vm86_32.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840
  1. /*
  2. * Copyright (C) 1994 Linus Torvalds
  3. *
  4. * 29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
  5. * stack - Manfred Spraul <manfred@colorfullife.com>
  6. *
  7. * 22 mar 2002 - Manfred detected the stackfaults, but didn't handle
  8. * them correctly. Now the emulation will be in a
  9. * consistent state after stackfaults - Kasper Dupont
  10. * <kasperd@daimi.au.dk>
  11. *
  12. * 22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
  13. * <kasperd@daimi.au.dk>
  14. *
  15. * ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
  16. * caused by Kasper Dupont's changes - Stas Sergeev
  17. *
  18. * 4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
  19. * Kasper Dupont <kasperd@daimi.au.dk>
  20. *
  21. * 9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
  22. * Kasper Dupont <kasperd@daimi.au.dk>
  23. *
  24. * 9 apr 2002 - Changed stack access macros to jump to a label
  25. * instead of returning to userspace. This simplifies
  26. * do_int, and is needed by handle_vm6_fault. Kasper
  27. * Dupont <kasperd@daimi.au.dk>
  28. *
  29. */
  30. #include <linux/capability.h>
  31. #include <linux/errno.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/sched.h>
  34. #include <linux/kernel.h>
  35. #include <linux/signal.h>
  36. #include <linux/string.h>
  37. #include <linux/mm.h>
  38. #include <linux/smp.h>
  39. #include <linux/highmem.h>
  40. #include <linux/ptrace.h>
  41. #include <linux/audit.h>
  42. #include <linux/stddef.h>
  43. #include <asm/uaccess.h>
  44. #include <asm/io.h>
  45. #include <asm/tlbflush.h>
  46. #include <asm/irq.h>
  47. /*
  48. * Known problems:
  49. *
  50. * Interrupt handling is not guaranteed:
  51. * - a real x86 will disable all interrupts for one instruction
  52. * after a "mov ss,xx" to make stack handling atomic even without
  53. * the 'lss' instruction. We can't guarantee this in v86 mode,
  54. * as the next instruction might result in a page fault or similar.
  55. * - a real x86 will have interrupts disabled for one instruction
  56. * past the 'sti' that enables them. We don't bother with all the
  57. * details yet.
  58. *
  59. * Let's hope these problems do not actually matter for anything.
  60. */
  61. #define KVM86 ((struct kernel_vm86_struct *)regs)
  62. #define VMPI KVM86->vm86plus
  63. /*
  64. * 8- and 16-bit register defines..
  65. */
  66. #define AL(regs) (((unsigned char *)&((regs)->pt.ax))[0])
  67. #define AH(regs) (((unsigned char *)&((regs)->pt.ax))[1])
  68. #define IP(regs) (*(unsigned short *)&((regs)->pt.ip))
  69. #define SP(regs) (*(unsigned short *)&((regs)->pt.sp))
  70. /*
  71. * virtual flags (16 and 32-bit versions)
  72. */
  73. #define VFLAGS (*(unsigned short *)&(current->thread.v86flags))
  74. #define VEFLAGS (current->thread.v86flags)
  75. #define set_flags(X,new,mask) \
  76. ((X) = ((X) & ~(mask)) | ((new) & (mask)))
  77. #define SAFE_MASK (0xDD5)
  78. #define RETURN_MASK (0xDFF)
  79. /* convert kernel_vm86_regs to vm86_regs */
  80. static int copy_vm86_regs_to_user(struct vm86_regs __user *user,
  81. const struct kernel_vm86_regs *regs)
  82. {
  83. int ret = 0;
  84. /* kernel_vm86_regs is missing gs, so copy everything up to
