setup_64.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186
  1. /*
  2. * Copyright (C) 1995 Linus Torvalds
  3. */
  4. /*
  5. * This file handles the architecture-dependent parts of initialization
  6. */
  7. #include <linux/errno.h>
  8. #include <linux/sched.h>
  9. #include <linux/kernel.h>
  10. #include <linux/mm.h>
  11. #include <linux/stddef.h>
  12. #include <linux/unistd.h>
  13. #include <linux/ptrace.h>
  14. #include <linux/slab.h>
  15. #include <linux/user.h>
  16. #include <linux/screen_info.h>
  17. #include <linux/ioport.h>
  18. #include <linux/delay.h>
  19. #include <linux/init.h>
  20. #include <linux/initrd.h>
  21. #include <linux/highmem.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/module.h>
  24. #include <asm/processor.h>
  25. #include <linux/console.h>
  26. #include <linux/seq_file.h>
  27. #include <linux/crash_dump.h>
  28. #include <linux/root_dev.h>
  29. #include <linux/pci.h>
  30. #include <linux/efi.h>
  31. #include <linux/acpi.h>
  32. #include <linux/kallsyms.h>
  33. #include <linux/edd.h>
  34. #include <linux/mmzone.h>
  35. #include <linux/kexec.h>
  36. #include <linux/cpufreq.h>
  37. #include <linux/dmi.h>
  38. #include <linux/dma-mapping.h>
  39. #include <linux/ctype.h>
  40. #include <linux/uaccess.h>
  41. #include <linux/init_ohci1394_dma.h>
  42. #include <asm/mtrr.h>
  43. #include <asm/uaccess.h>
  44. #include <asm/system.h>
  45. #include <asm/vsyscall.h>
  46. #include <asm/io.h>
  47. #include <asm/smp.h>
  48. #include <asm/msr.h>
  49. #include <asm/desc.h>
  50. #include <video/edid.h>
  51. #include <asm/e820.h>
  52. #include <asm/dma.h>
  53. #include <asm/gart.h>
  54. #include <asm/mpspec.h>
  55. #include <asm/mmu_context.h>
  56. #include <asm/proto.h>
  57. #include <asm/setup.h>
  58. #include <asm/mach_apic.h>
  59. #include <asm/numa.h>
  60. #include <asm/sections.h>
  61. #include <asm/dmi.h>
  62. #include <asm/cacheflush.h>
  63. #include <asm/mce.h>
  64. #include <asm/ds.h>
  65. #include <asm/topology.h>
  66. #ifdef CONFIG_PARAVIRT
  67. #include <asm/paravirt.h>
  68. #else
  69. #define ARCH_SETUP
  70. #endif
  71. /*
  72. * Machine setup..
  73. */
  74. struct cpuinfo_x86 boot_cpu_data __read_mostly;
  75. EXPORT_SYMBOL(boot_cpu_data);
  76. __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
  77. unsigned long mmu_cr4_features;
  78. /* Boot loader ID as an integer, for the benefit of proc_dointvec */
  79. int bootloader_type;
  80. unsigned long saved_video_mode;
  81. int force_mwait __cpuinitdata;
  82. /*
  83. * Early DMI memory
  84. */
  85. int dmi_alloc_index;
  86. char dmi_alloc_data[DMI_MAX_DATA];
  87. /*
  88. * Setup options
  89. */
  90. struct screen_info screen_info;
  91. EXPORT_SYMBOL(screen_info);
  92. struct sys_desc_table_struct {
  93. unsigned short length;
  94. unsigned char table[0];
  95. };
  96. struct edid_info edid_info;
  97. EXPORT_SYMBOL_GPL(edid_info);
  98. extern int root_mountflags;
  99. char __initdata command_line[COMMAND_LINE_SIZE];
  100. struct resource standard_io_resources[] = {
  101. { .name = "dma1", .start = 0x00, .end = 0x1f,
  102. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  103. { .name = "pic1", .start = 0x20, .end = 0x21,
  104. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  105. { .name = "timer0", .start = 0x40, .end = 0x43,
  106. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  107. { .name = "timer1", .start = 0x50, .end = 0x53,
  108. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  109. { .name = "keyboard", .start = 0x60, .end = 0x6f,
  110. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  111. { .name = "dma page reg", .start = 0x80, .end = 0x8f,
  112. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  113. { .name = "pic2", .start = 0xa0, .end = 0xa1,
  114. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  115. { .name = "dma2", .start = 0xc0, .end = 0xdf,
  116. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  117. { .name = "fpu", .start = 0xf0, .end = 0xff,
  118. .flags = IORESOURCE_BUSY | IORESOURCE_IO }
  119. };
  120. #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
  121. static struct resource data_resource = {
  122. .name = "Kernel data",
  123. .start = 0,
  124. .end = 0,
  125. .flags = IORESOURCE_RAM,
  126. };
  127. static struct resource code_resource = {
  128. .name = "Kernel code",
  129. .start = 0,
  130. .end = 0,
  131. .flags = IORESOURCE_RAM,
  132. };
  133. static struct resource bss_resource = {
  134. .name = "Kernel bss",
  135. .start = 0,
  136. .end = 0,
  137. .flags = IORESOURCE_RAM,
  138. };
  139. static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c);
  140. #ifdef CONFIG_PROC_VMCORE
  141. /* elfcorehdr= specifies the location of elf core header
  142. * stored by the crashed kernel. This option will be passed
  143. * by kexec loader to the capture kernel.
