slb.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305
  1. /*
  2. * PowerPC64 SLB support.
  3. *
  4. * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
  5. * Based on earlier code writteh by:
  6. * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
  7. * Copyright (c) 2001 Dave Engebretsen
  8. * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
  9. *
  10. *
  11. * This program is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License
  13. * as published by the Free Software Foundation; either version
  14. * 2 of the License, or (at your option) any later version.
  15. */
  16. #undef DEBUG
  17. #include <asm/pgtable.h>
  18. #include <asm/mmu.h>
  19. #include <asm/mmu_context.h>
  20. #include <asm/paca.h>
  21. #include <asm/cputable.h>
  22. #include <asm/cacheflush.h>
  23. #include <asm/smp.h>
  24. #include <asm/firmware.h>
  25. #include <linux/compiler.h>
  26. #include <asm/udbg.h>
  27. #ifdef DEBUG
  28. #define DBG(fmt...) udbg_printf(fmt)
  29. #else
  30. #define DBG(fmt...)
  31. #endif
  32. extern void slb_allocate_realmode(unsigned long ea);
  33. extern void slb_allocate_user(unsigned long ea);
  34. static void slb_allocate(unsigned long ea)
  35. {
  36. /* Currently, we do real mode for all SLBs including user, but
  37. * that will change if we bring back dynamic VSIDs
  38. */
  39. slb_allocate_realmode(ea);
  40. }
  41. static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
  42. unsigned long slot)
  43. {
  44. unsigned long mask;
  45. mask = (ssize == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T;
  46. return (ea & mask) | SLB_ESID_V | slot;
  47. }
  48. #define slb_vsid_shift(ssize) \
  49. ((ssize) == MMU_SEGSIZE_256M? SLB_VSID_SHIFT: SLB_VSID_SHIFT_1T)
  50. static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
  51. unsigned long flags)
  52. {
  53. return (get_kernel_vsid(ea, ssize) << slb_vsid_shift(ssize)) | flags |
  54. ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
  55. }
  56. static inline void slb_shadow_update(unsigned long ea, int ssize,
  57. unsigned long flags,
  58. unsigned long entry)
  59. {
  60. /*
  61. * Clear the ESID first so the entry is not valid while we are
  62. * updating it. No write barriers are needed here, provided
  63. * we only update the current CPU's SLB shadow buffer.
  64. */
  65. get_slb_shadow()->save_area[entry].esid = 0;
  66. get_slb_shadow()->save_area[entry].vsid = mk_vsid_data(ea, ssize, flags);
  67. get_slb_shadow()->save_area[entry].esid = mk_esid_data(ea, ssize, entry);
  68. }
  69. static inline void slb_shadow_clear(unsigned long entry)
  70. {
  71. get_slb_shadow()->save_area[entry].esid = 0;
  72. }
  73. static inline void create_shadowed_slbe(unsigned long ea, int ssize,
  74. unsigned long flags,
  75. unsigned long entry)
  76. {
  77. /*
  78. * Updating the shadow buffer before writing the SLB ensures
  79. * we don't get a stale entry here if we get preempted by PHYP
  80. * between these two statements.