  85. (but not including) orig_eax, and then rest including orig_eax. */
  86. ret += copy_to_user(user, regs, offsetof(struct kernel_vm86_regs, pt.orig_ax));
  87. ret += copy_to_user(&user->orig_eax, &regs->pt.orig_ax,
  88. sizeof(struct kernel_vm86_regs) -
  89. offsetof(struct kernel_vm86_regs, pt.orig_ax));
  90. return ret;
  91. }
  92. /* convert vm86_regs to kernel_vm86_regs */
  93. static int copy_vm86_regs_from_user(struct kernel_vm86_regs *regs,
  94. const struct vm86_regs __user *user,
  95. unsigned extra)
  96. {
  97. int ret = 0;
  98. /* copy ax-fs inclusive */
  99. ret += copy_from_user(regs, user, offsetof(struct kernel_vm86_regs, pt.orig_ax));
  100. /* copy orig_ax-__gsh+extra */
  101. ret += copy_from_user(&regs->pt.orig_ax, &user->orig_eax,
  102. sizeof(struct kernel_vm86_regs) -
  103. offsetof(struct kernel_vm86_regs, pt.orig_ax) +
  104. extra);
  105. return ret;
  106. }
  107. struct pt_regs * save_v86_state(struct kernel_vm86_regs * regs)
  108. {
  109. struct tss_struct *tss;
  110. struct pt_regs *ret;
  111. unsigned long tmp;
  112. /*
  113. * This gets called from entry.S with interrupts disabled, but
  114. * from process context. Enable interrupts here, before trying
  115. * to access user space.
  116. */
  117. local_irq_enable();
  118. if (!current->thread.vm86_info) {
  119. printk("no vm86_info: BAD\n");
  120. do_exit(SIGSEGV);
  121. }
  122. set_flags(regs->pt.flags, VEFLAGS, VIF_MASK | current->thread.v86mask);
  123. tmp = copy_vm86_regs_to_user(&current->thread.vm86_info->regs,regs);
  124. tmp += put_user(current->thread.screen_bitmap,&current->thread.vm86_info->screen_bitmap);
  125. if (tmp) {
  126. printk("vm86: could not access userspace vm86_info\n");
  127. do_exit(SIGSEGV);
  128. }
  129. tss = &per_cpu(init_tss, get_cpu());
  130. current->thread.sp0 = current->thread.saved_sp0;
  131. current->thread.sysenter_cs = __KERNEL_CS;
  132. load_sp0(tss, &current->thread);
  133. current->thread.saved_sp0 = 0;
  134. put_cpu();
  135. ret = KVM86->regs32;
  136. ret->fs = current->thread.saved_fs;
  137. loadsegment(gs, current->thread.saved_gs);
  138. return ret;
  139. }
  140. static void mark_screen_rdonly(struct mm_struct *mm)
  141. {
  142. pgd_t *pgd;
  143. pud_t *pud;
  144. pmd_t *pmd;
  145. pte_t *pte;
  146. spinlock_t *ptl;
  147. int i;
  148. pgd = pgd_offset(mm, 0xA0000);
  149. if (pgd_none_or_clear_bad(pgd))
  150. goto out;
  151. pud = pud_offset(pgd, 0xA0000);
  152. if (pud_none_or_clear_bad(pud))
  153. goto out;
  154. pmd = pmd_offset(pud, 0xA0000);
  155. if (pmd_none_or_clear_bad(pmd))
  156. goto out;
  157. pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
  158. for (i = 0; i < 32; i++) {
  159. if (pte_present(*pte))
  160. set_pte(pte, pte_wrprotect(*pte));
  161. pte++;
  162. }
  163. pte_unmap_unlock(pte, ptl);
  164. out:
  165. flush_tlb();
  166. }
  167. static int do_vm86_irq_handling(int subfunction, int irqnumber);
  168. static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk);
  169. asmlinkage int sys_vm86old(struct pt_regs regs)
  170. {
  171. struct vm86_struct __user *v86 = (struct vm86_struct __user *)regs.bx;
  172. struct kernel_vm86_struct info; /* declare this _on top_,
  173. * this avoids wasting of stack space.