  144. */
  145. static int __init setup_elfcorehdr(char *arg)
  146. {
  147. char *end;
  148. if (!arg)
  149. return -EINVAL;
  150. elfcorehdr_addr = memparse(arg, &end);
  151. return end > arg ? 0 : -EINVAL;
  152. }
  153. early_param("elfcorehdr", setup_elfcorehdr);
  154. #endif
  155. #ifndef CONFIG_NUMA
  156. static void __init
  157. contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  158. {
  159. unsigned long bootmap_size, bootmap;
  160. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  161. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
  162. PAGE_SIZE);
  163. if (bootmap == -1L)
  164. panic("Cannot find bootmem map of size %ld\n", bootmap_size);
  165. bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
  166. e820_register_active_regions(0, start_pfn, end_pfn);
  167. free_bootmem_with_active_regions(0, end_pfn);
  168. reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
  169. }
  170. #endif
  171. #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
  172. struct edd edd;
  173. #ifdef CONFIG_EDD_MODULE
  174. EXPORT_SYMBOL(edd);
  175. #endif
  176. /**
  177. * copy_edd() - Copy the BIOS EDD information
  178. * from boot_params into a safe place.
  179. *
  180. */
  181. static inline void copy_edd(void)
  182. {
  183. memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
  184. sizeof(edd.mbr_signature));
  185. memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
  186. edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
  187. edd.edd_info_nr = boot_params.eddbuf_entries;
  188. }
  189. #else
  190. static inline void copy_edd(void)
  191. {
  192. }
  193. #endif
  194. #ifdef CONFIG_KEXEC
  195. static void __init reserve_crashkernel(void)
  196. {
  197. unsigned long long total_mem;
  198. unsigned long long crash_size, crash_base;
  199. int ret;
  200. total_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
  201. ret = parse_crashkernel(boot_command_line, total_mem,
  202. &crash_size, &crash_base);
  203. if (ret == 0 && crash_size) {
  204. if (crash_base <= 0) {
  205. printk(KERN_INFO "crashkernel reservation failed - "
  206. "you have to specify a base address\n");
  207. return;
  208. }
  209. if (reserve_bootmem(crash_base, crash_size,
  210. BOOTMEM_EXCLUSIVE) < 0) {
  211. printk(KERN_INFO "crashkernel reservation failed - "
  212. "memory is in use\n");
  213. return;
  214. }
  215. printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
  216. "for crashkernel (System RAM: %ldMB)\n",
  217. (unsigned long)(crash_size >> 20),
  218. (unsigned long)(crash_base >> 20),
  219. (unsigned long)(total_mem >> 20));
  220. crashk_res.start = crash_base;
  221. crashk_res.end = crash_base + crash_size - 1;
  222. }
  223. }
  224. #else
  225. static inline void __init reserve_crashkernel(void)
  226. {}
  227. #endif
  228. /* Overridden in paravirt.c if CONFIG_PARAVIRT */
  229. void __attribute__((weak)) __init memory_setup(void)
  230. {
  231. machine_specific_memory_setup();
  232. }
  233. /*
  234. * setup_arch - architecture-specific boot-time initializations
  235. *
  236. * Note: On x86_64, fixmaps are ready for use even before this is called.
