efi.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301
  1. /*
  2. * Extensible Firmware Interface
  3. *
  4. * Based on Extensible Firmware Interface Specification version 0.9
  5. * April 30, 1999
  6. *
  7. * Copyright (C) 1999 VA Linux Systems
  8. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  9. * Copyright (C) 1999-2003 Hewlett-Packard Co.
  10. * David Mosberger-Tang <davidm@hpl.hp.com>
  11. * Stephane Eranian <eranian@hpl.hp.com>
  12. * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
  13. * Bjorn Helgaas <bjorn.helgaas@hp.com>
  14. *
  15. * All EFI Runtime Services are not implemented yet as EFI only
  16. * supports physical mode addressing on SoftSDV. This is to be fixed
  17. * in a future version. --drummond 1999-07-20
  18. *
  19. * Implemented EFI runtime services and virtual mode calls. --davidm
  20. *
  21. * Goutham Rao: <goutham.rao@intel.com>
  22. * Skip non-WB memory and ignore empty memory ranges.
  23. */
  24. #include <linux/module.h>
  25. #include <linux/bootmem.h>
  26. #include <linux/kernel.h>
  27. #include <linux/init.h>
  28. #include <linux/types.h>
  29. #include <linux/time.h>
  30. #include <linux/efi.h>
  31. #include <linux/kexec.h>
  32. #include <linux/mm.h>
  33. #include <asm/io.h>
  34. #include <asm/kregs.h>
  35. #include <asm/meminit.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/processor.h>
  38. #include <asm/mca.h>
  39. #define EFI_DEBUG 0
  40. extern efi_status_t efi_call_phys (void *, ...);
  41. struct efi efi;
  42. EXPORT_SYMBOL(efi);
  43. static efi_runtime_services_t *runtime;
  44. static unsigned long mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
  45. #define efi_call_virt(f, args...) (*(f))(args)
  46. #define STUB_GET_TIME(prefix, adjust_arg) \
  47. static efi_status_t \
  48. prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
  49. { \
  50. struct ia64_fpreg fr[6]; \
  51. efi_time_cap_t *atc = NULL; \
  52. efi_status_t ret; \
  53. \
  54. if (tc) \
  55. atc = adjust_arg(tc); \
  56. ia64_save_scratch_fpregs(fr); \
  57. ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), \
  58. adjust_arg(tm), atc); \
  59. ia64_load_scratch_fpregs(fr); \
  60. return ret; \
  61. }
  62. #define STUB_SET_TIME(prefix, adjust_arg) \
  63. static efi_status_t \
  64. prefix##_set_time (efi_time_t *tm) \
  65. { \
  66. struct ia64_fpreg fr[6]; \
  67. efi_status_t ret; \
  68. \
  69. ia64_save_scratch_fpregs(fr); \
  70. ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), \
  71. adjust_arg(tm)); \
  72. ia64_load_scratch_fpregs(fr); \
  73. return ret; \
  74. }
  75. #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
  76. static efi_status_t \
  77. prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, \
  78. efi_time_t *tm) \
  79. { \
  80. struct ia64_fpreg fr[6]; \
  81. efi_status_t ret; \
  82. \
  83. ia64_save_scratch_fpregs(fr); \
  84. ret = efi_call_##prefix( \
  85. (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
  86. adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
  87. ia64_load_scratch_fpregs(fr); \
  88. return ret; \
  89. }
  90. #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
  91. static efi_status_t \
  92. prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
  93. { \
  94. struct ia64_fpreg fr[6]; \
  95. efi_time_t *atm = NULL; \
  96. efi_status_t ret; \
  97. \
  98. if (tm) \
  99. atm = adjust_arg(tm); \
  100. ia64_save_scratch_fpregs(fr); \
  101. ret = efi_call_##prefix( \
  102. (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
  103. enabled, atm); \
  104. ia64_load_scratch_fpregs(fr); \
  105. return ret; \
  106. }
  107. #define STUB_GET_VARIABLE(prefix, adjust_arg) \
  108. static efi_status_t \
  109. prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
  110. unsigned long *data_size, void *data) \
  111. { \
  112. struct ia64_fpreg fr[6]; \
  113. u32 *aattr = NULL; \
  114. efi_status_t ret; \
  115. \
  116. if (attr) \
  117. aattr = adjust_arg(attr); \
  118. ia64_save_scratch_fpregs(fr); \
  119. ret = efi_call_##prefix( \
  120. (efi_get_variable_t *) __va(runtime->get_variable), \
  121. adjust_arg(name), adjust_arg(vendor), aattr, \
  122. adjust_arg(data_size), adjust_arg(data)); \
  123. ia64_load_scratch_fpregs(fr); \
  124. return ret; \
  125. }
  126. #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
  127. static efi_status_t \
  128. prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, \
  129. efi_guid_t *vendor) \
  130. { \
  131. struct ia64_fpreg fr[6]; \
  132. efi_status_t ret; \
  133. \
  134. ia64_save_scratch_fpregs(fr); \
  135. ret = efi_call_##prefix( \
  136. (efi_get_next_variable_t *) __va(runtime->get_next_variable), \
  137. adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
