md.c 151 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/kernel.h>
  28. #include <linux/kthread.h>
  29. #include <linux/linkage.h>
  30. #include <linux/raid/md.h>
  31. #include <linux/raid/bitmap.h>
  32. #include <linux/sysctl.h>
  33. #include <linux/buffer_head.h> /* for invalidate_bdev */
  34. #include <linux/poll.h>
  35. #include <linux/mutex.h>
  36. #include <linux/ctype.h>
  37. #include <linux/freezer.h>
  38. #include <linux/init.h>
  39. #include <linux/file.h>
  40. #ifdef CONFIG_KMOD
  41. #include <linux/kmod.h>
  42. #endif
  43. #include <asm/unaligned.h>
  44. #define MAJOR_NR MD_MAJOR
  45. #define MD_DRIVER
  46. /* 63 partitions with the alternate major number (mdp) */
  47. #define MdpMinorShift 6
  48. #define DEBUG 0
  49. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  50. #ifndef MODULE
  51. static void autostart_arrays (int part);
  52. #endif
  53. static LIST_HEAD(pers_list);
  54. static DEFINE_SPINLOCK(pers_lock);
  55. static void md_print_devices(void);
  56. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  57. /*
  58. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  59. * is 1000 KB/sec, so the extra system load does not show up that much.
  60. * Increase it if you want to have more _guaranteed_ speed. Note that
  61. * the RAID driver will use the maximum available bandwidth if the IO
  62. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  63. * speed limit - in case reconstruction slows down your system despite
  64. * idle IO detection.
  65. *
  66. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  67. * or /sys/block/mdX/md/sync_speed_{min,max}
  68. */
  69. static int sysctl_speed_limit_min = 1000;
  70. static int sysctl_speed_limit_max = 200000;
  71. static inline int speed_min(mddev_t *mddev)
  72. {
  73. return mddev->sync_speed_min ?
  74. mddev->sync_speed_min : sysctl_speed_limit_min;
  75. }
  76. static inline int speed_max(mddev_t *mddev)
  77. {
  78. return mddev->sync_speed_max ?
  79. mddev->sync_speed_max : sysctl_speed_limit_max;
  80. }
  81. static struct ctl_table_header *raid_table_header;
  82. static ctl_table raid_table[] = {
  83. {
  84. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  85. .procname = "speed_limit_min",
  86. .data = &sysctl_speed_limit_min,
  87. .maxlen = sizeof(int),
  88. .mode = S_IRUGO|S_IWUSR,
  89. .proc_handler = &proc_dointvec,
  90. },
  91. {
  92. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  93. .procname = "speed_limit_max",
  94. .data = &sysctl_speed_limit_max,
  95. .maxlen = sizeof(int),
  96. .mode = S_IRUGO|S_IWUSR,
  97. .proc_handler = &proc_dointvec,
  98. },
  99. { .ctl_name = 0 }
  100. };
  101. static ctl_table raid_dir_table[] = {
  102. {
  103. .ctl_name = DEV_RAID,
  104. .procname = "raid",
  105. .maxlen = 0,
  106. .mode = S_IRUGO|S_IXUGO,
  107. .child = raid_table,
  108. },
  109. { .ctl_name = 0 }
  110. };
  111. static ctl_table raid_root_table[] = {
  112. {
  113. .ctl_name = CTL_DEV,
  114. .procname = "dev",
  115. .maxlen = 0,
  116. .mode = 0555,
  117. .child = raid_dir_table,
  118. },
  119. { .ctl_name = 0 }
  120. };
  121. static struct block_device_operations md_fops;
  122. static int start_readonly;
  123. /*
  124. * We have a system wide 'event count' that is incremented
  125. * on any 'interesting' event, and readers of /proc/mdstat
  126. * can use 'poll' or 'select' to find out when the event
  127. * count increases.
  128. *
  129. * Events are:
  130. * start array, stop array, error, add device, remove device,
  131. * start build, activate spare
  132. */
  133. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  134. static atomic_t md_event_count;
  135. void md_new_event(mddev_t *mddev)
  136. {
  137. atomic_inc(&md_event_count);
  138. wake_up(&md_event_waiters);
  139. sysfs_notify(&mddev->kobj, NULL, "sync_action");
  140. }
  141. EXPORT_SYMBOL_GPL(md_new_event);
  142. /* Alternate version that can be called from interrupts
  143. * when calling sysfs_notify isn't needed.
  144. */
  145. static void md_new_event_inintr(mddev_t *mddev)
  146. {
  147. atomic_inc(&md_event_count);
  148. wake_up(&md_event_waiters);
  149. }
  150. /*
  151. * Enables to iterate over all existing md arrays
  152. * all_mddevs_lock protects this list.
  153. */
  154. static LIST_HEAD(all_mddevs);
  155. static DEFINE_SPINLOCK(all_mddevs_lock);
  156. /*
  157. * iterates through all used mddevs in the system.
  158. * We take care to grab the all_mddevs_lock whenever navigating
  159. * the list, and to always hold a refcount when unlocked.
  160. * Any code which breaks out of this loop while own
  161. * a reference to the current mddev and must mddev_put it.
  162. */
  163. #define for_each_mddev(mddev,tmp) \
  164. \
  165. for (({ spin_lock(&all_mddevs_lock); \
  166. tmp = all_mddevs.next; \
  167. mddev = NULL;}); \
  168. ({ if (tmp != &all_mddevs) \
  169. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  170. spin_unlock(&all_mddevs_lock); \
  171. if (mddev) mddev_put(mddev); \
  172. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  173. tmp != &all_mddevs;}); \
  174. ({ spin_lock(&all_mddevs_lock); \
  175. tmp = tmp->next;}) \
  176. )
  177. static int md_fail_request (struct request_queue *q, struct bio *bio)
  178. {
  179. bio_io_error(bio);
  180. return 0;
  181. }
  182. static inline mddev_t *mddev_get(mddev_t *mddev)
  183. {
  184. atomic_inc(&mddev->active);
  185. return mddev;
  186. }
  187. static void mddev_put(mddev_t *mddev)
  188. {
  189. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  190. return;
  191. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  192. list_del(&mddev->all_mddevs);
  193. spin_unlock(&all_mddevs_lock);
  194. blk_cleanup_queue(mddev->queue);
  195. kobject_put(&mddev->kobj);
  196. } else
  197. spin_unlock(&all_mddevs_lock);
  198. }
  199. static mddev_t * mddev_find(dev_t unit)
  200. {
  201. mddev_t *mddev, *new = NULL;
  202. retry:
  203. spin_lock(&all_mddevs_lock);
  204. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  205. if (mddev->unit == unit) {
  206. mddev_get(mddev);
  207. spin_unlock(&all_mddevs_lock);
  208. kfree(new);
  209. return mddev;
  210. }
  211. if (new) {
  212. list_add(&new->all_mddevs, &all_mddevs);
  213. spin_unlock(&all_mddevs_lock);
  214. return new;
  215. }
  216. spin_unlock(&all_mddevs_lock);
  217. new = kzalloc(sizeof(*new), GFP_KERNEL);
  218. if (!new)
  219. return NULL;
  220. new->unit = unit;
  221. if (MAJOR(unit) == MD_MAJOR)
  222. new->md_minor = MINOR(unit);
  223. else
  224. new->md_minor = MINOR(unit) >> MdpMinorShift;
  225. mutex_init(&new->reconfig_mutex);
  226. INIT_LIST_HEAD(&new->disks);
  227. INIT_LIST_HEAD(&new->all_mddevs);
  228. init_timer(&new->safemode_timer);
  229. atomic_set(&new->active, 1);
  230. spin_lock_init(&new->write_lock);
  231. init_waitqueue_head(&new->sb_wait);
  232. new->reshape_position = MaxSector;
  233. new->resync_max = MaxSector;
  234. new->queue = blk_alloc_queue(GFP_KERNEL);
  235. if (!new->queue) {
  236. kfree(new);
  237. return NULL;
  238. }
  239. set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
  240. blk_queue_make_request(new->queue, md_fail_request);
  241. goto retry;
  242. }
  243. static inline int mddev_lock(mddev_t * mddev)
  244. {
  245. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  246. }
  247. static inline int mddev_trylock(mddev_t * mddev)
  248. {
  249. return mutex_trylock(&mddev->reconfig_mutex);
  250. }
  251. static inline void mddev_unlock(mddev_t * mddev)
  252. {
  253. mutex_unlock(&mddev->reconfig_mutex);
  254. md_wakeup_thread(mddev->thread);
  255. }
  256. static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  257. {
  258. mdk_rdev_t * rdev;
  259. struct list_head *tmp;
  260. rdev_for_each(rdev, tmp, mddev) {
  261. if (rdev->desc_nr == nr)
  262. return rdev;
  263. }
  264. return NULL;
  265. }
  266. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  267. {
  268. struct list_head *tmp;
  269. mdk_rdev_t *rdev;
  270. rdev_for_each(rdev, tmp, mddev) {
  271. if (rdev->bdev->bd_dev == dev)
  272. return rdev;
  273. }
  274. return NULL;
  275. }
  276. static struct mdk_personality *find_pers(int level, char *clevel)
  277. {
  278. struct mdk_personality *pers;
  279. list_for_each_entry(pers, &pers_list, list) {
  280. if (level != LEVEL_NONE && pers->level == level)
  281. return pers;
  282. if (strcmp(pers->name, clevel)==0)
  283. return pers;
  284. }
  285. return NULL;
  286. }
  287. static inline sector_t calc_dev_sboffset(struct block_device *bdev)
  288. {
  289. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  290. return MD_NEW_SIZE_BLOCKS(size);
  291. }
  292. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  293. {
  294. sector_t size;
  295. size = rdev->sb_offset;
  296. if (chunk_size)
  297. size &= ~((sector_t)chunk_size/1024 - 1);
  298. return size;
  299. }
  300. static int alloc_disk_sb(mdk_rdev_t * rdev)
  301. {
  302. if (rdev->sb_page)
  303. MD_BUG();
  304. rdev->sb_page = alloc_page(GFP_KERNEL);
  305. if (!rdev->sb_page) {
  306. printk(KERN_ALERT "md: out of memory.\n");
  307. return -EINVAL;
  308. }
  309. return 0;
  310. }
  311. static void free_disk_sb(mdk_rdev_t * rdev)
  312. {
  313. if (rdev->sb_page) {
  314. put_page(rdev->sb_page);
  315. rdev->sb_loaded = 0;
  316. rdev->sb_page = NULL;
  317. rdev->sb_offset = 0;
  318. rdev->size = 0;
  319. }
  320. }
  321. static void super_written(struct bio *bio, int error)
  322. {
  323. mdk_rdev_t *rdev = bio->bi_private;
  324. mddev_t *mddev = rdev->mddev;
  325. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  326. printk("md: super_written gets error=%d, uptodate=%d\n",
  327. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  328. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  329. md_error(mddev, rdev);
  330. }
  331. if (atomic_dec_and_test(&mddev->pending_writes))
  332. wake_up(&mddev->sb_wait);
  333. bio_put(bio);
  334. }
  335. static void super_written_barrier(struct bio *bio, int error)
  336. {
  337. struct bio *bio2 = bio->bi_private;
  338. mdk_rdev_t *rdev = bio2->bi_private;
  339. mddev_t *mddev = rdev->mddev;
  340. if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  341. error == -EOPNOTSUPP) {
  342. unsigned long flags;
  343. /* barriers don't appear to be supported :-( */
  344. set_bit(BarriersNotsupp, &rdev->flags);
  345. mddev->barriers_work = 0;
  346. spin_lock_irqsave(&mddev->write_lock, flags);
  347. bio2->bi_next = mddev->biolist;
  348. mddev->biolist = bio2;
  349. spin_unlock_irqrestore(&mddev->write_lock, flags);
  350. wake_up(&mddev->sb_wait);
  351. bio_put(bio);
  352. } else {
  353. bio_put(bio2);
  354. bio->bi_private = rdev;
  355. super_written(bio, error);
  356. }
  357. }
  358. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  359. sector_t sector, int size, struct page *page)
  360. {
  361. /* write first size bytes of page to sector of rdev
  362. * Increment mddev->pending_writes before returning
  363. * and decrement it on completion, waking up sb_wait
  364. * if zero is reached.
  365. * If an error occurred, call md_error
  366. *
  367. * As we might need to resubmit the request if BIO_RW_BARRIER
  368. * causes ENOTSUPP, we allocate a spare bio...
  369. */
  370. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  371. int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
  372. bio->bi_bdev = rdev->bdev;
  373. bio->bi_sector = sector;
  374. bio_add_page(bio, page, size, 0);
  375. bio->bi_private = rdev;
  376. bio->bi_end_io = super_written;
  377. bio->bi_rw = rw;
  378. atomic_inc(&mddev->pending_writes);
  379. if (!test_bit(BarriersNotsupp, &rdev->flags)) {
  380. struct bio *rbio;
  381. rw |= (1<<BIO_RW_BARRIER);
  382. rbio = bio_clone(bio, GFP_NOIO);
  383. rbio->bi_private = bio;
  384. rbio->bi_end_io = super_written_barrier;
  385. submit_bio(rw, rbio);
  386. } else
  387. submit_bio(rw, bio);
  388. }
  389. void md_super_wait(mddev_t *mddev)
  390. {
  391. /* wait for all superblock writes that were scheduled to complete.
  392. * if any had to be retried (due to BARRIER problems), retry them
  393. */
  394. DEFINE_WAIT(wq);
  395. for(;;) {
  396. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  397. if (atomic_read(&mddev->pending_writes)==0)
  398. break;
  399. while (mddev->biolist) {
  400. struct bio *bio;
  401. spin_lock_irq(&mddev->write_lock);
  402. bio = mddev->biolist;
  403. mddev->biolist = bio->bi_next ;
  404. bio->bi_next = NULL;
  405. spin_unlock_irq(&mddev->write_lock);
  406. submit_bio(bio->bi_rw, bio);
  407. }
  408. schedule();
  409. }
  410. finish_wait(&mddev->sb_wait, &wq);
  411. }
  412. static void bi_complete(struct bio *bio, int error)
  413. {
  414. complete((struct completion*)bio->bi_private);
  415. }
  416. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  417. struct page *page, int rw)
  418. {
  419. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  420. struct completion event;
  421. int ret;
  422. rw |= (1 << BIO_RW_SYNC);
  423. bio->bi_bdev = bdev;
  424. bio->bi_sector = sector;
  425. bio_add_page(bio, page, size, 0);
  426. init_completion(&event);
  427. bio->bi_private = &event;
  428. bio->bi_end_io = bi_complete;
  429. submit_bio(rw, bio);
  430. wait_for_completion(&event);
  431. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  432. bio_put(bio);
  433. return ret;
  434. }
  435. EXPORT_SYMBOL_GPL(sync_page_io);
  436. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  437. {
  438. char b[BDEVNAME_SIZE];
  439. if (!rdev->sb_page) {
  440. MD_BUG();
  441. return -EINVAL;
  442. }
  443. if (rdev->sb_loaded)
  444. return 0;
  445. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
  446. goto fail;
  447. rdev->sb_loaded = 1;
  448. return 0;
  449. fail:
  450. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  451. bdevname(rdev->bdev,b));
  452. return -EINVAL;
  453. }
  454. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  455. {
  456. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  457. (sb1->set_uuid1 == sb2->set_uuid1) &&
  458. (sb1->set_uuid2 == sb2->set_uuid2) &&
  459. (sb1->set_uuid3 == sb2->set_uuid3))
  460. return 1;
  461. return 0;
  462. }
  463. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  464. {
  465. int ret;
  466. mdp_super_t *tmp1, *tmp2;
  467. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  468. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  469. if (!tmp1 || !tmp2) {
  470. ret = 0;
  471. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  472. goto abort;
  473. }
  474. *tmp1 = *sb1;
  475. *tmp2 = *sb2;
  476. /*
  477. * nr_disks is not constant
  478. */
  479. tmp1->nr_disks = 0;
  480. tmp2->nr_disks = 0;
  481. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  482. ret = 0;
  483. else
  484. ret = 1;
  485. abort:
  486. kfree(tmp1);
  487. kfree(tmp2);
  488. return ret;
  489. }
  490. static u32 md_csum_fold(u32 csum)
  491. {
  492. csum = (csum & 0xffff) + (csum >> 16);
  493. return (csum & 0xffff) + (csum >> 16);
  494. }
  495. static unsigned int calc_sb_csum(mdp_super_t * sb)
  496. {
  497. u64 newcsum = 0;
  498. u32 *sb32 = (u32*)sb;
  499. int i;
  500. unsigned int disk_csum, csum;
  501. disk_csum = sb->sb_csum;
  502. sb->sb_csum = 0;
  503. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  504. newcsum += sb32[i];
  505. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  506. #ifdef CONFIG_ALPHA
  507. /* This used to use csum_partial, which was wrong for several
  508. * reasons including that different results are returned on
  509. * different architectures. It isn't critical that we get exactly
  510. * the same return value as before (we always csum_fold before
  511. * testing, and that removes any differences). However as we
  512. * know that csum_partial always returned a 16bit value on
  513. * alphas, do a fold to maximise conformity to previous behaviour.
  514. */
  515. sb->sb_csum = md_csum_fold(disk_csum);
  516. #else
  517. sb->sb_csum = disk_csum;
  518. #endif
  519. return csum;
  520. }
  521. /*
  522. * Handle superblock details.
  523. * We want to be able to handle multiple superblock formats
  524. * so we have a common interface to them all, and an array of
  525. * different handlers.
  526. * We rely on user-space to write the initial superblock, and support
  527. * reading and updating of superblocks.
  528. * Interface methods are:
  529. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  530. * loads and validates a superblock on dev.
  531. * if refdev != NULL, compare superblocks on both devices
  532. * Return:
  533. * 0 - dev has a superblock that is compatible with refdev
  534. * 1 - dev has a superblock that is compatible and newer than refdev
  535. * so dev should be used as the refdev in future
  536. * -EINVAL superblock incompatible or invalid
  537. * -othererror e.g. -EIO
  538. *
  539. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  540. * Verify that dev is acceptable into mddev.
  541. * The first time, mddev->raid_disks will be 0, and data from
  542. * dev should be merged in. Subsequent calls check that dev
  543. * is new enough. Return 0 or -EINVAL
  544. *
  545. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  546. * Update the superblock for rdev with data in mddev
  547. * This does not write to disc.
  548. *
  549. */
  550. struct super_type {
  551. char *name;
  552. struct module *owner;
  553. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  554. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  555. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  556. };
  557. /*
  558. * load_super for 0.90.0
  559. */
  560. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  561. {
  562. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  563. mdp_super_t *sb;
  564. int ret;
  565. sector_t sb_offset;
  566. /*
  567. * Calculate the position of the superblock,
  568. * it's at the end of the disk.
  569. *
  570. * It also happens to be a multiple of 4Kb.
  571. */
  572. sb_offset = calc_dev_sboffset(rdev->bdev);
  573. rdev->sb_offset = sb_offset;
  574. ret = read_disk_sb(rdev, MD_SB_BYTES);
  575. if (ret) return ret;
  576. ret = -EINVAL;
  577. bdevname(rdev->bdev, b);
  578. sb = (mdp_super_t*)page_address(rdev->sb_page);
  579. if (sb->md_magic != MD_SB_MAGIC) {
  580. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  581. b);
  582. goto abort;
  583. }
  584. if (sb->major_version != 0 ||
  585. sb->minor_version < 90 ||
  586. sb->minor_version > 91) {
  587. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  588. sb->major_version, sb->minor_version,
  589. b);
  590. goto abort;
  591. }
  592. if (sb->raid_disks <= 0)
  593. goto abort;
  594. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  595. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  596. b);
  597. goto abort;
  598. }
  599. rdev->preferred_minor = sb->md_minor;
  600. rdev->data_offset = 0;
  601. rdev->sb_size = MD_SB_BYTES;
  602. if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
  603. if (sb->level != 1 && sb->level != 4
  604. && sb->level != 5 && sb->level != 6
  605. && sb->level != 10) {
  606. /* FIXME use a better test */
  607. printk(KERN_WARNING
  608. "md: bitmaps not supported for this level.\n");
  609. goto abort;
  610. }
  611. }
  612. if (sb->level == LEVEL_MULTIPATH)
  613. rdev->desc_nr = -1;
  614. else
  615. rdev->desc_nr = sb->this_disk.number;
  616. if (refdev == 0)
  617. ret = 1;
  618. else {
  619. __u64 ev1, ev2;
  620. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  621. if (!uuid_equal(refsb, sb)) {
  622. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  623. b, bdevname(refdev->bdev,b2));
  624. goto abort;
  625. }
  626. if (!sb_equal(refsb, sb)) {
  627. printk(KERN_WARNING "md: %s has same UUID"
  628. " but different superblock to %s\n",
  629. b, bdevname(refdev->bdev, b2));
  630. goto abort;
  631. }
  632. ev1 = md_event(sb);
  633. ev2 = md_event(refsb);
  634. if (ev1 > ev2)
  635. ret = 1;
  636. else
  637. ret = 0;
  638. }
  639. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  640. if (rdev->size < sb->size && sb->level > 1)
  641. /* "this cannot possibly happen" ... */
  642. ret = -EINVAL;
  643. abort:
  644. return ret;
  645. }
  646. /*
  647. * validate_super for 0.90.0
  648. */
  649. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  650. {
  651. mdp_disk_t *desc;
  652. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  653. __u64 ev1 = md_event(sb);
  654. rdev->raid_disk = -1;
  655. clear_bit(Faulty, &rdev->flags);
  656. clear_bit(In_sync, &rdev->flags);
  657. clear_bit(WriteMostly, &rdev->flags);
  658. clear_bit(BarriersNotsupp, &rdev->flags);
  659. if (mddev->raid_disks == 0) {
  660. mddev->major_version = 0;
  661. mddev->minor_version = sb->minor_version;
  662. mddev->patch_version = sb->patch_version;
  663. mddev->external = 0;
  664. mddev->chunk_size = sb->chunk_size;
  665. mddev->ctime = sb->ctime;
  666. mddev->utime = sb->utime;
  667. mddev->level = sb->level;
  668. mddev->clevel[0] = 0;
  669. mddev->layout = sb->layout;
  670. mddev->raid_disks = sb->raid_disks;
  671. mddev->size = sb->size;
  672. mddev->events = ev1;
  673. mddev->bitmap_offset = 0;
  674. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  675. if (mddev->minor_version >= 91) {
  676. mddev->reshape_position = sb->reshape_position;
  677. mddev->delta_disks = sb->delta_disks;
  678. mddev->new_level = sb->new_level;
  679. mddev->new_layout = sb->new_layout;
  680. mddev->new_chunk = sb->new_chunk;
  681. } else {
  682. mddev->reshape_position = MaxSector;
  683. mddev->delta_disks = 0;
  684. mddev->new_level = mddev->level;
  685. mddev->new_layout = mddev->layout;
  686. mddev->new_chunk = mddev->chunk_size;
  687. }
  688. if (sb->state & (1<<MD_SB_CLEAN))
  689. mddev->recovery_cp = MaxSector;
  690. else {
  691. if (sb->events_hi == sb->cp_events_hi &&
  692. sb->events_lo == sb->cp_events_lo) {
  693. mddev->recovery_cp = sb->recovery_cp;
  694. } else
  695. mddev->recovery_cp = 0;
  696. }
  697. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  698. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  699. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  700. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  701. mddev->max_disks = MD_SB_DISKS;
  702. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  703. mddev->bitmap_file == NULL)
  704. mddev->bitmap_offset = mddev->default_bitmap_offset;
  705. } else if (mddev->pers == NULL) {
  706. /* Insist on good event counter while assembling */
  707. ++ev1;
  708. if (ev1 < mddev->events)
  709. return -EINVAL;
  710. } else if (mddev->bitmap) {
  711. /* if adding to array with a bitmap, then we can accept an
  712. * older device ... but not too old.