  237. */
  238. void __init setup_arch(char **cmdline_p)
  239. {
  240. unsigned i;
  241. printk(KERN_INFO "Command line: %s\n", boot_command_line);
  242. ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
  243. screen_info = boot_params.screen_info;
  244. edid_info = boot_params.edid_info;
  245. saved_video_mode = boot_params.hdr.vid_mode;
  246. bootloader_type = boot_params.hdr.type_of_loader;
  247. #ifdef CONFIG_BLK_DEV_RAM
  248. rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
  249. rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
  250. rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
  251. #endif
  252. #ifdef CONFIG_EFI
  253. if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
  254. "EL64", 4))
  255. efi_enabled = 1;
  256. #endif
  257. ARCH_SETUP
  258. memory_setup();
  259. copy_edd();
  260. if (!boot_params.hdr.root_flags)
  261. root_mountflags &= ~MS_RDONLY;
  262. init_mm.start_code = (unsigned long) &_text;
  263. init_mm.end_code = (unsigned long) &_etext;
  264. init_mm.end_data = (unsigned long) &_edata;
  265. init_mm.brk = (unsigned long) &_end;
  266. code_resource.start = virt_to_phys(&_text);
  267. code_resource.end = virt_to_phys(&_etext)-1;
  268. data_resource.start = virt_to_phys(&_etext);
  269. data_resource.end = virt_to_phys(&_edata)-1;
  270. bss_resource.start = virt_to_phys(&__bss_start);
  271. bss_resource.end = virt_to_phys(&__bss_stop)-1;
  272. early_identify_cpu(&boot_cpu_data);
  273. strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
  274. *cmdline_p = command_line;
  275. parse_early_param();
  276. #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
  277. if (init_ohci1394_dma_early)
  278. init_ohci1394_dma_on_all_controllers();
  279. #endif
  280. finish_e820_parsing();
  281. early_gart_iommu_check();
  282. e820_register_active_regions(0, 0, -1UL);
  283. /*
  284. * partially used pages are not usable - thus
  285. * we are rounding upwards:
  286. */
  287. end_pfn = e820_end_of_ram();
  288. /* update e820 for memory not covered by WB MTRRs */
  289. mtrr_bp_init();
  290. if (mtrr_trim_uncached_memory(end_pfn)) {
  291. e820_register_active_regions(0, 0, -1UL);
  292. end_pfn = e820_end_of_ram();
  293. }
  294. num_physpages = end_pfn;
  295. check_efer();
  296. init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
  297. if (efi_enabled)
  298. efi_init();
  299. dmi_scan_machine();
  300. io_delay_init();
  301. #ifdef CONFIG_SMP
  302. /* setup to use the early static init tables during kernel startup */
  303. x86_cpu_to_apicid_early_ptr = (void *)x86_cpu_to_apicid_init;
  304. x86_bios_cpu_apicid_early_ptr = (void *)x86_bios_cpu_apicid_init;
  305. #ifdef CONFIG_NUMA
  306. x86_cpu_to_node_map_early_ptr = (void *)x86_cpu_to_node_map_init;
  307. #endif
  308. #endif
  309. #ifdef CONFIG_ACPI
  310. /*
  311. * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
  312. * Call this early for SRAT node setup.
  313. */
  314. acpi_boot_table_init();
  315. #endif
  316. /* How many end-of-memory variables you have, grandma! */
  317. max_low_pfn = end_pfn;
  318. max_pfn = end_pfn;
  319. high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
  320. /* Remove active ranges so rediscovery with NUMA-awareness happens */
  321. remove_all_active_ranges();
  322. #ifdef CONFIG_ACPI_NUMA
  323. /*
  324. * Parse SRAT to discover nodes.
  325. */
  326. acpi_numa_init();
  327. #endif
  328. #ifdef CONFIG_NUMA
  329. numa_initmem_init(0, end_pfn);
  330. #else
  331. contig_initmem_init(0, end_pfn);
  332. #endif
  333. early_res_to_bootmem();
  334. #ifdef CONFIG_ACPI_SLEEP
  335. /*
  336. * Reserve low memory region for sleep support.
  337. */
  338. acpi_reserve_bootmem();
  339. #endif
  340. if (efi_enabled)
  341. efi_reserve_bootmem();
  342. /*
  343. * Find and reserve possible boot-time SMP configuration:
  344. */
  345. find_smp_config();
  346. #ifdef CONFIG_BLK_DEV_INITRD
  347. if (boot_params.hdr.type_of_loader && boot_params.hdr.ramdisk_image) {
  348. unsigned long ramdisk_image = boot_params.hdr.ramdisk_image;
  349. unsigned long ramdisk_size = boot_params.hdr.ramdisk_size;
  350. unsigned long ramdisk_end = ramdisk_image + ramdisk_size;
  351. unsigned long end_of_mem = end_pfn << PAGE_SHIFT;
  352. if (ramdisk_end <= end_of_mem) {
  353. reserve_bootmem_generic(ramdisk_image, ramdisk_size);
  354. initrd_start = ramdisk_image + PAGE_OFFSET;
  355. initrd_end = initrd_start+ramdisk_size;
  356. } else {
  357. /* Assumes everything on node 0 */
  358. free_bootmem(ramdisk_image, ramdisk_size);
  359. printk(KERN_ERR "initrd extends beyond end of memory "
  360. "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
  361. ramdisk_end, end_of_mem);
  362. initrd_start = 0;
  363. }
  364. }
  365. #endif
  366. reserve_crashkernel();
  367. paging_init();
  368. map_vsyscall();
  369. early_quirks();
  370. #ifdef CONFIG_ACPI
  371. /*
  372. * Read APIC and some other early information from ACPI tables.