  174. * This remains on the stack until we
  175. * return to 32 bit user space.
  176. */
  177. struct task_struct *tsk;
  178. int tmp, ret = -EPERM;
  179. tsk = current;
  180. if (tsk->thread.saved_sp0)
  181. goto out;
  182. tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
  183. offsetof(struct kernel_vm86_struct, vm86plus) -
  184. sizeof(info.regs));
  185. ret = -EFAULT;
  186. if (tmp)
  187. goto out;
  188. memset(&info.vm86plus, 0, (int)&info.regs32 - (int)&info.vm86plus);
  189. info.regs32 = &regs;
  190. tsk->thread.vm86_info = v86;
  191. do_sys_vm86(&info, tsk);
  192. ret = 0; /* we never return here */
  193. out:
  194. return ret;
  195. }
  196. asmlinkage int sys_vm86(struct pt_regs regs)
  197. {
  198. struct kernel_vm86_struct info; /* declare this _on top_,
  199. * this avoids wasting of stack space.
  200. * This remains on the stack until we
  201. * return to 32 bit user space.
  202. */
  203. struct task_struct *tsk;
  204. int tmp, ret;
  205. struct vm86plus_struct __user *v86;
  206. tsk = current;
  207. switch (regs.bx) {
  208. case VM86_REQUEST_IRQ:
  209. case VM86_FREE_IRQ:
  210. case VM86_GET_IRQ_BITS:
  211. case VM86_GET_AND_RESET_IRQ:
  212. ret = do_vm86_irq_handling(regs.bx, (int)regs.cx);
  213. goto out;
  214. case VM86_PLUS_INSTALL_CHECK:
  215. /* NOTE: on old vm86 stuff this will return the error
  216. from access_ok(), because the subfunction is
  217. interpreted as (invalid) address to vm86_struct.
  218. So the installation check works.
  219. */
  220. ret = 0;
  221. goto out;
  222. }
  223. /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
  224. ret = -EPERM;
  225. if (tsk->thread.saved_sp0)
  226. goto out;
  227. v86 = (struct vm86plus_struct __user *)regs.cx;
  228. tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
  229. offsetof(struct kernel_vm86_struct, regs32) -
  230. sizeof(info.regs));
  231. ret = -EFAULT;
  232. if (tmp)
  233. goto out;
  234. info.regs32 = &regs;
  235. info.vm86plus.is_vm86pus = 1;
  236. tsk->thread.vm86_info = (struct vm86_struct __user *)v86;
  237. do_sys_vm86(&info, tsk);
  238. ret = 0; /* we never return here */
  239. out:
  240. return ret;
  241. }
  242. static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk)
  243. {
  244. struct tss_struct *tss;
  245. /*
  246. * make sure the vm86() system call doesn't try to do anything silly
  247. */
  248. info->regs.pt.ds = 0;
  249. info->regs.pt.es = 0;
  250. info->regs.pt.fs = 0;
  251. /* we are clearing gs later just before "jmp resume_userspace",
  252. * because it is not saved/restored.
  253. */
  254. /*
  255. * The flags register is also special: we cannot trust that the user
  256. * has set it up safely, so this makes sure interrupt etc flags are
  257. * inherited from protected mode.
