suspend_64.c 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321
  1. /*
  2. * Suspend support specific for i386.
  3. *
  4. * Distribute under GPLv2
  5. *
  6. * Copyright (c) 2002 Pavel Machek <pavel@suse.cz>
  7. * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
  8. */
  9. #include <linux/smp.h>
  10. #include <linux/suspend.h>
  11. #include <asm/proto.h>
  12. #include <asm/page.h>
  13. #include <asm/pgtable.h>
  14. #include <asm/mtrr.h>
  15. /* References to section boundaries */
  16. extern const void __nosave_begin, __nosave_end;
  17. struct saved_context saved_context;
  18. void __save_processor_state(struct saved_context *ctxt)
  19. {
  20. kernel_fpu_begin();
  21. /*
  22. * descriptor tables
  23. */
  24. store_gdt((struct desc_ptr *)&ctxt->gdt_limit);
  25. store_idt((struct desc_ptr *)&ctxt->idt_limit);
  26. store_tr(ctxt->tr);
  27. /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
  28. /*
  29. * segment registers
  30. */
  31. asm volatile ("movw %%ds, %0" : "=m" (ctxt->ds));
  32. asm volatile ("movw %%es, %0" : "=m" (ctxt->es));
  33. asm volatile ("movw %%fs, %0" : "=m" (ctxt->fs));
  34. asm volatile ("movw %%gs, %0" : "=m" (ctxt->gs));
  35. asm volatile ("movw %%ss, %0" : "=m" (ctxt->ss));
  36. rdmsrl(MSR_FS_BASE, ctxt->fs_base);
  37. rdmsrl(MSR_GS_BASE, ctxt->gs_base);
  38. rdmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
  39. mtrr_save_fixed_ranges(NULL);
  40. /*
  41. * control registers
  42. */
  43. rdmsrl(MSR_EFER, ctxt->efer);
  44. ctxt->cr0 = read_cr0();
  45. ctxt->cr2 = read_cr2();
  46. ctxt->cr3 = read_cr3();
  47. ctxt->cr4 = read_cr4();
  48. ctxt->cr8 = read_cr8();
  49. }
  50. void save_processor_state(void)
  51. {
  52. __save_processor_state(&saved_context);
  53. }
  54. static void do_fpu_end(void)
  55. {
  56. /*
  57. * Restore FPU regs if necessary
  58. */
  59. kernel_fpu_end();
  60. }
  61. void __restore_processor_state(struct saved_context *ctxt)
  62. {
  63. /*
  64. * control registers
  65. */
  66. wrmsrl(MSR_EFER, ctxt->efer);
  67. write_cr8(ctxt->cr8);
  68. write_cr4(ctxt->cr4);
  69. write_cr3(ctxt->cr3);
  70. write_cr2(ctxt->cr2);
  71. write_cr0(ctxt->cr0);
  72. /*
  73. * now restore the descriptor tables to their proper values
  74. * ltr is done i fix_processor_context().
  75. */
  76. load_gdt((const struct desc_ptr *)&ctxt->gdt_limit);
  77. load_idt((const struct desc_ptr *)&ctxt->idt_limit);
  78. /*
  79. * segment registers
  80. */
  81. asm volatile ("movw %0, %%ds" :: "r" (ctxt->ds));
  82. asm volatile ("movw %0, %%es" :: "r" (ctxt->es));
  83. asm volatile ("movw %0, %%fs" :: "r" (ctxt->fs));
  84. load_gs_index(ctxt->gs);
  85. asm volatile ("movw %0, %%ss" :: "r" (ctxt->ss));
  86. wrmsrl(MSR_FS_BASE, ctxt->fs_base);
  87. wrmsrl(MSR_GS_BASE, ctxt->gs_base);
  88. wrmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
  89. fix_processor_context();
  90. do_fpu_end();
  91. mtrr_ap_init();
  92. }
  93. void restore_processor_state(void)
  94. {
  95. __restore_processor_state(&saved_context);
  96. }
  97. void fix_processor_context(void)
  98. {
  99. int cpu = smp_processor_id();
  100. struct tss_struct *t = &per_cpu(init_tss, cpu);
  101. set_tss_desc(cpu,t); /* This just modifies memory; should not be necessary. But... This is necessary, because 386 hardware has concept of busy TSS or some similar stupidity. */
  102. cpu_gdt(cpu)[GDT_ENTRY_TSS].type = 9;
  103. syscall_init(); /* This sets MSR_*STAR and related */
  104. load_TR_desc(); /* This does ltr */
  105. load_LDT(&current->active_mm->context); /* This does lldt */
  106. /*
  107. * Now maybe reload the debug registers
  108. */
  109. if (current->thread.debugreg7){
  110. loaddebug(&current->thread, 0);
  111. loaddebug(&current->thread, 1);
  112. loaddebug(&current->thread, 2);
  113. loaddebug(&current->thread, 3);
  114. /* no 4 and 5 */
  115. loaddebug(&current->thread, 6);
  116. loaddebug(&current->thread, 7);
  117. }
  118. }
  119. #ifdef CONFIG_HIBERNATION
  120. /* Defined in arch/x86_64/kernel/suspend_asm.S */
  121. extern int restore_image(void);
  122. /*
  123. * Address to jump to in the last phase of restore in order to get to the image
  124. * kernel's text (this value is passed in the image header).
  125. */
  126. unsigned long restore_jump_address;
  127. /*
  128. * Value of the cr3 register from before the hibernation (this value is passed
  129. * in the image header).