  373. */
  374. acpi_boot_init();
  375. #endif
  376. init_cpu_to_node();
  377. /*
  378. * get boot-time SMP configuration:
  379. */
  380. if (smp_found_config)
  381. get_smp_config();
  382. init_apic_mappings();
  383. ioapic_init_mappings();
  384. /*
  385. * We trust e820 completely. No explicit ROM probing in memory.
  386. */
  387. e820_reserve_resources(&code_resource, &data_resource, &bss_resource);
  388. e820_mark_nosave_regions();
  389. /* request I/O space for devices used on all i[345]86 PCs */
  390. for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
  391. request_resource(&ioport_resource, &standard_io_resources[i]);
  392. e820_setup_gap();
  393. #ifdef CONFIG_VT
  394. #if defined(CONFIG_VGA_CONSOLE)
  395. if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
  396. conswitchp = &vga_con;
  397. #elif defined(CONFIG_DUMMY_CONSOLE)
  398. conswitchp = &dummy_con;
  399. #endif
  400. #endif
  401. }
  402. static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
  403. {
  404. unsigned int *v;
  405. if (c->extended_cpuid_level < 0x80000004)
  406. return 0;
  407. v = (unsigned int *) c->x86_model_id;
  408. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  409. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  410. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  411. c->x86_model_id[48] = 0;
  412. return 1;
  413. }
  414. static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  415. {
  416. unsigned int n, dummy, eax, ebx, ecx, edx;
  417. n = c->extended_cpuid_level;
  418. if (n >= 0x80000005) {
  419. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  420. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), "
  421. "D cache %dK (%d bytes/line)\n",
  422. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  423. c->x86_cache_size = (ecx>>24) + (edx>>24);
  424. /* On K8 L1 TLB is inclusive, so don't count it */
  425. c->x86_tlbsize = 0;
  426. }
  427. if (n >= 0x80000006) {
  428. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  429. ecx = cpuid_ecx(0x80000006);
  430. c->x86_cache_size = ecx >> 16;
  431. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  432. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  433. c->x86_cache_size, ecx & 0xFF);
  434. }
  435. if (n >= 0x80000008) {
  436. cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
  437. c->x86_virt_bits = (eax >> 8) & 0xff;
  438. c->x86_phys_bits = eax & 0xff;
  439. }
  440. }
  441. #ifdef CONFIG_NUMA
  442. static int __cpuinit nearby_node(int apicid)
  443. {
  444. int i, node;
  445. for (i = apicid - 1; i >= 0; i--) {
  446. node = apicid_to_node[i];
  447. if (node != NUMA_NO_NODE && node_online(node))
  448. return node;
  449. }
  450. for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
  451. node = apicid_to_node[i];
  452. if (node != NUMA_NO_NODE && node_online(node))
  453. return node;
  454. }
  455. return first_node(node_online_map); /* Shouldn't happen */
  456. }
  457. #endif
  458. /*
  459. * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
  460. * Assumes number of cores is a power of two.
  461. */
  462. static void __cpuinit amd_detect_cmp(struct cpuinfo_x86 *c)
  463. {
  464. #ifdef CONFIG_SMP
  465. unsigned bits;
  466. #ifdef CONFIG_NUMA
  467. int cpu = smp_processor_id();
  468. int node = 0;
  469. unsigned apicid = hard_smp_processor_id();
  470. #endif
  471. bits = c->x86_coreid_bits;
  472. /* Low order bits define the core id (index of core in socket) */
  473. c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
  474. /* Convert the APIC ID into the socket ID */
  475. c->phys_proc_id = phys_pkg_id(bits);
  476. #ifdef CONFIG_NUMA
  477. node = c->phys_proc_id;
  478. if (apicid_to_node[apicid] != NUMA_NO_NODE)
  479. node = apicid_to_node[apicid];
  480. if (!node_online(node)) {
  481. /* Two possibilities here:
  482. - The CPU is missing memory and no node was created.
  483. In that case try picking one from a nearby CPU
  484. - The APIC IDs differ from the HyperTransport node IDs
  485. which the K8 northbridge parsing fills in.
  486. Assume they are all increased by a constant offset,
  487. but in the same order as the HT nodeids.