  258. */
  259. VEFLAGS = info->regs.pt.flags;
  260. info->regs.pt.flags &= SAFE_MASK;
  261. info->regs.pt.flags |= info->regs32->flags & ~SAFE_MASK;
  262. info->regs.pt.flags |= VM_MASK;
  263. switch (info->cpu_type) {
  264. case CPU_286:
  265. tsk->thread.v86mask = 0;
  266. break;
  267. case CPU_386:
  268. tsk->thread.v86mask = NT_MASK | IOPL_MASK;
  269. break;
  270. case CPU_486:
  271. tsk->thread.v86mask = AC_MASK | NT_MASK | IOPL_MASK;
  272. break;
  273. default:
  274. tsk->thread.v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
  275. break;
  276. }
  277. /*
  278. * Save old state, set default return value (%ax) to 0
  279. */
  280. info->regs32->ax = 0;
  281. tsk->thread.saved_sp0 = tsk->thread.sp0;
  282. tsk->thread.saved_fs = info->regs32->fs;
  283. savesegment(gs, tsk->thread.saved_gs);
  284. tss = &per_cpu(init_tss, get_cpu());
  285. tsk->thread.sp0 = (unsigned long) &info->VM86_TSS_ESP0;
  286. if (cpu_has_sep)
  287. tsk->thread.sysenter_cs = 0;
  288. load_sp0(tss, &tsk->thread);
  289. put_cpu();
  290. tsk->thread.screen_bitmap = info->screen_bitmap;
  291. if (info->flags & VM86_SCREEN_BITMAP)
  292. mark_screen_rdonly(tsk->mm);
  293. /*call audit_syscall_exit since we do not exit via the normal paths */
  294. if (unlikely(current->audit_context))
  295. audit_syscall_exit(AUDITSC_RESULT(0), 0);
  296. __asm__ __volatile__(
  297. "movl %0,%%esp\n\t"
  298. "movl %1,%%ebp\n\t"
  299. "mov %2, %%gs\n\t"
  300. "jmp resume_userspace"
  301. : /* no outputs */
  302. :"r" (&info->regs), "r" (task_thread_info(tsk)), "r" (0));
  303. /* we never return here */
  304. }
  305. static inline void return_to_32bit(struct kernel_vm86_regs * regs16, int retval)
  306. {
  307. struct pt_regs * regs32;
  308. regs32 = save_v86_state(regs16);
  309. regs32->ax = retval;
  310. __asm__ __volatile__("movl %0,%%esp\n\t"
  311. "movl %1,%%ebp\n\t"
  312. "jmp resume_userspace"
  313. : : "r" (regs32), "r" (current_thread_info()));
  314. }
  315. static inline void set_IF(struct kernel_vm86_regs * regs)
  316. {
  317. VEFLAGS |= VIF_MASK;
  318. if (VEFLAGS & VIP_MASK)
  319. return_to_32bit(regs, VM86_STI);
  320. }
  321. static inline void clear_IF(struct kernel_vm86_regs * regs)
  322. {
  323. VEFLAGS &= ~VIF_MASK;
  324. }
  325. static inline void clear_TF(struct kernel_vm86_regs * regs)
  326. {
  327. regs->pt.flags &= ~TF_MASK;
  328. }
  329. static inline void clear_AC(struct kernel_vm86_regs * regs)
  330. {
  331. regs->pt.flags &= ~AC_MASK;
  332. }
  333. /* It is correct to call set_IF(regs) from the set_vflags_*
  334. * functions. However someone forgot to call clear_IF(regs)
  335. * in the opposite case.
  336. * After the command sequence CLI PUSHF STI POPF you should
  337. * end up with interrupts disabled, but you ended up with
  338. * interrupts enabled.