  81. */
  82. slb_shadow_update(ea, ssize, flags, entry);
  83. asm volatile("slbmte %0,%1" :
  84. : "r" (mk_vsid_data(ea, ssize, flags)),
  85. "r" (mk_esid_data(ea, ssize, entry))
  86. : "memory" );
  87. }
  88. void slb_flush_and_rebolt(void)
  89. {
  90. /* If you change this make sure you change SLB_NUM_BOLTED
  91. * appropriately too. */
  92. unsigned long linear_llp, vmalloc_llp, lflags, vflags;
  93. unsigned long ksp_esid_data, ksp_vsid_data;
  94. WARN_ON(!irqs_disabled());
  95. linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
  96. vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
  97. lflags = SLB_VSID_KERNEL | linear_llp;
  98. vflags = SLB_VSID_KERNEL | vmalloc_llp;
  99. ksp_esid_data = mk_esid_data(get_paca()->kstack, mmu_kernel_ssize, 2);
  100. if ((ksp_esid_data & ~0xfffffffUL) <= PAGE_OFFSET) {
  101. ksp_esid_data &= ~SLB_ESID_V;
  102. ksp_vsid_data = 0;
  103. slb_shadow_clear(2);
  104. } else {
  105. /* Update stack entry; others don't change */
  106. slb_shadow_update(get_paca()->kstack, mmu_kernel_ssize, lflags, 2);
  107. ksp_vsid_data = get_slb_shadow()->save_area[2].vsid;
  108. }
  109. /* We need to do this all in asm, so we're sure we don't touch
  110. * the stack between the slbia and rebolting it. */
  111. asm volatile("isync\n"
  112. "slbia\n"
  113. /* Slot 1 - first VMALLOC segment */
  114. "slbmte %0,%1\n"
  115. /* Slot 2 - kernel stack */
  116. "slbmte %2,%3\n"
  117. "isync"
  118. :: "r"(mk_vsid_data(VMALLOC_START, mmu_kernel_ssize, vflags)),
  119. "r"(mk_esid_data(VMALLOC_START, mmu_kernel_ssize, 1)),
  120. "r"(ksp_vsid_data),
  121. "r"(ksp_esid_data)
  122. : "memory");
  123. }
  124. void slb_vmalloc_update(void)
  125. {
  126. unsigned long vflags;
  127. vflags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmalloc_psize].sllp;
  128. slb_shadow_update(VMALLOC_START, mmu_kernel_ssize, vflags, 1);
  129. slb_flush_and_rebolt();
  130. }
  131. /* Helper function to compare esids. There are four cases to handle.
  132. * 1. The system is not 1T segment size capable. Use the GET_ESID compare.
  133. * 2. The system is 1T capable, both addresses are < 1T, use the GET_ESID compare.
  134. * 3. The system is 1T capable, only one of the two addresses is > 1T. This is not a match.
  135. * 4. The system is 1T capable, both addresses are > 1T, use the GET_ESID_1T macro to compare.
  136. */
  137. static inline int esids_match(unsigned long addr1, unsigned long addr2)
  138. {
  139. int esid_1t_count;
  140. /* System is not 1T segment size capable. */
  141. if (!cpu_has_feature(CPU_FTR_1T_SEGMENT))
  142. return (GET_ESID(addr1) == GET_ESID(addr2));
  143. esid_1t_count = (((addr1 >> SID_SHIFT_1T) != 0) +
  144. ((addr2 >> SID_SHIFT_1T) != 0));
  145. /* both addresses are < 1T */
  146. if (esid_1t_count == 0)
  147. return (GET_ESID(addr1) == GET_ESID(addr2));
  148. /* One address < 1T, the other > 1T. Not a match */
  149. if (esid_1t_count == 1)
  150. return 0;
  151. /* Both addresses are > 1T. */
  152. return (GET_ESID_1T(addr1) == GET_ESID_1T(addr2));
  153. }
  154. /* Flush all user entries from the segment table of the current processor. */
  155. void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
  156. {
  157. unsigned long offset = get_paca()->slb_cache_ptr;
  158. unsigned long slbie_data = 0;
  159. unsigned long pc = KSTK_EIP(tsk);
  160. unsigned long stack = KSTK_ESP(tsk);
  161. unsigned long unmapped_base;
  162. if (!cpu_has_feature(CPU_FTR_NO_SLBIE_B) &&
  163. offset <= SLB_CACHE_ENTRIES) {
  164. int i;
  165. asm volatile("isync" : : : "memory");
  166. for (i = 0; i < offset; i++) {
  167. slbie_data = (unsigned long)get_paca()->slb_cache[i]
  168. << SID_SHIFT; /* EA */
  169. slbie_data |= user_segment_size(slbie_data)
  170. << SLBIE_SSIZE_SHIFT;
  171. slbie_data |= SLBIE_C; /* C set for user addresses */
  172. asm volatile("slbie %0" : : "r" (slbie_data));
  173. }
  174. asm volatile("isync" : : : "memory");
  175. } else {
  176. slb_flush_and_rebolt();
  177. }
  178. /* Workaround POWER5 < DD2.1 issue */
  179. if (offset == 1 || offset > SLB_CACHE_ENTRIES)
  180. asm volatile("slbie %0" : : "r" (slbie_data));
  181. get_paca()->slb_cache_ptr = 0;
  182. get_paca()->context = mm->context;
  183. /*
  184. * preload some userspace segments into the SLB.
