process.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860
  1. /*
  2. * Architecture-specific setup.
  3. *
  4. * Copyright (C) 1998-2003 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
  7. *
  8. * 2005-10-07 Keith Owens <kaos@sgi.com>
  9. * Add notify_die() hooks.
  10. */
  11. #include <linux/cpu.h>
  12. #include <linux/pm.h>
  13. #include <linux/elf.h>
  14. #include <linux/errno.h>
  15. #include <linux/kallsyms.h>
  16. #include <linux/kernel.h>
  17. #include <linux/mm.h>
  18. #include <linux/module.h>
  19. #include <linux/notifier.h>
  20. #include <linux/personality.h>
  21. #include <linux/sched.h>
  22. #include <linux/slab.h>
  23. #include <linux/stddef.h>
  24. #include <linux/thread_info.h>
  25. #include <linux/unistd.h>
  26. #include <linux/efi.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/delay.h>
  29. #include <linux/kdebug.h>
  30. #include <linux/utsname.h>
  31. #include <asm/cpu.h>
  32. #include <asm/delay.h>
  33. #include <asm/elf.h>
  34. #include <asm/ia32.h>
  35. #include <asm/irq.h>
  36. #include <asm/kexec.h>
  37. #include <asm/pgalloc.h>
  38. #include <asm/processor.h>
  39. #include <asm/sal.h>
  40. #include <asm/tlbflush.h>
  41. #include <asm/uaccess.h>
  42. #include <asm/unwind.h>
  43. #include <asm/user.h>
  44. #include "entry.h"
  45. #ifdef CONFIG_PERFMON
  46. # include <asm/perfmon.h>
  47. #endif
  48. #include "sigframe.h"
  49. void (*ia64_mark_idle)(int);
  50. unsigned long boot_option_idle_override = 0;
  51. EXPORT_SYMBOL(boot_option_idle_override);
  52. void
  53. ia64_do_show_stack (struct unw_frame_info *info, void *arg)
  54. {
  55. unsigned long ip, sp, bsp;
  56. char buf[128]; /* don't make it so big that it overflows the stack! */
  57. printk("\nCall Trace:\n");
  58. do {
  59. unw_get_ip(info, &ip);
  60. if (ip == 0)
  61. break;
  62. unw_get_sp(info, &sp);
  63. unw_get_bsp(info, &bsp);
  64. snprintf(buf, sizeof(buf),
  65. " [<%016lx>] %%s\n"
  66. " sp=%016lx bsp=%016lx\n",
  67. ip, sp, bsp);
  68. print_symbol(buf, ip);
  69. } while (unw_unwind(info) >= 0);
  70. }
  71. void
  72. show_stack (struct task_struct *task, unsigned long *sp)
  73. {
  74. if (!task)
  75. unw_init_running(ia64_do_show_stack, NULL);
  76. else {
  77. struct unw_frame_info info;
  78. unw_init_from_blocked_task(&info, task);
  79. ia64_do_show_stack(&info, NULL);
  80. }
  81. }
  82. void
  83. dump_stack (void)
  84. {
  85. show_stack(NULL, NULL);
  86. }
  87. EXPORT_SYMBOL(dump_stack);
  88. void
  89. show_regs (struct pt_regs *regs)
  90. {
  91. unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
  92. print_modules();
  93. printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current),
  94. smp_processor_id(), current->comm);
  95. printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n",
  96. regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
  97. init_utsname()->release);
  98. print_symbol("ip is at %s\n", ip);
  99. printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
  100. regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
  101. printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
  102. regs->ar_rnat, regs->ar_bspstore, regs->pr);
  103. printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
  104. regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
  105. printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
  106. printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
  107. printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
  108. regs->f6.u.bits[1], regs->f6.u.bits[0],
  109. regs->f7.u.bits[1], regs->f7.u.bits[0]);
  110. printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
  111. regs->f8.u.bits[1], regs->f8.u.bits[0],
  112. regs->f9.u.bits[1], regs->f9.u.bits[0]);
  113. printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
  114. regs->f10.u.bits[1], regs->f10.u.bits[0],
  115. regs->f11.u.bits[1], regs->f11.u.bits[0]);
  116. printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