  339. * ( I was testing my own changes, but the only bug I
  340. * could find was in a function I had not changed. )
  341. * [KD]
  342. */
  343. static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs * regs)
  344. {
  345. set_flags(VEFLAGS, flags, current->thread.v86mask);
  346. set_flags(regs->pt.flags, flags, SAFE_MASK);
  347. if (flags & IF_MASK)
  348. set_IF(regs);
  349. else
  350. clear_IF(regs);
  351. }
  352. static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs * regs)
  353. {
  354. set_flags(VFLAGS, flags, current->thread.v86mask);
  355. set_flags(regs->pt.flags, flags, SAFE_MASK);
  356. if (flags & IF_MASK)
  357. set_IF(regs);
  358. else
  359. clear_IF(regs);
  360. }
  361. static inline unsigned long get_vflags(struct kernel_vm86_regs * regs)
  362. {
  363. unsigned long flags = regs->pt.flags & RETURN_MASK;
  364. if (VEFLAGS & VIF_MASK)
  365. flags |= IF_MASK;
  366. flags |= IOPL_MASK;
  367. return flags | (VEFLAGS & current->thread.v86mask);
  368. }
  369. static inline int is_revectored(int nr, struct revectored_struct * bitmap)
  370. {
  371. __asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
  372. :"=r" (nr)
  373. :"m" (*bitmap),"r" (nr));
  374. return nr;
  375. }
  376. #define val_byte(val, n) (((__u8 *)&val)[n])
  377. #define pushb(base, ptr, val, err_label) \
  378. do { \
  379. __u8 __val = val; \
  380. ptr--; \
  381. if (put_user(__val, base + ptr) < 0) \
  382. goto err_label; \
  383. } while(0)
  384. #define pushw(base, ptr, val, err_label) \
  385. do { \
  386. __u16 __val = val; \
  387. ptr--; \
  388. if (put_user(val_byte(__val, 1), base + ptr) < 0) \
  389. goto err_label; \
  390. ptr--; \
  391. if (put_user(val_byte(__val, 0), base + ptr) < 0) \
  392. goto err_label; \
  393. } while(0)
  394. #define pushl(base, ptr, val, err_label) \
  395. do { \
  396. __u32 __val = val; \
  397. ptr--; \
  398. if (put_user(val_byte(__val, 3), base + ptr) < 0) \
  399. goto err_label; \
  400. ptr--; \
  401. if (put_user(val_byte(__val, 2), base + ptr) < 0) \
  402. goto err_label; \
  403. ptr--; \
  404. if (put_user(val_byte(__val, 1), base + ptr) < 0) \
  405. goto err_label; \
  406. ptr--; \
  407. if (put_user(val_byte(__val, 0), base + ptr) < 0) \
  408. goto err_label; \
  409. } while(0)
  410. #define popb(base, ptr, err_label) \
  411. ({ \
  412. __u8 __res; \
  413. if (get_user(__res, base + ptr) < 0) \
  414. goto err_label; \
  415. ptr++; \
  416. __res; \
  417. })
  418. #define popw(base, ptr, err_label) \
  419. ({ \
  420. __u16 __res; \
  421. if (get_user(val_byte(__res, 0), base + ptr) < 0) \
  422. goto err_label; \
  423. ptr++; \
  424. if (get_user(val_byte(__res, 1), base + ptr) < 0) \
  425. goto err_label; \
  426. ptr++; \
  427. __res; \
  428. })
  429. #define popl(base, ptr, err_label) \
  430. ({ \
  431. __u32 __res; \
  432. if (get_user(val_byte(__res, 0), base + ptr) < 0) \
  433. goto err_label; \
  434. ptr++; \
  435. if (get_user(val_byte(__res, 1), base + ptr) < 0) \
  436. goto err_label; \
  437. ptr++; \
  438. if (get_user(val_byte(__res, 2), base + ptr) < 0) \
  439. goto err_label; \
  440. ptr++; \
  441. if (get_user(val_byte(__res, 3), base + ptr) < 0) \