  130. */
  131. unsigned long restore_cr3;
  132. pgd_t *temp_level4_pgt;
  133. void *relocated_restore_code;
  134. static int res_phys_pud_init(pud_t *pud, unsigned long address, unsigned long end)
  135. {
  136. long i, j;
  137. i = pud_index(address);
  138. pud = pud + i;
  139. for (; i < PTRS_PER_PUD; pud++, i++) {
  140. unsigned long paddr;
  141. pmd_t *pmd;
  142. paddr = address + i*PUD_SIZE;
  143. if (paddr >= end)
  144. break;
  145. pmd = (pmd_t *)get_safe_page(GFP_ATOMIC);
  146. if (!pmd)
  147. return -ENOMEM;
  148. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
  149. for (j = 0; j < PTRS_PER_PMD; pmd++, j++, paddr += PMD_SIZE) {
  150. unsigned long pe;
  151. if (paddr >= end)
  152. break;
  153. pe = __PAGE_KERNEL_LARGE_EXEC | paddr;
  154. pe &= __supported_pte_mask;
  155. set_pmd(pmd, __pmd(pe));
  156. }
  157. }
  158. return 0;
  159. }
  160. static int res_kernel_text_pud_init(pud_t *pud, unsigned long start)
  161. {
  162. pmd_t *pmd;
  163. unsigned long paddr;
  164. pmd = (pmd_t *)get_safe_page(GFP_ATOMIC);
  165. if (!pmd)
  166. return -ENOMEM;
  167. set_pud(pud + pud_index(start), __pud(__pa(pmd) | _KERNPG_TABLE));
  168. for (paddr = 0; paddr < KERNEL_TEXT_SIZE; pmd++, paddr += PMD_SIZE) {
  169. unsigned long pe;
  170. pe = __PAGE_KERNEL_LARGE_EXEC | _PAGE_GLOBAL | paddr;
  171. pe &= __supported_pte_mask;
  172. set_pmd(pmd, __pmd(pe));
  173. }
  174. return 0;
  175. }
  176. static int set_up_temporary_mappings(void)
  177. {
  178. unsigned long start, end, next;
  179. pud_t *pud;
  180. int error;
  181. temp_level4_pgt = (pgd_t *)get_safe_page(GFP_ATOMIC);
  182. if (!temp_level4_pgt)
  183. return -ENOMEM;
  184. /* Set up the direct mapping from scratch */
  185. start = (unsigned long)pfn_to_kaddr(0);
  186. end = (unsigned long)pfn_to_kaddr(end_pfn);
  187. for (; start < end; start = next) {
  188. pud = (pud_t *)get_safe_page(GFP_ATOMIC);
  189. if (!pud)
  190. return -ENOMEM;
  191. next = start + PGDIR_SIZE;
  192. if (next > end)
  193. next = end;
  194. if ((error = res_phys_pud_init(pud, __pa(start), __pa(next))))
  195. return error;
  196. set_pgd(temp_level4_pgt + pgd_index(start),
  197. mk_kernel_pgd(__pa(pud)));
  198. }
  199. /* Set up the kernel text mapping from scratch */
  200. pud = (pud_t *)get_safe_page(GFP_ATOMIC);
  201. if (!pud)
  202. return -ENOMEM;
  203. error = res_kernel_text_pud_init(pud, __START_KERNEL_map);
  204. if (!error)
  205. set_pgd(temp_level4_pgt + pgd_index(__START_KERNEL_map),
  206. __pgd(__pa(pud) | _PAGE_TABLE));
  207. return error;
  208. }
  209. int swsusp_arch_resume(void)
  210. {
  211. int error;
  212. /* We have got enough memory and from now on we cannot recover */
  213. if ((error = set_up_temporary_mappings()))
  214. return error;
  215. relocated_restore_code = (void *)get_safe_page(GFP_ATOMIC);
  216. if (!relocated_restore_code)
  217. return -ENOMEM;
  218. memcpy(relocated_restore_code, &core_restore_code,
  219. &restore_registers - &core_restore_code);
  220. restore_image();
  221. return 0;
  222. }
  223. /*
  224. * pfn_is_nosave - check if given pfn is in the 'nosave' section
  225. */
  226. int pfn_is_nosave(unsigned long pfn)
  227. {
  228. unsigned long nosave_begin_pfn = __pa_symbol(&__nosave_begin) >> PAGE_SHIFT;
  229. unsigned long nosave_end_pfn = PAGE_ALIGN(__pa_symbol(&__nosave_end)) >> PAGE_SHIFT;
  230. return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn);
  231. }
  232. struct restore_data_record {
  233. unsigned long jump_address;
  234. unsigned long cr3;
  235. unsigned long magic;
  236. };
  237. #define RESTORE_MAGIC 0x0123456789ABCDEFUL
  238. /**
  239. * arch_hibernation_header_save - populate the architecture specific part
  240. * of a hibernation image header
  241. * @addr: address to save the data at
  242. */
  243. int arch_hibernation_header_save(void *addr, unsigned int max_size)
  244. {
  245. struct restore_data_record *rdr = addr;
  246. if (max_size < sizeof(struct restore_data_record))
  247. return -EOVERFLOW;
  248. rdr->jump_address = restore_jump_address;
  249. rdr->cr3 = restore_cr3;
  250. rdr->magic = RESTORE_MAGIC;
  251. return 0;
  252. }
  253. /**
  254. * arch_hibernation_header_restore - read the architecture specific data
  255. * from the hibernation image header
  256. * @addr: address to read the data from
  257. */
  258. int arch_hibernation_header_restore(void *addr)
  259. {
  260. struct restore_data_record *rdr = addr;
  261. restore_jump_address = rdr->jump_address;
  262. restore_cr3 = rdr->cr3;
  263. return (rdr->magic == RESTORE_MAGIC) ? 0 : -EINVAL;
  264. }
  265. #endif /* CONFIG_HIBERNATION */