  138. ia64_load_scratch_fpregs(fr); \
  139. return ret; \
  140. }
  141. #define STUB_SET_VARIABLE(prefix, adjust_arg) \
  142. static efi_status_t \
  143. prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, \
  144. unsigned long attr, unsigned long data_size, \
  145. void *data) \
  146. { \
  147. struct ia64_fpreg fr[6]; \
  148. efi_status_t ret; \
  149. \
  150. ia64_save_scratch_fpregs(fr); \
  151. ret = efi_call_##prefix( \
  152. (efi_set_variable_t *) __va(runtime->set_variable), \
  153. adjust_arg(name), adjust_arg(vendor), attr, data_size, \
  154. adjust_arg(data)); \
  155. ia64_load_scratch_fpregs(fr); \
  156. return ret; \
  157. }
  158. #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
  159. static efi_status_t \
  160. prefix##_get_next_high_mono_count (u32 *count) \
  161. { \
  162. struct ia64_fpreg fr[6]; \
  163. efi_status_t ret; \
  164. \
  165. ia64_save_scratch_fpregs(fr); \
  166. ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
  167. __va(runtime->get_next_high_mono_count), \
  168. adjust_arg(count)); \
  169. ia64_load_scratch_fpregs(fr); \
  170. return ret; \
  171. }
  172. #define STUB_RESET_SYSTEM(prefix, adjust_arg) \
  173. static void \
  174. prefix##_reset_system (int reset_type, efi_status_t status, \
  175. unsigned long data_size, efi_char16_t *data) \
  176. { \
  177. struct ia64_fpreg fr[6]; \
  178. efi_char16_t *adata = NULL; \
  179. \
  180. if (data) \
  181. adata = adjust_arg(data); \
  182. \
  183. ia64_save_scratch_fpregs(fr); \
  184. efi_call_##prefix( \
  185. (efi_reset_system_t *) __va(runtime->reset_system), \
  186. reset_type, status, data_size, adata); \
  187. /* should not return, but just in case... */ \
  188. ia64_load_scratch_fpregs(fr); \
  189. }
  190. #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
  191. STUB_GET_TIME(phys, phys_ptr)
  192. STUB_SET_TIME(phys, phys_ptr)
  193. STUB_GET_WAKEUP_TIME(phys, phys_ptr)
  194. STUB_SET_WAKEUP_TIME(phys, phys_ptr)
  195. STUB_GET_VARIABLE(phys, phys_ptr)
  196. STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
  197. STUB_SET_VARIABLE(phys, phys_ptr)
  198. STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
  199. STUB_RESET_SYSTEM(phys, phys_ptr)
  200. #define id(arg) arg
  201. STUB_GET_TIME(virt, id)
  202. STUB_SET_TIME(virt, id)
  203. STUB_GET_WAKEUP_TIME(virt, id)
  204. STUB_SET_WAKEUP_TIME(virt, id)
  205. STUB_GET_VARIABLE(virt, id)
  206. STUB_GET_NEXT_VARIABLE(virt, id)
  207. STUB_SET_VARIABLE(virt, id)
  208. STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
  209. STUB_RESET_SYSTEM(virt, id)
  210. void
  211. efi_gettimeofday (struct timespec *ts)
  212. {
  213. efi_time_t tm;
  214. if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
  215. memset(ts, 0, sizeof(*ts));
  216. return;
  217. }
  218. ts->tv_sec = mktime(tm.year, tm.month, tm.day,
  219. tm.hour, tm.minute, tm.second);
  220. ts->tv_nsec = tm.nanosecond;
  221. }
  222. static int
  223. is_memory_available (efi_memory_desc_t *md)
  224. {
  225. if (!(md->attribute & EFI_MEMORY_WB))
  226. return 0;
  227. switch (md->type) {
  228. case EFI_LOADER_CODE:
  229. case EFI_LOADER_DATA:
  230. case EFI_BOOT_SERVICES_CODE:
  231. case EFI_BOOT_SERVICES_DATA:
  232. case EFI_CONVENTIONAL_MEMORY:
  233. return 1;
  234. }
  235. return 0;
  236. }
  237. typedef struct kern_memdesc {
  238. u64 attribute;
  239. u64 start;
  240. u64 num_pages;
  241. } kern_memdesc_t;
  242. static kern_memdesc_t *kern_memmap;
  243. #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
  244. static inline u64
  245. kmd_end(kern_memdesc_t *kmd)
  246. {
  247. return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
  248. }
  249. static inline u64
  250. efi_md_end(efi_memory_desc_t *md)
  251. {
  252. return (md->phys_addr + efi_md_size(md));
  253. }
  254. static inline int
  255. efi_wb(efi_memory_desc_t *md)
  256. {
  257. return (md->attribute & EFI_MEMORY_WB);
  258. }
  259. static inline int
  260. efi_uc(efi_memory_desc_t *md)
  261. {
  262. return (md->attribute & EFI_MEMORY_UC);
  263. }
  264. static void
  265. walk (efi_freemem_callback_t callback, void *arg, u64 attr)
  266. {
  267. kern_memdesc_t *k;
  268. u64 start, end, voff;
  269. voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
  270. for (k = kern_memmap; k->start != ~0UL; k++) {
  271. if (k->attribute != attr)
  272. continue;
  273. start = PAGE_ALIGN(k->start);
  274. end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
  275. if (start < end)
  276. if ((*callback)(start + voff, end + voff, arg) < 0)
  277. return;
  278. }
  279. }
  280. /*
  281. * Walk the EFI memory map and call CALLBACK once for each EFI memory
  282. * descriptor that has memory that is available for OS use.
