc28j60_net *priv =
  949. container_of(work, struct enc28j60_net, irq_work);
  950. struct net_device *ndev = priv->netdev;
  951. int intflags, loop;
  952. if (netif_msg_intr(priv))
  953. printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __FUNCTION__);
  954. /* disable further interrupts */
  955. locked_reg_bfclr(priv, EIE, EIE_INTIE);
  956. do {
  957. loop = 0;
  958. intflags = locked_regb_read(priv, EIR);
  959. /* DMA interrupt handler (not currently used) */
  960. if ((intflags & EIR_DMAIF) != 0) {
  961. loop++;
  962. if (netif_msg_intr(priv))
  963. printk(KERN_DEBUG DRV_NAME
  964. ": intDMA(%d)\n", loop);
  965. locked_reg_bfclr(priv, EIR, EIR_DMAIF);
  966. }
  967. /* LINK changed handler */
  968. if ((intflags & EIR_LINKIF) != 0) {
  969. loop++;
  970. if (netif_msg_intr(priv))
  971. printk(KERN_DEBUG DRV_NAME
  972. ": intLINK(%d)\n", loop);
  973. enc28j60_check_link_status(ndev);
  974. /* read PHIR to clear the flag */
  975. enc28j60_phy_read(priv, PHIR);
  976. }
  977. /* TX complete handler */
  978. if ((intflags & EIR_TXIF) != 0) {
  979. bool err = false;
  980. loop++;
  981. if (netif_msg_intr(priv))
  982. printk(KERN_DEBUG DRV_NAME
  983. ": intTX(%d)\n", loop);
  984. priv->tx_retry_count = 0;
  985. if (locked_regb_read(priv, ESTAT) & ESTAT_TXABRT) {
  986. if (netif_msg_tx_err(priv))
  987. dev_err(&ndev->dev,
  988. "Tx Error (aborted)\n");
  989. err = true;
  990. }
  991. if (netif_msg_tx_done(priv)) {
  992. u8 tsv[TSV_SIZE];
  993. enc28j60_read_tsv(priv, tsv);
  994. enc28j60_dump_tsv(priv, "Tx Done", tsv);
  995. }
  996. enc28j60_tx_clear(ndev, err);
  997. locked_reg_bfclr(priv, EIR, EIR_TXIF);
  998. }
  999. /* TX Error handler */
  1000. if ((intflags & EIR_TXERIF) != 0) {
  1001. u8 tsv[TSV_SIZE];
  1002. loop++;
  1003. if (netif_msg_intr(priv))
  1004. printk(KERN_DEBUG DRV_NAME
  1005. ": intTXErr(%d)\n", loop);
  1006. locked_reg_bfclr(priv, ECON1, ECON1_TXRTS);
  1007. enc28j60_read_tsv(priv, tsv);
  1008. if (netif_msg_tx_err(priv))
  1009. enc28j60_dump_tsv(priv, "Tx Error", tsv);
  1010. /* Reset TX logic */
  1011. mutex_lock(&priv->lock);
  1012. nolock_reg_bfset(priv, ECON1, ECON1_TXRST);
  1013. nolock_reg_bfclr(priv, ECON1, ECON1_TXRST);
  1014. nolock_txfifo_init(priv, TXSTART_INIT, TXEND_INIT);
  1015. mutex_unlock(&priv->lock);
  1016. /* Transmit Late collision check for retransmit */
  1017. if (TSV_GETBIT(tsv, TSV_TXLATECOLLISION)) {
  1018. if (netif_msg_tx_err(priv))
  1019. printk(KERN_DEBUG DRV_NAME
  1020. ": LateCollision TXErr (%d)\n",
  1021. priv->tx_retry_count);
  1022. if (priv->tx_retry_count++ < MAX_TX_RETRYCOUNT)
  1023. locked_reg_bfset(priv, ECON1,
  1024. ECON1_TXRTS);
  1025. else
  1026. enc28j60_tx_clear(ndev, true);
  1027. } else
  1028. enc28j60_tx_clear(ndev, true);
  1029. locked_reg_bfclr(priv, EIR, EIR_TXERIF);
  1030. }
  1031. /* RX Error handler */
  1032. if ((intflags & EIR_RXERIF) != 0) {
  1033. loop++;
  1034. if (netif_msg_intr(priv))
  1035. printk(KERN_DEBUG DRV_NAME
  1036. ": intRXErr(%d)\n", loop);
  1037. /* Check free FIFO space to flag RX overrun */
  1038. if (enc28j60_get_free_rxfifo(priv) <= 0) {
  1039. if (netif_msg_rx_err(priv))
  1040. printk(KERN_DEBUG DRV_NAME
  1041. ": RX Overrun\n");
  1042. ndev->stats.rx_dropped++;
  1043. }
  1044. locked_reg_bfclr(priv, EIR, EIR_RXERIF);
  1045. }
  1046. /* RX handler */
  1047. if (enc28j60_rx_interrupt(ndev))
  1048. loop++;
  1049. } while (loop);
  1050. /* re-enable interrupts */
  1051. locked_reg_bfset(priv, EIE, EIE_INTIE);
  1052. if (netif_msg_intr(priv))
  1053. printk(KERN_DEBUG DRV_NAME ": %s() exit\n", __FUNCTION__);
  1054. }
  1055. /*
  1056. * Hardware transmit function.