  713. */
  714. if (ev1 < mddev->bitmap->events_cleared)
  715. return 0;
  716. } else {
  717. if (ev1 < mddev->events)
  718. /* just a hot-add of a new device, leave raid_disk at -1 */
  719. return 0;
  720. }
  721. if (mddev->level != LEVEL_MULTIPATH) {
  722. desc = sb->disks + rdev->desc_nr;
  723. if (desc->state & (1<<MD_DISK_FAULTY))
  724. set_bit(Faulty, &rdev->flags);
  725. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  726. desc->raid_disk < mddev->raid_disks */) {
  727. set_bit(In_sync, &rdev->flags);
  728. rdev->raid_disk = desc->raid_disk;
  729. }
  730. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  731. set_bit(WriteMostly, &rdev->flags);
  732. } else /* MULTIPATH are always insync */
  733. set_bit(In_sync, &rdev->flags);
  734. return 0;
  735. }
  736. /*
  737. * sync_super for 0.90.0
  738. */
  739. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  740. {
  741. mdp_super_t *sb;
  742. struct list_head *tmp;
  743. mdk_rdev_t *rdev2;
  744. int next_spare = mddev->raid_disks;
  745. /* make rdev->sb match mddev data..
  746. *
  747. * 1/ zero out disks
  748. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  749. * 3/ any empty disks < next_spare become removed
  750. *
  751. * disks[0] gets initialised to REMOVED because
  752. * we cannot be sure from other fields if it has
  753. * been initialised or not.
  754. */
  755. int i;
  756. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  757. rdev->sb_size = MD_SB_BYTES;
  758. sb = (mdp_super_t*)page_address(rdev->sb_page);
  759. memset(sb, 0, sizeof(*sb));
  760. sb->md_magic = MD_SB_MAGIC;
  761. sb->major_version = mddev->major_version;
  762. sb->patch_version = mddev->patch_version;
  763. sb->gvalid_words = 0; /* ignored */
  764. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  765. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  766. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  767. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  768. sb->ctime = mddev->ctime;
  769. sb->level = mddev->level;
  770. sb->size = mddev->size;
  771. sb->raid_disks = mddev->raid_disks;
  772. sb->md_minor = mddev->md_minor;
  773. sb->not_persistent = 0;
  774. sb->utime = mddev->utime;
  775. sb->state = 0;
  776. sb->events_hi = (mddev->events>>32);
  777. sb->events_lo = (u32)mddev->events;
  778. if (mddev->reshape_position == MaxSector)
  779. sb->minor_version = 90;
  780. else {
  781. sb->minor_version = 91;
  782. sb->reshape_position = mddev->reshape_position;
  783. sb->new_level = mddev->new_level;
  784. sb->delta_disks = mddev->delta_disks;
  785. sb->new_layout = mddev->new_layout;
  786. sb->new_chunk = mddev->new_chunk;
  787. }
  788. mddev->minor_version = sb->minor_version;
  789. if (mddev->in_sync)
  790. {
  791. sb->recovery_cp = mddev->recovery_cp;
  792. sb->cp_events_hi = (mddev->events>>32);
  793. sb->cp_events_lo = (u32)mddev->events;
  794. if (mddev->recovery_cp == MaxSector)
  795. sb->state = (1<< MD_SB_CLEAN);
  796. } else
  797. sb->recovery_cp = 0;
  798. sb->layout = mddev->layout;
  799. sb->chunk_size = mddev->chunk_size;
  800. if (mddev->bitmap && mddev->bitmap_file == NULL)
  801. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  802. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  803. rdev_for_each(rdev2, tmp, mddev) {
  804. mdp_disk_t *d;
  805. int desc_nr;
  806. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  807. && !test_bit(Faulty, &rdev2->flags))
  808. desc_nr = rdev2->raid_disk;
  809. else
  810. desc_nr = next_spare++;
  811. rdev2->desc_nr = desc_nr;
  812. d = &sb->disks[rdev2->desc_nr];
  813. nr_disks++;
  814. d->number = rdev2->desc_nr;
  815. d->major = MAJOR(rdev2->bdev->bd_dev);
  816. d->minor = MINOR(rdev2->bdev->bd_dev);
  817. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  818. && !test_bit(Faulty, &rdev2->flags))
  819. d->raid_disk = rdev2->raid_disk;
  820. else
  821. d->raid_disk = rdev2->desc_nr; /* compatibility */
  822. if (test_bit(Faulty, &rdev2->flags))
  823. d->state = (1<<MD_DISK_FAULTY);
  824. else if (test_bit(In_sync, &rdev2->flags)) {
  825. d->state = (1<<MD_DISK_ACTIVE);
  826. d->state |= (1<<MD_DISK_SYNC);
  827. active++;
  828. working++;
  829. } else {
  830. d->state = 0;
  831. spare++;
  832. working++;
  833. }
  834. if (test_bit(WriteMostly, &rdev2->flags))
  835. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  836. }
  837. /* now set the "removed" and "faulty" bits on any missing devices */
  838. for (i=0 ; i < mddev->raid_disks ; i++) {
  839. mdp_disk_t *d = &sb->disks[i];
  840. if (d->state == 0 && d->number == 0) {
  841. d->number = i;
  842. d->raid_disk = i;
  843. d->state = (1<<MD_DISK_REMOVED);
  844. d->state |= (1<<MD_DISK_FAULTY);
  845. failed++;
  846. }
  847. }
  848. sb->nr_disks = nr_disks;
  849. sb->active_disks = active;
  850. sb->working_disks = working;
  851. sb->failed_disks = failed;
  852. sb->spare_disks = spare;
  853. sb->this_disk = sb->disks[rdev->desc_nr];
  854. sb->sb_csum = calc_sb_csum(sb);
  855. }
  856. /*
  857. * version 1 superblock
  858. */
  859. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  860. {
  861. __le32 disk_csum;
  862. u32 csum;
  863. unsigned long long newcsum;
  864. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  865. __le32 *isuper = (__le32*)sb;
  866. int i;
  867. disk_csum = sb->sb_csum;
  868. sb->sb_csum = 0;
  869. newcsum = 0;
  870. for (i=0; size>=4; size -= 4 )
  871. newcsum += le32_to_cpu(*isuper++);
  872. if (size == 2)
  873. newcsum += le16_to_cpu(*(__le16*) isuper);
  874. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  875. sb->sb_csum = disk_csum;
  876. return cpu_to_le32(csum);
  877. }
  878. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  879. {
  880. struct mdp_superblock_1 *sb;
  881. int ret;
  882. sector_t sb_offset;
  883. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  884. int bmask;
  885. /*
  886. * Calculate the position of the superblock.
  887. * It is always aligned to a 4K boundary and
  888. * depeding on minor_version, it can be:
  889. * 0: At least 8K, but less than 12K, from end of device
  890. * 1: At start of device
  891. * 2: 4K from start of device.
  892. */
  893. switch(minor_version) {
  894. case 0:
  895. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  896. sb_offset -= 8*2;
  897. sb_offset &= ~(sector_t)(4*2-1);
  898. /* convert from sectors to K */
  899. sb_offset /= 2;
  900. break;
  901. case 1:
  902. sb_offset = 0;
  903. break;
  904. case 2:
  905. sb_offset = 4;
  906. break;
  907. default:
  908. return -EINVAL;
  909. }
  910. rdev->sb_offset = sb_offset;
  911. /* superblock is rarely larger than 1K, but it can be larger,
  912. * and it is safe to read 4k, so we do that
  913. */
  914. ret = read_disk_sb(rdev, 4096);
  915. if (ret) return ret;
  916. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  917. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  918. sb->major_version != cpu_to_le32(1) ||
  919. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  920. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  921. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  922. return -EINVAL;
  923. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  924. printk("md: invalid superblock checksum on %s\n",
  925. bdevname(rdev->bdev,b));
  926. return -EINVAL;
  927. }
  928. if (le64_to_cpu(sb->data_size) < 10) {
  929. printk("md: data_size too small on %s\n",
  930. bdevname(rdev->bdev,b));
  931. return -EINVAL;
  932. }
  933. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
  934. if (sb->level != cpu_to_le32(1) &&
  935. sb->level != cpu_to_le32(4) &&
  936. sb->level != cpu_to_le32(5) &&
  937. sb->level != cpu_to_le32(6) &&
  938. sb->level != cpu_to_le32(10)) {
  939. printk(KERN_WARNING
  940. "md: bitmaps not supported for this level.\n");
  941. return -EINVAL;
  942. }
  943. }
  944. rdev->preferred_minor = 0xffff;
  945. rdev->data_offset = le64_to_cpu(sb->data_offset);
  946. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  947. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  948. bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
  949. if (rdev->sb_size & bmask)
  950. rdev-> sb_size = (rdev->sb_size | bmask)+1;
  951. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  952. rdev->desc_nr = -1;
  953. else
  954. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  955. if (refdev == 0)
  956. ret = 1;
  957. else {
  958. __u64 ev1, ev2;
  959. struct mdp_superblock_1 *refsb =
  960. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  961. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  962. sb->level != refsb->level ||
  963. sb->layout != refsb->layout ||
  964. sb->chunksize != refsb->chunksize) {
  965. printk(KERN_WARNING "md: %s has strangely different"
  966. " superblock to %s\n",
  967. bdevname(rdev->bdev,b),
  968. bdevname(refdev->bdev,b2));
  969. return -EINVAL;
  970. }
  971. ev1 = le64_to_cpu(sb->events);
  972. ev2 = le64_to_cpu(refsb->events);
  973. if (ev1 > ev2)
  974. ret = 1;
  975. else
  976. ret = 0;
  977. }
  978. if (minor_version)
  979. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  980. else
  981. rdev->size = rdev->sb_offset;
  982. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  983. return -EINVAL;
  984. rdev->size = le64_to_cpu(sb->data_size)/2;
  985. if (le32_to_cpu(sb->chunksize))
  986. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  987. if (le64_to_cpu(sb->size) > rdev->size*2)
  988. return -EINVAL;
  989. return ret;
  990. }
  991. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  992. {
  993. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  994. __u64 ev1 = le64_to_cpu(sb->events);
  995. rdev->raid_disk = -1;
  996. clear_bit(Faulty, &rdev->flags);
  997. clear_bit(In_sync, &rdev->flags);
  998. clear_bit(WriteMostly, &rdev->flags);
  999. clear_bit(BarriersNotsupp, &rdev->flags);
  1000. if (mddev->raid_disks == 0) {
  1001. mddev->major_version = 1;
  1002. mddev->patch_version = 0;
  1003. mddev->external = 0;
  1004. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  1005. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1006. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1007. mddev->level = le32_to_cpu(sb->level);
  1008. mddev->clevel[0] = 0;
  1009. mddev->layout = le32_to_cpu(sb->layout);
  1010. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1011. mddev->size = le64_to_cpu(sb->size)/2;
  1012. mddev->events = ev1;
  1013. mddev->bitmap_offset = 0;
  1014. mddev->default_bitmap_offset = 1024 >> 9;
  1015. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1016. memcpy(mddev->uuid, sb->set_uuid, 16);
  1017. mddev->max_disks = (4096-256)/2;
  1018. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1019. mddev->bitmap_file == NULL )
  1020. mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
  1021. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1022. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1023. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1024. mddev->new_level = le32_to_cpu(sb->new_level);
  1025. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1026. mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
  1027. } else {
  1028. mddev->reshape_position = MaxSector;
  1029. mddev->delta_disks = 0;
  1030. mddev->new_level = mddev->level;
  1031. mddev->new_layout = mddev->layout;
  1032. mddev->new_chunk = mddev->chunk_size;
  1033. }
  1034. } else if (mddev->pers == NULL) {
  1035. /* Insist of good event counter while assembling */
  1036. ++ev1;
  1037. if (ev1 < mddev->events)
  1038. return -EINVAL;
  1039. } else if (mddev->bitmap) {
  1040. /* If adding to array with a bitmap, then we can accept an
  1041. * older device, but not too old.
  1042. */
  1043. if (ev1 < mddev->bitmap->events_cleared)
  1044. return 0;
  1045. } else {
  1046. if (ev1 < mddev->events)
  1047. /* just a hot-add of a new device, leave raid_disk at -1 */
  1048. return 0;
  1049. }
  1050. if (mddev->level != LEVEL_MULTIPATH) {
  1051. int role;
  1052. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1053. switch(role) {
  1054. case 0xffff: /* spare */
  1055. break;
  1056. case 0xfffe: /* faulty */
  1057. set_bit(Faulty, &rdev->flags);
  1058. break;
  1059. default:
  1060. if ((le32_to_cpu(sb->feature_map) &
  1061. MD_FEATURE_RECOVERY_OFFSET))
  1062. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1063. else
  1064. set_bit(In_sync, &rdev->flags);
  1065. rdev->raid_disk = role;
  1066. break;
  1067. }
  1068. if (sb->devflags & WriteMostly1)
  1069. set_bit(WriteMostly, &rdev->flags);
  1070. } else /* MULTIPATH are always insync */
  1071. set_bit(In_sync, &rdev->flags);
  1072. return 0;
  1073. }
  1074. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  1075. {
  1076. struct mdp_superblock_1 *sb;
  1077. struct list_head *tmp;
  1078. mdk_rdev_t *rdev2;
  1079. int max_dev, i;
  1080. /* make rdev->sb match mddev and rdev data. */
  1081. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  1082. sb->feature_map = 0;
  1083. sb->pad0 = 0;
  1084. sb->recovery_offset = cpu_to_le64(0);
  1085. memset(sb->pad1, 0, sizeof(sb->pad1));
  1086. memset(sb->pad2, 0, sizeof(sb->pad2));
  1087. memset(sb->pad3, 0, sizeof(sb->pad3));
  1088. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1089. sb->events = cpu_to_le64(mddev->events);
  1090. if (mddev->in_sync)
  1091. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1092. else
  1093. sb->resync_offset = cpu_to_le64(0);
  1094. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1095. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1096. sb->size = cpu_to_le64(mddev->size<<1);
  1097. if (mddev->bitmap && mddev->bitmap_file == NULL) {
  1098. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
  1099. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1100. }
  1101. if (rdev->raid_disk >= 0 &&
  1102. !test_bit(In_sync, &rdev->flags) &&
  1103. rdev->recovery_offset > 0) {
  1104. sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1105. sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
  1106. }
  1107. if (mddev->reshape_position != MaxSector) {
  1108. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1109. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1110. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1111. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1112. sb->new_level = cpu_to_le32(mddev->new_level);
  1113. sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
  1114. }
  1115. max_dev = 0;
  1116. rdev_for_each(rdev2, tmp, mddev)
  1117. if (rdev2->desc_nr+1 > max_dev)
  1118. max_dev = rdev2->desc_nr+1;
  1119. if (max_dev > le32_to_cpu(sb->max_dev))
  1120. sb->max_dev = cpu_to_le32(max_dev);
  1121. for (i=0; i<max_dev;i++)
  1122. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1123. rdev_for_each(rdev2, tmp, mddev) {
  1124. i = rdev2->desc_nr;
  1125. if (test_bit(Faulty, &rdev2->flags))
  1126. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1127. else if (test_bit(In_sync, &rdev2->flags))
  1128. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1129. else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
  1130. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1131. else
  1132. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1133. }
  1134. sb->sb_csum = calc_sb_1_csum(sb);
  1135. }
  1136. static struct super_type super_types[] = {
  1137. [0] = {
  1138. .name = "0.90.0",
  1139. .owner = THIS_MODULE,
  1140. .load_super = super_90_load,
  1141. .validate_super = super_90_validate,
  1142. .sync_super = super_90_sync,
  1143. },
  1144. [1] = {
  1145. .name = "md-1",
  1146. .owner = THIS_MODULE,
  1147. .load_super = super_1_load,
  1148. .validate_super = super_1_validate,
  1149. .sync_super = super_1_sync,
  1150. },
  1151. };
  1152. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  1153. {
  1154. struct list_head *tmp, *tmp2;
  1155. mdk_rdev_t *rdev, *rdev2;
  1156. rdev_for_each(rdev, tmp, mddev1)
  1157. rdev_for_each(rdev2, tmp2, mddev2)
  1158. if (rdev->bdev->bd_contains ==
  1159. rdev2->bdev->bd_contains)
  1160. return 1;
  1161. return 0;
  1162. }
  1163. static LIST_HEAD(pending_raid_disks);
  1164. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  1165. {
  1166. char b[BDEVNAME_SIZE];
  1167. struct kobject *ko;
  1168. char *s;
  1169. int err;
  1170. if (rdev->mddev) {
  1171. MD_BUG();
  1172. return -EINVAL;
  1173. }
  1174. /* make sure rdev->size exceeds mddev->size */
  1175. if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
  1176. if (mddev->pers) {
  1177. /* Cannot change size, so fail
  1178. * If mddev->level <= 0, then we don't care
  1179. * about aligning sizes (e.g. linear)
  1180. */
  1181. if (mddev->level > 0)
  1182. return -ENOSPC;
  1183. } else
  1184. mddev->size = rdev->size;
  1185. }
  1186. /* Verify rdev->desc_nr is unique.
  1187. * If it is -1, assign a free number, else
  1188. * check number is not in use
  1189. */
  1190. if (rdev->desc_nr < 0) {
  1191. int choice = 0;
  1192. if (mddev->pers) choice = mddev->raid_disks;
  1193. while (find_rdev_nr(mddev, choice))
  1194. choice++;
  1195. rdev->desc_nr = choice;
  1196. } else {
  1197. if (find_rdev_nr(mddev, rdev->desc_nr))
  1198. return -EBUSY;
  1199. }
  1200. bdevname(rdev->bdev,b);
  1201. while ( (s=strchr(b, '/')) != NULL)
  1202. *s = '!';
  1203. rdev->mddev = mddev;
  1204. printk(KERN_INFO "md: bind<%s>\n", b);
  1205. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1206. goto fail;
  1207. if (rdev->bdev->bd_part)
  1208. ko = &rdev->bdev->bd_part->dev.kobj;
  1209. else
  1210. ko = &rdev->bdev->bd_disk->dev.kobj;
  1211. if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
  1212. kobject_del(&rdev->kobj);
  1213. goto fail;
  1214. }
  1215. list_add(&rdev->same_set, &mddev->disks);
  1216. bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
  1217. return 0;
  1218. fail:
  1219. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1220. b, mdname(mddev));
  1221. return err;
  1222. }
  1223. static void md_delayed_delete(struct work_struct *ws)
  1224. {
  1225. mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
  1226. kobject_del(&rdev->kobj);
  1227. kobject_put(&rdev->kobj);
  1228. }
  1229. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  1230. {
  1231. char b[BDEVNAME_SIZE];
  1232. if (!rdev->mddev) {
  1233. MD_BUG();
  1234. return;
  1235. }
  1236. bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
  1237. list_del_init(&rdev->same_set);
  1238. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1239. rdev->mddev = NULL;
  1240. sysfs_remove_link(&rdev->kobj, "block");
  1241. /* We need to delay this, otherwise we can deadlock when
  1242. * writing to 'remove' to "dev/state"
  1243. */
  1244. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1245. kobject_get(&rdev->kobj);
  1246. schedule_work(&rdev->del_work);
  1247. }
  1248. /*
  1249. * prevent the device from being mounted, repartitioned or
  1250. * otherwise reused by a RAID array (or any other kernel
  1251. * subsystem), by bd_claiming the device.
  1252. */
  1253. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
  1254. {
  1255. int err = 0;
  1256. struct block_device *bdev;
  1257. char b[BDEVNAME_SIZE];
  1258. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  1259. if (IS_ERR(bdev)) {
  1260. printk(KERN_ERR "md: could not open %s.\n",
  1261. __bdevname(dev, b));
  1262. return PTR_ERR(bdev);
  1263. }
  1264. err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
  1265. if (err) {
  1266. printk(KERN_ERR "md: could not bd_claim %s.\n",
  1267. bdevname(bdev, b));
  1268. blkdev_put(bdev);
  1269. return err;
  1270. }
  1271. if (!shared)
  1272. set_bit(AllReserved, &rdev->flags);
  1273. rdev->bdev = bdev;
  1274. return err;
  1275. }
  1276. static void unlock_rdev(mdk_rdev_t *rdev)
  1277. {
  1278. struct block_device *bdev = rdev->bdev;
  1279. rdev->bdev = NULL;
  1280. if (!bdev)
  1281. MD_BUG();
  1282. bd_release(bdev);
  1283. blkdev_put(bdev);
  1284. }
  1285. void md_autodetect_dev(dev_t dev);
  1286. static void export_rdev(mdk_rdev_t * rdev)
  1287. {
  1288. char b[BDEVNAME_SIZE];
  1289. printk(KERN_INFO "md: export_rdev(%s)\n",
  1290. bdevname(rdev->bdev,b));
  1291. if (rdev->mddev)
  1292. MD_BUG();
  1293. free_disk_sb(rdev);
  1294. list_del_init(&rdev->same_set);
  1295. #ifndef MODULE
  1296. md_autodetect_dev(rdev->bdev->bd_dev);
  1297. #endif
  1298. unlock_rdev(rdev);
  1299. kobject_put(&rdev->kobj);
  1300. }
  1301. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1302. {
  1303. unbind_rdev_from_array(rdev);
  1304. export_rdev(rdev);
  1305. }
  1306. static void export_array(mddev_t *mddev)
  1307. {
  1308. struct list_head *tmp;
  1309. mdk_rdev_t *rdev;
  1310. rdev_for_each(rdev, tmp, mddev) {
  1311. if (!rdev->mddev) {
  1312. MD_BUG();
  1313. continue;
  1314. }
  1315. kick_rdev_from_array(rdev);
  1316. }
  1317. if (!list_empty(&mddev->disks))
  1318. MD_BUG();
  1319. mddev->raid_disks = 0;
  1320. mddev->major_version = 0;
  1321. }
  1322. static void print_desc(mdp_disk_t *desc)
  1323. {
  1324. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1325. desc->major,desc->minor,desc->raid_disk,desc->state);
  1326. }
  1327. static void print_sb(mdp_super_t *sb)
  1328. {
  1329. int i;
  1330. printk(KERN_INFO
  1331. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1332. sb->major_version, sb->minor_version, sb->patch_version,
  1333. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1334. sb->ctime);
  1335. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1336. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1337. sb->md_minor, sb->layout, sb->chunk_size);
  1338. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1339. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1340. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1341. sb->failed_disks, sb->spare_disks,
  1342. sb->sb_csum, (unsigned long)sb->events_lo);
  1343. printk(KERN_INFO);
  1344. for (i = 0; i < MD_SB_DISKS; i++) {
  1345. mdp_disk_t *desc;
  1346. desc = sb->disks + i;
  1347. if (desc->number || desc->major || desc->minor ||
  1348. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1349. printk(" D %2d: ", i);
  1350. print_desc(desc);
  1351. }
  1352. }
  1353. printk(KERN_INFO "md: THIS: ");
  1354. print_desc(&sb->this_disk);
  1355. }
  1356. static void print_rdev(mdk_rdev_t *rdev)
  1357. {
  1358. char b[BDEVNAME_SIZE];
  1359. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1360. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1361. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  1362. rdev->desc_nr);
  1363. if (rdev->sb_loaded) {
  1364. printk(KERN_INFO "md: rdev superblock:\n");
  1365. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1366. } else
  1367. printk(KERN_INFO "md: no rdev superblock!\n");
  1368. }
  1369. static void md_print_devices(void)
  1370. {
  1371. struct list_head *tmp, *tmp2;
  1372. mdk_rdev_t *rdev;
  1373. mddev_t *mddev;
  1374. char b[BDEVNAME_SIZE];
  1375. printk("\n");
  1376. printk("md: **********************************\n");
  1377. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1378. printk("md: **********************************\n");
  1379. for_each_mddev(mddev, tmp) {
  1380. if (mddev->bitmap)
  1381. bitmap_print_sb(mddev->bitmap);
  1382. else
  1383. printk("%s: ", mdname(mddev));
  1384. rdev_for_each(rdev, tmp2, mddev)
  1385. printk("<%s>", bdevname(rdev->bdev,b));
  1386. printk("\n");
  1387. rdev_for_each(rdev, tmp2, mddev)
  1388. print_rdev(rdev);
  1389. }
  1390. printk("md: **********************************\n");
  1391. printk("\n");
  1392. }
  1393. static void sync_sbs(mddev_t * mddev, int nospares)
  1394. {
  1395. /* Update each superblock (in-memory image), but
  1396. * if we are allowed to, skip spares which already
  1397. * have the right event counter, or have one earlier
  1398. * (which would mean they aren't being marked as dirty
  1399. * with the rest of the array)
  1400. */
  1401. mdk_rdev_t *rdev;
  1402. struct list_head *tmp;
  1403. rdev_for_each(rdev, tmp, mddev) {
  1404. if (rdev->sb_events == mddev->events ||
  1405. (nospares &&
  1406. rdev->raid_disk < 0 &&
  1407. (rdev->sb_events&1)==0 &&
  1408. rdev->sb_events+1 == mddev->events)) {
  1409. /* Don't update this superblock */
  1410. rdev->sb_loaded = 2;
  1411. } else {
  1412. super_types[mddev->major_version].