  117. printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
  118. printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
  119. printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
  120. printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
  121. printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
  122. printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
  123. printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
  124. printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
  125. if (user_mode(regs)) {
  126. /* print the stacked registers */
  127. unsigned long val, *bsp, ndirty;
  128. int i, sof, is_nat = 0;
  129. sof = regs->cr_ifs & 0x7f; /* size of frame */
  130. ndirty = (regs->loadrs >> 19);
  131. bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
  132. for (i = 0; i < sof; ++i) {
  133. get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
  134. printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
  135. ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
  136. }
  137. } else
  138. show_stack(NULL, NULL);
  139. }
  140. void tsk_clear_notify_resume(struct task_struct *tsk)
  141. {
  142. #ifdef CONFIG_PERFMON
  143. if (tsk->thread.pfm_needs_checking)
  144. return;
  145. #endif
  146. if (test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_RSE))
  147. return;
  148. clear_ti_thread_flag(task_thread_info(tsk), TIF_NOTIFY_RESUME);
  149. }
  150. void
  151. do_notify_resume_user (sigset_t *unused, struct sigscratch *scr, long in_syscall)
  152. {
  153. if (fsys_mode(current, &scr->pt)) {
  154. /* defer signal-handling etc. until we return to privilege-level 0. */
  155. if (!ia64_psr(&scr->pt)->lp)
  156. ia64_psr(&scr->pt)->lp = 1;
  157. return;
  158. }
  159. #ifdef CONFIG_PERFMON
  160. if (current->thread.pfm_needs_checking)
  161. pfm_handle_work();
  162. #endif
  163. /* deal with pending signal delivery */
  164. if (test_thread_flag(TIF_SIGPENDING)||test_thread_flag(TIF_RESTORE_SIGMASK))
  165. ia64_do_signal(scr, in_syscall);
  166. /* copy user rbs to kernel rbs */
  167. if (unlikely(test_thread_flag(TIF_RESTORE_RSE)))
  168. ia64_sync_krbs();
  169. }
  170. static int pal_halt = 1;
  171. static int can_do_pal_halt = 1;
  172. static int __init nohalt_setup(char * str)
  173. {
  174. pal_halt = can_do_pal_halt = 0;
  175. return 1;
  176. }
  177. __setup("nohalt", nohalt_setup);
  178. void
  179. update_pal_halt_status(int status)
  180. {
  181. can_do_pal_halt = pal_halt && status;
  182. }
  183. /*
  184. * We use this if we don't have any better idle routine..
  185. */
  186. void
  187. default_idle (void)
  188. {
  189. local_irq_enable();
  190. while (!need_resched()) {
  191. if (can_do_pal_halt) {
  192. local_irq_disable();
  193. if (!need_resched()) {
  194. safe_halt();
  195. }
  196. local_irq_enable();
  197. } else
  198. cpu_relax();
  199. }
  200. }
  201. #ifdef CONFIG_HOTPLUG_CPU
  202. /* We don't actually take CPU down, just spin without interrupts. */
  203. static inline void play_dead(void)
  204. {
  205. extern void ia64_cpu_local_tick (void);
  206. unsigned int this_cpu = smp_processor_id();
  207. /* Ack it */
  208. __get_cpu_var(cpu_state) = CPU_DEAD;
  209. max_xtp();
  210. local_irq_disable();
  211. idle_task_exit();
  212. ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
  213. /*
  214. * The above is a point of no-return, the processor is
  215. * expected to be in SAL loop now.
  216. */
  217. BUG();
  218. }
  219. #else
  220. static inline void play_dead(void)
  221. {
  222. BUG();
  223. }
  224. #endif /* CONFIG_HOTPLUG_CPU */
  225. static void do_nothing(void *unused)
  226. {
  227. }
  228. /*
  229. * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
  230. * pm_idle and update to new pm_idle value. Required while changing pm_idle
  231. * handler on SMP systems.
  232. *
  233. * Caller must have changed pm_idle to the new value before the call. Old
  234. * pm_idle value will not be used by any CPU after the return of this function.