  1057. * Fill the buffer memory and send the contents of the transmit buffer
  1058. * onto the network
  1059. */
  1060. static void enc28j60_hw_tx(struct enc28j60_net *priv)
  1061. {
  1062. if (netif_msg_tx_queued(priv))
  1063. printk(KERN_DEBUG DRV_NAME
  1064. ": Tx Packet Len:%d\n", priv->tx_skb->len);
  1065. if (netif_msg_pktdata(priv))
  1066. dump_packet(__FUNCTION__,
  1067. priv->tx_skb->len, priv->tx_skb->data);
  1068. enc28j60_packet_write(priv, priv->tx_skb->len, priv->tx_skb->data);
  1069. #ifdef CONFIG_ENC28J60_WRITEVERIFY
  1070. /* readback and verify written data */
  1071. if (netif_msg_drv(priv)) {
  1072. int test_len, k;
  1073. u8 test_buf[64]; /* limit the test to the first 64 bytes */
  1074. int okflag;
  1075. test_len = priv->tx_skb->len;
  1076. if (test_len > sizeof(test_buf))
  1077. test_len = sizeof(test_buf);
  1078. /* + 1 to skip control byte */
  1079. enc28j60_mem_read(priv, TXSTART_INIT + 1, test_len, test_buf);
  1080. okflag = 1;
  1081. for (k = 0; k < test_len; k++) {
  1082. if (priv->tx_skb->data[k] != test_buf[k]) {
  1083. printk(KERN_DEBUG DRV_NAME
  1084. ": Error, %d location differ: "
  1085. "0x%02x-0x%02x\n", k,
  1086. priv->tx_skb->data[k], test_buf[k]);
  1087. okflag = 0;
  1088. }
  1089. }
  1090. if (!okflag)
  1091. printk(KERN_DEBUG DRV_NAME ": Tx write buffer, "
  1092. "verify ERROR!\n");
  1093. }
  1094. #endif
  1095. /* set TX request flag */
  1096. locked_reg_bfset(priv, ECON1, ECON1_TXRTS);
  1097. }
  1098. static int enc28j60_send_packet(struct sk_buff *skb, struct net_device *dev)
  1099. {
  1100. struct enc28j60_net *priv = netdev_priv(dev);
  1101. if (netif_msg_tx_queued(priv))
  1102. printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __FUNCTION__);
  1103. /* If some error occurs while trying to transmit this
  1104. * packet, you should return '1' from this function.
  1105. * In such a case you _may not_ do anything to the
  1106. * SKB, it is still owned by the network queueing
  1107. * layer when an error is returned. This means you
  1108. * may not modify any SKB fields, you may not free
  1109. * the SKB, etc.
  1110. */
  1111. netif_stop_queue(dev);
  1112. /* save the timestamp */
  1113. priv->netdev->trans_start = jiffies;
  1114. /* Remember the skb for deferred processing */
  1115. priv->tx_skb = skb;
  1116. schedule_work(&priv->tx_work);
  1117. return 0;
  1118. }
  1119. static void enc28j60_tx_work_handler(struct work_struct *work)
  1120. {
  1121. struct enc28j60_net *priv =
  1122. container_of(work, struct enc28j60_net, tx_work);
  1123. /* actual delivery of data */
  1124. enc28j60_hw_tx(priv);
  1125. }
  1126. static irqreturn_t enc28j60_irq(int irq, void *dev_id)
  1127. {
  1128. struct enc28j60_net *priv = dev_id;
  1129. /*
  1130. * Can't do anything in interrupt context because we need to
  1131. * block (spi_sync() is blocking) so fire of the interrupt
  1132. * handling workqueue.
  1133. * Remember that we access enc28j60 registers through SPI bus
  1134. * via spi_sync() call.