  488. If that doesn't result in a usable node fall back to the
  489. path for the previous case. */
  490. int ht_nodeid = apicid - (cpu_data(0).phys_proc_id << bits);
  491. if (ht_nodeid >= 0 &&
  492. apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
  493. node = apicid_to_node[ht_nodeid];
  494. /* Pick a nearby node */
  495. if (!node_online(node))
  496. node = nearby_node(apicid);
  497. }
  498. numa_set_node(cpu, node);
  499. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  500. #endif
  501. #endif
  502. }
  503. static void __cpuinit early_init_amd_mc(struct cpuinfo_x86 *c)
  504. {
  505. #ifdef CONFIG_SMP
  506. unsigned bits, ecx;
  507. /* Multi core CPU? */
  508. if (c->extended_cpuid_level < 0x80000008)
  509. return;
  510. ecx = cpuid_ecx(0x80000008);
  511. c->x86_max_cores = (ecx & 0xff) + 1;
  512. /* CPU telling us the core id bits shift? */
  513. bits = (ecx >> 12) & 0xF;
  514. /* Otherwise recompute */
  515. if (bits == 0) {
  516. while ((1 << bits) < c->x86_max_cores)
  517. bits++;
  518. }
  519. c->x86_coreid_bits = bits;
  520. #endif
  521. }
  522. #define ENABLE_C1E_MASK 0x18000000
  523. #define CPUID_PROCESSOR_SIGNATURE 1
  524. #define CPUID_XFAM 0x0ff00000
  525. #define CPUID_XFAM_K8 0x00000000
  526. #define CPUID_XFAM_10H 0x00100000
  527. #define CPUID_XFAM_11H 0x00200000
  528. #define CPUID_XMOD 0x000f0000
  529. #define CPUID_XMOD_REV_F 0x00040000
  530. /* AMD systems with C1E don't have a working lAPIC timer. Check for that. */
  531. static __cpuinit int amd_apic_timer_broken(void)
  532. {
  533. u32 lo, hi, eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
  534. switch (eax & CPUID_XFAM) {
  535. case CPUID_XFAM_K8:
  536. if ((eax & CPUID_XMOD) < CPUID_XMOD_REV_F)
  537. break;
  538. case CPUID_XFAM_10H:
  539. case CPUID_XFAM_11H:
  540. rdmsr(MSR_K8_ENABLE_C1E, lo, hi);
  541. if (lo & ENABLE_C1E_MASK)
  542. return 1;
  543. break;
  544. default:
  545. /* err on the side of caution */
  546. return 1;
  547. }
  548. return 0;
  549. }
  550. static void __cpuinit early_init_amd(struct cpuinfo_x86 *c)
  551. {
  552. early_init_amd_mc(c);
  553. /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
  554. if (c->x86_power & (1<<8))
  555. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  556. }
  557. static void __cpuinit init_amd(struct cpuinfo_x86 *c)
  558. {
  559. unsigned level;
  560. #ifdef CONFIG_SMP
  561. unsigned long value;
  562. /*
  563. * Disable TLB flush filter by setting HWCR.FFDIS on K8
  564. * bit 6 of msr C001_0015
  565. *
  566. * Errata 63 for SH-B3 steppings
  567. * Errata 122 for all steppings (F+ have it disabled by default)
  568. */
  569. if (c->x86 == 15) {
  570. rdmsrl(MSR_K8_HWCR, value);
  571. value |= 1 << 6;
  572. wrmsrl(MSR_K8_HWCR, value);
  573. }
  574. #endif
  575. /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
  576. 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
  577. clear_bit(0*32+31, (unsigned long *)&c->x86_capability);
  578. /* On C+ stepping K8 rep microcode works well for copy/memset */
  579. level = cpuid_eax(1);
  580. if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) ||
  581. level >= 0x0f58))
  582. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  583. if (c->x86 == 0x10 || c->x86 == 0x11)
  584. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  585. /* Enable workaround for FXSAVE leak */
  586. if (c->x86 >= 6)
  587. set_cpu_cap(c, X86_FEATURE_FXSAVE_LEAK);
  588. level = get_model_name(c);
  589. if (!level) {
  590. switch (c->x86) {
  591. case 15:
  592. /* Should distinguish Models here, but this is only
  593. a fallback anyways. */
  594. strcpy(c->x86_model_id, "Hammer");
  595. break;
  596. }
  597. }
  598. display_cacheinfo(c);
  599. /* Multi core CPU? */
  600. if (c->extended_cpuid_level >= 0x80000008)
  601. amd_detect_cmp(c);
  602. if (c->extended_cpuid_level >= 0x80000006 &&
  603. (cpuid_edx(0x80000006) & 0xf000))
  604. num_cache_leaves = 4;
  605. else
  606. num_cache_leaves = 3;
  607. if (c->x86 == 0xf || c->x86 == 0x10 || c->x86 == 0x11)
  608. set_cpu_cap(c, X86_FEATURE_K8);
  609. /* MFENCE stops RDTSC speculation */
  610. set_cpu_cap(c, X86_FEATURE_MFENCE_RDTSC);
  611. if (amd_apic_timer_broken())
  612. disable_apic_timer = 1;