  235. */
  236. void cpu_idle_wait(void)
  237. {
  238. smp_mb();
  239. /* kick all the CPUs so that they exit out of pm_idle */
  240. smp_call_function(do_nothing, NULL, 0, 1);
  241. }
  242. EXPORT_SYMBOL_GPL(cpu_idle_wait);
  243. void __attribute__((noreturn))
  244. cpu_idle (void)
  245. {
  246. void (*mark_idle)(int) = ia64_mark_idle;
  247. int cpu = smp_processor_id();
  248. /* endless idle loop with no priority at all */
  249. while (1) {
  250. if (can_do_pal_halt) {
  251. current_thread_info()->status &= ~TS_POLLING;
  252. /*
  253. * TS_POLLING-cleared state must be visible before we
  254. * test NEED_RESCHED:
  255. */
  256. smp_mb();
  257. } else {
  258. current_thread_info()->status |= TS_POLLING;
  259. }
  260. if (!need_resched()) {
  261. void (*idle)(void);
  262. #ifdef CONFIG_SMP
  263. min_xtp();
  264. #endif
  265. rmb();
  266. if (mark_idle)
  267. (*mark_idle)(1);
  268. idle = pm_idle;
  269. if (!idle)
  270. idle = default_idle;
  271. (*idle)();
  272. if (mark_idle)
  273. (*mark_idle)(0);
  274. #ifdef CONFIG_SMP
  275. normal_xtp();
  276. #endif
  277. }
  278. preempt_enable_no_resched();
  279. schedule();
  280. preempt_disable();
  281. check_pgt_cache();
  282. if (cpu_is_offline(cpu))
  283. play_dead();
  284. }
  285. }
  286. void
  287. ia64_save_extra (struct task_struct *task)
  288. {
  289. #ifdef CONFIG_PERFMON
  290. unsigned long info;
  291. #endif
  292. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  293. ia64_save_debug_regs(&task->thread.dbr[0]);
  294. #ifdef CONFIG_PERFMON
  295. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  296. pfm_save_regs(task);
  297. info = __get_cpu_var(pfm_syst_info);
  298. if (info & PFM_CPUINFO_SYST_WIDE)
  299. pfm_syst_wide_update_task(task, info, 0);
  300. #endif
  301. #ifdef CONFIG_IA32_SUPPORT
  302. if (IS_IA32_PROCESS(task_pt_regs(task)))
  303. ia32_save_state(task);
  304. #endif
  305. }
  306. void
  307. ia64_load_extra (struct task_struct *task)
  308. {
  309. #ifdef CONFIG_PERFMON
  310. unsigned long info;
  311. #endif
  312. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  313. ia64_load_debug_regs(&task->thread.dbr[0]);
  314. #ifdef CONFIG_PERFMON
  315. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  316. pfm_load_regs(task);
  317. info = __get_cpu_var(pfm_syst_info);
  318. if (info & PFM_CPUINFO_SYST_WIDE)
  319. pfm_syst_wide_update_task(task, info, 1);
  320. #endif
  321. #ifdef CONFIG_IA32_SUPPORT
  322. if (IS_IA32_PROCESS(task_pt_regs(task)))
  323. ia32_load_state(task);
  324. #endif
  325. }
  326. /*
  327. * Copy the state of an ia-64 thread.
  328. *
  329. * We get here through the following call chain:
  330. *
  331. * from user-level: from kernel:
  332. *
  333. * <clone syscall> <some kernel call frames>
  334. * sys_clone :
  335. * do_fork do_fork
  336. * copy_thread copy_thread
  337. *
  338. * This means that the stack layout is as follows:
  339. *
  340. * +---------------------+ (highest addr)
  341. * | struct pt_regs |
  342. * +---------------------+
  343. * | struct switch_stack |
  344. * +---------------------+
  345. * | |
  346. * | memory stack |
  347. * | | <-- sp (lowest addr)
  348. * +---------------------+
  349. *
  350. * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
  351. * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
  352. * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
  353. * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
  354. * the stack is page aligned and the page size is at least 4KB, this is always the case,
  355. * so there is nothing to worry about.
  356. */
  357. int
  358. copy_thread (int nr, unsigned long clone_flags,
  359. unsigned long user_stack_base, unsigned long user_stack_size,
  360. struct task_struct *p, struct pt_regs *regs)
  361. {
  362. extern char ia64_ret_from_clone, ia32_ret_from_clone;
  363. struct switch_stack *child_stack, *stack;
  364. unsigned long rbs, child_rbs, rbs_size;
  365. struct pt_regs *child_ptregs;
  366. int retval = 0;
  367. #ifdef CONFIG_SMP
  368. /*
  369. * For SMP idle threads, fork_by_hand() calls do_fork with
  370. * NULL regs.