  283. */
  284. void
  285. efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
  286. {
  287. walk(callback, arg, EFI_MEMORY_WB);
  288. }
  289. /*
  290. * Walk the EFI memory map and call CALLBACK once for each EFI memory
  291. * descriptor that has memory that is available for uncached allocator.
  292. */
  293. void
  294. efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
  295. {
  296. walk(callback, arg, EFI_MEMORY_UC);
  297. }
  298. /*
  299. * Look for the PAL_CODE region reported by EFI and map it using an
  300. * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
  301. * Abstraction Layer chapter 11 in ADAG
  302. */
  303. void *
  304. efi_get_pal_addr (void)
  305. {
  306. void *efi_map_start, *efi_map_end, *p;
  307. efi_memory_desc_t *md;
  308. u64 efi_desc_size;
  309. int pal_code_count = 0;
  310. u64 vaddr, mask;
  311. efi_map_start = __va(ia64_boot_param->efi_memmap);
  312. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  313. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  314. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  315. md = p;
  316. if (md->type != EFI_PAL_CODE)
  317. continue;
  318. if (++pal_code_count > 1) {
  319. printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
  320. "dropped @ %lx\n", md->phys_addr);
  321. continue;
  322. }
  323. /*
  324. * The only ITLB entry in region 7 that is used is the one
  325. * installed by __start(). That entry covers a 64MB range.
  326. */
  327. mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
  328. vaddr = PAGE_OFFSET + md->phys_addr;
  329. /*
  330. * We must check that the PAL mapping won't overlap with the
  331. * kernel mapping.
  332. *
  333. * PAL code is guaranteed to be aligned on a power of 2 between
  334. * 4k and 256KB and that only one ITR is needed to map it. This
  335. * implies that the PAL code is always aligned on its size,
  336. * i.e., the closest matching page size supported by the TLB.
  337. * Therefore PAL code is guaranteed never to cross a 64MB unless
  338. * it is bigger than 64MB (very unlikely!). So for now the
  339. * following test is enough to determine whether or not we need
  340. * a dedicated ITR for the PAL code.
  341. */
  342. if ((vaddr & mask) == (KERNEL_START & mask)) {
  343. printk(KERN_INFO "%s: no need to install ITR for "
  344. "PAL code\n", __FUNCTION__);
  345. continue;
  346. }
  347. if (efi_md_size(md) > IA64_GRANULE_SIZE)
  348. panic("Whoa! PAL code size bigger than a granule!");
  349. #if EFI_DEBUG
  350. mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
  351. printk(KERN_INFO "CPU %d: mapping PAL code "
  352. "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
  353. smp_processor_id(), md->phys_addr,
  354. md->phys_addr + efi_md_size(md),
  355. vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
  356. #endif
  357. return __va(md->phys_addr);
  358. }
  359. printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
  360. __FUNCTION__);
  361. return NULL;
  362. }
  363. void
  364. efi_map_pal_code (void)
  365. {
  366. void *pal_vaddr = efi_get_pal_addr ();
  367. u64 psr;
  368. if (!pal_vaddr)
  369. return;
  370. /*
  371. * Cannot write to CRx with PSR.ic=1
  372. */
  373. psr = ia64_clear_ic();
  374. ia64_itr(0x1, IA64_TR_PALCODE,
  375. GRANULEROUNDDOWN((unsigned long) pal_vaddr),
  376. pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
  377. IA64_GRANULE_SHIFT);
  378. ia64_set_psr(psr); /* restore psr */
  379. }
  380. void __init
  381. efi_init (void)
  382. {
  383. void *efi_map_start, *efi_map_end;
  384. efi_config_table_t *config_tables;
  385. efi_char16_t *c16;
  386. u64 efi_desc_size;
  387. char *cp, vendor[100] = "unknown";
  388. int i;
  389. /*
  390. * It's too early to be able to use the standard kernel command line
  391. * support...
