contig.c 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 1998-2003 Hewlett-Packard Co
  7. * David Mosberger-Tang <davidm@hpl.hp.com>
  8. * Stephane Eranian <eranian@hpl.hp.com>
  9. * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
  10. * Copyright (C) 1999 VA Linux Systems
  11. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  12. * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
  13. *
  14. * Routines used by ia64 machines with contiguous (or virtually contiguous)
  15. * memory.
  16. */
  17. #include <linux/bootmem.h>
  18. #include <linux/efi.h>
  19. #include <linux/mm.h>
  20. #include <linux/nmi.h>
  21. #include <linux/swap.h>
  22. #include <asm/meminit.h>
  23. #include <asm/pgalloc.h>
  24. #include <asm/pgtable.h>
  25. #include <asm/sections.h>
  26. #include <asm/mca.h>
  27. #ifdef CONFIG_VIRTUAL_MEM_MAP
  28. static unsigned long max_gap;
  29. #endif
  30. /**
  31. * show_mem - give short summary of memory stats
  32. *
  33. * Shows a simple page count of reserved and used pages in the system.
  34. * For discontig machines, it does this on a per-pgdat basis.
  35. */
  36. void show_mem(void)
  37. {
  38. int i, total_reserved = 0;
  39. int total_shared = 0, total_cached = 0;
  40. unsigned long total_present = 0;
  41. pg_data_t *pgdat;
  42. printk(KERN_INFO "Mem-info:\n");
  43. show_free_areas();
  44. printk(KERN_INFO "Free swap: %6ldkB\n",
  45. nr_swap_pages<<(PAGE_SHIFT-10));
  46. printk(KERN_INFO "Node memory in pages:\n");
  47. for_each_online_pgdat(pgdat) {
  48. unsigned long present;
  49. unsigned long flags;
  50. int shared = 0, cached = 0, reserved = 0;
  51. pgdat_resize_lock(pgdat, &flags);
  52. present = pgdat->node_present_pages;
  53. for(i = 0; i < pgdat->node_spanned_pages; i++) {
  54. struct page *page;
  55. if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
  56. touch_nmi_watchdog();
  57. if (pfn_valid(pgdat->node_start_pfn + i))
  58. page = pfn_to_page(pgdat->node_start_pfn + i);
  59. else {
  60. #ifdef CONFIG_VIRTUAL_MEM_MAP
  61. if (max_gap < LARGE_GAP)
  62. continue;
  63. #endif
  64. i = vmemmap_find_next_valid_pfn(pgdat->node_id,
  65. i) - 1;
  66. continue;
  67. }
  68. if (PageReserved(page))
  69. reserved++;
  70. else if (PageSwapCache(page))
  71. cached++;
  72. else if (page_count(page))
  73. shared += page_count(page)-1;
  74. }
  75. pgdat_resize_unlock(pgdat, &flags);
  76. total_present += present;
  77. total_reserved += reserved;
  78. total_cached += cached;
  79. total_shared += shared;
  80. printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, "
  81. "shrd: %10d, swpd: %10d\n", pgdat->node_id,
  82. present, reserved, shared, cached);
  83. }
  84. printk(KERN_INFO "%ld pages of RAM\n", total_present);
  85. printk(KERN_INFO "%d reserved pages\n", total_reserved);
  86. printk(KERN_INFO "%d pages shared\n", total_shared);
  87. printk(KERN_INFO "%d pages swap cached\n", total_cached);
  88. printk(KERN_INFO "Total of %ld pages in page table cache\n",
  89. quicklist_total_size());
  90. printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
  91. }
  92. /* physical address where the bootmem map is located */
  93. unsigned long bootmap_start;
  94. /**
  95. * find_bootmap_location - callback to find a memory area for the bootmap
  96. * @start: start of region
  97. * @end: end of region
  98. * @arg: unused callback data
  99. *
  100. * Find a place to put the bootmap and return its starting address in
  101. * bootmap_start. This address must be page-aligned.
  102. */
  103. static int __init
  104. find_bootmap_location (unsigned long start, unsigned long end, void *arg)
  105. {
  106. unsigned long needed = *(unsigned long *)arg;
  107. unsigned long range_start, range_end, free_start;
  108. int i;
  109. #if IGNORE_PFN0
  110. if (start == PAGE_OFFSET) {
  111. start += PAGE_SIZE;
  112. if (start >= end)
  113. return 0;
  114. }
  115. #endif
  116. free_start = PAGE_OFFSET;
  117. for (i = 0; i < num_rsvd_regions; i++) {
  118. range_start = max(start, free_start);
  119. range_end = min(end, rsvd_region[i].start & PAGE_MASK);
  120. free_start = PAGE_ALIGN(rsvd_region[i].end);
  121. if (range_end <= range_start)
  122. continue; /* skip over empty range */
  123. if (range_end - range_start >= needed) {
  124. bootmap_start = __pa(range_start);
  125. return -1; /* done */
  126. }
  127. /* nothing more available in this segment */
  128. if (range_end == end)
  129. return 0;
  130. }
  131. return 0;
  132. }
  133. #ifdef CONFIG_SMP
  134. static void *cpu_data;
  135. /**
  136. * per_cpu_init - setup per-cpu variables
  137. *
  138. * Allocate and setup per-cpu data areas.