  371. */
  372. if (!regs)
  373. return 0;
  374. #endif
  375. stack = ((struct switch_stack *) regs) - 1;
  376. child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
  377. child_stack = (struct switch_stack *) child_ptregs - 1;
  378. /* copy parent's switch_stack & pt_regs to child: */
  379. memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
  380. rbs = (unsigned long) current + IA64_RBS_OFFSET;
  381. child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
  382. rbs_size = stack->ar_bspstore - rbs;
  383. /* copy the parent's register backing store to the child: */
  384. memcpy((void *) child_rbs, (void *) rbs, rbs_size);
  385. if (likely(user_mode(child_ptregs))) {
  386. if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
  387. child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
  388. if (user_stack_base) {
  389. child_ptregs->r12 = user_stack_base + user_stack_size - 16;
  390. child_ptregs->ar_bspstore = user_stack_base;
  391. child_ptregs->ar_rnat = 0;
  392. child_ptregs->loadrs = 0;
  393. }
  394. } else {
  395. /*
  396. * Note: we simply preserve the relative position of
  397. * the stack pointer here. There is no need to
  398. * allocate a scratch area here, since that will have
  399. * been taken care of by the caller of sys_clone()
  400. * already.
  401. */
  402. child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
  403. child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
  404. }
  405. child_stack->ar_bspstore = child_rbs + rbs_size;
  406. if (IS_IA32_PROCESS(regs))
  407. child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
  408. else
  409. child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
  410. /* copy parts of thread_struct: */
  411. p->thread.ksp = (unsigned long) child_stack - 16;
  412. /* stop some PSR bits from being inherited.
  413. * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
  414. * therefore we must specify them explicitly here and not include them in
  415. * IA64_PSR_BITS_TO_CLEAR.
  416. */
  417. child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
  418. & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
  419. /*
  420. * NOTE: The calling convention considers all floating point
  421. * registers in the high partition (fph) to be scratch. Since
  422. * the only way to get to this point is through a system call,
  423. * we know that the values in fph are all dead. Hence, there
  424. * is no need to inherit the fph state from the parent to the
  425. * child and all we have to do is to make sure that
  426. * IA64_THREAD_FPH_VALID is cleared in the child.
  427. *
  428. * XXX We could push this optimization a bit further by
  429. * clearing IA64_THREAD_FPH_VALID on ANY system call.
  430. * However, it's not clear this is worth doing. Also, it
  431. * would be a slight deviation from the normal Linux system
  432. * call behavior where scratch registers are preserved across
  433. * system calls (unless used by the system call itself).
  434. */
  435. # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
  436. | IA64_THREAD_PM_VALID)
  437. # define THREAD_FLAGS_TO_SET 0
  438. p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
  439. | THREAD_FLAGS_TO_SET);
  440. ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
  441. #ifdef CONFIG_IA32_SUPPORT
  442. /*
  443. * If we're cloning an IA32 task then save the IA32 extra
  444. * state from the current task to the new task
  445. */
  446. if (IS_IA32_PROCESS(task_pt_regs(current))) {
  447. ia32_save_state(p);
  448. if (clone_flags & CLONE_SETTLS)
  449. retval = ia32_clone_tls(p, child_ptregs);
  450. /* Copy partially mapped page list */
  451. if (!retval)
  452. retval = ia32_copy_ia64_partial_page_list(p,
  453. clone_flags);
  454. }
  455. #endif
  456. #ifdef CONFIG_PERFMON
  457. if (current->thread.pfm_context)
  458. pfm_inherit(p, child_ptregs);
  459. #endif
  460. return retval;
  461. }
  462. static void
  463. do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
  464. {
  465. unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
  466. unsigned long uninitialized_var(ip); /* GCC be quiet */
  467. elf_greg_t *dst = arg;
  468. struct pt_regs *pt;
  469. char nat;
  470. int i;
  471. memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
  472. if (unw_unwind_to_user(info) < 0)
  473. return;
  474. unw_get_sp(info, &sp);
  475. pt = (struct pt_regs *) (sp + 16);
  476. urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
  477. if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
  478. return;
  479. ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
  480. &ar_rnat);
  481. /*
  482. * coredump format:
  483. * r0-r31
  484. * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
  485. * predicate registers (p0-p63)
  486. * b0-b7
  487. * ip cfm user-mask
  488. * ar.rsc ar.bsp ar.bspstore ar.rnat
  489. * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
  490. */
  491. /* r0 is zero */
  492. for (i = 1, mask = (1UL << i); i < 32; ++i) {
  493. unw_get_gr(info, i, &dst[i], &nat);