  392. */
  393. for (cp = boot_command_line; *cp; ) {
  394. if (memcmp(cp, "mem=", 4) == 0) {
  395. mem_limit = memparse(cp + 4, &cp);
  396. } else if (memcmp(cp, "max_addr=", 9) == 0) {
  397. max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
  398. } else if (memcmp(cp, "min_addr=", 9) == 0) {
  399. min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
  400. } else {
  401. while (*cp != ' ' && *cp)
  402. ++cp;
  403. while (*cp == ' ')
  404. ++cp;
  405. }
  406. }
  407. if (min_addr != 0UL)
  408. printk(KERN_INFO "Ignoring memory below %luMB\n",
  409. min_addr >> 20);
  410. if (max_addr != ~0UL)
  411. printk(KERN_INFO "Ignoring memory above %luMB\n",
  412. max_addr >> 20);
  413. efi.systab = __va(ia64_boot_param->efi_systab);
  414. /*
  415. * Verify the EFI Table
  416. */
  417. if (efi.systab == NULL)
  418. panic("Whoa! Can't find EFI system table.\n");
  419. if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
  420. panic("Whoa! EFI system table signature incorrect\n");
  421. if ((efi.systab->hdr.revision >> 16) == 0)
  422. printk(KERN_WARNING "Warning: EFI system table version "
  423. "%d.%02d, expected 1.00 or greater\n",
  424. efi.systab->hdr.revision >> 16,
  425. efi.systab->hdr.revision & 0xffff);
  426. config_tables = __va(efi.systab->tables);
  427. /* Show what we know for posterity */
  428. c16 = __va(efi.systab->fw_vendor);
  429. if (c16) {
  430. for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
  431. vendor[i] = *c16++;
  432. vendor[i] = '\0';
  433. }
  434. printk(KERN_INFO "EFI v%u.%.02u by %s:",
  435. efi.systab->hdr.revision >> 16,
  436. efi.systab->hdr.revision & 0xffff, vendor);
  437. efi.mps = EFI_INVALID_TABLE_ADDR;
  438. efi.acpi = EFI_INVALID_TABLE_ADDR;
  439. efi.acpi20 = EFI_INVALID_TABLE_ADDR;
  440. efi.smbios = EFI_INVALID_TABLE_ADDR;
  441. efi.sal_systab = EFI_INVALID_TABLE_ADDR;
  442. efi.boot_info = EFI_INVALID_TABLE_ADDR;
  443. efi.hcdp = EFI_INVALID_TABLE_ADDR;
  444. efi.uga = EFI_INVALID_TABLE_ADDR;
  445. for (i = 0; i < (int) efi.systab->nr_tables; i++) {
  446. if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
  447. efi.mps = config_tables[i].table;
  448. printk(" MPS=0x%lx", config_tables[i].table);
  449. } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
  450. efi.acpi20 = config_tables[i].table;
  451. printk(" ACPI 2.0=0x%lx", config_tables[i].table);
  452. } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
  453. efi.acpi = config_tables[i].table;
  454. printk(" ACPI=0x%lx", config_tables[i].table);
  455. } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
  456. efi.smbios = config_tables[i].table;
  457. printk(" SMBIOS=0x%lx", config_tables[i].table);
  458. } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
  459. efi.sal_systab = config_tables[i].table;
  460. printk(" SALsystab=0x%lx", config_tables[i].table);
  461. } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
  462. efi.hcdp = config_tables[i].table;
  463. printk(" HCDP=0x%lx", config_tables[i].table);
  464. }
  465. }
  466. printk("\n");
  467. runtime = __va(efi.systab->runtime);
  468. efi.get_time = phys_get_time;
  469. efi.set_time = phys_set_time;
  470. efi.get_wakeup_time = phys_get_wakeup_time;
  471. efi.set_wakeup_time = phys_set_wakeup_time;
  472. efi.get_variable = phys_get_variable;
  473. efi.get_next_variable = phys_get_next_variable;
  474. efi.set_variable = phys_set_variable;
  475. efi.get_next_high_mono_count = phys_get_next_high_mono_count;
  476. efi.reset_system = phys_reset_system;
  477. efi_map_start = __va(ia64_boot_param->efi_memmap);
  478. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  479. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  480. #if EFI_DEBUG
  481. /* print EFI memory map: */
  482. {
  483. efi_memory_desc_t *md;
  484. void *p;
  485. for (i = 0, p = efi_map_start; p < efi_map_end;
  486. ++i, p += efi_desc_size)
  487. {
  488. md = p;
  489. printk("mem%02u: type=%u, attr=0x%lx, "
  490. "range=[0x%016lx-0x%016lx) (%luMB)\n",
  491. i, md->type, md->attribute, md->phys_addr,
  492. md->phys_addr + efi_md_size(md),
  493. md->num_pages >> (20 - EFI_PAGE_SHIFT));
  494. }
  495. }
  496. #endif
  497. efi_map_pal_code();
  498. efi_enter_virtual_mode();
  499. }
  500. void
  501. efi_enter_virtual_mode (void)
  502. {
  503. void *efi_map_start, *efi_map_end, *p;
  504. efi_memory_desc_t *md;
  505. efi_status_t status;
  506. u64 efi_desc_size;
  507. efi_map_start = __va(ia64_boot_param->efi_memmap);
  508. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  509. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  510. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  511. md = p;
  512. if (md->attribute & EFI_MEMORY_RUNTIME) {
  513. /*
  514. * Some descriptors have multiple bits set, so the
  515. * order of the tests is relevant.
  516. */
  517. if (md->attribute & EFI_MEMORY_WB) {
  518. md->virt_addr = (u64) __va(md->phys_addr);
  519. } else if (md->attribute & EFI_MEMORY_UC) {
  520. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  521. } else if (md->attribute & EFI_MEMORY_WC) {
  522. #if 0
  523. md->virt_addr = ia64_remap(md->phys_addr,
  524. (_PAGE_A |
  525. _PAGE_P |
  526. _PAGE_D |
  527. _PAGE_MA_WC |
  528. _PAGE_PL_0 |
  529. _PAGE_AR_RW));
  530. #else
  531. printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
  532. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  533. #endif
  534. } else if (md->attribute & EFI_MEMORY_WT) {
  535. #if 0
  536. md->virt_addr = ia64_remap(md->phys_addr,
  537. (_PAGE_A |
  538. _PAGE_P |
  539. _PAGE_D |
  540. _PAGE_MA_WT |
  541. _PAGE_PL_0 |
  542. _PAGE_AR_RW));
  543. #else
  544. printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
  545. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  546. #endif
  547. }
  548. }
  549. }
  550. status = efi_call_phys(__va(runtime->set_virtual_address_map),
  551. ia64_boot_param->efi_memmap_size,
  552. efi_desc_size,
  553. ia64_boot_param->efi_memdesc_version,
  554. ia64_boot_param->efi_memmap);
  555. if (status != EFI_SUCCESS) {
  556. printk(KERN_WARNING "warning: unable to switch EFI into "
  557. "virtual mode (status=%lu)\n", status);
  558. return;
  559. }
  560. /*
  561. * Now that EFI is in virtual mode, we call the EFI functions more
  562. * efficiently:
  563. */
  564. efi.get_time = virt_get_time;
  565. efi.set_time = virt_set_time;
  566. efi.get_wakeup_time = virt_get_wakeup_time;
  567. efi.set_wakeup_time = virt_set_wakeup_time;
  568. efi.get_variable = virt_get_variable;
  569. efi.get_next_variable = virt_get_next_variable;
  570. efi.set_variable = virt_set_variable;
  571. efi.get_next_high_mono_count = virt_get_next_high_mono_count;
  572. efi.reset_system = virt_reset_system;
  573. }
  574. /*
  575. * Walk the EFI memory map looking for the I/O port range. There can only be
  576. * one entry of this type, other I/O port ranges should be described via ACPI.