  442. goto err_label; \
  443. ptr++; \
  444. __res; \
  445. })
  446. /* There are so many possible reasons for this function to return
  447. * VM86_INTx, so adding another doesn't bother me. We can expect
  448. * userspace programs to be able to handle it. (Getting a problem
  449. * in userspace is always better than an Oops anyway.) [KD]
  450. */
  451. static void do_int(struct kernel_vm86_regs *regs, int i,
  452. unsigned char __user * ssp, unsigned short sp)
  453. {
  454. unsigned long __user *intr_ptr;
  455. unsigned long segoffs;
  456. if (regs->pt.cs == BIOSSEG)
  457. goto cannot_handle;
  458. if (is_revectored(i, &KVM86->int_revectored))
  459. goto cannot_handle;
  460. if (i==0x21 && is_revectored(AH(regs),&KVM86->int21_revectored))
  461. goto cannot_handle;
  462. intr_ptr = (unsigned long __user *) (i << 2);
  463. if (get_user(segoffs, intr_ptr))
  464. goto cannot_handle;
  465. if ((segoffs >> 16) == BIOSSEG)
  466. goto cannot_handle;
  467. pushw(ssp, sp, get_vflags(regs), cannot_handle);
  468. pushw(ssp, sp, regs->pt.cs, cannot_handle);
  469. pushw(ssp, sp, IP(regs), cannot_handle);
  470. regs->pt.cs = segoffs >> 16;
  471. SP(regs) -= 6;
  472. IP(regs) = segoffs & 0xffff;
  473. clear_TF(regs);
  474. clear_IF(regs);
  475. clear_AC(regs);
  476. return;
  477. cannot_handle:
  478. return_to_32bit(regs, VM86_INTx + (i << 8));
  479. }
  480. int handle_vm86_trap(struct kernel_vm86_regs * regs, long error_code, int trapno)
  481. {
  482. if (VMPI.is_vm86pus) {
  483. if ( (trapno==3) || (trapno==1) )
  484. return_to_32bit(regs, VM86_TRAP + (trapno << 8));
  485. do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
  486. return 0;
  487. }
  488. if (trapno !=1)
  489. return 1; /* we let this handle by the calling routine */
  490. if (current->ptrace & PT_PTRACED) {
  491. unsigned long flags;
  492. spin_lock_irqsave(&current->sighand->siglock, flags);
  493. sigdelset(&current->blocked, SIGTRAP);
  494. recalc_sigpending();
  495. spin_unlock_irqrestore(&current->sighand->siglock, flags);
  496. }
  497. send_sig(SIGTRAP, current, 1);
  498. current->thread.trap_no = trapno;
  499. current->thread.error_code = error_code;
  500. return 0;
  501. }
  502. void handle_vm86_fault(struct kernel_vm86_regs * regs, long error_code)
  503. {
  504. unsigned char opcode;
  505. unsigned char __user *csp;
  506. unsigned char __user *ssp;
  507. unsigned short ip, sp, orig_flags;
  508. int data32, pref_done;
  509. #define CHECK_IF_IN_TRAP \
  510. if (VMPI.vm86dbg_active && VMPI.vm86dbg_TFpendig) \
  511. newflags |= TF_MASK
  512. #define VM86_FAULT_RETURN do { \
  513. if (VMPI.force_return_for_pic && (VEFLAGS & (IF_MASK | VIF_MASK))) \
  514. return_to_32bit(regs, VM86_PICRETURN); \
  515. if (orig_flags & TF_MASK) \
  516. handle_vm86_trap(regs, 0, 1); \
  517. return; } while (0)
  518. orig_flags = *(unsigned short *)&regs->pt.flags;
  519. csp = (unsigned char __user *) (regs->pt.cs << 4);
  520. ssp = (unsigned char __user *) (regs->pt.ss << 4);
  521. sp = SP(regs);
  522. ip = IP(regs);
  523. data32 = 0;
  524. pref_done = 0;
  525. do {
  526. switch (opcode = popb(csp, ip, simulate_sigsegv)) {