  1413. sync_super(mddev, rdev);
  1414. rdev->sb_loaded = 1;
  1415. }
  1416. }
  1417. }
  1418. static void md_update_sb(mddev_t * mddev, int force_change)
  1419. {
  1420. struct list_head *tmp;
  1421. mdk_rdev_t *rdev;
  1422. int sync_req;
  1423. int nospares = 0;
  1424. repeat:
  1425. spin_lock_irq(&mddev->write_lock);
  1426. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  1427. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  1428. force_change = 1;
  1429. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  1430. /* just a clean<-> dirty transition, possibly leave spares alone,
  1431. * though if events isn't the right even/odd, we will have to do
  1432. * spares after all
  1433. */
  1434. nospares = 1;
  1435. if (force_change)
  1436. nospares = 0;
  1437. if (mddev->degraded)
  1438. /* If the array is degraded, then skipping spares is both
  1439. * dangerous and fairly pointless.
  1440. * Dangerous because a device that was removed from the array
  1441. * might have a event_count that still looks up-to-date,
  1442. * so it can be re-added without a resync.
  1443. * Pointless because if there are any spares to skip,
  1444. * then a recovery will happen and soon that array won't
  1445. * be degraded any more and the spare can go back to sleep then.
  1446. */
  1447. nospares = 0;
  1448. sync_req = mddev->in_sync;
  1449. mddev->utime = get_seconds();
  1450. /* If this is just a dirty<->clean transition, and the array is clean
  1451. * and 'events' is odd, we can roll back to the previous clean state */
  1452. if (nospares
  1453. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  1454. && (mddev->events & 1)
  1455. && mddev->events != 1)
  1456. mddev->events--;
  1457. else {
  1458. /* otherwise we have to go forward and ... */
  1459. mddev->events ++;
  1460. if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
  1461. /* .. if the array isn't clean, insist on an odd 'events' */
  1462. if ((mddev->events&1)==0) {
  1463. mddev->events++;
  1464. nospares = 0;
  1465. }
  1466. } else {
  1467. /* otherwise insist on an even 'events' (for clean states) */
  1468. if ((mddev->events&1)) {
  1469. mddev->events++;
  1470. nospares = 0;
  1471. }
  1472. }
  1473. }
  1474. if (!mddev->events) {
  1475. /*
  1476. * oops, this 64-bit counter should never wrap.
  1477. * Either we are in around ~1 trillion A.C., assuming
  1478. * 1 reboot per second, or we have a bug:
  1479. */
  1480. MD_BUG();
  1481. mddev->events --;
  1482. }
  1483. /*
  1484. * do not write anything to disk if using
  1485. * nonpersistent superblocks
  1486. */
  1487. if (!mddev->persistent) {
  1488. if (!mddev->external)
  1489. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1490. spin_unlock_irq(&mddev->write_lock);
  1491. wake_up(&mddev->sb_wait);
  1492. return;
  1493. }
  1494. sync_sbs(mddev, nospares);
  1495. spin_unlock_irq(&mddev->write_lock);
  1496. dprintk(KERN_INFO
  1497. "md: updating %s RAID superblock on device (in sync %d)\n",
  1498. mdname(mddev),mddev->in_sync);
  1499. bitmap_update_sb(mddev->bitmap);
  1500. rdev_for_each(rdev, tmp, mddev) {
  1501. char b[BDEVNAME_SIZE];
  1502. dprintk(KERN_INFO "md: ");
  1503. if (rdev->sb_loaded != 1)
  1504. continue; /* no noise on spare devices */
  1505. if (test_bit(Faulty, &rdev->flags))
  1506. dprintk("(skipping faulty ");
  1507. dprintk("%s ", bdevname(rdev->bdev,b));
  1508. if (!test_bit(Faulty, &rdev->flags)) {
  1509. md_super_write(mddev,rdev,
  1510. rdev->sb_offset<<1, rdev->sb_size,
  1511. rdev->sb_page);
  1512. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1513. bdevname(rdev->bdev,b),
  1514. (unsigned long long)rdev->sb_offset);
  1515. rdev->sb_events = mddev->events;
  1516. } else
  1517. dprintk(")\n");
  1518. if (mddev->level == LEVEL_MULTIPATH)
  1519. /* only need to write one superblock... */
  1520. break;
  1521. }
  1522. md_super_wait(mddev);
  1523. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  1524. spin_lock_irq(&mddev->write_lock);
  1525. if (mddev->in_sync != sync_req ||
  1526. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  1527. /* have to write it out again */
  1528. spin_unlock_irq(&mddev->write_lock);
  1529. goto repeat;
  1530. }
  1531. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1532. spin_unlock_irq(&mddev->write_lock);
  1533. wake_up(&mddev->sb_wait);
  1534. }
  1535. /* words written to sysfs files may, or my not, be \n terminated.
  1536. * We want to accept with case. For this we use cmd_match.
  1537. */
  1538. static int cmd_match(const char *cmd, const char *str)
  1539. {
  1540. /* See if cmd, written into a sysfs file, matches
  1541. * str. They must either be the same, or cmd can
  1542. * have a trailing newline
  1543. */
  1544. while (*cmd && *str && *cmd == *str) {
  1545. cmd++;
  1546. str++;
  1547. }
  1548. if (*cmd == '\n')
  1549. cmd++;
  1550. if (*str || *cmd)
  1551. return 0;
  1552. return 1;
  1553. }
  1554. struct rdev_sysfs_entry {
  1555. struct attribute attr;
  1556. ssize_t (*show)(mdk_rdev_t *, char *);
  1557. ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
  1558. };
  1559. static ssize_t
  1560. state_show(mdk_rdev_t *rdev, char *page)
  1561. {
  1562. char *sep = "";
  1563. size_t len = 0;
  1564. if (test_bit(Faulty, &rdev->flags)) {
  1565. len+= sprintf(page+len, "%sfaulty",sep);
  1566. sep = ",";
  1567. }
  1568. if (test_bit(In_sync, &rdev->flags)) {
  1569. len += sprintf(page+len, "%sin_sync",sep);
  1570. sep = ",";
  1571. }
  1572. if (test_bit(WriteMostly, &rdev->flags)) {
  1573. len += sprintf(page+len, "%swrite_mostly",sep);
  1574. sep = ",";
  1575. }
  1576. if (!test_bit(Faulty, &rdev->flags) &&
  1577. !test_bit(In_sync, &rdev->flags)) {
  1578. len += sprintf(page+len, "%sspare", sep);
  1579. sep = ",";
  1580. }
  1581. return len+sprintf(page+len, "\n");
  1582. }
  1583. static ssize_t
  1584. state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1585. {
  1586. /* can write
  1587. * faulty - simulates and error
  1588. * remove - disconnects the device
  1589. * writemostly - sets write_mostly
  1590. * -writemostly - clears write_mostly
  1591. */
  1592. int err = -EINVAL;
  1593. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  1594. md_error(rdev->mddev, rdev);
  1595. err = 0;
  1596. } else if (cmd_match(buf, "remove")) {
  1597. if (rdev->raid_disk >= 0)
  1598. err = -EBUSY;
  1599. else {
  1600. mddev_t *mddev = rdev->mddev;
  1601. kick_rdev_from_array(rdev);
  1602. if (mddev->pers)
  1603. md_update_sb(mddev, 1);
  1604. md_new_event(mddev);
  1605. err = 0;
  1606. }
  1607. } else if (cmd_match(buf, "writemostly")) {
  1608. set_bit(WriteMostly, &rdev->flags);
  1609. err = 0;
  1610. } else if (cmd_match(buf, "-writemostly")) {
  1611. clear_bit(WriteMostly, &rdev->flags);
  1612. err = 0;
  1613. }
  1614. return err ? err : len;
  1615. }
  1616. static struct rdev_sysfs_entry rdev_state =
  1617. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  1618. static ssize_t
  1619. super_show(mdk_rdev_t *rdev, char *page)
  1620. {
  1621. if (rdev->sb_loaded && rdev->sb_size) {
  1622. memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
  1623. return rdev->sb_size;
  1624. } else
  1625. return 0;
  1626. }
  1627. static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
  1628. static ssize_t
  1629. errors_show(mdk_rdev_t *rdev, char *page)
  1630. {
  1631. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  1632. }
  1633. static ssize_t
  1634. errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1635. {
  1636. char *e;
  1637. unsigned long n = simple_strtoul(buf, &e, 10);
  1638. if (*buf && (*e == 0 || *e == '\n')) {
  1639. atomic_set(&rdev->corrected_errors, n);
  1640. return len;
  1641. }
  1642. return -EINVAL;
  1643. }
  1644. static struct rdev_sysfs_entry rdev_errors =
  1645. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  1646. static ssize_t
  1647. slot_show(mdk_rdev_t *rdev, char *page)
  1648. {
  1649. if (rdev->raid_disk < 0)
  1650. return sprintf(page, "none\n");
  1651. else
  1652. return sprintf(page, "%d\n", rdev->raid_disk);
  1653. }
  1654. static ssize_t
  1655. slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1656. {
  1657. char *e;
  1658. int err;
  1659. char nm[20];
  1660. int slot = simple_strtoul(buf, &e, 10);
  1661. if (strncmp(buf, "none", 4)==0)
  1662. slot = -1;
  1663. else if (e==buf || (*e && *e!= '\n'))
  1664. return -EINVAL;
  1665. if (rdev->mddev->pers) {
  1666. /* Setting 'slot' on an active array requires also
  1667. * updating the 'rd%d' link, and communicating
  1668. * with the personality with ->hot_*_disk.
  1669. * For now we only support removing
  1670. * failed/spare devices. This normally happens automatically,
  1671. * but not when the metadata is externally managed.
  1672. */
  1673. if (slot != -1)
  1674. return -EBUSY;
  1675. if (rdev->raid_disk == -1)
  1676. return -EEXIST;
  1677. /* personality does all needed checks */
  1678. if (rdev->mddev->pers->hot_add_disk == NULL)
  1679. return -EINVAL;
  1680. err = rdev->mddev->pers->
  1681. hot_remove_disk(rdev->mddev, rdev->raid_disk);
  1682. if (err)
  1683. return err;
  1684. sprintf(nm, "rd%d", rdev->raid_disk);
  1685. sysfs_remove_link(&rdev->mddev->kobj, nm);
  1686. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  1687. md_wakeup_thread(rdev->mddev->thread);
  1688. } else {
  1689. if (slot >= rdev->mddev->raid_disks)
  1690. return -ENOSPC;
  1691. rdev->raid_disk = slot;
  1692. /* assume it is working */
  1693. clear_bit(Faulty, &rdev->flags);
  1694. clear_bit(WriteMostly, &rdev->flags);
  1695. set_bit(In_sync, &rdev->flags);
  1696. }
  1697. return len;
  1698. }
  1699. static struct rdev_sysfs_entry rdev_slot =
  1700. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  1701. static ssize_t
  1702. offset_show(mdk_rdev_t *rdev, char *page)
  1703. {
  1704. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  1705. }
  1706. static ssize_t
  1707. offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1708. {
  1709. char *e;
  1710. unsigned long long offset = simple_strtoull(buf, &e, 10);
  1711. if (e==buf || (*e && *e != '\n'))
  1712. return -EINVAL;
  1713. if (rdev->mddev->pers)
  1714. return -EBUSY;
  1715. if (rdev->size && rdev->mddev->external)
  1716. /* Must set offset before size, so overlap checks
  1717. * can be sane */
  1718. return -EBUSY;
  1719. rdev->data_offset = offset;
  1720. return len;
  1721. }
  1722. static struct rdev_sysfs_entry rdev_offset =
  1723. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  1724. static ssize_t
  1725. rdev_size_show(mdk_rdev_t *rdev, char *page)
  1726. {
  1727. return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
  1728. }
  1729. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  1730. {
  1731. /* check if two start/length pairs overlap */
  1732. if (s1+l1 <= s2)
  1733. return 0;
  1734. if (s2+l2 <= s1)
  1735. return 0;
  1736. return 1;
  1737. }
  1738. static ssize_t
  1739. rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1740. {
  1741. char *e;
  1742. unsigned long long size = simple_strtoull(buf, &e, 10);
  1743. unsigned long long oldsize = rdev->size;
  1744. if (e==buf || (*e && *e != '\n'))
  1745. return -EINVAL;
  1746. if (rdev->mddev->pers)
  1747. return -EBUSY;
  1748. rdev->size = size;
  1749. if (size > oldsize && rdev->mddev->external) {
  1750. /* need to check that all other rdevs with the same ->bdev
  1751. * do not overlap. We need to unlock the mddev to avoid
  1752. * a deadlock. We have already changed rdev->size, and if
  1753. * we have to change it back, we will have the lock again.
  1754. */
  1755. mddev_t *mddev;
  1756. int overlap = 0;
  1757. struct list_head *tmp, *tmp2;
  1758. mddev_unlock(rdev->mddev);
  1759. for_each_mddev(mddev, tmp) {
  1760. mdk_rdev_t *rdev2;
  1761. mddev_lock(mddev);
  1762. rdev_for_each(rdev2, tmp2, mddev)
  1763. if (test_bit(AllReserved, &rdev2->flags) ||
  1764. (rdev->bdev == rdev2->bdev &&
  1765. rdev != rdev2 &&
  1766. overlaps(rdev->data_offset, rdev->size,
  1767. rdev2->data_offset, rdev2->size))) {
  1768. overlap = 1;
  1769. break;
  1770. }
  1771. mddev_unlock(mddev);
  1772. if (overlap) {
  1773. mddev_put(mddev);
  1774. break;
  1775. }
  1776. }
  1777. mddev_lock(rdev->mddev);
  1778. if (overlap) {
  1779. /* Someone else could have slipped in a size
  1780. * change here, but doing so is just silly.
  1781. * We put oldsize back because we *know* it is
  1782. * safe, and trust userspace not to race with
  1783. * itself
  1784. */
  1785. rdev->size = oldsize;
  1786. return -EBUSY;
  1787. }
  1788. }
  1789. if (size < rdev->mddev->size || rdev->mddev->size == 0)
  1790. rdev->mddev->size = size;
  1791. return len;
  1792. }
  1793. static struct rdev_sysfs_entry rdev_size =
  1794. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  1795. static struct attribute *rdev_default_attrs[] = {
  1796. &rdev_state.attr,
  1797. &rdev_super.attr,
  1798. &rdev_errors.attr,
  1799. &rdev_slot.attr,
  1800. &rdev_offset.attr,
  1801. &rdev_size.attr,
  1802. NULL,
  1803. };
  1804. static ssize_t
  1805. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  1806. {
  1807. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1808. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1809. if (!entry->show)
  1810. return -EIO;
  1811. return entry->show(rdev, page);
  1812. }
  1813. static ssize_t
  1814. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  1815. const char *page, size_t length)
  1816. {
  1817. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1818. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1819. int rv;
  1820. if (!entry->store)
  1821. return -EIO;
  1822. if (!capable(CAP_SYS_ADMIN))
  1823. return -EACCES;
  1824. rv = mddev_lock(rdev->mddev);
  1825. if (!rv) {
  1826. rv = entry->store(rdev, page, length);
  1827. mddev_unlock(rdev->mddev);
  1828. }
  1829. return rv;
  1830. }
  1831. static void rdev_free(struct kobject *ko)
  1832. {
  1833. mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
  1834. kfree(rdev);
  1835. }
  1836. static struct sysfs_ops rdev_sysfs_ops = {
  1837. .show = rdev_attr_show,
  1838. .store = rdev_attr_store,
  1839. };
  1840. static struct kobj_type rdev_ktype = {
  1841. .release = rdev_free,
  1842. .sysfs_ops = &rdev_sysfs_ops,
  1843. .default_attrs = rdev_default_attrs,
  1844. };
  1845. /*
  1846. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1847. *
  1848. * mark the device faulty if:
  1849. *
  1850. * - the device is nonexistent (zero size)
  1851. * - the device has no valid superblock
  1852. *
  1853. * a faulty rdev _never_ has rdev->sb set.
  1854. */
  1855. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1856. {
  1857. char b[BDEVNAME_SIZE];
  1858. int err;
  1859. mdk_rdev_t *rdev;
  1860. sector_t size;
  1861. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  1862. if (!rdev) {
  1863. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1864. return ERR_PTR(-ENOMEM);
  1865. }
  1866. if ((err = alloc_disk_sb(rdev)))
  1867. goto abort_free;
  1868. err = lock_rdev(rdev, newdev, super_format == -2);
  1869. if (err)
  1870. goto abort_free;
  1871. kobject_init(&rdev->kobj, &rdev_ktype);
  1872. rdev->desc_nr = -1;
  1873. rdev->saved_raid_disk = -1;
  1874. rdev->raid_disk = -1;
  1875. rdev->flags = 0;
  1876. rdev->data_offset = 0;
  1877. rdev->sb_events = 0;
  1878. atomic_set(&rdev->nr_pending, 0);
  1879. atomic_set(&rdev->read_errors, 0);
  1880. atomic_set(&rdev->corrected_errors, 0);
  1881. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1882. if (!size) {
  1883. printk(KERN_WARNING
  1884. "md: %s has zero or unknown size, marking faulty!\n",
  1885. bdevname(rdev->bdev,b));
  1886. err = -EINVAL;
  1887. goto abort_free;
  1888. }
  1889. if (super_format >= 0) {
  1890. err = super_types[super_format].
  1891. load_super(rdev, NULL, super_minor);
  1892. if (err == -EINVAL) {
  1893. printk(KERN_WARNING
  1894. "md: %s does not have a valid v%d.%d "
  1895. "superblock, not importing!\n",
  1896. bdevname(rdev->bdev,b),
  1897. super_format, super_minor);
  1898. goto abort_free;
  1899. }
  1900. if (err < 0) {
  1901. printk(KERN_WARNING
  1902. "md: could not read %s's sb, not importing!\n",
  1903. bdevname(rdev->bdev,b));
  1904. goto abort_free;
  1905. }
  1906. }
  1907. INIT_LIST_HEAD(&rdev->same_set);
  1908. return rdev;
  1909. abort_free:
  1910. if (rdev->sb_page) {
  1911. if (rdev->bdev)
  1912. unlock_rdev(rdev);
  1913. free_disk_sb(rdev);
  1914. }
  1915. kfree(rdev);
  1916. return ERR_PTR(err);
  1917. }
  1918. /*
  1919. * Check a full RAID array for plausibility
  1920. */
  1921. static void analyze_sbs(mddev_t * mddev)
  1922. {
  1923. int i;
  1924. struct list_head *tmp;
  1925. mdk_rdev_t *rdev, *freshest;
  1926. char b[BDEVNAME_SIZE];
  1927. freshest = NULL;
  1928. rdev_for_each(rdev, tmp, mddev)
  1929. switch (super_types[mddev->major_version].
  1930. load_super(rdev, freshest, mddev->minor_version)) {
  1931. case 1:
  1932. freshest = rdev;
  1933. break;
  1934. case 0:
  1935. break;
  1936. default:
  1937. printk( KERN_ERR \
  1938. "md: fatal superblock inconsistency in %s"
  1939. " -- removing from array\n",
  1940. bdevname(rdev->bdev,b));
  1941. kick_rdev_from_array(rdev);
  1942. }
  1943. super_types[mddev->major_version].
  1944. validate_super(mddev, freshest);
  1945. i = 0;
  1946. rdev_for_each(rdev, tmp, mddev) {
  1947. if (rdev != freshest)
  1948. if (super_types[mddev->major_version].