  577. */
  578. u64
  579. efi_get_iobase (void)
  580. {
  581. void *efi_map_start, *efi_map_end, *p;
  582. efi_memory_desc_t *md;
  583. u64 efi_desc_size;
  584. efi_map_start = __va(ia64_boot_param->efi_memmap);
  585. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  586. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  587. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  588. md = p;
  589. if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
  590. if (md->attribute & EFI_MEMORY_UC)
  591. return md->phys_addr;
  592. }
  593. }
  594. return 0;
  595. }
  596. static struct kern_memdesc *
  597. kern_memory_descriptor (unsigned long phys_addr)
  598. {
  599. struct kern_memdesc *md;
  600. for (md = kern_memmap; md->start != ~0UL; md++) {
  601. if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
  602. return md;
  603. }
  604. return NULL;
  605. }
  606. static efi_memory_desc_t *
  607. efi_memory_descriptor (unsigned long phys_addr)
  608. {
  609. void *efi_map_start, *efi_map_end, *p;
  610. efi_memory_desc_t *md;
  611. u64 efi_desc_size;
  612. efi_map_start = __va(ia64_boot_param->efi_memmap);
  613. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  614. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  615. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  616. md = p;
  617. if (phys_addr - md->phys_addr < efi_md_size(md))
  618. return md;
  619. }
  620. return NULL;
  621. }
  622. static int
  623. efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
  624. {
  625. void *efi_map_start, *efi_map_end, *p;
  626. efi_memory_desc_t *md;
  627. u64 efi_desc_size;
  628. unsigned long end;
  629. efi_map_start = __va(ia64_boot_param->efi_memmap);
  630. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  631. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  632. end = phys_addr + size;
  633. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  634. md = p;
  635. if (md->phys_addr < end && efi_md_end(md) > phys_addr)
  636. return 1;
  637. }
  638. return 0;
  639. }
  640. u32
  641. efi_mem_type (unsigned long phys_addr)
  642. {
  643. efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
  644. if (md)
  645. return md->type;
  646. return 0;
  647. }
  648. u64
  649. efi_mem_attributes (unsigned long phys_addr)
  650. {
  651. efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
  652. if (md)
  653. return md->attribute;
  654. return 0;
  655. }
  656. EXPORT_SYMBOL(efi_mem_attributes);
  657. u64
  658. efi_mem_attribute (unsigned long phys_addr, unsigned long size)
  659. {
  660. unsigned long end = phys_addr + size;
  661. efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
  662. u64 attr;
  663. if (!md)
  664. return 0;
  665. /*
  666. * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
  667. * the kernel that firmware needs this region mapped.
  668. */
  669. attr = md->attribute & ~EFI_MEMORY_RUNTIME;
  670. do {
  671. unsigned long md_end = efi_md_end(md);
  672. if (end <= md_end)
  673. return attr;
  674. md = efi_memory_descriptor(md_end);
  675. if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
  676. return 0;
  677. } while (md);
  678. return 0; /* never reached */
  679. }
  680. u64
  681. kern_mem_attribute (unsigned long phys_addr, unsigned long size)
  682. {
  683. unsigned long end = phys_addr + size;
  684. struct kern_memdesc *md;
  685. u64 attr;
  686. /*
  687. * This is a hack for ioremap calls before we set up kern_memmap.
  688. * Maybe we should do efi_memmap_init() earlier instead.
  689. */
  690. if (!kern_memmap) {
  691. attr = efi_mem_attribute(phys_addr, size);
  692. if (attr & EFI_MEMORY_WB)
  693. return EFI_MEMORY_WB;
  694. return 0;
  695. }
  696. md = kern_memory_descriptor(phys_addr);
  697. if (!md)
  698. return 0;
  699. attr = md->attribute;
  700. do {
  701. unsigned long md_end = kmd_end(md);
  702. if (end <= md_end)
  703. return attr;
  704. md = kern_memory_descriptor(md_end);
  705. if (!md || md->attribute != attr)
  706. return 0;
  707. } while (md);
  708. return 0; /* never reached */
  709. }
  710. EXPORT_SYMBOL(kern_mem_attribute);
  711. int
  712. valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
  713. {
  714. u64 attr;
  715. /*
  716. * /dev/mem reads and writes use copy_to_user(), which implicitly
  717. * uses a granule-sized kernel identity mapping. It's really
  718. * only safe to do this for regions in kern_memmap. For more
  719. * details, see Documentation/ia64/aliasing.txt.