  527. case 0x66: /* 32-bit data */ data32=1; break;
  528. case 0x67: /* 32-bit address */ break;
  529. case 0x2e: /* CS */ break;
  530. case 0x3e: /* DS */ break;
  531. case 0x26: /* ES */ break;
  532. case 0x36: /* SS */ break;
  533. case 0x65: /* GS */ break;
  534. case 0x64: /* FS */ break;
  535. case 0xf2: /* repnz */ break;
  536. case 0xf3: /* rep */ break;
  537. default: pref_done = 1;
  538. }
  539. } while (!pref_done);
  540. switch (opcode) {
  541. /* pushf */
  542. case 0x9c:
  543. if (data32) {
  544. pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
  545. SP(regs) -= 4;
  546. } else {
  547. pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
  548. SP(regs) -= 2;
  549. }
  550. IP(regs) = ip;
  551. VM86_FAULT_RETURN;
  552. /* popf */
  553. case 0x9d:
  554. {
  555. unsigned long newflags;
  556. if (data32) {
  557. newflags=popl(ssp, sp, simulate_sigsegv);
  558. SP(regs) += 4;
  559. } else {
  560. newflags = popw(ssp, sp, simulate_sigsegv);
  561. SP(regs) += 2;
  562. }
  563. IP(regs) = ip;
  564. CHECK_IF_IN_TRAP;
  565. if (data32) {
  566. set_vflags_long(newflags, regs);
  567. } else {
  568. set_vflags_short(newflags, regs);
  569. }
  570. VM86_FAULT_RETURN;
  571. }
  572. /* int xx */
  573. case 0xcd: {
  574. int intno=popb(csp, ip, simulate_sigsegv);
  575. IP(regs) = ip;
  576. if (VMPI.vm86dbg_active) {
  577. if ( (1 << (intno &7)) & VMPI.vm86dbg_intxxtab[intno >> 3] )
  578. return_to_32bit(regs, VM86_INTx + (intno << 8));
  579. }
  580. do_int(regs, intno, ssp, sp);
  581. return;
  582. }
  583. /* iret */
  584. case 0xcf:
  585. {
  586. unsigned long newip;
  587. unsigned long newcs;
  588. unsigned long newflags;
  589. if (data32) {
  590. newip=popl(ssp, sp, simulate_sigsegv);
  591. newcs=popl(ssp, sp, simulate_sigsegv);
  592. newflags=popl(ssp, sp, simulate_sigsegv);
  593. SP(regs) += 12;
  594. } else {
  595. newip = popw(ssp, sp, simulate_sigsegv);
  596. newcs = popw(ssp, sp, simulate_sigsegv);
  597. newflags = popw(ssp, sp, simulate_sigsegv);
  598. SP(regs) += 6;
  599. }
  600. IP(regs) = newip;
  601. regs->pt.cs = newcs;
  602. CHECK_IF_IN_TRAP;
  603. if (data32) {
  604. set_vflags_long(newflags, regs);
  605. } else {
  606. set_vflags_short(newflags, regs);
  607. }
  608. VM86_FAULT_RETURN;
  609. }
  610. /* cli */
  611. case 0xfa:
  612. IP(regs) = ip;
  613. clear_IF(regs);
  614. VM86_FAULT_RETURN;
  615. /* sti */
  616. /*
  617. * Damn. This is incorrect: the 'sti' instruction should actually
  618. * enable interrupts after the /next/ instruction. Not good.
  619. *
  620. * Probably needs some horsing around with the TF flag. Aiee..
  621. */
  622. case 0xfb:
  623. IP(regs) = ip;
  624. set_IF(regs);
  625. VM86_FAULT_RETURN;
  626. default:
  627. return_to_32bit(regs, VM86_UNKNOWN);
  628. }
  629. return;
  630. simulate_sigsegv:
  631. /* FIXME: After a long discussion with Stas we finally
  632. * agreed, that this is wrong. Here we should
  633. * really send a SIGSEGV to the user program.
  634. * But how do we create the correct context? We
  635. * are inside a general protection fault handler
  636. * and has just returned from a page fault handler.