  1949. validate_super(mddev, rdev)) {
  1950. printk(KERN_WARNING "md: kicking non-fresh %s"
  1951. " from array!\n",
  1952. bdevname(rdev->bdev,b));
  1953. kick_rdev_from_array(rdev);
  1954. continue;
  1955. }
  1956. if (mddev->level == LEVEL_MULTIPATH) {
  1957. rdev->desc_nr = i++;
  1958. rdev->raid_disk = rdev->desc_nr;
  1959. set_bit(In_sync, &rdev->flags);
  1960. } else if (rdev->raid_disk >= mddev->raid_disks) {
  1961. rdev->raid_disk = -1;
  1962. clear_bit(In_sync, &rdev->flags);
  1963. }
  1964. }
  1965. if (mddev->recovery_cp != MaxSector &&
  1966. mddev->level >= 1)
  1967. printk(KERN_ERR "md: %s: raid array is not clean"
  1968. " -- starting background reconstruction\n",
  1969. mdname(mddev));
  1970. }
  1971. static ssize_t
  1972. safe_delay_show(mddev_t *mddev, char *page)
  1973. {
  1974. int msec = (mddev->safemode_delay*1000)/HZ;
  1975. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  1976. }
  1977. static ssize_t
  1978. safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
  1979. {
  1980. int scale=1;
  1981. int dot=0;
  1982. int i;
  1983. unsigned long msec;
  1984. char buf[30];
  1985. char *e;
  1986. /* remove a period, and count digits after it */
  1987. if (len >= sizeof(buf))
  1988. return -EINVAL;
  1989. strlcpy(buf, cbuf, len);
  1990. buf[len] = 0;
  1991. for (i=0; i<len; i++) {
  1992. if (dot) {
  1993. if (isdigit(buf[i])) {
  1994. buf[i-1] = buf[i];
  1995. scale *= 10;
  1996. }
  1997. buf[i] = 0;
  1998. } else if (buf[i] == '.') {
  1999. dot=1;
  2000. buf[i] = 0;
  2001. }
  2002. }
  2003. msec = simple_strtoul(buf, &e, 10);
  2004. if (e == buf || (*e && *e != '\n'))
  2005. return -EINVAL;
  2006. msec = (msec * 1000) / scale;
  2007. if (msec == 0)
  2008. mddev->safemode_delay = 0;
  2009. else {
  2010. mddev->safemode_delay = (msec*HZ)/1000;
  2011. if (mddev->safemode_delay == 0)
  2012. mddev->safemode_delay = 1;
  2013. }
  2014. return len;
  2015. }
  2016. static struct md_sysfs_entry md_safe_delay =
  2017. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  2018. static ssize_t
  2019. level_show(mddev_t *mddev, char *page)
  2020. {
  2021. struct mdk_personality *p = mddev->pers;
  2022. if (p)
  2023. return sprintf(page, "%s\n", p->name);
  2024. else if (mddev->clevel[0])
  2025. return sprintf(page, "%s\n", mddev->clevel);
  2026. else if (mddev->level != LEVEL_NONE)
  2027. return sprintf(page, "%d\n", mddev->level);
  2028. else
  2029. return 0;
  2030. }
  2031. static ssize_t
  2032. level_store(mddev_t *mddev, const char *buf, size_t len)
  2033. {
  2034. ssize_t rv = len;
  2035. if (mddev->pers)
  2036. return -EBUSY;
  2037. if (len == 0)
  2038. return 0;
  2039. if (len >= sizeof(mddev->clevel))
  2040. return -ENOSPC;
  2041. strncpy(mddev->clevel, buf, len);
  2042. if (mddev->clevel[len-1] == '\n')
  2043. len--;
  2044. mddev->clevel[len] = 0;
  2045. mddev->level = LEVEL_NONE;
  2046. return rv;
  2047. }
  2048. static struct md_sysfs_entry md_level =
  2049. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  2050. static ssize_t
  2051. layout_show(mddev_t *mddev, char *page)
  2052. {
  2053. /* just a number, not meaningful for all levels */
  2054. if (mddev->reshape_position != MaxSector &&
  2055. mddev->layout != mddev->new_layout)
  2056. return sprintf(page, "%d (%d)\n",
  2057. mddev->new_layout, mddev->layout);
  2058. return sprintf(page, "%d\n", mddev->layout);
  2059. }
  2060. static ssize_t
  2061. layout_store(mddev_t *mddev, const char *buf, size_t len)
  2062. {
  2063. char *e;
  2064. unsigned long n = simple_strtoul(buf, &e, 10);
  2065. if (!*buf || (*e && *e != '\n'))
  2066. return -EINVAL;
  2067. if (mddev->pers)
  2068. return -EBUSY;
  2069. if (mddev->reshape_position != MaxSector)
  2070. mddev->new_layout = n;
  2071. else
  2072. mddev->layout = n;
  2073. return len;
  2074. }
  2075. static struct md_sysfs_entry md_layout =
  2076. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  2077. static ssize_t
  2078. raid_disks_show(mddev_t *mddev, char *page)
  2079. {
  2080. if (mddev->raid_disks == 0)
  2081. return 0;
  2082. if (mddev->reshape_position != MaxSector &&
  2083. mddev->delta_disks != 0)
  2084. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  2085. mddev->raid_disks - mddev->delta_disks);
  2086. return sprintf(page, "%d\n", mddev->raid_disks);
  2087. }
  2088. static int update_raid_disks(mddev_t *mddev, int raid_disks);
  2089. static ssize_t
  2090. raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
  2091. {
  2092. char *e;
  2093. int rv = 0;
  2094. unsigned long n = simple_strtoul(buf, &e, 10);
  2095. if (!*buf || (*e && *e != '\n'))
  2096. return -EINVAL;
  2097. if (mddev->pers)
  2098. rv = update_raid_disks(mddev, n);
  2099. else if (mddev->reshape_position != MaxSector) {
  2100. int olddisks = mddev->raid_disks - mddev->delta_disks;
  2101. mddev->delta_disks = n - olddisks;
  2102. mddev->raid_disks = n;
  2103. } else
  2104. mddev->raid_disks = n;
  2105. return rv ? rv : len;
  2106. }
  2107. static struct md_sysfs_entry md_raid_disks =
  2108. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  2109. static ssize_t
  2110. chunk_size_show(mddev_t *mddev, char *page)
  2111. {
  2112. if (mddev->reshape_position != MaxSector &&
  2113. mddev->chunk_size != mddev->new_chunk)
  2114. return sprintf(page, "%d (%d)\n", mddev->new_chunk,
  2115. mddev->chunk_size);
  2116. return sprintf(page, "%d\n", mddev->chunk_size);
  2117. }
  2118. static ssize_t
  2119. chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
  2120. {
  2121. /* can only set chunk_size if array is not yet active */
  2122. char *e;
  2123. unsigned long n = simple_strtoul(buf, &e, 10);
  2124. if (!*buf || (*e && *e != '\n'))
  2125. return -EINVAL;
  2126. if (mddev->pers)
  2127. return -EBUSY;
  2128. else if (mddev->reshape_position != MaxSector)
  2129. mddev->new_chunk = n;
  2130. else
  2131. mddev->chunk_size = n;
  2132. return len;
  2133. }
  2134. static struct md_sysfs_entry md_chunk_size =
  2135. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  2136. static ssize_t
  2137. resync_start_show(mddev_t *mddev, char *page)
  2138. {
  2139. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  2140. }
  2141. static ssize_t
  2142. resync_start_store(mddev_t *mddev, const char *buf, size_t len)
  2143. {
  2144. /* can only set chunk_size if array is not yet active */
  2145. char *e;
  2146. unsigned long long n = simple_strtoull(buf, &e, 10);
  2147. if (mddev->pers)
  2148. return -EBUSY;
  2149. if (!*buf || (*e && *e != '\n'))
  2150. return -EINVAL;
  2151. mddev->recovery_cp = n;
  2152. return len;
  2153. }
  2154. static struct md_sysfs_entry md_resync_start =
  2155. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  2156. /*
  2157. * The array state can be:
  2158. *
  2159. * clear
  2160. * No devices, no size, no level
  2161. * Equivalent to STOP_ARRAY ioctl
  2162. * inactive
  2163. * May have some settings, but array is not active
  2164. * all IO results in error
  2165. * When written, doesn't tear down array, but just stops it
  2166. * suspended (not supported yet)
  2167. * All IO requests will block. The array can be reconfigured.
  2168. * Writing this, if accepted, will block until array is quiessent
  2169. * readonly
  2170. * no resync can happen. no superblocks get written.
  2171. * write requests fail
  2172. * read-auto
  2173. * like readonly, but behaves like 'clean' on a write request.
  2174. *
  2175. * clean - no pending writes, but otherwise active.
  2176. * When written to inactive array, starts without resync
  2177. * If a write request arrives then
  2178. * if metadata is known, mark 'dirty' and switch to 'active'.
  2179. * if not known, block and switch to write-pending
  2180. * If written to an active array that has pending writes, then fails.
  2181. * active
  2182. * fully active: IO and resync can be happening.
  2183. * When written to inactive array, starts with resync
  2184. *
  2185. * write-pending
  2186. * clean, but writes are blocked waiting for 'active' to be written.
  2187. *
  2188. * active-idle
  2189. * like active, but no writes have been seen for a while (100msec).
  2190. *
  2191. */
  2192. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  2193. write_pending, active_idle, bad_word};
  2194. static char *array_states[] = {
  2195. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  2196. "write-pending", "active-idle", NULL };
  2197. static int match_word(const char *word, char **list)
  2198. {
  2199. int n;
  2200. for (n=0; list[n]; n++)
  2201. if (cmd_match(word, list[n]))
  2202. break;
  2203. return n;
  2204. }
  2205. static ssize_t
  2206. array_state_show(mddev_t *mddev, char *page)
  2207. {
  2208. enum array_state st = inactive;
  2209. if (mddev->pers)
  2210. switch(mddev->ro) {
  2211. case 1:
  2212. st = readonly;
  2213. break;
  2214. case 2:
  2215. st = read_auto;
  2216. break;
  2217. case 0:
  2218. if (mddev->in_sync)
  2219. st = clean;
  2220. else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2221. st = write_pending;
  2222. else if (mddev->safemode)
  2223. st = active_idle;
  2224. else
  2225. st = active;
  2226. }
  2227. else {
  2228. if (list_empty(&mddev->disks) &&
  2229. mddev->raid_disks == 0 &&
  2230. mddev->size == 0)
  2231. st = clear;
  2232. else
  2233. st = inactive;
  2234. }
  2235. return sprintf(page, "%s\n", array_states[st]);
  2236. }
  2237. static int do_md_stop(mddev_t * mddev, int ro);
  2238. static int do_md_run(mddev_t * mddev);
  2239. static int restart_array(mddev_t *mddev);
  2240. static ssize_t
  2241. array_state_store(mddev_t *mddev, const char *buf, size_t len)
  2242. {
  2243. int err = -EINVAL;
  2244. enum array_state st = match_word(buf, array_states);
  2245. switch(st) {
  2246. case bad_word:
  2247. break;
  2248. case clear:
  2249. /* stopping an active array */
  2250. if (atomic_read(&mddev->active) > 1)
  2251. return -EBUSY;
  2252. err = do_md_stop(mddev, 0);
  2253. break;
  2254. case inactive:
  2255. /* stopping an active array */
  2256. if (mddev->pers) {
  2257. if (atomic_read(&mddev->active) > 1)
  2258. return -EBUSY;
  2259. err = do_md_stop(mddev, 2);
  2260. } else
  2261. err = 0; /* already inactive */
  2262. break;
  2263. case suspended:
  2264. break; /* not supported yet */
  2265. case readonly:
  2266. if (mddev->pers)
  2267. err = do_md_stop(mddev, 1);
  2268. else {
  2269. mddev->ro = 1;
  2270. err = do_md_run(mddev);
  2271. }
  2272. break;
  2273. case read_auto:
  2274. /* stopping an active array */
  2275. if (mddev->pers) {
  2276. err = do_md_stop(mddev, 1);
  2277. if (err == 0)
  2278. mddev->ro = 2; /* FIXME mark devices writable */
  2279. } else {
  2280. mddev->ro = 2;
  2281. err = do_md_run(mddev);
  2282. }
  2283. break;
  2284. case clean:
  2285. if (mddev->pers) {
  2286. restart_array(mddev);
  2287. spin_lock_irq(&mddev->write_lock);
  2288. if (atomic_read(&mddev->writes_pending) == 0) {
  2289. if (mddev->in_sync == 0) {
  2290. mddev->in_sync = 1;
  2291. if (mddev->persistent)
  2292. set_bit(MD_CHANGE_CLEAN,
  2293. &mddev->flags);
  2294. }
  2295. err = 0;
  2296. } else
  2297. err = -EBUSY;
  2298. spin_unlock_irq(&mddev->write_lock);
  2299. } else {
  2300. mddev->ro = 0;
  2301. mddev->recovery_cp = MaxSector;
  2302. err = do_md_run(mddev);
  2303. }
  2304. break;
  2305. case active:
  2306. if (mddev->pers) {
  2307. restart_array(mddev);
  2308. if (mddev->external)
  2309. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2310. wake_up(&mddev->sb_wait);
  2311. err = 0;
  2312. } else {
  2313. mddev->ro = 0;
  2314. err = do_md_run(mddev);
  2315. }
  2316. break;
  2317. case write_pending:
  2318. case active_idle:
  2319. /* these cannot be set */
  2320. break;
  2321. }
  2322. if (err)
  2323. return err;
  2324. else
  2325. return len;
  2326. }
  2327. static struct md_sysfs_entry md_array_state =
  2328. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  2329. static ssize_t
  2330. null_show(mddev_t *mddev, char *page)
  2331. {
  2332. return -EINVAL;
  2333. }
  2334. static ssize_t
  2335. new_dev_store(mddev_t *mddev, const char *buf, size_t len)
  2336. {
  2337. /* buf must be %d:%d\n? giving major and minor numbers */
  2338. /* The new device is added to the array.
  2339. * If the array has a persistent superblock, we read the
  2340. * superblock to initialise info and check validity.
  2341. * Otherwise, only checking done is that in bind_rdev_to_array,
  2342. * which mainly checks size.
  2343. */
  2344. char *e;
  2345. int major = simple_strtoul(buf, &e, 10);
  2346. int minor;
  2347. dev_t dev;
  2348. mdk_rdev_t *rdev;
  2349. int err;
  2350. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  2351. return -EINVAL;
  2352. minor = simple_strtoul(e+1, &e, 10);
  2353. if (*e && *e != '\n')
  2354. return -EINVAL;
  2355. dev = MKDEV(major, minor);
  2356. if (major != MAJOR(dev) ||
  2357. minor != MINOR(dev))
  2358. return -EOVERFLOW;
  2359. if (mddev->persistent) {
  2360. rdev = md_import_device(dev, mddev->major_version,
  2361. mddev->minor_version);
  2362. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  2363. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  2364. mdk_rdev_t, same_set);
  2365. err = super_types[mddev->major_version]
  2366. .load_super(rdev, rdev0, mddev->minor_version);
  2367. if (err < 0)
  2368. goto out;
  2369. }
  2370. } else if (mddev->external)
  2371. rdev = md_import_device(dev, -2, -1);
  2372. else
  2373. rdev = md_import_device(dev, -1, -1);
  2374. if (IS_ERR(rdev))
  2375. return PTR_ERR(rdev);
  2376. err = bind_rdev_to_array(rdev, mddev);
  2377. out:
  2378. if (err)
  2379. export_rdev(rdev);
  2380. return err ? err : len;
  2381. }
  2382. static struct md_sysfs_entry md_new_device =
  2383. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  2384. static ssize_t
  2385. bitmap_store(mddev_t *mddev, const char *buf, size_t len)
  2386. {
  2387. char *end;
  2388. unsigned long chunk, end_chunk;
  2389. if (!mddev->bitmap)
  2390. goto out;
  2391. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  2392. while (*buf) {
  2393. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  2394. if (buf == end) break;
  2395. if (*end == '-') { /* range */
  2396. buf = end + 1;
  2397. end_chunk = simple_strtoul(buf, &end, 0);
  2398. if (buf == end) break;
  2399. }
  2400. if (*end && !isspace(*end)) break;
  2401. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  2402. buf = end;
  2403. while (isspace(*buf)) buf++;
  2404. }
  2405. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  2406. out:
  2407. return len;
  2408. }
  2409. static struct md_sysfs_entry md_bitmap =
  2410. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  2411. static ssize_t
  2412. size_show(mddev_t *mddev, char *page)
  2413. {
  2414. return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
  2415. }
  2416. static int update_size(mddev_t *mddev, unsigned long size);
  2417. static ssize_t
  2418. size_store(mddev_t *mddev, const char *buf, size_t len)
  2419. {
  2420. /* If array is inactive, we can reduce the component size, but
  2421. * not increase it (except from 0).
  2422. * If array is active, we can try an on-line resize
  2423. */
  2424. char *e;
  2425. int err = 0;
  2426. unsigned long long size = simple_strtoull(buf, &e, 10);
  2427. if (!*buf || *buf == '\n' ||
  2428. (*e && *e != '\n'))
  2429. return -EINVAL;
  2430. if (mddev->pers) {
  2431. err = update_size(mddev, size);
  2432. md_update_sb(mddev, 1);
  2433. } else {
  2434. if (mddev->size == 0 ||
  2435. mddev->size > size)
  2436. mddev->size = size;
  2437. else
  2438. err = -ENOSPC;
  2439. }
  2440. return err ? err : len;
  2441. }
  2442. static struct md_sysfs_entry md_size =
  2443. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  2444. /* Metdata version.
  2445. * This is one of
  2446. * 'none' for arrays with no metadata (good luck...)
  2447. * 'external' for arrays with externally managed metadata,
  2448. * or N.M for internally known formats
  2449. */
  2450. static ssize_t
  2451. metadata_show(mddev_t *mddev, char *page)
  2452. {
  2453. if (mddev->persistent)
  2454. return sprintf(page, "%d.%d\n",
  2455. mddev->major_version, mddev->minor_version);
  2456. else if (mddev->external)
  2457. return sprintf(page, "external:%s\n", mddev->metadata_type);
  2458. else
  2459. return sprintf(page, "none\n");
  2460. }
  2461. static ssize_t
  2462. metadata_store(mddev_t *mddev, const char *buf, size_t len)
  2463. {
  2464. int major, minor;
  2465. char *e;
  2466. if (!list_empty(&mddev->disks))
  2467. return -EBUSY;
  2468. if (cmd_match(buf, "none")) {
  2469. mddev->persistent = 0;
  2470. mddev->external = 0;
  2471. mddev->major_version = 0;
  2472. mddev->minor_version = 90;
  2473. return len;
  2474. }
  2475. if (strncmp(buf, "external:", 9) == 0) {
  2476. size_t namelen = len-9;
  2477. if (namelen >= sizeof(mddev->metadata_type))
  2478. namelen = sizeof(mddev->metadata_type)-1;
  2479. strncpy(mddev->metadata_type, buf+9, namelen);
  2480. mddev->metadata_type[namelen] = 0;
  2481. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  2482. mddev->metadata_type[--namelen] = 0;
  2483. mddev->persistent = 0;
  2484. mddev->external = 1;
  2485. mddev->major_version = 0;
  2486. mddev->minor_version = 90;
  2487. return len;
  2488. }
  2489. major = simple_strtoul(buf, &e, 10);
  2490. if (e==buf || *e != '.')
  2491. return -EINVAL;
  2492. buf = e+1;
  2493. minor = simple_strtoul(buf, &e, 10);
  2494. if (e==buf || (*e && *e != '\n') )
  2495. return -EINVAL;
  2496. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  2497. return -ENOENT;
  2498. mddev->major_version = major;
  2499. mddev->minor_version = minor;
  2500. mddev->persistent = 1;
  2501. mddev->external = 0;
  2502. return len;
  2503. }
  2504. static struct md_sysfs_entry md_metadata =
  2505. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  2506. static ssize_t
  2507. action_show(mddev_t *mddev, char *page)
  2508. {
  2509. char *type = "idle";
  2510. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2511. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  2512. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  2513. type = "reshape";
  2514. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  2515. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  2516. type = "resync";
  2517. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  2518. type = "check";
  2519. else
  2520. type = "repair";
  2521. } else
  2522. type = "recover";
  2523. }
  2524. return sprintf(page, "%s\n", type);
  2525. }
  2526. static ssize_t
  2527. action_store(mddev_t *mddev, const char *page, size_t len)
  2528. {
  2529. if (!mddev->pers || !mddev->pers->sync_request)
  2530. return -EINVAL;
  2531. if (cmd_match(page, "idle")) {
  2532. if (mddev->sync_thread) {
  2533. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2534. md_unregister_thread(mddev->sync_thread);
  2535. mddev->sync_thread = NULL;
  2536. mddev->recovery = 0;
  2537. }
  2538. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2539. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  2540. return -EBUSY;
  2541. else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
  2542. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2543. else if (cmd_match(page, "reshape")) {
  2544. int err;
  2545. if (mddev->pers->start_reshape == NULL)
  2546. return -EINVAL;
  2547. err = mddev->pers->start_reshape(mddev);
  2548. if (err)
  2549. return err;
  2550. } else {
  2551. if (cmd_match(page, "check"))
  2552. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  2553. else if (!cmd_match(page, "repair"))
  2554. return -EINVAL;
  2555. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  2556. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  2557. }
  2558. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2559. md_wakeup_thread(mddev->thread);
  2560. return len;
  2561. }
  2562. static ssize_t
  2563. mismatch_cnt_show(mddev_t *mddev, char *page)
  2564. {
  2565. return sprintf(page, "%llu\n",
  2566. (unsigned long long) mddev->resync_mismatches);
  2567. }
  2568. static struct md_sysfs_entry md_scan_mode =
  2569. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  2570. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  2571. static ssize_t
  2572. sync_min_show(mddev_t *mddev, char *page)
  2573. {
  2574. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  2575. mddev->sync_speed_min ? "local": "system");
  2576. }
  2577. static ssize_t
  2578. sync_min_store(mddev_t *mddev, const char *buf, size_t len)
  2579. {
  2580. int min;
  2581. char *e;
  2582. if (strncmp(buf, "system", 6)==0) {
  2583. mddev->sync_speed_min = 0;
  2584. return len;
  2585. }
  2586. min = simple_strtoul(buf, &e, 10);
  2587. if (buf == e || (*e && *e != '\n') || min <= 0)
  2588. return -EINVAL;
  2589. mddev->sync_speed_min = min;
  2590. return len;
  2591. }
  2592. static struct md_sysfs_entry md_sync_min =
  2593. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  2594. static ssize_t
  2595. sync_max_show(mddev_t *mddev, char *page)
  2596. {
  2597. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  2598. mddev->sync_speed_max ? "local": "system");
  2599. }
  2600. static ssize_t
  2601. sync_max_store(mddev_t *mddev, const char *buf, size_t len)
  2602. {
  2603. int max;
  2604. char *e;
  2605. if (strncmp(buf, "system", 6)==0) {
  2606. mddev->sync_speed_max = 0;
  2607. return len;
  2608. }
  2609. max = simple_strtoul(buf, &e, 10);
  2610. if (buf == e || (*e && *e != '\n') || max <= 0)
  2611. return -EINVAL;
  2612. mddev->sync_speed_max = max;
  2613. return len;
  2614. }
  2615. static struct md_sysfs_entry md_sync_max =
  2616. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  2617. static ssize_t
  2618. degraded_show(mddev_t *mddev, char *page)
  2619. {
  2620. return sprintf(page, "%d\n", mddev->degraded);
  2621. }
  2622. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  2623. static ssize_t
  2624. sync_speed_show(mddev_t *mddev, char *page)
  2625. {
  2626. unsigned long resync, dt, db;
  2627. resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
  2628. dt = ((jiffies - mddev->resync_mark) / HZ);
  2629. if (!dt) dt++;
  2630. db = resync - (mddev->resync_mark_cnt);
  2631. return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
  2632. }
  2633. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  2634. static ssize_t
  2635. sync_completed_show(mddev_t *mddev, char *page)
  2636. {
  2637. unsigned long max_blocks, resync;
  2638. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2639. max_blocks = mddev->resync_max_sectors;
  2640. else
  2641. max_blocks = mddev->size << 1;
  2642. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
  2643. return sprintf(page, "%lu / %lu\n", resync, max_blocks);
  2644. }
  2645. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  2646. static ssize_t
  2647. max_sync_show(mddev_t *mddev, char *page)
  2648. {
  2649. if (mddev->resync_max == MaxSector)
  2650. return sprintf(page, "max\n");
  2651. else
  2652. return sprintf(page, "%llu\n",
  2653. (unsigned long long)mddev->resync_max);
  2654. }
  2655. static ssize_t
  2656. max_sync_store(mddev_t *mddev, const char *buf, size_t len)
  2657. {
  2658. if (strncmp(buf, "max", 3) == 0)
  2659. mddev->resync_max = MaxSector;
  2660. else {
  2661. char *ep;
  2662. unsigned long long max = simple_strtoull(buf, &ep, 10);
  2663. if (ep == buf || (*ep != 0 && *ep != '\n'))
