kvm_main.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86.h"
  19. #include "irq.h"
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/gfp.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <linux/reboot.h>
  29. #include <linux/debugfs.h>
  30. #include <linux/highmem.h>
  31. #include <linux/file.h>
  32. #include <linux/sysdev.h>
  33. #include <linux/cpu.h>
  34. #include <linux/sched.h>
  35. #include <linux/cpumask.h>
  36. #include <linux/smp.h>
  37. #include <linux/anon_inodes.h>
  38. #include <linux/profile.h>
  39. #include <linux/kvm_para.h>
  40. #include <linux/pagemap.h>
  41. #include <linux/mman.h>
  42. #include <asm/processor.h>
  43. #include <asm/io.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/desc.h>
  46. #include <asm/pgtable.h>
  47. MODULE_AUTHOR("Qumranet");
  48. MODULE_LICENSE("GPL");
  49. DEFINE_SPINLOCK(kvm_lock);
  50. LIST_HEAD(vm_list);
  51. static cpumask_t cpus_hardware_enabled;
  52. struct kmem_cache *kvm_vcpu_cache;
  53. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  54. static __read_mostly struct preempt_ops kvm_preempt_ops;
  55. static struct dentry *debugfs_dir;
  56. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  57. unsigned long arg);
  58. static inline int valid_vcpu(int n)
  59. {
  60. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  61. }
  62. /*
  63. * Switches to specified vcpu, until a matching vcpu_put()
  64. */
  65. void vcpu_load(struct kvm_vcpu *vcpu)
  66. {
  67. int cpu;
  68. mutex_lock(&vcpu->mutex);
  69. cpu = get_cpu();
  70. preempt_notifier_register(&vcpu->preempt_notifier);
  71. kvm_arch_vcpu_load(vcpu, cpu);
  72. put_cpu();
  73. }
  74. void vcpu_put(struct kvm_vcpu *vcpu)
  75. {
  76. preempt_disable();
  77. kvm_arch_vcpu_put(vcpu);
  78. preempt_notifier_unregister(&vcpu->preempt_notifier);
  79. preempt_enable();
  80. mutex_unlock(&vcpu->mutex);
  81. }
  82. static void ack_flush(void *_completed)
  83. {
  84. }
  85. void kvm_flush_remote_tlbs(struct kvm *kvm)
  86. {
  87. int i, cpu;
  88. cpumask_t cpus;
  89. struct kvm_vcpu *vcpu;
  90. cpus_clear(cpus);
  91. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  92. vcpu = kvm->vcpus[i];
  93. if (!vcpu)
  94. continue;
  95. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  96. continue;
  97. cpu = vcpu->cpu;
  98. if (cpu != -1 && cpu != raw_smp_processor_id())
  99. cpu_set(cpu, cpus);
  100. }
  101. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  102. }
  103. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  104. {
  105. struct page *page;
  106. int r;
  107. mutex_init(&vcpu->mutex);
  108. vcpu->cpu = -1;
  109. vcpu->kvm = kvm;
  110. vcpu->vcpu_id = id;
  111. init_waitqueue_head(&vcpu->wq);
  112. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  113. if (!page) {
  114. r = -ENOMEM;
  115. goto fail;
  116. }
  117. vcpu->run = page_address(page);
  118. r = kvm_arch_vcpu_init(vcpu);
  119. if (r < 0)
  120. goto fail_free_run;
  121. return 0;
  122. fail_free_run:
  123. free_page((unsigned long)vcpu->run);
  124. fail:
  125. return r;
  126. }
  127. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  128. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  129. {
  130. kvm_arch_vcpu_uninit(vcpu);
  131. free_page((unsigned long)vcpu->run);
  132. }
  133. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  134. static struct kvm *kvm_create_vm(void)
  135. {
  136. struct kvm *kvm = kvm_arch_create_vm();
  137. if (IS_ERR(kvm))
  138. goto out;
  139. kvm_io_bus_init(&kvm->pio_bus);
  140. mutex_init(&kvm->lock);
  141. kvm_io_bus_init(&kvm->mmio_bus);
  142. spin_lock(&kvm_lock);
  143. list_add(&kvm->vm_list, &vm_list);
  144. spin_unlock(&kvm_lock);
  145. out:
  146. return kvm;
  147. }
  148. /*
  149. * Free any memory in @free but not in @dont.