  720. */
  721. attr = kern_mem_attribute(phys_addr, size);
  722. if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
  723. return 1;
  724. return 0;
  725. }
  726. int
  727. valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
  728. {
  729. unsigned long phys_addr = pfn << PAGE_SHIFT;
  730. u64 attr;
  731. attr = efi_mem_attribute(phys_addr, size);
  732. /*
  733. * /dev/mem mmap uses normal user pages, so we don't need the entire
  734. * granule, but the entire region we're mapping must support the same
  735. * attribute.
  736. */
  737. if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
  738. return 1;
  739. /*
  740. * Intel firmware doesn't tell us about all the MMIO regions, so
  741. * in general we have to allow mmap requests. But if EFI *does*
  742. * tell us about anything inside this region, we should deny it.
  743. * The user can always map a smaller region to avoid the overlap.
  744. */
  745. if (efi_memmap_intersects(phys_addr, size))
  746. return 0;
  747. return 1;
  748. }
  749. pgprot_t
  750. phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
  751. pgprot_t vma_prot)
  752. {
  753. unsigned long phys_addr = pfn << PAGE_SHIFT;
  754. u64 attr;
  755. /*
  756. * For /dev/mem mmap, we use user mappings, but if the region is
  757. * in kern_memmap (and hence may be covered by a kernel mapping),
  758. * we must use the same attribute as the kernel mapping.
  759. */
  760. attr = kern_mem_attribute(phys_addr, size);
  761. if (attr & EFI_MEMORY_WB)
  762. return pgprot_cacheable(vma_prot);
  763. else if (attr & EFI_MEMORY_UC)
  764. return pgprot_noncached(vma_prot);
  765. /*
  766. * Some chipsets don't support UC access to memory. If
  767. * WB is supported, we prefer that.
  768. */
  769. if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
  770. return pgprot_cacheable(vma_prot);
  771. return pgprot_noncached(vma_prot);
  772. }
  773. int __init
  774. efi_uart_console_only(void)
  775. {
  776. efi_status_t status;
  777. char *s, name[] = "ConOut";
  778. efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
  779. efi_char16_t *utf16, name_utf16[32];
  780. unsigned char data[1024];
  781. unsigned long size = sizeof(data);
  782. struct efi_generic_dev_path *hdr, *end_addr;
  783. int uart = 0;
  784. /* Convert to UTF-16 */
  785. utf16 = name_utf16;
  786. s = name;
  787. while (*s)
  788. *utf16++ = *s++ & 0x7f;
  789. *utf16 = 0;
  790. status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
  791. if (status != EFI_SUCCESS) {
  792. printk(KERN_ERR "No EFI %s variable?\n", name);
  793. return 0;
  794. }
  795. hdr = (struct efi_generic_dev_path *) data;
  796. end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
  797. while (hdr < end_addr) {
  798. if (hdr->type == EFI_DEV_MSG &&
  799. hdr->sub_type == EFI_DEV_MSG_UART)
  800. uart = 1;
  801. else if (hdr->type == EFI_DEV_END_PATH ||
  802. hdr->type == EFI_DEV_END_PATH2) {
  803. if (!uart)
  804. return 0;
  805. if (hdr->sub_type == EFI_DEV_END_ENTIRE)
  806. return 1;
  807. uart = 0;
  808. }
  809. hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
  810. }
  811. printk(KERN_ERR "Malformed %s value\n", name);
  812. return 0;
  813. }
  814. /*
  815. * Look for the first granule aligned memory descriptor memory
  816. * that is big enough to hold EFI memory map. Make sure this
  817. * descriptor is atleast granule sized so it does not get trimmed
  818. */
  819. struct kern_memdesc *
  820. find_memmap_space (void)
  821. {
  822. u64 contig_low=0, contig_high=0;
  823. u64 as = 0, ae;
  824. void *efi_map_start, *efi_map_end, *p, *q;
  825. efi_memory_desc_t *md, *pmd = NULL, *check_md;
  826. u64 space_needed, efi_desc_size;
  827. unsigned long total_mem = 0;
  828. efi_map_start = __va(ia64_boot_param->efi_memmap);
  829. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  830. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  831. /*
  832. * Worst case: we need 3 kernel descriptors for each efi descriptor
  833. * (if every entry has a WB part in the middle, and UC head and tail),
  834. * plus one for the end marker.
  835. */
  836. space_needed = sizeof(kern_memdesc_t) *
  837. (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
  838. for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
  839. md = p;
  840. if (!efi_wb(md)) {
  841. continue;
  842. }
  843. if (pmd == NULL || !efi_wb(pmd) ||
  844. efi_md_end(pmd) != md->phys_addr) {
  845. contig_low = GRANULEROUNDUP(md->phys_addr);
  846. contig_high = efi_md_end(md);
  847. for (q = p + efi_desc_size; q < efi_map_end;
  848. q += efi_desc_size) {
  849. check_md = q;
  850. if (!efi_wb(check_md))
  851. break;
  852. if (contig_high != check_md->phys_addr)
  853. break;
  854. contig_high = efi_md_end(check_md);
  855. }
  856. contig_high = GRANULEROUNDDOWN(contig_high);
  857. }
  858. if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
  859. continue;
  860. /* Round ends inward to granule boundaries */
  861. as = max(contig_low, md->phys_addr);
  862. ae = min(contig_high, efi_md_end(md));
  863. /* keep within max_addr= and min_addr= command line arg */
  864. as = max(as, min_addr);
  865. ae = min(ae, max_addr);
  866. if (ae <= as)
  867. continue;
  868. /* avoid going over mem= command line arg */
  869. if (total_mem + (ae - as) > mem_limit)
  870. ae -= total_mem + (ae - as) - mem_limit;
  871. if (ae <= as)
  872. continue;
  873. if (ae - as > space_needed)
  874. break;
  875. }
  876. if (p >= efi_map_end)
  877. panic("Can't allocate space for kernel memory descriptors");
  878. return __va(as);
  879. }
  880. /*
  881. * Walk the EFI memory map and gather all memory available for kernel
  882. * to use. We can allocate partial granules only if the unavailable
  883. * parts exist, and are WB.