  2664. return -EINVAL;
  2665. if (max < mddev->resync_max &&
  2666. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2667. return -EBUSY;
  2668. /* Must be a multiple of chunk_size */
  2669. if (mddev->chunk_size) {
  2670. if (max & (sector_t)((mddev->chunk_size>>9)-1))
  2671. return -EINVAL;
  2672. }
  2673. mddev->resync_max = max;
  2674. }
  2675. wake_up(&mddev->recovery_wait);
  2676. return len;
  2677. }
  2678. static struct md_sysfs_entry md_max_sync =
  2679. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  2680. static ssize_t
  2681. suspend_lo_show(mddev_t *mddev, char *page)
  2682. {
  2683. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  2684. }
  2685. static ssize_t
  2686. suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
  2687. {
  2688. char *e;
  2689. unsigned long long new = simple_strtoull(buf, &e, 10);
  2690. if (mddev->pers->quiesce == NULL)
  2691. return -EINVAL;
  2692. if (buf == e || (*e && *e != '\n'))
  2693. return -EINVAL;
  2694. if (new >= mddev->suspend_hi ||
  2695. (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
  2696. mddev->suspend_lo = new;
  2697. mddev->pers->quiesce(mddev, 2);
  2698. return len;
  2699. } else
  2700. return -EINVAL;
  2701. }
  2702. static struct md_sysfs_entry md_suspend_lo =
  2703. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  2704. static ssize_t
  2705. suspend_hi_show(mddev_t *mddev, char *page)
  2706. {
  2707. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  2708. }
  2709. static ssize_t
  2710. suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
  2711. {
  2712. char *e;
  2713. unsigned long long new = simple_strtoull(buf, &e, 10);
  2714. if (mddev->pers->quiesce == NULL)
  2715. return -EINVAL;
  2716. if (buf == e || (*e && *e != '\n'))
  2717. return -EINVAL;
  2718. if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
  2719. (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
  2720. mddev->suspend_hi = new;
  2721. mddev->pers->quiesce(mddev, 1);
  2722. mddev->pers->quiesce(mddev, 0);
  2723. return len;
  2724. } else
  2725. return -EINVAL;
  2726. }
  2727. static struct md_sysfs_entry md_suspend_hi =
  2728. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  2729. static ssize_t
  2730. reshape_position_show(mddev_t *mddev, char *page)
  2731. {
  2732. if (mddev->reshape_position != MaxSector)
  2733. return sprintf(page, "%llu\n",
  2734. (unsigned long long)mddev->reshape_position);
  2735. strcpy(page, "none\n");
  2736. return 5;
  2737. }
  2738. static ssize_t
  2739. reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
  2740. {
  2741. char *e;
  2742. unsigned long long new = simple_strtoull(buf, &e, 10);
  2743. if (mddev->pers)
  2744. return -EBUSY;
  2745. if (buf == e || (*e && *e != '\n'))
  2746. return -EINVAL;
  2747. mddev->reshape_position = new;
  2748. mddev->delta_disks = 0;
  2749. mddev->new_level = mddev->level;
  2750. mddev->new_layout = mddev->layout;
  2751. mddev->new_chunk = mddev->chunk_size;
  2752. return len;
  2753. }
  2754. static struct md_sysfs_entry md_reshape_position =
  2755. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  2756. reshape_position_store);
  2757. static struct attribute *md_default_attrs[] = {
  2758. &md_level.attr,
  2759. &md_layout.attr,
  2760. &md_raid_disks.attr,
  2761. &md_chunk_size.attr,
  2762. &md_size.attr,
  2763. &md_resync_start.attr,
  2764. &md_metadata.attr,
  2765. &md_new_device.attr,
  2766. &md_safe_delay.attr,
  2767. &md_array_state.attr,
  2768. &md_reshape_position.attr,
  2769. NULL,
  2770. };
  2771. static struct attribute *md_redundancy_attrs[] = {
  2772. &md_scan_mode.attr,
  2773. &md_mismatches.attr,
  2774. &md_sync_min.attr,
  2775. &md_sync_max.attr,
  2776. &md_sync_speed.attr,
  2777. &md_sync_completed.attr,
  2778. &md_max_sync.attr,
  2779. &md_suspend_lo.attr,
  2780. &md_suspend_hi.attr,
  2781. &md_bitmap.attr,
  2782. &md_degraded.attr,
  2783. NULL,
  2784. };
  2785. static struct attribute_group md_redundancy_group = {
  2786. .name = NULL,
  2787. .attrs = md_redundancy_attrs,
  2788. };
  2789. static ssize_t
  2790. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2791. {
  2792. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  2793. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  2794. ssize_t rv;
  2795. if (!entry->show)
  2796. return -EIO;
  2797. rv = mddev_lock(mddev);
  2798. if (!rv) {
  2799. rv = entry->show(mddev, page);
  2800. mddev_unlock(mddev);
  2801. }
  2802. return rv;
  2803. }
  2804. static ssize_t
  2805. md_attr_store(struct kobject *kobj, struct attribute *attr,
  2806. const char *page, size_t length)
  2807. {
  2808. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  2809. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  2810. ssize_t rv;
  2811. if (!entry->store)
  2812. return -EIO;
  2813. if (!capable(CAP_SYS_ADMIN))
  2814. return -EACCES;
  2815. rv = mddev_lock(mddev);
  2816. if (!rv) {
  2817. rv = entry->store(mddev, page, length);
  2818. mddev_unlock(mddev);
  2819. }
  2820. return rv;
  2821. }
  2822. static void md_free(struct kobject *ko)
  2823. {
  2824. mddev_t *mddev = container_of(ko, mddev_t, kobj);
  2825. kfree(mddev);
  2826. }
  2827. static struct sysfs_ops md_sysfs_ops = {
  2828. .show = md_attr_show,
  2829. .store = md_attr_store,
  2830. };
  2831. static struct kobj_type md_ktype = {
  2832. .release = md_free,
  2833. .sysfs_ops = &md_sysfs_ops,
  2834. .default_attrs = md_default_attrs,
  2835. };
  2836. int mdp_major = 0;
  2837. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  2838. {
  2839. static DEFINE_MUTEX(disks_mutex);
  2840. mddev_t *mddev = mddev_find(dev);
  2841. struct gendisk *disk;
  2842. int partitioned = (MAJOR(dev) != MD_MAJOR);
  2843. int shift = partitioned ? MdpMinorShift : 0;
  2844. int unit = MINOR(dev) >> shift;
  2845. int error;
  2846. if (!mddev)
  2847. return NULL;
  2848. mutex_lock(&disks_mutex);
  2849. if (mddev->gendisk) {
  2850. mutex_unlock(&disks_mutex);
  2851. mddev_put(mddev);
  2852. return NULL;
  2853. }
  2854. disk = alloc_disk(1 << shift);
  2855. if (!disk) {
  2856. mutex_unlock(&disks_mutex);
  2857. mddev_put(mddev);
  2858. return NULL;
  2859. }
  2860. disk->major = MAJOR(dev);
  2861. disk->first_minor = unit << shift;
  2862. if (partitioned)
  2863. sprintf(disk->disk_name, "md_d%d", unit);
  2864. else
  2865. sprintf(disk->disk_name, "md%d", unit);
  2866. disk->fops = &md_fops;
  2867. disk->private_data = mddev;
  2868. disk->queue = mddev->queue;
  2869. add_disk(disk);
  2870. mddev->gendisk = disk;
  2871. mutex_unlock(&disks_mutex);
  2872. error = kobject_init_and_add(&mddev->kobj, &md_ktype, &disk->dev.kobj,
  2873. "%s", "md");
  2874. if (error)
  2875. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  2876. disk->disk_name);
  2877. else
  2878. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  2879. return NULL;
  2880. }
  2881. static void md_safemode_timeout(unsigned long data)
  2882. {
  2883. mddev_t *mddev = (mddev_t *) data;
  2884. mddev->safemode = 1;
  2885. md_wakeup_thread(mddev->thread);
  2886. }
  2887. static int start_dirty_degraded;
  2888. static int do_md_run(mddev_t * mddev)
  2889. {
  2890. int err;
  2891. int chunk_size;
  2892. struct list_head *tmp;
  2893. mdk_rdev_t *rdev;
  2894. struct gendisk *disk;
  2895. struct mdk_personality *pers;
  2896. char b[BDEVNAME_SIZE];
  2897. if (list_empty(&mddev->disks))
  2898. /* cannot run an array with no devices.. */
  2899. return -EINVAL;
  2900. if (mddev->pers)
  2901. return -EBUSY;
  2902. /*
  2903. * Analyze all RAID superblock(s)
  2904. */
  2905. if (!mddev->raid_disks) {
  2906. if (!mddev->persistent)
  2907. return -EINVAL;
  2908. analyze_sbs(mddev);
  2909. }
  2910. chunk_size = mddev->chunk_size;
  2911. if (chunk_size) {
  2912. if (chunk_size > MAX_CHUNK_SIZE) {
  2913. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  2914. chunk_size, MAX_CHUNK_SIZE);
  2915. return -EINVAL;
  2916. }
  2917. /*
  2918. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  2919. */
  2920. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  2921. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  2922. return -EINVAL;
  2923. }
  2924. if (chunk_size < PAGE_SIZE) {
  2925. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  2926. chunk_size, PAGE_SIZE);
  2927. return -EINVAL;
  2928. }
  2929. /* devices must have minimum size of one chunk */
  2930. rdev_for_each(rdev, tmp, mddev) {
  2931. if (test_bit(Faulty, &rdev->flags))
  2932. continue;
  2933. if (rdev->size < chunk_size / 1024) {
  2934. printk(KERN_WARNING
  2935. "md: Dev %s smaller than chunk_size:"
  2936. " %lluk < %dk\n",
  2937. bdevname(rdev->bdev,b),
  2938. (unsigned long long)rdev->size,
  2939. chunk_size / 1024);
  2940. return -EINVAL;
  2941. }
  2942. }
  2943. }
  2944. #ifdef CONFIG_KMOD
  2945. if (mddev->level != LEVEL_NONE)
  2946. request_module("md-level-%d", mddev->level);
  2947. else if (mddev->clevel[0])
  2948. request_module("md-%s", mddev->clevel);
  2949. #endif
  2950. /*
  2951. * Drop all container device buffers, from now on
  2952. * the only valid external interface is through the md
  2953. * device.
  2954. */
  2955. rdev_for_each(rdev, tmp, mddev) {
  2956. if (test_bit(Faulty, &rdev->flags))
  2957. continue;
  2958. sync_blockdev(rdev->bdev);
  2959. invalidate_bdev(rdev->bdev);
  2960. /* perform some consistency tests on the device.
  2961. * We don't want the data to overlap the metadata,
  2962. * Internal Bitmap issues has handled elsewhere.
  2963. */
  2964. if (rdev->data_offset < rdev->sb_offset) {
  2965. if (mddev->size &&
  2966. rdev->data_offset + mddev->size*2
  2967. > rdev->sb_offset*2) {
  2968. printk("md: %s: data overlaps metadata\n",
  2969. mdname(mddev));
  2970. return -EINVAL;
  2971. }
  2972. } else {
  2973. if (rdev->sb_offset*2 + rdev->sb_size/512
  2974. > rdev->data_offset) {
  2975. printk("md: %s: metadata overlaps data\n",
  2976. mdname(mddev));
  2977. return -EINVAL;
  2978. }
  2979. }
  2980. }
  2981. md_probe(mddev->unit, NULL, NULL);
  2982. disk = mddev->gendisk;
  2983. if (!disk)
  2984. return -ENOMEM;
  2985. spin_lock(&pers_lock);
  2986. pers = find_pers(mddev->level, mddev->clevel);
  2987. if (!pers || !try_module_get(pers->owner)) {
  2988. spin_unlock(&pers_lock);
  2989. if (mddev->level != LEVEL_NONE)
  2990. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  2991. mddev->level);
  2992. else
  2993. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  2994. mddev->clevel);
  2995. return -EINVAL;
  2996. }
  2997. mddev->pers = pers;
  2998. spin_unlock(&pers_lock);
  2999. mddev->level = pers->level;
  3000. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3001. if (mddev->reshape_position != MaxSector &&
  3002. pers->start_reshape == NULL) {
  3003. /* This personality cannot handle reshaping... */
  3004. mddev->pers = NULL;
  3005. module_put(pers->owner);
  3006. return -EINVAL;
  3007. }
  3008. if (pers->sync_request) {
  3009. /* Warn if this is a potentially silly
  3010. * configuration.
  3011. */
  3012. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  3013. mdk_rdev_t *rdev2;
  3014. struct list_head *tmp2;
  3015. int warned = 0;
  3016. rdev_for_each(rdev, tmp, mddev) {
  3017. rdev_for_each(rdev2, tmp2, mddev) {
  3018. if (rdev < rdev2 &&
  3019. rdev->bdev->bd_contains ==
  3020. rdev2->bdev->bd_contains) {
  3021. printk(KERN_WARNING
  3022. "%s: WARNING: %s appears to be"
  3023. " on the same physical disk as"
  3024. " %s.\n",
  3025. mdname(mddev),
  3026. bdevname(rdev->bdev,b),
  3027. bdevname(rdev2->bdev,b2));
  3028. warned = 1;
  3029. }
  3030. }
  3031. }
  3032. if (warned)
  3033. printk(KERN_WARNING
  3034. "True protection against single-disk"
  3035. " failure might be compromised.\n");
  3036. }
  3037. mddev->recovery = 0;
  3038. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  3039. mddev->barriers_work = 1;
  3040. mddev->ok_start_degraded = start_dirty_degraded;
  3041. if (start_readonly)
  3042. mddev->ro = 2; /* read-only, but switch on first write */
  3043. err = mddev->pers->run(mddev);
  3044. if (!err && mddev->pers->sync_request) {
  3045. err = bitmap_create(mddev);
  3046. if (err) {
  3047. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  3048. mdname(mddev), err);
  3049. mddev->pers->stop(mddev);
  3050. }
  3051. }
  3052. if (err) {
  3053. printk(KERN_ERR "md: pers->run() failed ...\n");
  3054. module_put(mddev->pers->owner);
  3055. mddev->pers = NULL;
  3056. bitmap_destroy(mddev);
  3057. return err;
  3058. }
  3059. if (mddev->pers->sync_request) {
  3060. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3061. printk(KERN_WARNING
  3062. "md: cannot register extra attributes for %s\n",
  3063. mdname(mddev));
  3064. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  3065. mddev->ro = 0;
  3066. atomic_set(&mddev->writes_pending,0);
  3067. mddev->safemode = 0;
  3068. mddev->safemode_timer.function = md_safemode_timeout;
  3069. mddev->safemode_timer.data = (unsigned long) mddev;
  3070. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  3071. mddev->in_sync = 1;
  3072. rdev_for_each(rdev, tmp, mddev)
  3073. if (rdev->raid_disk >= 0) {
  3074. char nm[20];
  3075. sprintf(nm, "rd%d", rdev->raid_disk);
  3076. if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
  3077. printk("md: cannot register %s for %s\n",
  3078. nm, mdname(mddev));
  3079. }
  3080. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3081. if (mddev->flags)
  3082. md_update_sb(mddev, 0);
  3083. set_capacity(disk, mddev->array_size<<1);
  3084. /* If we call blk_queue_make_request here, it will
  3085. * re-initialise max_sectors etc which may have been
  3086. * refined inside -> run. So just set the bits we need to set.
  3087. * Most initialisation happended when we called
  3088. * blk_queue_make_request(..., md_fail_request)
  3089. * earlier.
  3090. */
  3091. mddev->queue->queuedata = mddev;
  3092. mddev->queue->make_request_fn = mddev->pers->make_request;
  3093. /* If there is a partially-recovered drive we need to
  3094. * start recovery here. If we leave it to md_check_recovery,
  3095. * it will remove the drives and not do the right thing
  3096. */
  3097. if (mddev->degraded && !mddev->sync_thread) {
  3098. struct list_head *rtmp;
  3099. int spares = 0;
  3100. rdev_for_each(rdev, rtmp, mddev)
  3101. if (rdev->raid_disk >= 0 &&
  3102. !test_bit(In_sync, &rdev->flags) &&
  3103. !test_bit(Faulty, &rdev->flags))
  3104. /* complete an interrupted recovery */
  3105. spares++;
  3106. if (spares && mddev->pers->sync_request) {
  3107. mddev->recovery = 0;
  3108. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3109. mddev->sync_thread = md_register_thread(md_do_sync,
  3110. mddev,
  3111. "%s_resync");
  3112. if (!mddev->sync_thread) {
  3113. printk(KERN_ERR "%s: could not start resync"
  3114. " thread...\n",
  3115. mdname(mddev));
  3116. /* leave the spares where they are, it shouldn't hurt */
  3117. mddev->recovery = 0;
  3118. }
  3119. }
  3120. }
  3121. md_wakeup_thread(mddev->thread);
  3122. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  3123. mddev->changed = 1;
  3124. md_new_event(mddev);
  3125. kobject_uevent(&mddev->gendisk->dev.kobj, KOBJ_CHANGE);
  3126. return 0;
  3127. }
  3128. static int restart_array(mddev_t *mddev)
  3129. {
  3130. struct gendisk *disk = mddev->gendisk;
  3131. int err;
  3132. /*
  3133. * Complain if it has no devices
  3134. */
  3135. err = -ENXIO;
  3136. if (list_empty(&mddev->disks))
  3137. goto out;
  3138. if (mddev->pers) {
  3139. err = -EBUSY;
  3140. if (!mddev->ro)
  3141. goto out;
  3142. mddev->safemode = 0;
  3143. mddev->ro = 0;
  3144. set_disk_ro(disk, 0);
  3145. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  3146. mdname(mddev));
  3147. /*
  3148. * Kick recovery or resync if necessary
  3149. */
  3150. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3151. md_wakeup_thread(mddev->thread);
  3152. md_wakeup_thread(mddev->sync_thread);
  3153. err = 0;
  3154. } else
  3155. err = -EINVAL;
  3156. out:
  3157. return err;
  3158. }
  3159. /* similar to deny_write_access, but accounts for our holding a reference
  3160. * to the file ourselves */
  3161. static int deny_bitmap_write_access(struct file * file)
  3162. {
  3163. struct inode *inode = file->f_mapping->host;
  3164. spin_lock(&inode->i_lock);
  3165. if (atomic_read(&inode->i_writecount) > 1) {
  3166. spin_unlock(&inode->i_lock);
  3167. return -ETXTBSY;
  3168. }
  3169. atomic_set(&inode->i_writecount, -1);
  3170. spin_unlock(&inode->i_lock);
  3171. return 0;
  3172. }
  3173. static void restore_bitmap_write_access(struct file *file)
  3174. {
  3175. struct inode *inode = file->f_mapping->host;
  3176. spin_lock(&inode->i_lock);
  3177. atomic_set(&inode->i_writecount, 1);
  3178. spin_unlock(&inode->i_lock);
  3179. }
  3180. /* mode:
  3181. * 0 - completely stop and dis-assemble array
  3182. * 1 - switch to readonly
  3183. * 2 - stop but do not disassemble array
  3184. */
  3185. static int do_md_stop(mddev_t * mddev, int mode)
  3186. {
  3187. int err = 0;
  3188. struct gendisk *disk = mddev->gendisk;
  3189. if (mddev->pers) {
  3190. if (atomic_read(&mddev->active)>2) {
  3191. printk("md: %s still in use.\n",mdname(mddev));
  3192. return -EBUSY;
  3193. }
  3194. if (mddev->sync_thread) {
  3195. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3196. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3197. md_unregister_thread(mddev->sync_thread);
  3198. mddev->sync_thread = NULL;
  3199. }
  3200. del_timer_sync(&mddev->safemode_timer);
  3201. invalidate_partition(disk, 0);
  3202. switch(mode) {
  3203. case 1: /* readonly */
  3204. err = -ENXIO;
  3205. if (mddev->ro==1)
  3206. goto out;
  3207. mddev->ro = 1;
  3208. break;
  3209. case 0: /* disassemble */
  3210. case 2: /* stop */
  3211. bitmap_flush(mddev);
  3212. md_super_wait(mddev);
  3213. if (mddev->ro)
  3214. set_disk_ro(disk, 0);
  3215. blk_queue_make_request(mddev->queue, md_fail_request);
  3216. mddev->pers->stop(mddev);
  3217. mddev->queue->merge_bvec_fn = NULL;
  3218. mddev->queue->unplug_fn = NULL;
  3219. mddev->queue->backing_dev_info.congested_fn = NULL;
  3220. if (mddev->pers->sync_request)
  3221. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  3222. module_put(mddev->pers->owner);
  3223. mddev->pers = NULL;
  3224. set_capacity(disk, 0);
  3225. mddev->changed = 1;
  3226. if (mddev->ro)
  3227. mddev->ro = 0;
  3228. }
  3229. if (!mddev->in_sync || mddev->flags) {
  3230. /* mark array as shutdown cleanly */
  3231. mddev->in_sync = 1;
  3232. md_update_sb(mddev, 1);
  3233. }
  3234. if (mode == 1)
  3235. set_disk_ro(disk, 1);
  3236. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3237. }
  3238. /*
  3239. * Free resources if final stop
  3240. */
  3241. if (mode == 0) {
  3242. mdk_rdev_t *rdev;
  3243. struct list_head *tmp;
  3244. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  3245. bitmap_destroy(mddev);
  3246. if (mddev->bitmap_file) {
  3247. restore_bitmap_write_access(mddev->bitmap_file);
  3248. fput(mddev->bitmap_file);
  3249. mddev->bitmap_file = NULL;
  3250. }
  3251. mddev->bitmap_offset = 0;
  3252. rdev_for_each(rdev, tmp, mddev)
  3253. if (rdev->raid_disk >= 0) {
  3254. char nm[20];
  3255. sprintf(nm, "rd%d", rdev->raid_disk);
  3256. sysfs_remove_link(&mddev->kobj, nm);
  3257. }
  3258. /* make sure all md_delayed_delete calls have finished */
  3259. flush_scheduled_work();
  3260. export_array(mddev);
  3261. mddev->array_size = 0;
  3262. mddev->size = 0;
  3263. mddev->raid_disks = 0;
  3264. mddev->recovery_cp = 0;
  3265. mddev->resync_max = MaxSector;
  3266. mddev->reshape_position = MaxSector;
  3267. mddev->external = 0;
  3268. mddev->persistent = 0;
  3269. } else if (mddev->pers)
  3270. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  3271. mdname(mddev));
  3272. err = 0;
  3273. md_new_event(mddev);
  3274. out:
  3275. return err;
  3276. }
  3277. #ifndef MODULE
  3278. static void autorun_array(mddev_t *mddev)
  3279. {
  3280. mdk_rdev_t *rdev;
  3281. struct list_head *tmp;
  3282. int err;
  3283. if (list_empty(&mddev->disks))
  3284. return;
  3285. printk(KERN_INFO "md: running: ");
  3286. rdev_for_each(rdev, tmp, mddev) {
  3287. char b[BDEVNAME_SIZE];
  3288. printk("<%s>", bdevname(rdev->bdev,b));
  3289. }
  3290. printk("\n");
  3291. err = do_md_run (mddev);
  3292. if (err) {
  3293. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  3294. do_md_stop (mddev, 0);
  3295. }
  3296. }
  3297. /*
  3298. * lets try to run arrays based on all disks that have arrived
  3299. * until now. (those are in pending_raid_disks)
  3300. *
  3301. * the method: pick the first pending disk, collect all disks with
  3302. * the same UUID, remove all from the pending list and put them into
  3303. * the 'same_array' list. Then order this list based on superblock
  3304. * update time (freshest comes first), kick out 'old' disks and
  3305. * compare superblocks. If everything's fine then run it.
  3306. *
  3307. * If "unit" is allocated, then bump its reference count
  3308. */
  3309. static void autorun_devices(int part)
  3310. {
  3311. struct list_head *tmp;
  3312. mdk_rdev_t *rdev0, *rdev;
  3313. mddev_t *mddev;
  3314. char b[BDEVNAME_SIZE];
  3315. printk(KERN_INFO "md: autorun ...\n");
  3316. while (!list_empty(&pending_raid_disks)) {
  3317. int unit;
  3318. dev_t dev;
  3319. LIST_HEAD(candidates);
  3320. rdev0 = list_entry(pending_raid_disks.next,
  3321. mdk_rdev_t, same_set);
  3322. printk(KERN_INFO "md: considering %s ...\n",
  3323. bdevname(rdev0->bdev,b));
  3324. INIT_LIST_HEAD(&candidates);
  3325. rdev_for_each_list(rdev, tmp, pending_raid_disks)
  3326. if (super_90_load(rdev, rdev0, 0) >= 0) {
  3327. printk(KERN_INFO "md: adding %s ...\n",
  3328. bdevname(rdev->bdev,b));
  3329. list_move(&rdev->same_set, &candidates);
  3330. }
  3331. /*
  3332. * now we have a set of devices, with all of them having
  3333. * mostly sane superblocks. It's time to allocate the
  3334. * mddev.
  3335. */
  3336. if (part) {
  3337. dev = MKDEV(mdp_major,
  3338. rdev0->preferred_minor << MdpMinorShift);
  3339. unit = MINOR(dev) >> MdpMinorShift;
  3340. } else {
  3341. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  3342. unit = MINOR(dev);
  3343. }
  3344. if (rdev0->preferred_minor != unit) {
  3345. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  3346. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  3347. break;
  3348. }
  3349. md_probe(dev, NULL, NULL);
  3350. mddev = mddev_find(dev);
  3351. if (!mddev) {
  3352. printk(KERN_ERR
  3353. "md: cannot allocate memory for md drive.\n");
  3354. break;
  3355. }
  3356. if (mddev_lock(mddev))
  3357. printk(KERN_WARNING "md: %s locked, cannot run\n",
  3358. mdname(mddev));
  3359. else if (mddev->raid_disks || mddev->major_version
  3360. || !list_empty(&mddev->disks)) {
  3361. printk(KERN_WARNING
  3362. "md: %s already running, cannot run %s\n",
  3363. mdname(mddev), bdevname(rdev0->bdev,b));
  3364. mddev_unlock(mddev);
  3365. } else {
  3366. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  3367. mddev->persistent = 1;
  3368. rdev_for_each_list(rdev, tmp, candidates) {
  3369. list_del_init(&rdev->same_set);
  3370. if (bind_rdev_to_array(rdev, mddev))
  3371. export_rdev(rdev);
  3372. }
  3373. autorun_array(mddev);
  3374. mddev_unlock(mddev);
  3375. }
  3376. /* on success, candidates will be empty, on error
  3377. * it won't...