  185. */
  186. if (test_tsk_thread_flag(tsk, TIF_32BIT))
  187. unmapped_base = TASK_UNMAPPED_BASE_USER32;
  188. else
  189. unmapped_base = TASK_UNMAPPED_BASE_USER64;
  190. if (is_kernel_addr(pc))
  191. return;
  192. slb_allocate(pc);
  193. if (esids_match(pc,stack))
  194. return;
  195. if (is_kernel_addr(stack))
  196. return;
  197. slb_allocate(stack);
  198. if (esids_match(pc,unmapped_base) || esids_match(stack,unmapped_base))
  199. return;
  200. if (is_kernel_addr(unmapped_base))
  201. return;
  202. slb_allocate(unmapped_base);
  203. }
  204. static inline void patch_slb_encoding(unsigned int *insn_addr,
  205. unsigned int immed)
  206. {
  207. /* Assume the instruction had a "0" immediate value, just
  208. * "or" in the new value
  209. */
  210. *insn_addr |= immed;
  211. flush_icache_range((unsigned long)insn_addr, 4+
  212. (unsigned long)insn_addr);
  213. }
  214. void slb_initialize(void)
  215. {
  216. unsigned long linear_llp, vmalloc_llp, io_llp;
  217. unsigned long lflags, vflags;
  218. static int slb_encoding_inited;
  219. extern unsigned int *slb_miss_kernel_load_linear;
  220. extern unsigned int *slb_miss_kernel_load_io;
  221. extern unsigned int *slb_compare_rr_to_size;
  222. /* Prepare our SLB miss handler based on our page size */
  223. linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
  224. io_llp = mmu_psize_defs[mmu_io_psize].sllp;
  225. vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
  226. get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
  227. if (!slb_encoding_inited) {
  228. slb_encoding_inited = 1;
  229. patch_slb_encoding(slb_miss_kernel_load_linear,
  230. SLB_VSID_KERNEL | linear_llp);
  231. patch_slb_encoding(slb_miss_kernel_load_io,
  232. SLB_VSID_KERNEL | io_llp);
  233. patch_slb_encoding(slb_compare_rr_to_size,
  234. mmu_slb_size);
  235. DBG("SLB: linear LLP = %04x\n", linear_llp);
  236. DBG("SLB: io LLP = %04x\n", io_llp);
  237. }
  238. get_paca()->stab_rr = SLB_NUM_BOLTED;
  239. /* On iSeries the bolted entries have already been set up by
  240. * the hypervisor from the lparMap data in head.S */
  241. if (firmware_has_feature(FW_FEATURE_ISERIES))
  242. return;
  243. lflags = SLB_VSID_KERNEL | linear_llp;
  244. vflags = SLB_VSID_KERNEL | vmalloc_llp;
  245. /* Invalidate the entire SLB (even slot 0) & all the ERATS */
  246. asm volatile("isync":::"memory");
  247. asm volatile("slbmte %0,%0"::"r" (0) : "memory");
  248. asm volatile("isync; slbia; isync":::"memory");
  249. create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, 0);
  250. create_shadowed_slbe(VMALLOC_START, mmu_kernel_ssize, vflags, 1);
  251. slb_shadow_clear(2);
  252. /* We don't bolt the stack for the time being - we're in boot,
  253. * so the stack is in the bolted segment. By the time it goes
  254. * elsewhere, we'll call _switch() which will bolt in the new
  255. * one. */
  256. asm volatile("isync":::"memory");
  257. }