  884. */
  885. unsigned long
  886. efi_memmap_init(unsigned long *s, unsigned long *e)
  887. {
  888. struct kern_memdesc *k, *prev = NULL;
  889. u64 contig_low=0, contig_high=0;
  890. u64 as, ae, lim;
  891. void *efi_map_start, *efi_map_end, *p, *q;
  892. efi_memory_desc_t *md, *pmd = NULL, *check_md;
  893. u64 efi_desc_size;
  894. unsigned long total_mem = 0;
  895. k = kern_memmap = find_memmap_space();
  896. efi_map_start = __va(ia64_boot_param->efi_memmap);
  897. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  898. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  899. for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
  900. md = p;
  901. if (!efi_wb(md)) {
  902. if (efi_uc(md) &&
  903. (md->type == EFI_CONVENTIONAL_MEMORY ||
  904. md->type == EFI_BOOT_SERVICES_DATA)) {
  905. k->attribute = EFI_MEMORY_UC;
  906. k->start = md->phys_addr;
  907. k->num_pages = md->num_pages;
  908. k++;
  909. }
  910. continue;
  911. }
  912. if (pmd == NULL || !efi_wb(pmd) ||
  913. efi_md_end(pmd) != md->phys_addr) {
  914. contig_low = GRANULEROUNDUP(md->phys_addr);
  915. contig_high = efi_md_end(md);
  916. for (q = p + efi_desc_size; q < efi_map_end;
  917. q += efi_desc_size) {
  918. check_md = q;
  919. if (!efi_wb(check_md))
  920. break;
  921. if (contig_high != check_md->phys_addr)
  922. break;
  923. contig_high = efi_md_end(check_md);
  924. }
  925. contig_high = GRANULEROUNDDOWN(contig_high);
  926. }
  927. if (!is_memory_available(md))
  928. continue;
  929. #ifdef CONFIG_CRASH_DUMP
  930. /* saved_max_pfn should ignore max_addr= command line arg */
  931. if (saved_max_pfn < (efi_md_end(md) >> PAGE_SHIFT))
  932. saved_max_pfn = (efi_md_end(md) >> PAGE_SHIFT);
  933. #endif
  934. /*
  935. * Round ends inward to granule boundaries
  936. * Give trimmings to uncached allocator
  937. */
  938. if (md->phys_addr < contig_low) {
  939. lim = min(efi_md_end(md), contig_low);
  940. if (efi_uc(md)) {
  941. if (k > kern_memmap &&
  942. (k-1)->attribute == EFI_MEMORY_UC &&
  943. kmd_end(k-1) == md->phys_addr) {
  944. (k-1)->num_pages +=
  945. (lim - md->phys_addr)
  946. >> EFI_PAGE_SHIFT;
  947. } else {
  948. k->attribute = EFI_MEMORY_UC;
  949. k->start = md->phys_addr;
  950. k->num_pages = (lim - md->phys_addr)
  951. >> EFI_PAGE_SHIFT;
  952. k++;
  953. }
  954. }
  955. as = contig_low;
  956. } else
  957. as = md->phys_addr;
  958. if (efi_md_end(md) > contig_high) {
  959. lim = max(md->phys_addr, contig_high);
  960. if (efi_uc(md)) {
  961. if (lim == md->phys_addr && k > kern_memmap &&
  962. (k-1)->attribute == EFI_MEMORY_UC &&
  963. kmd_end(k-1) == md->phys_addr) {
  964. (k-1)->num_pages += md->num_pages;
  965. } else {
  966. k->attribute = EFI_MEMORY_UC;
  967. k->start = lim;
  968. k->num_pages = (efi_md_end(md) - lim)
  969. >> EFI_PAGE_SHIFT;
  970. k++;
  971. }
  972. }
  973. ae = contig_high;
  974. } else
  975. ae = efi_md_end(md);
  976. /* keep within max_addr= and min_addr= command line arg */
  977. as = max(as, min_addr);
  978. ae = min(ae, max_addr);
  979. if (ae <= as)
  980. continue;
  981. /* avoid going over mem= command line arg */
  982. if (total_mem + (ae - as) > mem_limit)
  983. ae -= total_mem + (ae - as) - mem_limit;
  984. if (ae <= as)
  985. continue;
  986. if (prev && kmd_end(prev) == md->phys_addr) {
  987. prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
  988. total_mem += ae - as;
  989. continue;
  990. }
  991. k->attribute = EFI_MEMORY_WB;
  992. k->start = as;
  993. k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
  994. total_mem += ae - as;
  995. prev = k++;
  996. }
  997. k->start = ~0L; /* end-marker */
  998. /* reserve the memory we are using for kern_memmap */
  999. *s = (u64)kern_memmap;
  1000. *e = (u64)++k;
  1001. return total_mem;
  1002. }
  1003. void
  1004. efi_initialize_iomem_resources(struct resource *code_resource,
  1005. struct resource *data_resource,
  1006. struct resource *bss_resource)
  1007. {
  1008. struct resource *res;
  1009. void *efi_map_start, *efi_map_end, *p;
  1010. efi_memory_desc_t *md;
  1011. u64 efi_desc_size;
  1012. char *name;
  1013. unsigned long flags;
  1014. efi_map_start = __va(ia64_boot_param->efi_memmap);
  1015. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  1016. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  1017. res = NULL;