  3378. */
  3379. rdev_for_each_list(rdev, tmp, candidates)
  3380. export_rdev(rdev);
  3381. mddev_put(mddev);
  3382. }
  3383. printk(KERN_INFO "md: ... autorun DONE.\n");
  3384. }
  3385. #endif /* !MODULE */
  3386. static int get_version(void __user * arg)
  3387. {
  3388. mdu_version_t ver;
  3389. ver.major = MD_MAJOR_VERSION;
  3390. ver.minor = MD_MINOR_VERSION;
  3391. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  3392. if (copy_to_user(arg, &ver, sizeof(ver)))
  3393. return -EFAULT;
  3394. return 0;
  3395. }
  3396. static int get_array_info(mddev_t * mddev, void __user * arg)
  3397. {
  3398. mdu_array_info_t info;
  3399. int nr,working,active,failed,spare;
  3400. mdk_rdev_t *rdev;
  3401. struct list_head *tmp;
  3402. nr=working=active=failed=spare=0;
  3403. rdev_for_each(rdev, tmp, mddev) {
  3404. nr++;
  3405. if (test_bit(Faulty, &rdev->flags))
  3406. failed++;
  3407. else {
  3408. working++;
  3409. if (test_bit(In_sync, &rdev->flags))
  3410. active++;
  3411. else
  3412. spare++;
  3413. }
  3414. }
  3415. info.major_version = mddev->major_version;
  3416. info.minor_version = mddev->minor_version;
  3417. info.patch_version = MD_PATCHLEVEL_VERSION;
  3418. info.ctime = mddev->ctime;
  3419. info.level = mddev->level;
  3420. info.size = mddev->size;
  3421. if (info.size != mddev->size) /* overflow */
  3422. info.size = -1;
  3423. info.nr_disks = nr;
  3424. info.raid_disks = mddev->raid_disks;
  3425. info.md_minor = mddev->md_minor;
  3426. info.not_persistent= !mddev->persistent;
  3427. info.utime = mddev->utime;
  3428. info.state = 0;
  3429. if (mddev->in_sync)
  3430. info.state = (1<<MD_SB_CLEAN);
  3431. if (mddev->bitmap && mddev->bitmap_offset)
  3432. info.state = (1<<MD_SB_BITMAP_PRESENT);
  3433. info.active_disks = active;
  3434. info.working_disks = working;
  3435. info.failed_disks = failed;
  3436. info.spare_disks = spare;
  3437. info.layout = mddev->layout;
  3438. info.chunk_size = mddev->chunk_size;
  3439. if (copy_to_user(arg, &info, sizeof(info)))
  3440. return -EFAULT;
  3441. return 0;
  3442. }
  3443. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  3444. {
  3445. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  3446. char *ptr, *buf = NULL;
  3447. int err = -ENOMEM;
  3448. md_allow_write(mddev);
  3449. file = kmalloc(sizeof(*file), GFP_KERNEL);
  3450. if (!file)
  3451. goto out;
  3452. /* bitmap disabled, zero the first byte and copy out */
  3453. if (!mddev->bitmap || !mddev->bitmap->file) {
  3454. file->pathname[0] = '\0';
  3455. goto copy_out;
  3456. }
  3457. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  3458. if (!buf)
  3459. goto out;
  3460. ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
  3461. if (!ptr)
  3462. goto out;
  3463. strcpy(file->pathname, ptr);
  3464. copy_out:
  3465. err = 0;
  3466. if (copy_to_user(arg, file, sizeof(*file)))
  3467. err = -EFAULT;
  3468. out:
  3469. kfree(buf);
  3470. kfree(file);
  3471. return err;
  3472. }
  3473. static int get_disk_info(mddev_t * mddev, void __user * arg)
  3474. {
  3475. mdu_disk_info_t info;
  3476. unsigned int nr;
  3477. mdk_rdev_t *rdev;
  3478. if (copy_from_user(&info, arg, sizeof(info)))
  3479. return -EFAULT;
  3480. nr = info.number;
  3481. rdev = find_rdev_nr(mddev, nr);
  3482. if (rdev) {
  3483. info.major = MAJOR(rdev->bdev->bd_dev);
  3484. info.minor = MINOR(rdev->bdev->bd_dev);
  3485. info.raid_disk = rdev->raid_disk;
  3486. info.state = 0;
  3487. if (test_bit(Faulty, &rdev->flags))
  3488. info.state |= (1<<MD_DISK_FAULTY);
  3489. else if (test_bit(In_sync, &rdev->flags)) {
  3490. info.state |= (1<<MD_DISK_ACTIVE);
  3491. info.state |= (1<<MD_DISK_SYNC);
  3492. }
  3493. if (test_bit(WriteMostly, &rdev->flags))
  3494. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  3495. } else {
  3496. info.major = info.minor = 0;
  3497. info.raid_disk = -1;
  3498. info.state = (1<<MD_DISK_REMOVED);
  3499. }
  3500. if (copy_to_user(arg, &info, sizeof(info)))
  3501. return -EFAULT;
  3502. return 0;
  3503. }
  3504. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  3505. {
  3506. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  3507. mdk_rdev_t *rdev;
  3508. dev_t dev = MKDEV(info->major,info->minor);
  3509. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  3510. return -EOVERFLOW;
  3511. if (!mddev->raid_disks) {
  3512. int err;
  3513. /* expecting a device which has a superblock */
  3514. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  3515. if (IS_ERR(rdev)) {
  3516. printk(KERN_WARNING
  3517. "md: md_import_device returned %ld\n",
  3518. PTR_ERR(rdev));
  3519. return PTR_ERR(rdev);
  3520. }
  3521. if (!list_empty(&mddev->disks)) {
  3522. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  3523. mdk_rdev_t, same_set);
  3524. int err = super_types[mddev->major_version]
  3525. .load_super(rdev, rdev0, mddev->minor_version);
  3526. if (err < 0) {
  3527. printk(KERN_WARNING
  3528. "md: %s has different UUID to %s\n",
  3529. bdevname(rdev->bdev,b),
  3530. bdevname(rdev0->bdev,b2));
  3531. export_rdev(rdev);
  3532. return -EINVAL;
  3533. }
  3534. }
  3535. err = bind_rdev_to_array(rdev, mddev);
  3536. if (err)
  3537. export_rdev(rdev);
  3538. return err;
  3539. }
  3540. /*
  3541. * add_new_disk can be used once the array is assembled
  3542. * to add "hot spares". They must already have a superblock
  3543. * written
  3544. */
  3545. if (mddev->pers) {
  3546. int err;
  3547. if (!mddev->pers->hot_add_disk) {
  3548. printk(KERN_WARNING
  3549. "%s: personality does not support diskops!\n",
  3550. mdname(mddev));
  3551. return -EINVAL;
  3552. }
  3553. if (mddev->persistent)
  3554. rdev = md_import_device(dev, mddev->major_version,
  3555. mddev->minor_version);
  3556. else
  3557. rdev = md_import_device(dev, -1, -1);
  3558. if (IS_ERR(rdev)) {
  3559. printk(KERN_WARNING
  3560. "md: md_import_device returned %ld\n",
  3561. PTR_ERR(rdev));
  3562. return PTR_ERR(rdev);
  3563. }
  3564. /* set save_raid_disk if appropriate */
  3565. if (!mddev->persistent) {
  3566. if (info->state & (1<<MD_DISK_SYNC) &&
  3567. info->raid_disk < mddev->raid_disks)
  3568. rdev->raid_disk = info->raid_disk;
  3569. else
  3570. rdev->raid_disk = -1;
  3571. } else
  3572. super_types[mddev->major_version].
  3573. validate_super(mddev, rdev);
  3574. rdev->saved_raid_disk = rdev->raid_disk;
  3575. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  3576. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  3577. set_bit(WriteMostly, &rdev->flags);
  3578. rdev->raid_disk = -1;
  3579. err = bind_rdev_to_array(rdev, mddev);
  3580. if (!err && !mddev->pers->hot_remove_disk) {
  3581. /* If there is hot_add_disk but no hot_remove_disk
  3582. * then added disks for geometry changes,
  3583. * and should be added immediately.
  3584. */
  3585. super_types[mddev->major_version].
  3586. validate_super(mddev, rdev);
  3587. err = mddev->pers->hot_add_disk(mddev, rdev);
  3588. if (err)
  3589. unbind_rdev_from_array(rdev);
  3590. }
  3591. if (err)
  3592. export_rdev(rdev);
  3593. md_update_sb(mddev, 1);
  3594. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3595. md_wakeup_thread(mddev->thread);
  3596. return err;
  3597. }
  3598. /* otherwise, add_new_disk is only allowed
  3599. * for major_version==0 superblocks
  3600. */
  3601. if (mddev->major_version != 0) {
  3602. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  3603. mdname(mddev));
  3604. return -EINVAL;
  3605. }
  3606. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  3607. int err;
  3608. rdev = md_import_device (dev, -1, 0);
  3609. if (IS_ERR(rdev)) {
  3610. printk(KERN_WARNING
  3611. "md: error, md_import_device() returned %ld\n",
  3612. PTR_ERR(rdev));
  3613. return PTR_ERR(rdev);
  3614. }
  3615. rdev->desc_nr = info->number;
  3616. if (info->raid_disk < mddev->raid_disks)
  3617. rdev->raid_disk = info->raid_disk;
  3618. else
  3619. rdev->raid_disk = -1;
  3620. if (rdev->raid_disk < mddev->raid_disks)
  3621. if (info->state & (1<<MD_DISK_SYNC))
  3622. set_bit(In_sync, &rdev->flags);
  3623. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  3624. set_bit(WriteMostly, &rdev->flags);
  3625. if (!mddev->persistent) {
  3626. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  3627. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  3628. } else
  3629. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  3630. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  3631. err = bind_rdev_to_array(rdev, mddev);
  3632. if (err) {
  3633. export_rdev(rdev);
  3634. return err;
  3635. }
  3636. }
  3637. return 0;
  3638. }
  3639. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  3640. {
  3641. char b[BDEVNAME_SIZE];
  3642. mdk_rdev_t *rdev;
  3643. if (!mddev->pers)
  3644. return -ENODEV;
  3645. rdev = find_rdev(mddev, dev);
  3646. if (!rdev)
  3647. return -ENXIO;
  3648. if (rdev->raid_disk >= 0)
  3649. goto busy;
  3650. kick_rdev_from_array(rdev);
  3651. md_update_sb(mddev, 1);
  3652. md_new_event(mddev);
  3653. return 0;
  3654. busy:
  3655. printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
  3656. bdevname(rdev->bdev,b), mdname(mddev));
  3657. return -EBUSY;
  3658. }
  3659. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  3660. {
  3661. char b[BDEVNAME_SIZE];
  3662. int err;
  3663. unsigned int size;
  3664. mdk_rdev_t *rdev;
  3665. if (!mddev->pers)
  3666. return -ENODEV;
  3667. if (mddev->major_version != 0) {
  3668. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  3669. " version-0 superblocks.\n",
  3670. mdname(mddev));
  3671. return -EINVAL;
  3672. }
  3673. if (!mddev->pers->hot_add_disk) {
  3674. printk(KERN_WARNING
  3675. "%s: personality does not support diskops!\n",
  3676. mdname(mddev));
  3677. return -EINVAL;
  3678. }
  3679. rdev = md_import_device (dev, -1, 0);
  3680. if (IS_ERR(rdev)) {
  3681. printk(KERN_WARNING
  3682. "md: error, md_import_device() returned %ld\n",
  3683. PTR_ERR(rdev));
  3684. return -EINVAL;
  3685. }
  3686. if (mddev->persistent)
  3687. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  3688. else
  3689. rdev->sb_offset =
  3690. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  3691. size = calc_dev_size(rdev, mddev->chunk_size);
  3692. rdev->size = size;
  3693. if (test_bit(Faulty, &rdev->flags)) {
  3694. printk(KERN_WARNING
  3695. "md: can not hot-add faulty %s disk to %s!\n",
  3696. bdevname(rdev->bdev,b), mdname(mddev));
  3697. err = -EINVAL;
  3698. goto abort_export;
  3699. }
  3700. clear_bit(In_sync, &rdev->flags);
  3701. rdev->desc_nr = -1;
  3702. rdev->saved_raid_disk = -1;
  3703. err = bind_rdev_to_array(rdev, mddev);
  3704. if (err)
  3705. goto abort_export;
  3706. /*
  3707. * The rest should better be atomic, we can have disk failures
  3708. * noticed in interrupt contexts ...
  3709. */
  3710. if (rdev->desc_nr == mddev->max_disks) {
  3711. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  3712. mdname(mddev));
  3713. err = -EBUSY;
  3714. goto abort_unbind_export;
  3715. }
  3716. rdev->raid_disk = -1;
  3717. md_update_sb(mddev, 1);
  3718. /*
  3719. * Kick recovery, maybe this spare has to be added to the
  3720. * array immediately.
  3721. */
  3722. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3723. md_wakeup_thread(mddev->thread);
  3724. md_new_event(mddev);
  3725. return 0;
  3726. abort_unbind_export:
  3727. unbind_rdev_from_array(rdev);
  3728. abort_export:
  3729. export_rdev(rdev);
  3730. return err;
  3731. }
  3732. static int set_bitmap_file(mddev_t *mddev, int fd)
  3733. {
  3734. int err;
  3735. if (mddev->pers) {
  3736. if (!mddev->pers->quiesce)
  3737. return -EBUSY;
  3738. if (mddev->recovery || mddev->sync_thread)
  3739. return -EBUSY;
  3740. /* we should be able to change the bitmap.. */
  3741. }
  3742. if (fd >= 0) {
  3743. if (mddev->bitmap)
  3744. return -EEXIST; /* cannot add when bitmap is present */
  3745. mddev->bitmap_file = fget(fd);
  3746. if (mddev->bitmap_file == NULL) {
  3747. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  3748. mdname(mddev));
  3749. return -EBADF;
  3750. }
  3751. err = deny_bitmap_write_access(mddev->bitmap_file);
  3752. if (err) {
  3753. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  3754. mdname(mddev));
  3755. fput(mddev->bitmap_file);
  3756. mddev->bitmap_file = NULL;
  3757. return err;
  3758. }
  3759. mddev->bitmap_offset = 0; /* file overrides offset */
  3760. } else if (mddev->bitmap == NULL)
  3761. return -ENOENT; /* cannot remove what isn't there */
  3762. err = 0;
  3763. if (mddev->pers) {
  3764. mddev->pers->quiesce(mddev, 1);
  3765. if (fd >= 0)
  3766. err = bitmap_create(mddev);
  3767. if (fd < 0 || err) {
  3768. bitmap_destroy(mddev);
  3769. fd = -1; /* make sure to put the file */
  3770. }
  3771. mddev->pers->quiesce(mddev, 0);
  3772. }
  3773. if (fd < 0) {
  3774. if (mddev->bitmap_file) {
  3775. restore_bitmap_write_access(mddev->bitmap_file);
  3776. fput(mddev->bitmap_file);
  3777. }
  3778. mddev->bitmap_file = NULL;
  3779. }
  3780. return err;
  3781. }
  3782. /*
  3783. * set_array_info is used two different ways
  3784. * The original usage is when creating a new array.
  3785. * In this usage, raid_disks is > 0 and it together with
  3786. * level, size, not_persistent,layout,chunksize determine the
  3787. * shape of the array.
  3788. * This will always create an array with a type-0.90.0 superblock.
  3789. * The newer usage is when assembling an array.
  3790. * In this case raid_disks will be 0, and the major_version field is
  3791. * use to determine which style super-blocks are to be found on the devices.
  3792. * The minor and patch _version numbers are also kept incase the
  3793. * super_block handler wishes to interpret them.
  3794. */
  3795. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  3796. {
  3797. if (info->raid_disks == 0) {
  3798. /* just setting version number for superblock loading */
  3799. if (info->major_version < 0 ||
  3800. info->major_version >= ARRAY_SIZE(super_types) ||
  3801. super_types[info->major_version].name == NULL) {
  3802. /* maybe try to auto-load a module? */
  3803. printk(KERN_INFO
  3804. "md: superblock version %d not known\n",
  3805. info->major_version);
  3806. return -EINVAL;
  3807. }
  3808. mddev->major_version = info->major_version;
  3809. mddev->minor_version = info->minor_version;
  3810. mddev->patch_version = info->patch_version;
  3811. mddev->persistent = !info->not_persistent;
  3812. return 0;
  3813. }
  3814. mddev->major_version = MD_MAJOR_VERSION;
  3815. mddev->minor_version = MD_MINOR_VERSION;
  3816. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  3817. mddev->ctime = get_seconds();
  3818. mddev->level = info->level;
  3819. mddev->clevel[0] = 0;
  3820. mddev->size = info->size;
  3821. mddev->raid_disks = info->raid_disks;
  3822. /* don't set md_minor, it is determined by which /dev/md* was
  3823. * openned
  3824. */
  3825. if (info->state & (1<<MD_SB_CLEAN))
  3826. mddev->recovery_cp = MaxSector;
  3827. else
  3828. mddev->recovery_cp = 0;
  3829. mddev->persistent = ! info->not_persistent;
  3830. mddev->external = 0;
  3831. mddev->layout = info->layout;
  3832. mddev->chunk_size = info->chunk_size;
  3833. mddev->max_disks = MD_SB_DISKS;
  3834. if (mddev->persistent)
  3835. mddev->flags = 0;
  3836. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3837. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  3838. mddev->bitmap_offset = 0;
  3839. mddev->reshape_position = MaxSector;
  3840. /*
  3841. * Generate a 128 bit UUID
  3842. */
  3843. get_random_bytes(mddev->uuid, 16);
  3844. mddev->new_level = mddev->level;
  3845. mddev->new_chunk = mddev->chunk_size;
  3846. mddev->new_layout = mddev->layout;
  3847. mddev->delta_disks = 0;
  3848. return 0;
  3849. }
  3850. static int update_size(mddev_t *mddev, unsigned long size)
  3851. {
  3852. mdk_rdev_t * rdev;
  3853. int rv;
  3854. struct list_head *tmp;
  3855. int fit = (size == 0);
  3856. if (mddev->pers->resize == NULL)
  3857. return -EINVAL;
  3858. /* The "size" is the amount of each device that is used.
  3859. * This can only make sense for arrays with redundancy.
  3860. * linear and raid0 always use whatever space is available
  3861. * We can only consider changing the size if no resync
  3862. * or reconstruction is happening, and if the new size
  3863. * is acceptable. It must fit before the sb_offset or,
  3864. * if that is <data_offset, it must fit before the
  3865. * size of each device.
  3866. * If size is zero, we find the largest size that fits.
  3867. */
  3868. if (mddev->sync_thread)
  3869. return -EBUSY;
  3870. rdev_for_each(rdev, tmp, mddev) {
  3871. sector_t avail;
  3872. avail = rdev->size * 2;
  3873. if (fit && (size == 0 || size > avail/2))
  3874. size = avail/2;
  3875. if (avail < ((sector_t)size << 1))
  3876. return -ENOSPC;
  3877. }
  3878. rv = mddev->pers->resize(mddev, (sector_t)size *2);
  3879. if (!rv) {
  3880. struct block_device *bdev;
  3881. bdev = bdget_disk(mddev->gendisk, 0);
  3882. if (bdev) {
  3883. mutex_lock(&bdev->bd_inode->i_mutex);
  3884. i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
  3885. mutex_unlock(&bdev->bd_inode->i_mutex);
  3886. bdput(bdev);
  3887. }
  3888. }
  3889. return rv;
  3890. }
  3891. static int update_raid_disks(mddev_t *mddev, int raid_disks)
  3892. {
  3893. int rv;
  3894. /* change the number of raid disks */
  3895. if (mddev->pers->check_reshape == NULL)
  3896. return -EINVAL;
  3897. if (raid_disks <= 0 ||
  3898. raid_disks >= mddev->max_disks)
  3899. return -EINVAL;
  3900. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  3901. return -EBUSY;
  3902. mddev->delta_disks = raid_disks - mddev->raid_disks;
  3903. rv = mddev->pers->check_reshape(mddev);
  3904. return rv;
  3905. }
  3906. /*
  3907. * update_array_info is used to change the configuration of an
  3908. * on-line array.
  3909. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  3910. * fields in the info are checked against the array.
  3911. * Any differences that cannot be handled will cause an error.
  3912. * Normally, only one change can be managed at a time.
  3913. */
  3914. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  3915. {
  3916. int rv = 0;
  3917. int cnt = 0;
  3918. int state = 0;
  3919. /* calculate expected state,ignoring low bits */
  3920. if (mddev->bitmap && mddev->bitmap_offset)
  3921. state |= (1 << MD_SB_BITMAP_PRESENT);
  3922. if (mddev->major_version != info->major_version ||
  3923. mddev->minor_version != info->minor_version ||
  3924. /* mddev->patch_version != info->patch_version || */
  3925. mddev->ctime != info->ctime ||
  3926. mddev->level != info->level ||
  3927. /* mddev->layout != info->layout || */
  3928. !mddev->persistent != info->not_persistent||
  3929. mddev->chunk_size != info->chunk_size ||
  3930. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  3931. ((state^info->state) & 0xfffffe00)
  3932. )
  3933. return -EINVAL;
  3934. /* Check there is only one change */
  3935. if (info->size >= 0 && mddev->size != info->size) cnt++;
  3936. if (mddev->raid_disks != info->raid_disks) cnt++;
  3937. if (mddev->layout != info->layout) cnt++;
  3938. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
  3939. if (cnt == 0) return 0;
  3940. if (cnt > 1) return -EINVAL;
  3941. if (mddev->layout != info->layout) {
  3942. /* Change layout
  3943. * we don't need to do anything at the md level, the
  3944. * personality will take care of it all.