  1135. */
  1136. schedule_work(&priv->irq_work);
  1137. return IRQ_HANDLED;
  1138. }
  1139. static void enc28j60_tx_timeout(struct net_device *ndev)
  1140. {
  1141. struct enc28j60_net *priv = netdev_priv(ndev);
  1142. if (netif_msg_timer(priv))
  1143. dev_err(&ndev->dev, DRV_NAME " tx timeout\n");
  1144. ndev->stats.tx_errors++;
  1145. /* can't restart safely under softirq */
  1146. schedule_work(&priv->restart_work);
  1147. }
  1148. /*
  1149. * Open/initialize the board. This is called (in the current kernel)
  1150. * sometime after booting when the 'ifconfig' program is run.
  1151. *
  1152. * This routine should set everything up anew at each open, even
  1153. * registers that "should" only need to be set once at boot, so that
  1154. * there is non-reboot way to recover if something goes wrong.
  1155. */
  1156. static int enc28j60_net_open(struct net_device *dev)
  1157. {
  1158. struct enc28j60_net *priv = netdev_priv(dev);
  1159. if (netif_msg_drv(priv))
  1160. printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __FUNCTION__);
  1161. if (!is_valid_ether_addr(dev->dev_addr)) {
  1162. if (netif_msg_ifup(priv)) {
  1163. DECLARE_MAC_BUF(mac);
  1164. dev_err(&dev->dev, "invalid MAC address %s\n",
  1165. print_mac(mac, dev->dev_addr));
  1166. }
  1167. return -EADDRNOTAVAIL;
  1168. }
  1169. /* Reset the hardware here */
  1170. enc28j60_hw_disable(priv);
  1171. if (!enc28j60_hw_init(priv)) {
  1172. if (netif_msg_ifup(priv))
  1173. dev_err(&dev->dev, "hw_reset() failed\n");
  1174. return -EINVAL;
  1175. }
  1176. /* Update the MAC address (in case user has changed it) */
  1177. enc28j60_set_hw_macaddr(dev);
  1178. /* Enable interrupts */
  1179. enc28j60_hw_enable(priv);
  1180. /* check link status */
  1181. enc28j60_check_link_status(dev);
  1182. /* We are now ready to accept transmit requests from
  1183. * the queueing layer of the networking.
  1184. */
  1185. netif_start_queue(dev);
  1186. return 0;
  1187. }
  1188. /* The inverse routine to net_open(). */
  1189. static int enc28j60_net_close(struct net_device *dev)
  1190. {
  1191. struct enc28j60_net *priv = netdev_priv(dev);
  1192. if (netif_msg_drv(priv))
  1193. printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __FUNCTION__);
  1194. enc28j60_hw_disable(priv);
  1195. netif_stop_queue(dev);
  1196. return 0;
  1197. }
  1198. /*
  1199. * Set or clear the multicast filter for this adapter
  1200. * num_addrs == -1 Promiscuous mode, receive all packets
  1201. * num_addrs == 0 Normal mode, filter out multicast packets
  1202. * num_addrs > 0 Multicast mode, receive normal and MC packets
  1203. */
  1204. static void enc28j60_set_multicast_list(struct net_device *dev)
  1205. {
  1206. struct enc28j60_net *priv = netdev_priv(dev);
  1207. int oldfilter = priv->rxfilter;
  1208. if (dev->flags & IFF_PROMISC) {
  1209. if (netif_msg_link(priv))
  1210. dev_info(&dev->dev, "promiscuous mode\n");
  1211. priv->rxfilter = RXFILTER_PROMISC;
  1212. } else if ((dev->flags & IFF_ALLMULTI) || dev->mc_count) {
  1213. if (netif_msg_link(priv))
  1214. dev_info(&dev->dev, "%smulticast mode\n",
  1215. (dev->flags & IFF_ALLMULTI) ? "all-" : "");
  1216. priv->rxfilter = RXFILTER_MULTI;
  1217. } else {
  1218. if (netif_msg_link(priv))
  1219. dev_info(&dev->dev, "normal mode\n");
  1220. priv->rxfilter = RXFILTER_NORMAL;
  1221. }
  1222. if (oldfilter != priv->rxfilter)
  1223. schedule_work(&priv->setrx_work);
  1224. }
  1225. static void enc28j60_setrx_work_handler(struct work_struct *work)
  1226. {