  1018. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  1019. md = p;
  1020. if (md->num_pages == 0) /* should not happen */
  1021. continue;
  1022. flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  1023. switch (md->type) {
  1024. case EFI_MEMORY_MAPPED_IO:
  1025. case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
  1026. continue;
  1027. case EFI_LOADER_CODE:
  1028. case EFI_LOADER_DATA:
  1029. case EFI_BOOT_SERVICES_DATA:
  1030. case EFI_BOOT_SERVICES_CODE:
  1031. case EFI_CONVENTIONAL_MEMORY:
  1032. if (md->attribute & EFI_MEMORY_WP) {
  1033. name = "System ROM";
  1034. flags |= IORESOURCE_READONLY;
  1035. } else {
  1036. name = "System RAM";
  1037. }
  1038. break;
  1039. case EFI_ACPI_MEMORY_NVS:
  1040. name = "ACPI Non-volatile Storage";
  1041. break;
  1042. case EFI_UNUSABLE_MEMORY:
  1043. name = "reserved";
  1044. flags |= IORESOURCE_DISABLED;
  1045. break;
  1046. case EFI_RESERVED_TYPE:
  1047. case EFI_RUNTIME_SERVICES_CODE:
  1048. case EFI_RUNTIME_SERVICES_DATA:
  1049. case EFI_ACPI_RECLAIM_MEMORY:
  1050. default:
  1051. name = "reserved";
  1052. break;
  1053. }
  1054. if ((res = kzalloc(sizeof(struct resource),
  1055. GFP_KERNEL)) == NULL) {
  1056. printk(KERN_ERR
  1057. "failed to allocate resource for iomem\n");
  1058. return;
  1059. }
  1060. res->name = name;
  1061. res->start = md->phys_addr;
  1062. res->end = md->phys_addr + efi_md_size(md) - 1;
  1063. res->flags = flags;
  1064. if (insert_resource(&iomem_resource, res) < 0)
  1065. kfree(res);
  1066. else {
  1067. /*
  1068. * We don't know which region contains
  1069. * kernel data so we try it repeatedly and
  1070. * let the resource manager test it.
  1071. */
  1072. insert_resource(res, code_resource);
  1073. insert_resource(res, data_resource);
  1074. insert_resource(res, bss_resource);
  1075. #ifdef CONFIG_KEXEC
  1076. insert_resource(res, &efi_memmap_res);
  1077. insert_resource(res, &boot_param_res);
  1078. if (crashk_res.end > crashk_res.start)
  1079. insert_resource(res, &crashk_res);
  1080. #endif
  1081. }
  1082. }
  1083. }
  1084. #ifdef CONFIG_KEXEC
  1085. /* find a block of memory aligned to 64M exclude reserved regions
  1086. rsvd_regions are sorted
  1087. */
  1088. unsigned long __init
  1089. kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
  1090. {
  1091. int i;
  1092. u64 start, end;
  1093. u64 alignment = 1UL << _PAGE_SIZE_64M;
  1094. void *efi_map_start, *efi_map_end, *p;
  1095. efi_memory_desc_t *md;
  1096. u64 efi_desc_size;
  1097. efi_map_start = __va(ia64_boot_param->efi_memmap);
  1098. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  1099. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  1100. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  1101. md = p;
  1102. if (!efi_wb(md))
  1103. continue;
  1104. start = ALIGN(md->phys_addr, alignment);
  1105. end = efi_md_end(md);
  1106. for (i = 0; i < n; i++) {
  1107. if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
  1108. if (__pa(r[i].start) > start + size)
  1109. return start;
  1110. start = ALIGN(__pa(r[i].end), alignment);
  1111. if (i < n-1 &&
  1112. __pa(r[i+1].start) < start + size)
  1113. continue;
  1114. else
  1115. break;
  1116. }
  1117. }
  1118. if (end > start + size)
  1119. return start;
  1120. }
  1121. printk(KERN_WARNING
  1122. "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
  1123. return ~0UL;
  1124. }
  1125. #endif
  1126. #ifdef CONFIG_PROC_VMCORE
  1127. /* locate the size find a the descriptor at a certain address */
  1128. unsigned long __init
  1129. vmcore_find_descriptor_size (unsigned long address)
  1130. {
  1131. void *efi_map_start, *efi_map_end, *p;
  1132. efi_memory_desc_t *md;
  1133. u64 efi_desc_size;
  1134. unsigned long ret = 0;
  1135. efi_map_start = __va(ia64_boot_param->efi_memmap);
  1136. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  1137. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  1138. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  1139. md = p;
  1140. if (efi_wb(md) && md->type == EFI_LOADER_DATA
  1141. && md->phys_addr == address) {
  1142. ret = efi_md_size(md);
  1143. break;
  1144. }
  1145. }
  1146. if (ret == 0)
  1147. printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
  1148. return ret;
  1149. }
  1150. #endif