  613. }
  614. void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  615. {
  616. #ifdef CONFIG_SMP
  617. u32 eax, ebx, ecx, edx;
  618. int index_msb, core_bits;
  619. cpuid(1, &eax, &ebx, &ecx, &edx);
  620. if (!cpu_has(c, X86_FEATURE_HT))
  621. return;
  622. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  623. goto out;
  624. smp_num_siblings = (ebx & 0xff0000) >> 16;
  625. if (smp_num_siblings == 1) {
  626. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  627. } else if (smp_num_siblings > 1) {
  628. if (smp_num_siblings > NR_CPUS) {
  629. printk(KERN_WARNING "CPU: Unsupported number of "
  630. "siblings %d", smp_num_siblings);
  631. smp_num_siblings = 1;
  632. return;
  633. }
  634. index_msb = get_count_order(smp_num_siblings);
  635. c->phys_proc_id = phys_pkg_id(index_msb);
  636. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  637. index_msb = get_count_order(smp_num_siblings);
  638. core_bits = get_count_order(c->x86_max_cores);
  639. c->cpu_core_id = phys_pkg_id(index_msb) &
  640. ((1 << core_bits) - 1);
  641. }
  642. out:
  643. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  644. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  645. c->phys_proc_id);
  646. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  647. c->cpu_core_id);
  648. }
  649. #endif
  650. }
  651. /*
  652. * find out the number of processor cores on the die
  653. */
  654. static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
  655. {
  656. unsigned int eax, t;
  657. if (c->cpuid_level < 4)
  658. return 1;
  659. cpuid_count(4, 0, &eax, &t, &t, &t);
  660. if (eax & 0x1f)
  661. return ((eax >> 26) + 1);
  662. else
  663. return 1;
  664. }
  665. static void __cpuinit srat_detect_node(void)
  666. {
  667. #ifdef CONFIG_NUMA
  668. unsigned node;
  669. int cpu = smp_processor_id();
  670. int apicid = hard_smp_processor_id();
  671. /* Don't do the funky fallback heuristics the AMD version employs
  672. for now. */
  673. node = apicid_to_node[apicid];
  674. if (node == NUMA_NO_NODE)
  675. node = first_node(node_online_map);
  676. numa_set_node(cpu, node);
  677. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  678. #endif
  679. }
  680. static void __cpuinit early_init_intel(struct cpuinfo_x86 *c)
  681. {
  682. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  683. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  684. set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
  685. }
  686. static void __cpuinit init_intel(struct cpuinfo_x86 *c)
  687. {
  688. /* Cache sizes */
  689. unsigned n;
  690. init_intel_cacheinfo(c);
  691. if (c->cpuid_level > 9) {
  692. unsigned eax = cpuid_eax(10);
  693. /* Check for version and the number of counters */
  694. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  695. set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
  696. }
  697. if (cpu_has_ds) {
  698. unsigned int l1, l2;
  699. rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
  700. if (!(l1 & (1<<11)))
  701. set_cpu_cap(c, X86_FEATURE_BTS);
  702. if (!(l1 & (1<<12)))
  703. set_cpu_cap(c, X86_FEATURE_PEBS);
  704. }
  705. if (cpu_has_bts)
  706. ds_init_intel(c);
  707. n = c->extended_cpuid_level;
  708. if (n >= 0x80000008) {
  709. unsigned eax = cpuid_eax(0x80000008);
  710. c->x86_virt_bits = (eax >> 8) & 0xff;
  711. c->x86_phys_bits = eax & 0xff;
  712. /* CPUID workaround for Intel 0F34 CPU */
  713. if (c->x86_vendor == X86_VENDOR_INTEL &&
  714. c->x86 == 0xF && c->x86_model == 0x3 &&
  715. c->x86_mask == 0x4)
  716. c->x86_phys_bits = 36;
  717. }
  718. if (c->x86 == 15)
  719. c->x86_cache_alignment = c->x86_clflush_size * 2;
  720. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  721. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  722. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  723. if (c->x86 == 6)
  724. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  725. set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
  726. c->x86_max_cores = intel_num_cpu_cores(c);
  727. srat_detect_node();
  728. }
  729. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  730. {
  731. char *v = c->x86_vendor_id;
  732. if (!strcmp(v, "AuthenticAMD"))
  733. c->x86_vendor = X86_VENDOR_AMD;
  734. else if (!strcmp(v, "GenuineIntel"))