  3945. */
  3946. if (mddev->pers->reconfig == NULL)
  3947. return -EINVAL;
  3948. else
  3949. return mddev->pers->reconfig(mddev, info->layout, -1);
  3950. }
  3951. if (info->size >= 0 && mddev->size != info->size)
  3952. rv = update_size(mddev, info->size);
  3953. if (mddev->raid_disks != info->raid_disks)
  3954. rv = update_raid_disks(mddev, info->raid_disks);
  3955. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  3956. if (mddev->pers->quiesce == NULL)
  3957. return -EINVAL;
  3958. if (mddev->recovery || mddev->sync_thread)
  3959. return -EBUSY;
  3960. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  3961. /* add the bitmap */
  3962. if (mddev->bitmap)
  3963. return -EEXIST;
  3964. if (mddev->default_bitmap_offset == 0)
  3965. return -EINVAL;
  3966. mddev->bitmap_offset = mddev->default_bitmap_offset;
  3967. mddev->pers->quiesce(mddev, 1);
  3968. rv = bitmap_create(mddev);
  3969. if (rv)
  3970. bitmap_destroy(mddev);
  3971. mddev->pers->quiesce(mddev, 0);
  3972. } else {
  3973. /* remove the bitmap */
  3974. if (!mddev->bitmap)
  3975. return -ENOENT;
  3976. if (mddev->bitmap->file)
  3977. return -EINVAL;
  3978. mddev->pers->quiesce(mddev, 1);
  3979. bitmap_destroy(mddev);
  3980. mddev->pers->quiesce(mddev, 0);
  3981. mddev->bitmap_offset = 0;
  3982. }
  3983. }
  3984. md_update_sb(mddev, 1);
  3985. return rv;
  3986. }
  3987. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  3988. {
  3989. mdk_rdev_t *rdev;
  3990. if (mddev->pers == NULL)
  3991. return -ENODEV;
  3992. rdev = find_rdev(mddev, dev);
  3993. if (!rdev)
  3994. return -ENODEV;
  3995. md_error(mddev, rdev);
  3996. return 0;
  3997. }
  3998. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  3999. {
  4000. mddev_t *mddev = bdev->bd_disk->private_data;
  4001. geo->heads = 2;
  4002. geo->sectors = 4;
  4003. geo->cylinders = get_capacity(mddev->gendisk) / 8;
  4004. return 0;
  4005. }
  4006. static int md_ioctl(struct inode *inode, struct file *file,
  4007. unsigned int cmd, unsigned long arg)
  4008. {
  4009. int err = 0;
  4010. void __user *argp = (void __user *)arg;
  4011. mddev_t *mddev = NULL;
  4012. if (!capable(CAP_SYS_ADMIN))
  4013. return -EACCES;
  4014. /*
  4015. * Commands dealing with the RAID driver but not any
  4016. * particular array:
  4017. */
  4018. switch (cmd)
  4019. {
  4020. case RAID_VERSION:
  4021. err = get_version(argp);
  4022. goto done;
  4023. case PRINT_RAID_DEBUG:
  4024. err = 0;
  4025. md_print_devices();
  4026. goto done;
  4027. #ifndef MODULE
  4028. case RAID_AUTORUN:
  4029. err = 0;
  4030. autostart_arrays(arg);
  4031. goto done;
  4032. #endif
  4033. default:;
  4034. }
  4035. /*
  4036. * Commands creating/starting a new array:
  4037. */
  4038. mddev = inode->i_bdev->bd_disk->private_data;
  4039. if (!mddev) {
  4040. BUG();
  4041. goto abort;
  4042. }
  4043. err = mddev_lock(mddev);
  4044. if (err) {
  4045. printk(KERN_INFO
  4046. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  4047. err, cmd);
  4048. goto abort;
  4049. }
  4050. switch (cmd)
  4051. {
  4052. case SET_ARRAY_INFO:
  4053. {
  4054. mdu_array_info_t info;
  4055. if (!arg)
  4056. memset(&info, 0, sizeof(info));
  4057. else if (copy_from_user(&info, argp, sizeof(info))) {
  4058. err = -EFAULT;
  4059. goto abort_unlock;
  4060. }
  4061. if (mddev->pers) {
  4062. err = update_array_info(mddev, &info);
  4063. if (err) {
  4064. printk(KERN_WARNING "md: couldn't update"
  4065. " array info. %d\n", err);
  4066. goto abort_unlock;
  4067. }
  4068. goto done_unlock;
  4069. }
  4070. if (!list_empty(&mddev->disks)) {
  4071. printk(KERN_WARNING
  4072. "md: array %s already has disks!\n",
  4073. mdname(mddev));
  4074. err = -EBUSY;
  4075. goto abort_unlock;
  4076. }
  4077. if (mddev->raid_disks) {
  4078. printk(KERN_WARNING
  4079. "md: array %s already initialised!\n",
  4080. mdname(mddev));
  4081. err = -EBUSY;
  4082. goto abort_unlock;
  4083. }
  4084. err = set_array_info(mddev, &info);
  4085. if (err) {
  4086. printk(KERN_WARNING "md: couldn't set"
  4087. " array info. %d\n", err);
  4088. goto abort_unlock;
  4089. }
  4090. }
  4091. goto done_unlock;
  4092. default:;
  4093. }
  4094. /*
  4095. * Commands querying/configuring an existing array:
  4096. */
  4097. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  4098. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  4099. if ((!mddev->raid_disks && !mddev->external)
  4100. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  4101. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  4102. && cmd != GET_BITMAP_FILE) {
  4103. err = -ENODEV;
  4104. goto abort_unlock;
  4105. }
  4106. /*
  4107. * Commands even a read-only array can execute:
  4108. */
  4109. switch (cmd)
  4110. {
  4111. case GET_ARRAY_INFO:
  4112. err = get_array_info(mddev, argp);
  4113. goto done_unlock;
  4114. case GET_BITMAP_FILE:
  4115. err = get_bitmap_file(mddev, argp);
  4116. goto done_unlock;
  4117. case GET_DISK_INFO:
  4118. err = get_disk_info(mddev, argp);
  4119. goto done_unlock;
  4120. case RESTART_ARRAY_RW:
  4121. err = restart_array(mddev);
  4122. goto done_unlock;
  4123. case STOP_ARRAY:
  4124. err = do_md_stop (mddev, 0);
  4125. goto done_unlock;
  4126. case STOP_ARRAY_RO:
  4127. err = do_md_stop (mddev, 1);
  4128. goto done_unlock;
  4129. /*
  4130. * We have a problem here : there is no easy way to give a CHS
  4131. * virtual geometry. We currently pretend that we have a 2 heads
  4132. * 4 sectors (with a BIG number of cylinders...). This drives
  4133. * dosfs just mad... ;-)
  4134. */
  4135. }
  4136. /*
  4137. * The remaining ioctls are changing the state of the
  4138. * superblock, so we do not allow them on read-only arrays.
  4139. * However non-MD ioctls (e.g. get-size) will still come through
  4140. * here and hit the 'default' below, so only disallow
  4141. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  4142. */
  4143. if (_IOC_TYPE(cmd) == MD_MAJOR &&
  4144. mddev->ro && mddev->pers) {
  4145. if (mddev->ro == 2) {
  4146. mddev->ro = 0;
  4147. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4148. md_wakeup_thread(mddev->thread);
  4149. } else {
  4150. err = -EROFS;
  4151. goto abort_unlock;
  4152. }
  4153. }
  4154. switch (cmd)
  4155. {
  4156. case ADD_NEW_DISK:
  4157. {
  4158. mdu_disk_info_t info;
  4159. if (copy_from_user(&info, argp, sizeof(info)))
  4160. err = -EFAULT;
  4161. else
  4162. err = add_new_disk(mddev, &info);
  4163. goto done_unlock;
  4164. }
  4165. case HOT_REMOVE_DISK:
  4166. err = hot_remove_disk(mddev, new_decode_dev(arg));
  4167. goto done_unlock;
  4168. case HOT_ADD_DISK:
  4169. err = hot_add_disk(mddev, new_decode_dev(arg));
  4170. goto done_unlock;
  4171. case SET_DISK_FAULTY:
  4172. err = set_disk_faulty(mddev, new_decode_dev(arg));
  4173. goto done_unlock;
  4174. case RUN_ARRAY:
  4175. err = do_md_run (mddev);
  4176. goto done_unlock;
  4177. case SET_BITMAP_FILE:
  4178. err = set_bitmap_file(mddev, (int)arg);
  4179. goto done_unlock;
  4180. default:
  4181. err = -EINVAL;
  4182. goto abort_unlock;
  4183. }
  4184. done_unlock:
  4185. abort_unlock:
  4186. mddev_unlock(mddev);
  4187. return err;
  4188. done:
  4189. if (err)
  4190. MD_BUG();
  4191. abort:
  4192. return err;
  4193. }
  4194. static int md_open(struct inode *inode, struct file *file)
  4195. {
  4196. /*
  4197. * Succeed if we can lock the mddev, which confirms that
  4198. * it isn't being stopped right now.
  4199. */
  4200. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  4201. int err;
  4202. if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
  4203. goto out;
  4204. err = 0;
  4205. mddev_get(mddev);
  4206. mddev_unlock(mddev);
  4207. check_disk_change(inode->i_bdev);
  4208. out:
  4209. return err;
  4210. }
  4211. static int md_release(struct inode *inode, struct file * file)
  4212. {
  4213. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  4214. BUG_ON(!mddev);
  4215. mddev_put(mddev);
  4216. return 0;
  4217. }
  4218. static int md_media_changed(struct gendisk *disk)
  4219. {
  4220. mddev_t *mddev = disk->private_data;
  4221. return mddev->changed;
  4222. }
  4223. static int md_revalidate(struct gendisk *disk)
  4224. {
  4225. mddev_t *mddev = disk->private_data;
  4226. mddev->changed = 0;
  4227. return 0;
  4228. }
  4229. static struct block_device_operations md_fops =
  4230. {
  4231. .owner = THIS_MODULE,
  4232. .open = md_open,
  4233. .release = md_release,
  4234. .ioctl = md_ioctl,
  4235. .getgeo = md_getgeo,
  4236. .media_changed = md_media_changed,
  4237. .revalidate_disk= md_revalidate,
  4238. };
  4239. static int md_thread(void * arg)
  4240. {
  4241. mdk_thread_t *thread = arg;
  4242. /*
  4243. * md_thread is a 'system-thread', it's priority should be very
  4244. * high. We avoid resource deadlocks individually in each
  4245. * raid personality. (RAID5 does preallocation) We also use RR and
  4246. * the very same RT priority as kswapd, thus we will never get
  4247. * into a priority inversion deadlock.
  4248. *
  4249. * we definitely have to have equal or higher priority than
  4250. * bdflush, otherwise bdflush will deadlock if there are too
  4251. * many dirty RAID5 blocks.
  4252. */
  4253. allow_signal(SIGKILL);
  4254. while (!kthread_should_stop()) {
  4255. /* We need to wait INTERRUPTIBLE so that
  4256. * we don't add to the load-average.
  4257. * That means we need to be sure no signals are
  4258. * pending
  4259. */
  4260. if (signal_pending(current))
  4261. flush_signals(current);
  4262. wait_event_interruptible_timeout
  4263. (thread->wqueue,
  4264. test_bit(THREAD_WAKEUP, &thread->flags)
  4265. || kthread_should_stop(),
  4266. thread->timeout);
  4267. clear_bit(THREAD_WAKEUP, &thread->flags);
  4268. thread->run(thread->mddev);
  4269. }
  4270. return 0;
  4271. }
  4272. void md_wakeup_thread(mdk_thread_t *thread)
  4273. {
  4274. if (thread) {
  4275. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  4276. set_bit(THREAD_WAKEUP, &thread->flags);
  4277. wake_up(&thread->wqueue);
  4278. }
  4279. }
  4280. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  4281. const char *name)
  4282. {
  4283. mdk_thread_t *thread;
  4284. thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  4285. if (!thread)
  4286. return NULL;
  4287. init_waitqueue_head(&thread->wqueue);
  4288. thread->run = run;
  4289. thread->mddev = mddev;
  4290. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  4291. thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
  4292. if (IS_ERR(thread->tsk)) {
  4293. kfree(thread);
  4294. return NULL;
  4295. }
  4296. return thread;
  4297. }
  4298. void md_unregister_thread(mdk_thread_t *thread)
  4299. {
  4300. dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  4301. kthread_stop(thread->tsk);
  4302. kfree(thread);
  4303. }
  4304. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  4305. {
  4306. if (!mddev) {
  4307. MD_BUG();
  4308. return;
  4309. }
  4310. if (!rdev || test_bit(Faulty, &rdev->flags))
  4311. return;
  4312. /*
  4313. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  4314. mdname(mddev),
  4315. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  4316. __builtin_return_address(0),__builtin_return_address(1),
  4317. __builtin_return_address(2),__builtin_return_address(3));
  4318. */
  4319. if (!mddev->pers)
  4320. return;
  4321. if (!mddev->pers->error_handler)
  4322. return;
  4323. mddev->pers->error_handler(mddev,rdev);
  4324. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4325. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4326. md_wakeup_thread(mddev->thread);
  4327. md_new_event_inintr(mddev);
  4328. }
  4329. /* seq_file implementation /proc/mdstat */
  4330. static void status_unused(struct seq_file *seq)
  4331. {
  4332. int i = 0;
  4333. mdk_rdev_t *rdev;
  4334. struct list_head *tmp;
  4335. seq_printf(seq, "unused devices: ");
  4336. rdev_for_each_list(rdev, tmp, pending_raid_disks) {
  4337. char b[BDEVNAME_SIZE];
  4338. i++;
  4339. seq_printf(seq, "%s ",
  4340. bdevname(rdev->bdev,b));
  4341. }
  4342. if (!i)
  4343. seq_printf(seq, "<none>");
  4344. seq_printf(seq, "\n");
  4345. }
  4346. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  4347. {
  4348. sector_t max_blocks, resync, res;
  4349. unsigned long dt, db, rt;
  4350. int scale;
  4351. unsigned int per_milli;
  4352. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  4353. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  4354. max_blocks = mddev->resync_max_sectors >> 1;
  4355. else
  4356. max_blocks = mddev->size;
  4357. /*
  4358. * Should not happen.
  4359. */
  4360. if (!max_blocks) {
  4361. MD_BUG();
  4362. return;
  4363. }
  4364. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  4365. * in a sector_t, and (max_blocks>>scale) will fit in a
  4366. * u32, as those are the requirements for sector_div.
  4367. * Thus 'scale' must be at least 10
  4368. */
  4369. scale = 10;
  4370. if (sizeof(sector_t) > sizeof(unsigned long)) {
  4371. while ( max_blocks/2 > (1ULL<<(scale+32)))
  4372. scale++;
  4373. }
  4374. res = (resync>>scale)*1000;
  4375. sector_div(res, (u32)((max_blocks>>scale)+1));
  4376. per_milli = res;
  4377. {
  4378. int i, x = per_milli/50, y = 20-x;
  4379. seq_printf(seq, "[");
  4380. for (i = 0; i < x; i++)
  4381. seq_printf(seq, "=");
  4382. seq_printf(seq, ">");
  4383. for (i = 0; i < y; i++)
  4384. seq_printf(seq, ".");
  4385. seq_printf(seq, "] ");
  4386. }
  4387. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  4388. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  4389. "reshape" :
  4390. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  4391. "check" :
  4392. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  4393. "resync" : "recovery"))),
  4394. per_milli/10, per_milli % 10,
  4395. (unsigned long long) resync,
  4396. (unsigned long long) max_blocks);
  4397. /*
  4398. * We do not want to overflow, so the order of operands and
  4399. * the * 100 / 100 trick are important. We do a +1 to be
  4400. * safe against division by zero. We only estimate anyway.
  4401. *
  4402. * dt: time from mark until now
  4403. * db: blocks written from mark until now
  4404. * rt: remaining time
  4405. */
  4406. dt = ((jiffies - mddev->resync_mark) / HZ);
  4407. if (!dt) dt++;
  4408. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  4409. - mddev->resync_mark_cnt;
  4410. rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
  4411. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  4412. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  4413. }
  4414. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  4415. {
  4416. struct list_head *tmp;
  4417. loff_t l = *pos;
  4418. mddev_t *mddev;
  4419. if (l >= 0x10000)
  4420. return NULL;
  4421. if (!l--)
  4422. /* header */
  4423. return (void*)1;
  4424. spin_lock(&all_mddevs_lock);
  4425. list_for_each(tmp,&all_mddevs)
  4426. if (!l--) {
  4427. mddev = list_entry(tmp, mddev_t, all_mddevs);
  4428. mddev_get(mddev);
  4429. spin_unlock(&all_mddevs_lock);
  4430. return mddev;
  4431. }
  4432. spin_unlock(&all_mddevs_lock);
  4433. if (!l--)
  4434. return (void*)2;/* tail */
  4435. return NULL;
  4436. }
  4437. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  4438. {
  4439. struct list_head *tmp;
  4440. mddev_t *next_mddev, *mddev = v;
  4441. ++*pos;
  4442. if (v == (void*)2)
  4443. return NULL;
  4444. spin_lock(&all_mddevs_lock);
  4445. if (v == (void*)1)
  4446. tmp = all_mddevs.next;
  4447. else
  4448. tmp = mddev->all_mddevs.next;
  4449. if (tmp != &all_mddevs)
  4450. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  4451. else {
  4452. next_mddev = (void*)2;
  4453. *pos = 0x10000;
  4454. }
  4455. spin_unlock(&all_mddevs_lock);
  4456. if (v != (void*)1)
  4457. mddev_put(mddev);
  4458. return next_mddev;
  4459. }
  4460. static void md_seq_stop(struct seq_file *seq, void *v)
  4461. {
  4462. mddev_t *mddev = v;
  4463. if (mddev && v != (void*)1 && v != (void*)2)
  4464. mddev_put(mddev);
  4465. }
  4466. struct mdstat_info {
  4467. int event;
  4468. };
  4469. static int md_seq_show(struct seq_file *seq, void *v)
  4470. {
  4471. mddev_t *mddev = v;
  4472. sector_t size;
  4473. struct list_head *tmp2;
  4474. mdk_rdev_t *rdev;
  4475. struct mdstat_info *mi = seq->private;
  4476. struct bitmap *bitmap;
  4477. if (v == (void*)1) {
  4478. struct mdk_personality *pers;
  4479. seq_printf(seq, "Personalities : ");
  4480. spin_lock(&pers_lock);
  4481. list_for_each_entry(pers, &pers_list, list)
  4482. seq_printf(seq, "[%s] ", pers->name);
  4483. spin_unlock(&pers_lock);
  4484. seq_printf(seq, "\n");
  4485. mi->event = atomic_read(&md_event_count);
  4486. return 0;
  4487. }
  4488. if (v == (void*)2) {
  4489. status_unused(seq);
  4490. return 0;
  4491. }
  4492. if (mddev_lock(mddev) < 0)
  4493. return -EINTR;
  4494. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  4495. seq_printf(seq, "%s : %sactive", mdname(mddev),
  4496. mddev->pers ? "" : "in");
  4497. if (mddev->pers) {
  4498. if (mddev->ro==1)
  4499. seq_printf(seq, " (read-only)");
  4500. if (mddev->ro==2)
  4501. seq_printf(seq, "(auto-read-only)");
  4502. seq_printf(seq, " %s", mddev->pers->name);
  4503. }
  4504. size = 0;
  4505. rdev_for_each(rdev, tmp2, mddev) {
  4506. char b[BDEVNAME_SIZE];
  4507. seq_printf(seq, " %s[%d]",
  4508. bdevname(rdev->bdev,b), rdev->desc_nr);
  4509. if (test_bit(WriteMostly, &rdev->flags))
  4510. seq_printf(seq, "(W)");
  4511. if (test_bit(Faulty, &rdev->flags)) {
  4512. seq_printf(seq, "(F)");
  4513. continue;
  4514. } else if (rdev->raid_disk < 0)
  4515. seq_printf(seq, "(S)"); /* spare */
  4516. size += rdev->size;
  4517. }
  4518. if (!list_empty(&mddev->disks)) {
  4519. if (mddev->pers)
  4520. seq_printf(seq, "\n %llu blocks",
  4521. (unsigned long long)mddev->array_size);
  4522. else
  4523. seq_printf(seq, "\n %llu blocks",
  4524. (unsigned long long)size);
  4525. }
  4526. if (mddev->persistent) {
  4527. if (mddev->major_version != 0 ||
  4528. mddev->minor_version != 90) {
  4529. seq_printf(seq," super %d.%d",
  4530. mddev->major_version,
  4531. mddev->minor_version);
  4532. }
  4533. } else if (mddev->external)
  4534. seq_printf(seq, " super external:%s",
  4535. mddev->metadata_type);
  4536. else
  4537. seq_printf(seq, " super non-persistent");
  4538. if (mddev->pers) {
  4539. mddev->pers->status (seq, mddev);
  4540. seq_printf(seq, "\n ");
  4541. if (mddev->pers->sync_request) {
  4542. if (mddev->curr_resync > 2) {
  4543. status_resync (seq, mddev);
  4544. seq_printf(seq, "\n ");
  4545. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  4546. seq_printf(seq, "\tresync=DELAYED\n ");
  4547. else if (mddev->recovery_cp < MaxSector)
  4548. seq_printf(seq, "\tresync=PENDING\n ");
  4549. }
  4550. } else
  4551. seq_printf(seq, "\n ");
  4552. if ((bitmap = mddev->bitmap)) {
  4553. unsigned long chunk_kb;
  4554. unsigned long flags;
  4555. spin_lock_irqsave(&bitmap->lock, flags);
  4556. chunk_kb = bitmap->chunksize >> 10;
  4557. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  4558. "%lu%s chunk",
  4559. bitmap->pages - bitmap->missing_pages,
  4560. bitmap->pages,
  4561. (bitmap->pages - bitmap->missing_pages)
  4562. << (PAGE_SHIFT - 10),
  4563. chunk_kb ? chunk_kb : bitmap->chunksize,
  4564. chunk_kb ? "KB" : "B");
  4565. if (bitmap->file) {
  4566. seq_printf(seq, ", file: ");
  4567. seq_path(seq, &bitmap->file->f_path, " \t\n");
  4568. }
  4569. seq_printf(seq, "\n");
  4570. spin_unlock_irqrestore(&bitmap->lock, flags);
  4571. }
  4572. seq_printf(seq, "\n");
  4573. }
  4574. mddev_unlock(mddev);
  4575. return 0;
  4576. }
  4577. static struct seq_operations md_seq_ops = {
  4578. .start = md_seq_start,
  4579. .next = md_seq_next,
  4580. .stop = md_seq_stop,
  4581. .show = md_seq_show,
  4582. };
  4583. static int md_seq_open(struct inode *inode, struct file *file)
  4584. {
  4585. int error;
  4586. struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
  4587. if (mi == NULL)
  4588. return -ENOMEM;
  4589. error = seq_open(file, &md_seq_ops);
  4590. if (error)
  4591. kfree(mi);
  4592. else {
  4593. struct seq_file *p = file->private_data;
  4594. p->private = mi;
  4595. mi->event = atomic_read(&md_event_count);
  4596. }
  4597. return error;
  4598. }
  4599. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  4600. {
  4601. struct seq_file *m = filp->private_data;
  4602. struct mdstat_info *mi = m->private;
  4603. int mask;
  4604. poll_wait(filp, &md_event_waiters, wait);
  4605. /* always allow read */
  4606. mask = POLLIN | POLLRDNORM;
  4607. if (mi->event != atomic_read(&md_event_count))
  4608. mask |= POLLERR | POLLPRI;
  4609. return mask;
  4610. }
  4611. static const struct file_operations md_seq_fops = {
  4612. .owner = THIS_MODULE,
  4613. .open = md_seq_open,
  4614. .read = seq_read,
  4615. .llseek = seq_lseek,
  4616. .release = seq_release_private,
  4617. .poll = mdstat_poll,
  4618. };
  4619. int register_md_personality(struct mdk_personality *p)
  4620. {
  4621. spin_lock(&pers_lock);
  4622. list_add_tail(&p->list, &pers_list);
  4623. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  4624. spin_unlock(&pers_lock);
  4625. return 0;
  4626. }
  4627. int unregister_md_personality(struct mdk_personality *p)
  4628. {
  4629. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  4630. spin_lock(&pers_lock);
  4631. list_del_init(&p->list);
  4632. spin_unlock(&pers_lock);
  4633. return 0;
  4634. }
  4635. static int is_mddev_idle(mddev_t *mddev)
  4636. {
  4637. mdk_rdev_t * rdev;
  4638. struct list_head *tmp;
  4639. int idle;
  4640. long curr_events;
  4641. idle = 1;
  4642. rdev_for_each(rdev, tmp, mddev) {
  4643. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  4644. curr_events = disk_stat_read(disk, sectors[0]) +
  4645. disk_stat_read(disk, sectors[1]) -
  4646. atomic_read(&disk->sync_io);
  4647. /* sync IO will cause sync_io to increase before the disk_stats
  4648. * as sync_io is counted when a request starts, and
  4649. * disk_stats is counted when it completes.
  4650. * So resync activity will cause curr_events to be smaller than
  4651. * when there was no such activity.
  4652. * non-sync IO will cause disk_stat to increase without
  4653. * increasing sync_io so curr_events will (eventually)
  4654. * be larger than it was before. Once it becomes
  4655. * substantially larger, the test below will cause
  4656. * the array to appear non-idle, and resync will slow
  4657. * down.
  4658. * If there is a lot of outstanding resync activity when
  4659. * we set last_event to curr_events, then all that activity
  4660. * completing might cause the array to appear non-idle
  4661. * and resync will be slowed down even though there might
  4662. * not have been non-resync activity. This will only
  4663. * happen once though. 'last_events' will soon reflect
  4664. * the state where there is little or no outstanding
  4665. * resync requests, and further resync activity will
  4666. * always make curr_events less than last_events.
  4667. *
  4668. */
  4669. if (curr_events - rdev->last_events > 4096) {
  4670. rdev->last_events = curr_events;
  4671. idle = 0;
  4672. }
  4673. }
  4674. return idle;
  4675. }
  4676. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  4677. {
  4678. /* another "blocks" (512byte) blocks have been synced */
  4679. atomic_sub(blocks, &mddev->recovery_active);
  4680. wake_up(&mddev->recovery_wait);
  4681. if (!ok) {
  4682. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4683. md_wakeup_thread(mddev->thread);
  4684. // stop recovery, signal do_sync ....
  4685. }
  4686. }
  4687. /* md_write_start(mddev, bi)
  4688. * If we need to update some array metadata (e.g. 'active' flag
  4689. * in superblock) before writing, schedule a superblock update
  4690. * and wait for it to complete.