  494. if (nat)
  495. nat_bits |= mask;
  496. mask <<= 1;
  497. }
  498. dst[32] = nat_bits;
  499. unw_get_pr(info, &dst[33]);
  500. for (i = 0; i < 8; ++i)
  501. unw_get_br(info, i, &dst[34 + i]);
  502. unw_get_rp(info, &ip);
  503. dst[42] = ip + ia64_psr(pt)->ri;
  504. dst[43] = cfm;
  505. dst[44] = pt->cr_ipsr & IA64_PSR_UM;
  506. unw_get_ar(info, UNW_AR_RSC, &dst[45]);
  507. /*
  508. * For bsp and bspstore, unw_get_ar() would return the kernel
  509. * addresses, but we need the user-level addresses instead:
  510. */
  511. dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
  512. dst[47] = pt->ar_bspstore;
  513. dst[48] = ar_rnat;
  514. unw_get_ar(info, UNW_AR_CCV, &dst[49]);
  515. unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
  516. unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
  517. dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
  518. unw_get_ar(info, UNW_AR_LC, &dst[53]);
  519. unw_get_ar(info, UNW_AR_EC, &dst[54]);
  520. unw_get_ar(info, UNW_AR_CSD, &dst[55]);
  521. unw_get_ar(info, UNW_AR_SSD, &dst[56]);
  522. }
  523. void
  524. do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
  525. {
  526. elf_fpreg_t *dst = arg;
  527. int i;
  528. memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
  529. if (unw_unwind_to_user(info) < 0)
  530. return;
  531. /* f0 is 0.0, f1 is 1.0 */
  532. for (i = 2; i < 32; ++i)
  533. unw_get_fr(info, i, dst + i);
  534. ia64_flush_fph(task);
  535. if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
  536. memcpy(dst + 32, task->thread.fph, 96*16);
  537. }
  538. void
  539. do_copy_regs (struct unw_frame_info *info, void *arg)
  540. {
  541. do_copy_task_regs(current, info, arg);
  542. }
  543. void
  544. do_dump_fpu (struct unw_frame_info *info, void *arg)
  545. {
  546. do_dump_task_fpu(current, info, arg);
  547. }
  548. int
  549. dump_task_regs(struct task_struct *task, elf_gregset_t *regs)
  550. {
  551. struct unw_frame_info tcore_info;
  552. if (current == task) {
  553. unw_init_running(do_copy_regs, regs);
  554. } else {
  555. memset(&tcore_info, 0, sizeof(tcore_info));
  556. unw_init_from_blocked_task(&tcore_info, task);
  557. do_copy_task_regs(task, &tcore_info, regs);
  558. }
  559. return 1;
  560. }
  561. void
  562. ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
  563. {
  564. unw_init_running(do_copy_regs, dst);
  565. }
  566. int
  567. dump_task_fpu (struct task_struct *task, elf_fpregset_t *dst)
  568. {
  569. struct unw_frame_info tcore_info;
  570. if (current == task) {
  571. unw_init_running(do_dump_fpu, dst);
  572. } else {
  573. memset(&tcore_info, 0, sizeof(tcore_info));
  574. unw_init_from_blocked_task(&tcore_info, task);
  575. do_dump_task_fpu(task, &tcore_info, dst);
  576. }
  577. return 1;
  578. }
  579. int
  580. dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
  581. {
  582. unw_init_running(do_dump_fpu, dst);
  583. return 1; /* f0-f31 are always valid so we always return 1 */
  584. }
  585. long
  586. sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
  587. struct pt_regs *regs)
  588. {
  589. char *fname;
  590. int error;
  591. fname = getname(filename);
  592. error = PTR_ERR(fname);
  593. if (IS_ERR(fname))
  594. goto out;
  595. error = do_execve(fname, argv, envp, regs);
  596. putname(fname);
  597. out:
  598. return error;
  599. }
  600. pid_t
  601. kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
  602. {
  603. extern void start_kernel_thread (void);
  604. unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
  605. struct {
  606. struct switch_stack sw;
  607. struct pt_regs pt;
  608. } regs;
  609. memset(&regs, 0, sizeof(regs));
  610. regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
  611. regs.pt.r1 = helper_fptr[1]; /* set GP */
  612. regs.pt.r9 = (unsigned long) fn; /* 1st argument */
  613. regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
  614. /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
  615. regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
  616. regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
  617. regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
  618. regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
  619. regs.sw.pr = (1 << PRED_KERNEL_STACK);
  620. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
  621. }
  622. EXPORT_SYMBOL(kernel_thread);
  623. /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
  624. int
  625. kernel_thread_helper (int (*fn)(void *), void *arg)
  626. {
  627. #ifdef CONFIG_IA32_SUPPORT
  628. if (IS_IA32_PROCESS(task_pt_regs(current))) {
  629. /* A kernel thread is always a 64-bit process. */
  630. current->thread.map_base = DEFAULT_MAP_BASE;
  631. current->thread.task_size = DEFAULT_TASK_SIZE;
  632. ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
  633. ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
  634. }
  635. #endif
  636. return (*fn)(arg);
  637. }
  638. /*
  639. * Flush thread state. This is called when a thread does an execve().