  150. */
  151. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  152. struct kvm_memory_slot *dont)
  153. {
  154. if (!dont || free->rmap != dont->rmap)
  155. vfree(free->rmap);
  156. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  157. vfree(free->dirty_bitmap);
  158. free->npages = 0;
  159. free->dirty_bitmap = NULL;
  160. free->rmap = NULL;
  161. }
  162. void kvm_free_physmem(struct kvm *kvm)
  163. {
  164. int i;
  165. for (i = 0; i < kvm->nmemslots; ++i)
  166. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  167. }
  168. static void kvm_destroy_vm(struct kvm *kvm)
  169. {
  170. spin_lock(&kvm_lock);
  171. list_del(&kvm->vm_list);
  172. spin_unlock(&kvm_lock);
  173. kvm_io_bus_destroy(&kvm->pio_bus);
  174. kvm_io_bus_destroy(&kvm->mmio_bus);
  175. kvm_arch_destroy_vm(kvm);
  176. }
  177. static int kvm_vm_release(struct inode *inode, struct file *filp)
  178. {
  179. struct kvm *kvm = filp->private_data;
  180. kvm_destroy_vm(kvm);
  181. return 0;
  182. }
  183. /*
  184. * Allocate some memory and give it an address in the guest physical address
  185. * space.
  186. *
  187. * Discontiguous memory is allowed, mostly for framebuffers.
  188. *
  189. * Must be called holding kvm->lock.
  190. */
  191. int __kvm_set_memory_region(struct kvm *kvm,
  192. struct kvm_userspace_memory_region *mem,
  193. int user_alloc)
  194. {
  195. int r;
  196. gfn_t base_gfn;
  197. unsigned long npages;
  198. unsigned long i;
  199. struct kvm_memory_slot *memslot;
  200. struct kvm_memory_slot old, new;
  201. r = -EINVAL;
  202. /* General sanity checks */
  203. if (mem->memory_size & (PAGE_SIZE - 1))
  204. goto out;
  205. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  206. goto out;
  207. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  208. goto out;
  209. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  210. goto out;
  211. memslot = &kvm->memslots[mem->slot];
  212. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  213. npages = mem->memory_size >> PAGE_SHIFT;
  214. if (!npages)
  215. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  216. new = old = *memslot;
  217. new.base_gfn = base_gfn;
  218. new.npages = npages;
  219. new.flags = mem->flags;
  220. /* Disallow changing a memory slot's size. */
  221. r = -EINVAL;
  222. if (npages && old.npages && npages != old.npages)
  223. goto out_free;
  224. /* Check for overlaps */
  225. r = -EEXIST;
  226. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  227. struct kvm_memory_slot *s = &kvm->memslots[i];
  228. if (s == memslot)
  229. continue;
  230. if (!((base_gfn + npages <= s->base_gfn) ||
  231. (base_gfn >= s->base_gfn + s->npages)))
  232. goto out_free;
  233. }
  234. /* Free page dirty bitmap if unneeded */
  235. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  236. new.dirty_bitmap = NULL;
  237. r = -ENOMEM;
  238. /* Allocate if a slot is being created */
  239. if (npages && !new.rmap) {
  240. new.rmap = vmalloc(npages * sizeof(struct page *));
  241. if (!new.rmap)
  242. goto out_free;
  243. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  244. new.user_alloc = user_alloc;
  245. new.userspace_addr = mem->userspace_addr;
  246. }
  247. /* Allocate page dirty bitmap if needed */
  248. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  249. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  250. new.dirty_bitmap = vmalloc(dirty_bytes);
  251. if (!new.dirty_bitmap)
  252. goto out_free;
  253. memset(new.dirty_bitmap, 0, dirty_bytes);
  254. }
  255. if (mem->slot >= kvm->nmemslots)
  256. kvm->nmemslots = mem->slot + 1;
  257. *memslot = new;
  258. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  259. if (r) {
  260. *memslot = old;
  261. goto out_free;
  262. }
  263. kvm_free_physmem_slot(&old, &new);
  264. return 0;
  265. out_free:
  266. kvm_free_physmem_slot(&new, &old);
  267. out:
  268. return r;
  269. }
  270. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  271. int kvm_set_memory_region(struct kvm *kvm,
  272. struct kvm_userspace_memory_region *mem,
  273. int user_alloc)
  274. {
  275. int r;
  276. mutex_lock(&kvm->lock);
  277. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  278. mutex_unlock(&kvm->lock);
  279. return r;
  280. }
  281. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  282. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  283. struct
  284. kvm_userspace_memory_region *mem,
  285. int user_alloc)
  286. {
  287. if (mem->slot >= KVM_MEMORY_SLOTS)
  288. return -EINVAL;
  289. return kvm_set_memory_region(kvm, mem, user_alloc);
  290. }
  291. int kvm_get_dirty_log(struct kvm *kvm,
  292. struct kvm_dirty_log *log, int *is_dirty)
  293. {
  294. struct kvm_memory_slot *memslot;
  295. int r, i;
  296. int n;
  297. unsigned long any = 0;
  298. r = -EINVAL;
  299. if (log->slot >= KVM_MEMORY_SLOTS)
  300. goto out;
  301. memslot = &kvm->memslots[log->slot];
  302. r = -ENOENT;