  4691. */
  4692. void md_write_start(mddev_t *mddev, struct bio *bi)
  4693. {
  4694. if (bio_data_dir(bi) != WRITE)
  4695. return;
  4696. BUG_ON(mddev->ro == 1);
  4697. if (mddev->ro == 2) {
  4698. /* need to switch to read/write */
  4699. mddev->ro = 0;
  4700. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4701. md_wakeup_thread(mddev->thread);
  4702. }
  4703. atomic_inc(&mddev->writes_pending);
  4704. if (mddev->in_sync) {
  4705. spin_lock_irq(&mddev->write_lock);
  4706. if (mddev->in_sync) {
  4707. mddev->in_sync = 0;
  4708. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  4709. md_wakeup_thread(mddev->thread);
  4710. }
  4711. spin_unlock_irq(&mddev->write_lock);
  4712. }
  4713. wait_event(mddev->sb_wait, mddev->flags==0);
  4714. }
  4715. void md_write_end(mddev_t *mddev)
  4716. {
  4717. if (atomic_dec_and_test(&mddev->writes_pending)) {
  4718. if (mddev->safemode == 2)
  4719. md_wakeup_thread(mddev->thread);
  4720. else if (mddev->safemode_delay)
  4721. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  4722. }
  4723. }
  4724. /* md_allow_write(mddev)
  4725. * Calling this ensures that the array is marked 'active' so that writes
  4726. * may proceed without blocking. It is important to call this before
  4727. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  4728. * Must be called with mddev_lock held.
  4729. */
  4730. void md_allow_write(mddev_t *mddev)
  4731. {
  4732. if (!mddev->pers)
  4733. return;
  4734. if (mddev->ro)
  4735. return;
  4736. spin_lock_irq(&mddev->write_lock);
  4737. if (mddev->in_sync) {
  4738. mddev->in_sync = 0;
  4739. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  4740. if (mddev->safemode_delay &&
  4741. mddev->safemode == 0)
  4742. mddev->safemode = 1;
  4743. spin_unlock_irq(&mddev->write_lock);
  4744. md_update_sb(mddev, 0);
  4745. } else
  4746. spin_unlock_irq(&mddev->write_lock);
  4747. }
  4748. EXPORT_SYMBOL_GPL(md_allow_write);
  4749. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  4750. #define SYNC_MARKS 10
  4751. #define SYNC_MARK_STEP (3*HZ)
  4752. void md_do_sync(mddev_t *mddev)
  4753. {
  4754. mddev_t *mddev2;
  4755. unsigned int currspeed = 0,
  4756. window;
  4757. sector_t max_sectors,j, io_sectors;
  4758. unsigned long mark[SYNC_MARKS];
  4759. sector_t mark_cnt[SYNC_MARKS];
  4760. int last_mark,m;
  4761. struct list_head *tmp;
  4762. sector_t last_check;
  4763. int skipped = 0;
  4764. struct list_head *rtmp;
  4765. mdk_rdev_t *rdev;
  4766. char *desc;
  4767. /* just incase thread restarts... */
  4768. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  4769. return;
  4770. if (mddev->ro) /* never try to sync a read-only array */
  4771. return;
  4772. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4773. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  4774. desc = "data-check";
  4775. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  4776. desc = "requested-resync";
  4777. else
  4778. desc = "resync";
  4779. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  4780. desc = "reshape";
  4781. else
  4782. desc = "recovery";
  4783. /* we overload curr_resync somewhat here.
  4784. * 0 == not engaged in resync at all
  4785. * 2 == checking that there is no conflict with another sync
  4786. * 1 == like 2, but have yielded to allow conflicting resync to
  4787. * commense
  4788. * other == active in resync - this many blocks
  4789. *
  4790. * Before starting a resync we must have set curr_resync to
  4791. * 2, and then checked that every "conflicting" array has curr_resync
  4792. * less than ours. When we find one that is the same or higher
  4793. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  4794. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  4795. * This will mean we have to start checking from the beginning again.
  4796. *
  4797. */
  4798. do {
  4799. mddev->curr_resync = 2;
  4800. try_again:
  4801. if (kthread_should_stop()) {
  4802. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4803. goto skip;
  4804. }
  4805. for_each_mddev(mddev2, tmp) {
  4806. if (mddev2 == mddev)
  4807. continue;
  4808. if (mddev2->curr_resync &&
  4809. match_mddev_units(mddev,mddev2)) {
  4810. DEFINE_WAIT(wq);
  4811. if (mddev < mddev2 && mddev->curr_resync == 2) {
  4812. /* arbitrarily yield */
  4813. mddev->curr_resync = 1;
  4814. wake_up(&resync_wait);
  4815. }
  4816. if (mddev > mddev2 && mddev->curr_resync == 1)
  4817. /* no need to wait here, we can wait the next
  4818. * time 'round when curr_resync == 2
  4819. */
  4820. continue;
  4821. prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
  4822. if (!kthread_should_stop() &&
  4823. mddev2->curr_resync >= mddev->curr_resync) {
  4824. printk(KERN_INFO "md: delaying %s of %s"
  4825. " until %s has finished (they"
  4826. " share one or more physical units)\n",
  4827. desc, mdname(mddev), mdname(mddev2));
  4828. mddev_put(mddev2);
  4829. schedule();
  4830. finish_wait(&resync_wait, &wq);
  4831. goto try_again;
  4832. }
  4833. finish_wait(&resync_wait, &wq);
  4834. }
  4835. }
  4836. } while (mddev->curr_resync < 2);
  4837. j = 0;
  4838. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4839. /* resync follows the size requested by the personality,
  4840. * which defaults to physical size, but can be virtual size
  4841. */
  4842. max_sectors = mddev->resync_max_sectors;
  4843. mddev->resync_mismatches = 0;
  4844. /* we don't use the checkpoint if there's a bitmap */
  4845. if (!mddev->bitmap &&
  4846. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  4847. j = mddev->recovery_cp;
  4848. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  4849. max_sectors = mddev->size << 1;
  4850. else {
  4851. /* recovery follows the physical size of devices */
  4852. max_sectors = mddev->size << 1;
  4853. j = MaxSector;
  4854. rdev_for_each(rdev, rtmp, mddev)
  4855. if (rdev->raid_disk >= 0 &&
  4856. !test_bit(Faulty, &rdev->flags) &&
  4857. !test_bit(In_sync, &rdev->flags) &&
  4858. rdev->recovery_offset < j)
  4859. j = rdev->recovery_offset;
  4860. }
  4861. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  4862. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  4863. " %d KB/sec/disk.\n", speed_min(mddev));
  4864. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  4865. "(but not more than %d KB/sec) for %s.\n",
  4866. speed_max(mddev), desc);
  4867. is_mddev_idle(mddev); /* this also initializes IO event counters */
  4868. io_sectors = 0;
  4869. for (m = 0; m < SYNC_MARKS; m++) {
  4870. mark[m] = jiffies;
  4871. mark_cnt[m] = io_sectors;
  4872. }
  4873. last_mark = 0;
  4874. mddev->resync_mark = mark[last_mark];
  4875. mddev->resync_mark_cnt = mark_cnt[last_mark];
  4876. /*
  4877. * Tune reconstruction:
  4878. */
  4879. window = 32*(PAGE_SIZE/512);
  4880. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  4881. window/2,(unsigned long long) max_sectors/2);
  4882. atomic_set(&mddev->recovery_active, 0);
  4883. init_waitqueue_head(&mddev->recovery_wait);
  4884. last_check = 0;
  4885. if (j>2) {
  4886. printk(KERN_INFO
  4887. "md: resuming %s of %s from checkpoint.\n",
  4888. desc, mdname(mddev));
  4889. mddev->curr_resync = j;
  4890. }
  4891. while (j < max_sectors) {
  4892. sector_t sectors;
  4893. skipped = 0;
  4894. if (j >= mddev->resync_max) {
  4895. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  4896. wait_event(mddev->recovery_wait,
  4897. mddev->resync_max > j
  4898. || kthread_should_stop());
  4899. }
  4900. if (kthread_should_stop())
  4901. goto interrupted;
  4902. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  4903. currspeed < speed_min(mddev));
  4904. if (sectors == 0) {
  4905. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4906. goto out;
  4907. }
  4908. if (!skipped) { /* actual IO requested */
  4909. io_sectors += sectors;
  4910. atomic_add(sectors, &mddev->recovery_active);
  4911. }
  4912. j += sectors;
  4913. if (j>1) mddev->curr_resync = j;
  4914. mddev->curr_mark_cnt = io_sectors;
  4915. if (last_check == 0)
  4916. /* this is the earliers that rebuilt will be
  4917. * visible in /proc/mdstat
  4918. */
  4919. md_new_event(mddev);
  4920. if (last_check + window > io_sectors || j == max_sectors)
  4921. continue;
  4922. last_check = io_sectors;
  4923. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  4924. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  4925. break;
  4926. repeat:
  4927. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  4928. /* step marks */
  4929. int next = (last_mark+1) % SYNC_MARKS;
  4930. mddev->resync_mark = mark[next];
  4931. mddev->resync_mark_cnt = mark_cnt[next];
  4932. mark[next] = jiffies;
  4933. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  4934. last_mark = next;
  4935. }
  4936. if (kthread_should_stop())
  4937. goto interrupted;
  4938. /*
  4939. * this loop exits only if either when we are slower than
  4940. * the 'hard' speed limit, or the system was IO-idle for
  4941. * a jiffy.
  4942. * the system might be non-idle CPU-wise, but we only care
  4943. * about not overloading the IO subsystem. (things like an
  4944. * e2fsck being done on the RAID array should execute fast)
  4945. */
  4946. blk_unplug(mddev->queue);
  4947. cond_resched();
  4948. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  4949. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  4950. if (currspeed > speed_min(mddev)) {
  4951. if ((currspeed > speed_max(mddev)) ||
  4952. !is_mddev_idle(mddev)) {
  4953. msleep(500);
  4954. goto repeat;
  4955. }
  4956. }
  4957. }
  4958. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  4959. /*
  4960. * this also signals 'finished resyncing' to md_stop
  4961. */
  4962. out:
  4963. blk_unplug(mddev->queue);
  4964. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  4965. /* tell personality that we are finished */
  4966. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  4967. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  4968. !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  4969. mddev->curr_resync > 2) {
  4970. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4971. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  4972. if (mddev->curr_resync >= mddev->recovery_cp) {
  4973. printk(KERN_INFO
  4974. "md: checkpointing %s of %s.\n",
  4975. desc, mdname(mddev));
  4976. mddev->recovery_cp = mddev->curr_resync;
  4977. }
  4978. } else
  4979. mddev->recovery_cp = MaxSector;
  4980. } else {
  4981. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  4982. mddev->curr_resync = MaxSector;
  4983. rdev_for_each(rdev, rtmp, mddev)
  4984. if (rdev->raid_disk >= 0 &&
  4985. !test_bit(Faulty, &rdev->flags) &&
  4986. !test_bit(In_sync, &rdev->flags) &&
  4987. rdev->recovery_offset < mddev->curr_resync)
  4988. rdev->recovery_offset = mddev->curr_resync;
  4989. }
  4990. }
  4991. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  4992. skip:
  4993. mddev->curr_resync = 0;
  4994. mddev->resync_max = MaxSector;
  4995. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  4996. wake_up(&resync_wait);
  4997. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  4998. md_wakeup_thread(mddev->thread);
  4999. return;
  5000. interrupted:
  5001. /*
  5002. * got a signal, exit.
  5003. */
  5004. printk(KERN_INFO
  5005. "md: md_do_sync() got signal ... exiting\n");
  5006. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5007. goto out;
  5008. }
  5009. EXPORT_SYMBOL_GPL(md_do_sync);
  5010. static int remove_and_add_spares(mddev_t *mddev)
  5011. {
  5012. mdk_rdev_t *rdev;
  5013. struct list_head *rtmp;
  5014. int spares = 0;
  5015. rdev_for_each(rdev, rtmp, mddev)
  5016. if (rdev->raid_disk >= 0 &&
  5017. !mddev->external &&
  5018. (test_bit(Faulty, &rdev->flags) ||
  5019. ! test_bit(In_sync, &rdev->flags)) &&
  5020. atomic_read(&rdev->nr_pending)==0) {
  5021. if (mddev->pers->hot_remove_disk(
  5022. mddev, rdev->raid_disk)==0) {
  5023. char nm[20];
  5024. sprintf(nm,"rd%d", rdev->raid_disk);
  5025. sysfs_remove_link(&mddev->kobj, nm);
  5026. rdev->raid_disk = -1;
  5027. }
  5028. }
  5029. if (mddev->degraded) {
  5030. rdev_for_each(rdev, rtmp, mddev)
  5031. if (rdev->raid_disk < 0
  5032. && !test_bit(Faulty, &rdev->flags)) {
  5033. rdev->recovery_offset = 0;
  5034. if (mddev->pers->hot_add_disk(mddev,rdev)) {
  5035. char nm[20];
  5036. sprintf(nm, "rd%d", rdev->raid_disk);
  5037. if (sysfs_create_link(&mddev->kobj,
  5038. &rdev->kobj, nm))
  5039. printk(KERN_WARNING
  5040. "md: cannot register "
  5041. "%s for %s\n",
  5042. nm, mdname(mddev));
  5043. spares++;
  5044. md_new_event(mddev);
  5045. } else
  5046. break;
  5047. }
  5048. }
  5049. return spares;
  5050. }
  5051. /*
  5052. * This routine is regularly called by all per-raid-array threads to
  5053. * deal with generic issues like resync and super-block update.
  5054. * Raid personalities that don't have a thread (linear/raid0) do not
  5055. * need this as they never do any recovery or update the superblock.
  5056. *
  5057. * It does not do any resync itself, but rather "forks" off other threads
  5058. * to do that as needed.
  5059. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  5060. * "->recovery" and create a thread at ->sync_thread.
  5061. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  5062. * and wakeups up this thread which will reap the thread and finish up.
  5063. * This thread also removes any faulty devices (with nr_pending == 0).
  5064. *
  5065. * The overall approach is:
  5066. * 1/ if the superblock needs updating, update it.
  5067. * 2/ If a recovery thread is running, don't do anything else.
  5068. * 3/ If recovery has finished, clean up, possibly marking spares active.
  5069. * 4/ If there are any faulty devices, remove them.
  5070. * 5/ If array is degraded, try to add spares devices
  5071. * 6/ If array has spares or is not in-sync, start a resync thread.
  5072. */
  5073. void md_check_recovery(mddev_t *mddev)
  5074. {
  5075. mdk_rdev_t *rdev;
  5076. struct list_head *rtmp;
  5077. if (mddev->bitmap)
  5078. bitmap_daemon_work(mddev->bitmap);
  5079. if (mddev->ro)
  5080. return;
  5081. if (signal_pending(current)) {
  5082. if (mddev->pers->sync_request) {
  5083. printk(KERN_INFO "md: %s in immediate safe mode\n",
  5084. mdname(mddev));
  5085. mddev->safemode = 2;
  5086. }
  5087. flush_signals(current);
  5088. }
  5089. if ( ! (
  5090. (mddev->flags && !mddev->external) ||
  5091. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  5092. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  5093. (mddev->safemode == 1) ||
  5094. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  5095. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  5096. ))
  5097. return;
  5098. if (mddev_trylock(mddev)) {
  5099. int spares = 0;
  5100. spin_lock_irq(&mddev->write_lock);
  5101. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  5102. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  5103. mddev->in_sync = 1;
  5104. if (mddev->persistent)
  5105. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  5106. }
  5107. if (mddev->safemode == 1)
  5108. mddev->safemode = 0;
  5109. spin_unlock_irq(&mddev->write_lock);
  5110. if (mddev->flags)
  5111. md_update_sb(mddev, 0);
  5112. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  5113. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  5114. /* resync/recovery still happening */
  5115. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5116. goto unlock;
  5117. }
  5118. if (mddev->sync_thread) {
  5119. /* resync has finished, collect result */
  5120. md_unregister_thread(mddev->sync_thread);
  5121. mddev->sync_thread = NULL;
  5122. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  5123. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  5124. /* success...*/
  5125. /* activate any spares */
  5126. mddev->pers->spare_active(mddev);
  5127. }
  5128. md_update_sb(mddev, 1);
  5129. /* if array is no-longer degraded, then any saved_raid_disk
  5130. * information must be scrapped
  5131. */
  5132. if (!mddev->degraded)
  5133. rdev_for_each(rdev, rtmp, mddev)
  5134. rdev->saved_raid_disk = -1;
  5135. mddev->recovery = 0;
  5136. /* flag recovery needed just to double check */
  5137. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5138. md_new_event(mddev);
  5139. goto unlock;
  5140. }
  5141. /* Clear some bits that don't mean anything, but
  5142. * might be left set
  5143. */
  5144. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5145. clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
  5146. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5147. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  5148. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  5149. goto unlock;
  5150. /* no recovery is running.
  5151. * remove any failed drives, then
  5152. * add spares if possible.
  5153. * Spare are also removed and re-added, to allow
  5154. * the personality to fail the re-add.
  5155. */
  5156. if (mddev->reshape_position != MaxSector) {
  5157. if (mddev->pers->check_reshape(mddev) != 0)
  5158. /* Cannot proceed */
  5159. goto unlock;
  5160. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  5161. } else if ((spares = remove_and_add_spares(mddev))) {
  5162. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  5163. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  5164. } else if (mddev->recovery_cp < MaxSector) {
  5165. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  5166. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  5167. /* nothing to be done ... */
  5168. goto unlock;
  5169. if (mddev->pers->sync_request) {
  5170. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  5171. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  5172. /* We are adding a device or devices to an array
  5173. * which has the bitmap stored on all devices.
  5174. * So make sure all bitmap pages get written
  5175. */
  5176. bitmap_write_all(mddev->bitmap);
  5177. }
  5178. mddev->sync_thread = md_register_thread(md_do_sync,
  5179. mddev,
  5180. "%s_resync");
  5181. if (!mddev->sync_thread) {
  5182. printk(KERN_ERR "%s: could not start resync"
  5183. " thread...\n",
  5184. mdname(mddev));
  5185. /* leave the spares where they are, it shouldn't hurt */
  5186. mddev->recovery = 0;
  5187. } else
  5188. md_wakeup_thread(mddev->sync_thread);
  5189. md_new_event(mddev);
  5190. }
  5191. unlock:
  5192. mddev_unlock(mddev);
  5193. }
  5194. }
  5195. static int md_notify_reboot(struct notifier_block *this,
  5196. unsigned long code, void *x)
  5197. {
  5198. struct list_head *tmp;
  5199. mddev_t *mddev;
  5200. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  5201. printk(KERN_INFO "md: stopping all md devices.\n");
  5202. for_each_mddev(mddev, tmp)
  5203. if (mddev_trylock(mddev)) {
  5204. do_md_stop (mddev, 1);
  5205. mddev_unlock(mddev);
  5206. }
  5207. /*
  5208. * certain more exotic SCSI devices are known to be
  5209. * volatile wrt too early system reboots. While the
  5210. * right place to handle this issue is the given
  5211. * driver, we do want to have a safe RAID driver ...
  5212. */
  5213. mdelay(1000*1);
  5214. }
  5215. return NOTIFY_DONE;
  5216. }
  5217. static struct notifier_block md_notifier = {
  5218. .notifier_call = md_notify_reboot,
  5219. .next = NULL,
  5220. .priority = INT_MAX, /* before any real devices */
  5221. };
  5222. static void md_geninit(void)
  5223. {
  5224. struct proc_dir_entry *p;
  5225. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  5226. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  5227. if (p)
  5228. p->proc_fops = &md_seq_fops;
  5229. }
  5230. static int __init md_init(void)
  5231. {
  5232. if (register_blkdev(MAJOR_NR, "md"))
  5233. return -1;
  5234. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  5235. unregister_blkdev(MAJOR_NR, "md");
  5236. return -1;
  5237. }
  5238. blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
  5239. md_probe, NULL, NULL);
  5240. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  5241. md_probe, NULL, NULL);
  5242. register_reboot_notifier(&md_notifier);
  5243. raid_table_header = register_sysctl_table(raid_root_table);
  5244. md_geninit();
  5245. return (0);
  5246. }
  5247. #ifndef MODULE
  5248. /*
  5249. * Searches all registered partitions for autorun RAID arrays
  5250. * at boot time.
  5251. */
  5252. static LIST_HEAD(all_detected_devices);
  5253. struct detected_devices_node {
  5254. struct list_head list;
  5255. dev_t dev;
  5256. };
  5257. void md_autodetect_dev(dev_t dev)
  5258. {
  5259. struct detected_devices_node *node_detected_dev;
  5260. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  5261. if (node_detected_dev) {
  5262. node_detected_dev->dev = dev;
  5263. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  5264. } else {
  5265. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  5266. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  5267. }
  5268. }
  5269. static void autostart_arrays(int part)
  5270. {
  5271. mdk_rdev_t *rdev;
  5272. struct detected_devices_node *node_detected_dev;
  5273. dev_t dev;
  5274. int i_scanned, i_passed;
  5275. i_scanned = 0;
  5276. i_passed = 0;
  5277. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  5278. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  5279. i_scanned++;
  5280. node_detected_dev = list_entry(all_detected_devices.next,
  5281. struct detected_devices_node, list);
  5282. list_del(&node_detected_dev->list);
  5283. dev = node_detected_dev->dev;
  5284. kfree(node_detected_dev);
  5285. rdev = md_import_device(dev,0, 90);
  5286. if (IS_ERR(rdev))
  5287. continue;
  5288. if (test_bit(Faulty, &rdev->flags)) {
  5289. MD_BUG();
  5290. continue;
  5291. }
  5292. list_add(&rdev->same_set, &pending_raid_disks);
  5293. i_passed++;
  5294. }
  5295. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  5296. i_scanned, i_passed);
  5297. autorun_devices(part);
  5298. }
  5299. #endif /* !MODULE */
  5300. static __exit void md_exit(void)
  5301. {
  5302. mddev_t *mddev;
  5303. struct list_head *tmp;
  5304. blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
  5305. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  5306. unregister_blkdev(MAJOR_NR,"md");
  5307. unregister_blkdev(mdp_major, "mdp");
  5308. unregister_reboot_notifier(&md_notifier);
  5309. unregister_sysctl_table(raid_table_header);
  5310. remove_proc_entry("mdstat", NULL);
  5311. for_each_mddev(mddev, tmp) {
  5312. struct gendisk *disk = mddev->gendisk;
  5313. if (!disk)
  5314. continue;
  5315. export_array(mddev);
  5316. del_gendisk(disk);
  5317. put_disk(disk);
  5318. mddev->gendisk = NULL;
  5319. mddev_put(mddev);
  5320. }
  5321. }
  5322. subsys_initcall(md_init);
  5323. module_exit(md_exit)
  5324. static int get_ro(char *buffer, struct kernel_param *kp)
  5325. {
  5326. return sprintf(buffer, "%d", start_readonly);
  5327. }
  5328. static int set_ro(const char *val, struct kernel_param *kp)
  5329. {
  5330. char *e;
  5331. int num = simple_strtoul(val, &e, 10);
  5332. if (*val && (*e == '\0' || *e == '\n')) {
  5333. start_readonly = num;
  5334. return 0;
  5335. }
  5336. return -EINVAL;
  5337. }
  5338. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  5339. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  5340. EXPORT_SYMBOL(register_md_personality);
  5341. EXPORT_SYMBOL(unregister_md_personality);
  5342. EXPORT_SYMBOL(md_error);
  5343. EXPORT_SYMBOL(md_done_sync);
  5344. EXPORT_SYMBOL(md_write_start);
  5345. EXPORT_SYMBOL(md_write_end);
  5346. EXPORT_SYMBOL(md_register_thread);
  5347. EXPORT_SYMBOL(md_unregister_thread);
  5348. EXPORT_SYMBOL(md_wakeup_thread);
  5349. EXPORT_SYMBOL(md_check_recovery);
  5350. MODULE_LICENSE("GPL");
  5351. MODULE_ALIAS("md");
  5352. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);