  735. c->x86_vendor = X86_VENDOR_INTEL;
  736. else
  737. c->x86_vendor = X86_VENDOR_UNKNOWN;
  738. }
  739. /* Do some early cpuid on the boot CPU to get some parameter that are
  740. needed before check_bugs. Everything advanced is in identify_cpu
  741. below. */
  742. static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
  743. {
  744. u32 tfms, xlvl;
  745. c->loops_per_jiffy = loops_per_jiffy;
  746. c->x86_cache_size = -1;
  747. c->x86_vendor = X86_VENDOR_UNKNOWN;
  748. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  749. c->x86_vendor_id[0] = '\0'; /* Unset */
  750. c->x86_model_id[0] = '\0'; /* Unset */
  751. c->x86_clflush_size = 64;
  752. c->x86_cache_alignment = c->x86_clflush_size;
  753. c->x86_max_cores = 1;
  754. c->x86_coreid_bits = 0;
  755. c->extended_cpuid_level = 0;
  756. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  757. /* Get vendor name */
  758. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  759. (unsigned int *)&c->x86_vendor_id[0],
  760. (unsigned int *)&c->x86_vendor_id[8],
  761. (unsigned int *)&c->x86_vendor_id[4]);
  762. get_cpu_vendor(c);
  763. /* Initialize the standard set of capabilities */
  764. /* Note that the vendor-specific code below might override */
  765. /* Intel-defined flags: level 0x00000001 */
  766. if (c->cpuid_level >= 0x00000001) {
  767. __u32 misc;
  768. cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
  769. &c->x86_capability[0]);
  770. c->x86 = (tfms >> 8) & 0xf;
  771. c->x86_model = (tfms >> 4) & 0xf;
  772. c->x86_mask = tfms & 0xf;
  773. if (c->x86 == 0xf)
  774. c->x86 += (tfms >> 20) & 0xff;
  775. if (c->x86 >= 0x6)
  776. c->x86_model += ((tfms >> 16) & 0xF) << 4;
  777. if (c->x86_capability[0] & (1<<19))
  778. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  779. } else {
  780. /* Have CPUID level 0 only - unheard of */
  781. c->x86 = 4;
  782. }
  783. #ifdef CONFIG_SMP
  784. c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
  785. #endif
  786. /* AMD-defined flags: level 0x80000001 */
  787. xlvl = cpuid_eax(0x80000000);
  788. c->extended_cpuid_level = xlvl;
  789. if ((xlvl & 0xffff0000) == 0x80000000) {
  790. if (xlvl >= 0x80000001) {
  791. c->x86_capability[1] = cpuid_edx(0x80000001);
  792. c->x86_capability[6] = cpuid_ecx(0x80000001);
  793. }
  794. if (xlvl >= 0x80000004)
  795. get_model_name(c); /* Default name */
  796. }
  797. /* Transmeta-defined flags: level 0x80860001 */
  798. xlvl = cpuid_eax(0x80860000);
  799. if ((xlvl & 0xffff0000) == 0x80860000) {
  800. /* Don't set x86_cpuid_level here for now to not confuse. */
  801. if (xlvl >= 0x80860001)
  802. c->x86_capability[2] = cpuid_edx(0x80860001);
  803. }
  804. c->extended_cpuid_level = cpuid_eax(0x80000000);
  805. if (c->extended_cpuid_level >= 0x80000007)
  806. c->x86_power = cpuid_edx(0x80000007);
  807. switch (c->x86_vendor) {
  808. case X86_VENDOR_AMD:
  809. early_init_amd(c);
  810. break;
  811. case X86_VENDOR_INTEL:
  812. early_init_intel(c);
  813. break;
  814. }
  815. }
  816. /*
  817. * This does the hard work of actually picking apart the CPU stuff...
  818. */
  819. void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  820. {
  821. int i;
  822. early_identify_cpu(c);
  823. init_scattered_cpuid_features(c);
  824. c->apicid = phys_pkg_id(0);
  825. /*
  826. * Vendor-specific initialization. In this section we
  827. * canonicalize the feature flags, meaning if there are
  828. * features a certain CPU supports which CPUID doesn't
  829. * tell us, CPUID claiming incorrect flags, or other bugs,
  830. * we handle them here.
  831. *
  832. * At the end of this section, c->x86_capability better
  833. * indicate the features this CPU genuinely supports!
  834. */
  835. switch (c->x86_vendor) {
  836. case X86_VENDOR_AMD:
  837. init_amd(c);
  838. break;
  839. case X86_VENDOR_INTEL:
  840. init_intel(c);
  841. break;
  842. case X86_VENDOR_UNKNOWN:
  843. default:
  844. display_cacheinfo(c);
  845. break;
  846. }
  847. detect_ht(c);
  848. /*
  849. * On SMP, boot_cpu_data holds the common feature set between
  850. * all CPUs; so make sure that we indicate which features are
  851. * common between the CPUs. The first time this routine gets
  852. * executed, c == &boot_cpu_data.