  637. * The correct context for the signal handler
  638. * should be a mixture of the two, but how do we
  639. * get the information? [KD]
  640. */
  641. return_to_32bit(regs, VM86_UNKNOWN);
  642. }
  643. /* ---------------- vm86 special IRQ passing stuff ----------------- */
  644. #define VM86_IRQNAME "vm86irq"
  645. static struct vm86_irqs {
  646. struct task_struct *tsk;
  647. int sig;
  648. } vm86_irqs[16];
  649. static DEFINE_SPINLOCK(irqbits_lock);
  650. static int irqbits;
  651. #define ALLOWED_SIGS ( 1 /* 0 = don't send a signal */ \
  652. | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO) | (1 << SIGURG) \
  653. | (1 << SIGUNUSED) )
  654. static irqreturn_t irq_handler(int intno, void *dev_id)
  655. {
  656. int irq_bit;
  657. unsigned long flags;
  658. spin_lock_irqsave(&irqbits_lock, flags);
  659. irq_bit = 1 << intno;
  660. if ((irqbits & irq_bit) || ! vm86_irqs[intno].tsk)
  661. goto out;
  662. irqbits |= irq_bit;
  663. if (vm86_irqs[intno].sig)
  664. send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
  665. /*
  666. * IRQ will be re-enabled when user asks for the irq (whether
  667. * polling or as a result of the signal)
  668. */
  669. disable_irq_nosync(intno);
  670. spin_unlock_irqrestore(&irqbits_lock, flags);
  671. return IRQ_HANDLED;
  672. out:
  673. spin_unlock_irqrestore(&irqbits_lock, flags);
  674. return IRQ_NONE;
  675. }
  676. static inline void free_vm86_irq(int irqnumber)
  677. {
  678. unsigned long flags;
  679. free_irq(irqnumber, NULL);
  680. vm86_irqs[irqnumber].tsk = NULL;
  681. spin_lock_irqsave(&irqbits_lock, flags);
  682. irqbits &= ~(1 << irqnumber);
  683. spin_unlock_irqrestore(&irqbits_lock, flags);
  684. }
  685. void release_vm86_irqs(struct task_struct *task)
  686. {
  687. int i;
  688. for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
  689. if (vm86_irqs[i].tsk == task)
  690. free_vm86_irq(i);
  691. }
  692. static inline int get_and_reset_irq(int irqnumber)
  693. {
  694. int bit;
  695. unsigned long flags;
  696. int ret = 0;
  697. if (invalid_vm86_irq(irqnumber)) return 0;
  698. if (vm86_irqs[irqnumber].tsk != current) return 0;
  699. spin_lock_irqsave(&irqbits_lock, flags);
  700. bit = irqbits & (1 << irqnumber);
  701. irqbits &= ~bit;
  702. if (bit) {
  703. enable_irq(irqnumber);
  704. ret = 1;
  705. }
  706. spin_unlock_irqrestore(&irqbits_lock, flags);
  707. return ret;
  708. }
  709. static int do_vm86_irq_handling(int subfunction, int irqnumber)
  710. {
  711. int ret;
  712. switch (subfunction) {
  713. case VM86_GET_AND_RESET_IRQ: {
  714. return get_and_reset_irq(irqnumber);
  715. }
  716. case VM86_GET_IRQ_BITS: {
  717. return irqbits;
  718. }
  719. case VM86_REQUEST_IRQ: {
  720. int sig = irqnumber >> 8;
  721. int irq = irqnumber & 255;
  722. if (!capable(CAP_SYS_ADMIN)) return -EPERM;
  723. if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
  724. if (invalid_vm86_irq(irq)) return -EPERM;
  725. if (vm86_irqs[irq].tsk) return -EPERM;
  726. ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
  727. if (ret) return ret;
  728. vm86_irqs[irq].sig = sig;
  729. vm86_irqs[irq].tsk = current;
  730. return irq;
  731. }
  732. case VM86_FREE_IRQ: {
  733. if (invalid_vm86_irq(irqnumber)) return -EPERM;
  734. if (!vm86_irqs[irqnumber].tsk) return 0;
  735. if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
  736. free_vm86_irq(irqnumber);
  737. return 0;
  738. }
  739. }
  740. return -EINVAL;
  741. }