  139. */
  140. void * __cpuinit
  141. per_cpu_init (void)
  142. {
  143. int cpu;
  144. static int first_time=1;
  145. /*
  146. * get_free_pages() cannot be used before cpu_init() done. BSP
  147. * allocates "NR_CPUS" pages for all CPUs to avoid that AP calls
  148. * get_zeroed_page().
  149. */
  150. if (first_time) {
  151. first_time=0;
  152. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  153. memcpy(cpu_data, __phys_per_cpu_start, __per_cpu_end - __per_cpu_start);
  154. __per_cpu_offset[cpu] = (char *) cpu_data - __per_cpu_start;
  155. cpu_data += PERCPU_PAGE_SIZE;
  156. per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
  157. }
  158. }
  159. return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
  160. }
  161. static inline void
  162. alloc_per_cpu_data(void)
  163. {
  164. cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * NR_CPUS,
  165. PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
  166. }
  167. #else
  168. #define alloc_per_cpu_data() do { } while (0)
  169. #endif /* CONFIG_SMP */
  170. /**
  171. * find_memory - setup memory map
  172. *
  173. * Walk the EFI memory map and find usable memory for the system, taking
  174. * into account reserved areas.
  175. */
  176. void __init
  177. find_memory (void)
  178. {
  179. unsigned long bootmap_size;
  180. reserve_memory();
  181. /* first find highest page frame number */
  182. min_low_pfn = ~0UL;
  183. max_low_pfn = 0;
  184. efi_memmap_walk(find_max_min_low_pfn, NULL);
  185. max_pfn = max_low_pfn;
  186. /* how many bytes to cover all the pages */
  187. bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
  188. /* look for a location to hold the bootmap */
  189. bootmap_start = ~0UL;
  190. efi_memmap_walk(find_bootmap_location, &bootmap_size);
  191. if (bootmap_start == ~0UL)
  192. panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
  193. bootmap_size = init_bootmem_node(NODE_DATA(0),
  194. (bootmap_start >> PAGE_SHIFT), 0, max_pfn);
  195. /* Free all available memory, then mark bootmem-map as being in use. */
  196. efi_memmap_walk(filter_rsvd_memory, free_bootmem);
  197. reserve_bootmem(bootmap_start, bootmap_size, BOOTMEM_DEFAULT);
  198. find_initrd();
  199. alloc_per_cpu_data();
  200. }
  201. static int
  202. count_pages (u64 start, u64 end, void *arg)
  203. {
  204. unsigned long *count = arg;
  205. *count += (end - start) >> PAGE_SHIFT;
  206. return 0;
  207. }
  208. /*
  209. * Set up the page tables.
  210. */
  211. void __init
  212. paging_init (void)
  213. {
  214. unsigned long max_dma;
  215. unsigned long max_zone_pfns[MAX_NR_ZONES];
  216. num_physpages = 0;
  217. efi_memmap_walk(count_pages, &num_physpages);
  218. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  219. #ifdef CONFIG_ZONE_DMA
  220. max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
  221. max_zone_pfns[ZONE_DMA] = max_dma;
  222. #endif
  223. max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
  224. #ifdef CONFIG_VIRTUAL_MEM_MAP
  225. efi_memmap_walk(register_active_ranges, NULL);
  226. efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
  227. if (max_gap < LARGE_GAP) {
  228. vmem_map = (struct page *) 0;
  229. free_area_init_nodes(max_zone_pfns);
  230. } else {
  231. unsigned long map_size;
  232. /* allocate virtual_mem_map */
  233. map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
  234. sizeof(struct page));
  235. vmalloc_end -= map_size;
  236. vmem_map = (struct page *) vmalloc_end;
  237. efi_memmap_walk(create_mem_map_page_table, NULL);
  238. /*
  239. * alloc_node_mem_map makes an adjustment for mem_map
  240. * which isn't compatible with vmem_map.
  241. */
  242. NODE_DATA(0)->node_mem_map = vmem_map +
  243. find_min_pfn_with_active_regions();
  244. free_area_init_nodes(max_zone_pfns);
  245. printk("Virtual mem_map starts at 0x%p\n", mem_map);
  246. }
  247. #else /* !CONFIG_VIRTUAL_MEM_MAP */
  248. add_active_range(0, 0, max_low_pfn);
  249. free_area_init_nodes(max_zone_pfns);
  250. #endif /* !CONFIG_VIRTUAL_MEM_MAP */
  251. zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
  252. }