  640. */
  641. void
  642. flush_thread (void)
  643. {
  644. /* drop floating-point and debug-register state if it exists: */
  645. current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
  646. ia64_drop_fpu(current);
  647. #ifdef CONFIG_IA32_SUPPORT
  648. if (IS_IA32_PROCESS(task_pt_regs(current))) {
  649. ia32_drop_ia64_partial_page_list(current);
  650. current->thread.task_size = IA32_PAGE_OFFSET;
  651. set_fs(USER_DS);
  652. memset(current->thread.tls_array, 0, sizeof(current->thread.tls_array));
  653. }
  654. #endif
  655. }
  656. /*
  657. * Clean up state associated with current thread. This is called when
  658. * the thread calls exit().
  659. */
  660. void
  661. exit_thread (void)
  662. {
  663. ia64_drop_fpu(current);
  664. #ifdef CONFIG_PERFMON
  665. /* if needed, stop monitoring and flush state to perfmon context */
  666. if (current->thread.pfm_context)
  667. pfm_exit_thread(current);
  668. /* free debug register resources */
  669. if (current->thread.flags & IA64_THREAD_DBG_VALID)
  670. pfm_release_debug_registers(current);
  671. #endif
  672. if (IS_IA32_PROCESS(task_pt_regs(current)))
  673. ia32_drop_ia64_partial_page_list(current);
  674. }
  675. unsigned long
  676. get_wchan (struct task_struct *p)
  677. {
  678. struct unw_frame_info info;
  679. unsigned long ip;
  680. int count = 0;
  681. if (!p || p == current || p->state == TASK_RUNNING)
  682. return 0;
  683. /*
  684. * Note: p may not be a blocked task (it could be current or
  685. * another process running on some other CPU. Rather than
  686. * trying to determine if p is really blocked, we just assume
  687. * it's blocked and rely on the unwind routines to fail
  688. * gracefully if the process wasn't really blocked after all.
  689. * --davidm 99/12/15
  690. */
  691. unw_init_from_blocked_task(&info, p);
  692. do {
  693. if (p->state == TASK_RUNNING)
  694. return 0;
  695. if (unw_unwind(&info) < 0)
  696. return 0;
  697. unw_get_ip(&info, &ip);
  698. if (!in_sched_functions(ip))
  699. return ip;
  700. } while (count++ < 16);
  701. return 0;
  702. }
  703. void
  704. cpu_halt (void)
  705. {
  706. pal_power_mgmt_info_u_t power_info[8];
  707. unsigned long min_power;
  708. int i, min_power_state;
  709. if (ia64_pal_halt_info(power_info) != 0)
  710. return;
  711. min_power_state = 0;
  712. min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
  713. for (i = 1; i < 8; ++i)
  714. if (power_info[i].pal_power_mgmt_info_s.im
  715. && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
  716. min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
  717. min_power_state = i;
  718. }
  719. while (1)
  720. ia64_pal_halt(min_power_state);
  721. }
  722. void machine_shutdown(void)
  723. {
  724. #ifdef CONFIG_HOTPLUG_CPU
  725. int cpu;
  726. for_each_online_cpu(cpu) {
  727. if (cpu != smp_processor_id())
  728. cpu_down(cpu);
  729. }
  730. #endif
  731. #ifdef CONFIG_KEXEC
  732. kexec_disable_iosapic();
  733. #endif
  734. }
  735. void
  736. machine_restart (char *restart_cmd)
  737. {
  738. (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
  739. (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
  740. }
  741. void
  742. machine_halt (void)
  743. {
  744. (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
  745. cpu_halt();
  746. }
  747. void
  748. machine_power_off (void)
  749. {
  750. if (pm_power_off)
  751. pm_power_off();
  752. machine_halt();
  753. }