  853. */
  854. if (c != &boot_cpu_data) {
  855. /* AND the already accumulated flags with these */
  856. for (i = 0; i < NCAPINTS; i++)
  857. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  858. }
  859. /* Clear all flags overriden by options */
  860. for (i = 0; i < NCAPINTS; i++)
  861. c->x86_capability[i] ^= cleared_cpu_caps[i];
  862. #ifdef CONFIG_X86_MCE
  863. mcheck_init(c);
  864. #endif
  865. select_idle_routine(c);
  866. if (c != &boot_cpu_data)
  867. mtrr_ap_init();
  868. #ifdef CONFIG_NUMA
  869. numa_add_cpu(smp_processor_id());
  870. #endif
  871. }
  872. static __init int setup_noclflush(char *arg)
  873. {
  874. setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
  875. return 1;
  876. }
  877. __setup("noclflush", setup_noclflush);
  878. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  879. {
  880. if (c->x86_model_id[0])
  881. printk(KERN_CONT "%s", c->x86_model_id);
  882. if (c->x86_mask || c->cpuid_level >= 0)
  883. printk(KERN_CONT " stepping %02x\n", c->x86_mask);
  884. else
  885. printk(KERN_CONT "\n");
  886. }
  887. static __init int setup_disablecpuid(char *arg)
  888. {
  889. int bit;
  890. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  891. setup_clear_cpu_cap(bit);
  892. else
  893. return 0;
  894. return 1;
  895. }
  896. __setup("clearcpuid=", setup_disablecpuid);
  897. /*
  898. * Get CPU information for use by the procfs.
  899. */
  900. static int show_cpuinfo(struct seq_file *m, void *v)
  901. {
  902. struct cpuinfo_x86 *c = v;
  903. int cpu = 0, i;
  904. #ifdef CONFIG_SMP
  905. cpu = c->cpu_index;
  906. #endif
  907. seq_printf(m, "processor\t: %u\n"
  908. "vendor_id\t: %s\n"
  909. "cpu family\t: %d\n"
  910. "model\t\t: %d\n"
  911. "model name\t: %s\n",
  912. (unsigned)cpu,
  913. c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
  914. c->x86,
  915. (int)c->x86_model,
  916. c->x86_model_id[0] ? c->x86_model_id : "unknown");
  917. if (c->x86_mask || c->cpuid_level >= 0)
  918. seq_printf(m, "stepping\t: %d\n", c->x86_mask);
  919. else
  920. seq_printf(m, "stepping\t: unknown\n");
  921. if (cpu_has(c, X86_FEATURE_TSC)) {
  922. unsigned int freq = cpufreq_quick_get((unsigned)cpu);
  923. if (!freq)
  924. freq = cpu_khz;
  925. seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
  926. freq / 1000, (freq % 1000));
  927. }
  928. /* Cache size */
  929. if (c->x86_cache_size >= 0)
  930. seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
  931. #ifdef CONFIG_SMP
  932. if (smp_num_siblings * c->x86_max_cores > 1) {
  933. seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
  934. seq_printf(m, "siblings\t: %d\n",
  935. cpus_weight(per_cpu(cpu_core_map, cpu)));
  936. seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
  937. seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
  938. }
  939. #endif
  940. seq_printf(m,
  941. "fpu\t\t: yes\n"
  942. "fpu_exception\t: yes\n"
  943. "cpuid level\t: %d\n"
  944. "wp\t\t: yes\n"
  945. "flags\t\t:",
  946. c->cpuid_level);
  947. for (i = 0; i < 32*NCAPINTS; i++)
  948. if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
  949. seq_printf(m, " %s", x86_cap_flags[i]);
  950. seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
  951. c->loops_per_jiffy/(500000/HZ),
  952. (c->loops_per_jiffy/(5000/HZ)) % 100);
  953. if (c->x86_tlbsize > 0)
  954. seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
  955. seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
  956. seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
  957. seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
  958. c->x86_phys_bits, c->x86_virt_bits);
  959. seq_printf(m, "power management:");
  960. for (i = 0; i < 32; i++) {
  961. if (c->x86_power & (1 << i)) {
  962. if (i < ARRAY_SIZE(x86_power_flags) &&
  963. x86_power_flags[i])
  964. seq_printf(m, "%s%s",
  965. x86_power_flags[i][0]?" ":"",
  966. x86_power_flags[i]);
  967. else
  968. seq_printf(m, " [%d]", i);
  969. }
  970. }
  971. seq_printf(m, "\n\n");
  972. return 0;
  973. }
  974. static void *c_start(struct seq_file *m, loff_t *pos)
  975. {
  976. if (*pos == 0) /* just in case, cpu 0 is not the first */
  977. *pos = first_cpu(cpu_online_map);
  978. if ((*pos) < NR_CPUS && cpu_online(*pos))
  979. return &cpu_data(*pos);
  980. return NULL;
  981. }
  982. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  983. {
  984. *pos = next_cpu(*pos, cpu_online_map);
  985. return c_start(m, pos);
  986. }
  987. static void c_stop(struct seq_file *m, void *v)
  988. {
  989. }
  990. const struct seq_operations cpuinfo_op = {
  991. .start = c_start,
  992. .next = c_next,
  993. .stop = c_stop,
  994. .show = show_cpuinfo,
  995. };