  1227. struct enc28j60_net *priv =
  1228. container_of(work, struct enc28j60_net, setrx_work);
  1229. if (priv->rxfilter == RXFILTER_PROMISC) {
  1230. if (netif_msg_drv(priv))
  1231. printk(KERN_DEBUG DRV_NAME ": promiscuous mode\n");
  1232. locked_regb_write(priv, ERXFCON, 0x00);
  1233. } else if (priv->rxfilter == RXFILTER_MULTI) {
  1234. if (netif_msg_drv(priv))
  1235. printk(KERN_DEBUG DRV_NAME ": multicast mode\n");
  1236. locked_regb_write(priv, ERXFCON,
  1237. ERXFCON_UCEN | ERXFCON_CRCEN |
  1238. ERXFCON_BCEN | ERXFCON_MCEN);
  1239. } else {
  1240. if (netif_msg_drv(priv))
  1241. printk(KERN_DEBUG DRV_NAME ": normal mode\n");
  1242. locked_regb_write(priv, ERXFCON,
  1243. ERXFCON_UCEN | ERXFCON_CRCEN |
  1244. ERXFCON_BCEN);
  1245. }
  1246. }
  1247. static void enc28j60_restart_work_handler(struct work_struct *work)
  1248. {
  1249. struct enc28j60_net *priv =
  1250. container_of(work, struct enc28j60_net, restart_work);
  1251. struct net_device *ndev = priv->netdev;
  1252. int ret;
  1253. rtnl_lock();
  1254. if (netif_running(ndev)) {
  1255. enc28j60_net_close(ndev);
  1256. ret = enc28j60_net_open(ndev);
  1257. if (unlikely(ret)) {
  1258. dev_info(&ndev->dev, " could not restart %d\n", ret);
  1259. dev_close(ndev);
  1260. }
  1261. }
  1262. rtnl_unlock();
  1263. }
  1264. /* ......................... ETHTOOL SUPPORT ........................... */
  1265. static void
  1266. enc28j60_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  1267. {
  1268. strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
  1269. strlcpy(info->version, DRV_VERSION, sizeof(info->version));
  1270. strlcpy(info->bus_info,
  1271. dev->dev.parent->bus_id, sizeof(info->bus_info));
  1272. }
  1273. static int
  1274. enc28j60_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  1275. {
  1276. struct enc28j60_net *priv = netdev_priv(dev);
  1277. cmd->transceiver = XCVR_INTERNAL;
  1278. cmd->supported = SUPPORTED_10baseT_Half
  1279. | SUPPORTED_10baseT_Full
  1280. | SUPPORTED_TP;
  1281. cmd->speed = SPEED_10;
  1282. cmd->duplex = priv->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
  1283. cmd->port = PORT_TP;
  1284. cmd->autoneg = AUTONEG_DISABLE;
  1285. return 0;
  1286. }
  1287. static int
  1288. enc28j60_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  1289. {
  1290. return enc28j60_setlink(dev, cmd->autoneg, cmd->speed, cmd->duplex);
  1291. }
  1292. static u32 enc28j60_get_msglevel(struct net_device *dev)
  1293. {
  1294. struct enc28j60_net *priv = netdev_priv(dev);
  1295. return priv->msg_enable;
  1296. }
  1297. static void enc28j60_set_msglevel(struct net_device *dev, u32 val)
  1298. {
  1299. struct enc28j60_net *priv = netdev_priv(dev);
  1300. priv->msg_enable = val;
  1301. }
  1302. static const struct ethtool_ops enc28j60_ethtool_ops = {
  1303. .get_settings = enc28j60_get_settings,
  1304. .set_settings = enc28j60_set_settings,
  1305. .get_drvinfo = enc28j60_get_drvinfo,
  1306. .get_msglevel = enc28j60_get_msglevel,
  1307. .set_msglevel = enc28j60_set_msglevel,
  1308. };
  1309. static int enc28j60_chipset_init(struct net_device *dev)
  1310. {
  1311. struct enc28j60_net *priv = netdev_priv(dev);
  1312. return enc28j60_hw_init(priv);
  1313. }
  1314. static int __devinit enc28j60_probe(struct spi_device *spi)
  1315. {
  1316. struct net_device *dev;
  1317. struct enc28j60_net *priv;
  1318. int ret = 0;
  1319. if (netif_msg_drv(&debug))
  1320. dev_info(&spi->dev, DRV_NAME " Ethernet driver %s loaded\n",
  1321. DRV_VERSION);
  1322. dev = alloc_etherdev(sizeof(struct enc28j60_net));
  1323. if (!dev) {
  1324. if (netif_msg_drv(&debug))
  1325. dev_err(&spi->dev, DRV_NAME
  1326. ": unable to alloc new ethernet\n");
  1327. ret = -ENOMEM;
  1328. goto error_alloc;
  1329. }
  1330. priv = netdev_priv(dev);
  1331. priv->netdev = dev; /* priv to netdev reference */
  1332. priv->spi = spi; /* priv to spi reference */
  1333. priv->msg_enable = netif_msg_init(debug.msg_enable,
  1334. ENC28J60_MSG_DEFAULT);
  1335. mutex_init(&priv->lock);
  1336. INIT_WORK(&priv->tx_work, enc28j60_tx_work_handler);
  1337. INIT_WORK(&priv->setrx_work, enc28j60_setrx_work_handler);
  1338. INIT_WORK(&priv->irq_work, enc28j60_irq_work_handler);
  1339. INIT_WORK(&priv->restart_work, enc28j60_restart_work_handler);
  1340. dev_set_drvdata(&spi->dev, priv); /* spi to priv reference */
  1341. SET_NETDEV_DEV(dev, &spi->dev);
  1342. if (!enc28j60_chipset_init(dev)) {
  1343. if (netif_msg_probe(priv))
  1344. dev_info(&spi->dev, DRV_NAME " chip not found\n");
  1345. ret = -EIO;
  1346. goto error_irq;
  1347. }
  1348. random_ether_addr(dev->dev_addr);
  1349. enc28j60_set_hw_macaddr(dev);
  1350. ret = request_irq(spi->irq, enc28j60_irq, IRQF_TRIGGER_FALLING,
  1351. DRV_NAME, priv);
  1352. if (ret < 0) {
  1353. if (netif_msg_probe(priv))
  1354. dev_err(&spi->dev, DRV_NAME ": request irq %d failed "
  1355. "(ret = %d)\n", spi->irq, ret);
  1356. goto error_irq;
  1357. }
  1358. dev->if_port = IF_PORT_10BASET;
  1359. dev->irq = spi->irq;
  1360. dev->open = enc28j60_net_open;
  1361. dev->stop = enc28j60_net_close;
  1362. dev->hard_start_xmit = enc28j60_send_packet;
  1363. dev->set_multicast_list = &enc28j60_set_multicast_list;
  1364. dev->set_mac_address = enc28j60_set_mac_address;
  1365. dev->tx_timeout = &enc28j60_tx_timeout;
  1366. dev->watchdog_timeo = TX_TIMEOUT;
  1367. SET_ETHTOOL_OPS(dev, &enc28j60_ethtool_ops);
  1368. ret = register_netdev(dev);
  1369. if (ret) {
  1370. if (netif_msg_probe(priv))
  1371. dev_err(&spi->dev, "register netdev " DRV_NAME
  1372. " failed (ret = %d)\n", ret);
  1373. goto error_register;
  1374. }
  1375. dev_info(&dev->dev, DRV_NAME " driver registered\n");
  1376. return 0;
  1377. error_register:
  1378. free_irq(spi->irq, priv);
  1379. error_irq:
  1380. free_netdev(dev);
  1381. error_alloc:
  1382. return ret;
  1383. }
  1384. static int enc28j60_remove(struct spi_device *spi)
  1385. {
  1386. struct enc28j60_net *priv = dev_get_drvdata(&spi->dev);
  1387. if (netif_msg_drv(priv))
  1388. printk(KERN_DEBUG DRV_NAME ": remove\n");
  1389. unregister_netdev(priv->netdev);
  1390. free_irq(spi->irq, priv);
  1391. free_netdev(priv->netdev);
  1392. return 0;
  1393. }
  1394. static struct spi_driver enc28j60_driver = {
  1395. .driver = {
  1396. .name = DRV_NAME,
  1397. .bus = &spi_bus_type,
  1398. .owner = THIS_MODULE,
  1399. },
  1400. .probe = enc28j60_probe,
  1401. .remove = __devexit_p(enc28j60_remove),
  1402. };
  1403. static int __init enc28j60_init(void)
  1404. {
  1405. return spi_register_driver(&enc28j60_driver);
  1406. }
  1407. module_init(enc28j60_init);
  1408. static void __exit enc28j60_exit(void)
  1409. {
  1410. spi_unregister_driver(&enc28j60_driver);
  1411. }
  1412. module_exit(enc28j60_exit);
  1413. MODULE_DESCRIPTION(DRV_NAME " ethernet driver");
  1414. MODULE_AUTHOR("Claudio Lanconelli <lanconelli.claudio@eptar.com>");
  1415. MODULE_LICENSE("GPL");
  1416. module_param_named(debug, debug.msg_enable, int, 0);
  1417. MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., ffff=all)");