  303. if (!memslot->dirty_bitmap)
  304. goto out;
  305. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  306. for (i = 0; !any && i < n/sizeof(long); ++i)
  307. any = memslot->dirty_bitmap[i];
  308. r = -EFAULT;
  309. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  310. goto out;
  311. if (any)
  312. *is_dirty = 1;
  313. r = 0;
  314. out:
  315. return r;
  316. }
  317. int is_error_page(struct page *page)
  318. {
  319. return page == bad_page;
  320. }
  321. EXPORT_SYMBOL_GPL(is_error_page);
  322. static inline unsigned long bad_hva(void)
  323. {
  324. return PAGE_OFFSET;
  325. }
  326. int kvm_is_error_hva(unsigned long addr)
  327. {
  328. return addr == bad_hva();
  329. }
  330. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  331. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  332. {
  333. int i;
  334. struct kvm_mem_alias *alias;
  335. for (i = 0; i < kvm->naliases; ++i) {
  336. alias = &kvm->aliases[i];
  337. if (gfn >= alias->base_gfn
  338. && gfn < alias->base_gfn + alias->npages)
  339. return alias->target_gfn + gfn - alias->base_gfn;
  340. }
  341. return gfn;
  342. }
  343. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  344. {
  345. int i;
  346. for (i = 0; i < kvm->nmemslots; ++i) {
  347. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  348. if (gfn >= memslot->base_gfn
  349. && gfn < memslot->base_gfn + memslot->npages)
  350. return memslot;
  351. }
  352. return NULL;
  353. }
  354. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  355. {
  356. gfn = unalias_gfn(kvm, gfn);
  357. return __gfn_to_memslot(kvm, gfn);
  358. }
  359. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  360. {
  361. int i;
  362. gfn = unalias_gfn(kvm, gfn);
  363. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  364. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  365. if (gfn >= memslot->base_gfn
  366. && gfn < memslot->base_gfn + memslot->npages)
  367. return 1;
  368. }
  369. return 0;
  370. }
  371. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  372. static unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  373. {
  374. struct kvm_memory_slot *slot;
  375. gfn = unalias_gfn(kvm, gfn);
  376. slot = __gfn_to_memslot(kvm, gfn);
  377. if (!slot)
  378. return bad_hva();
  379. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  380. }
  381. /*
  382. * Requires current->mm->mmap_sem to be held
  383. */
  384. static struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn)
  385. {
  386. struct page *page[1];
  387. unsigned long addr;
  388. int npages;
  389. might_sleep();
  390. addr = gfn_to_hva(kvm, gfn);
  391. if (kvm_is_error_hva(addr)) {
  392. get_page(bad_page);
  393. return bad_page;
  394. }
  395. npages = get_user_pages(current, current->mm, addr, 1, 1, 1, page,
  396. NULL);
  397. if (npages != 1) {
  398. get_page(bad_page);
  399. return bad_page;
  400. }
  401. return page[0];
  402. }
  403. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  404. {
  405. struct page *page;
  406. down_read(&current->mm->mmap_sem);
  407. page = __gfn_to_page(kvm, gfn);
  408. up_read(&current->mm->mmap_sem);
  409. return page;
  410. }
  411. EXPORT_SYMBOL_GPL(gfn_to_page);
  412. void kvm_release_page_clean(struct page *page)
  413. {
  414. put_page(page);
  415. }
  416. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  417. void kvm_release_page_dirty(struct page *page)
  418. {
  419. if (!PageReserved(page))
  420. SetPageDirty(page);
  421. put_page(page);
  422. }
  423. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  424. static int next_segment(unsigned long len, int offset)
  425. {
  426. if (len > PAGE_SIZE - offset)
  427. return PAGE_SIZE - offset;
  428. else
  429. return len;
  430. }
  431. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  432. int len)
  433. {
  434. int r;
  435. unsigned long addr;
  436. addr = gfn_to_hva(kvm, gfn);
  437. if (kvm_is_error_hva(addr))
  438. return -EFAULT;
  439. r = copy_from_user(data, (void __user *)addr + offset, len);
  440. if (r)
  441. return -EFAULT;
  442. return 0;
  443. }
  444. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  445. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  446. {
  447. gfn_t gfn = gpa >> PAGE_SHIFT;
  448. int seg;
  449. int offset = offset_in_page(gpa);
  450. int ret;
  451. while ((seg = next_segment(len, offset)) != 0) {
  452. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  453. if (ret < 0)
  454. return ret;
  455. offset = 0;
  456. len -= seg;
  457. data += seg;
  458. ++gfn;
  459. }
  460. return 0;
  461. }
  462. EXPORT_SYMBOL_GPL(kvm_read_guest);
  463. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  464. int offset, int len)
  465. {
  466. int r;
  467. unsigned long addr;
  468. addr = gfn_to_hva(kvm, gfn);
  469. if (kvm_is_error_hva(addr))
  470. return -EFAULT;
  471. r = copy_to_user((void __user *)addr + offset, data, len);
  472. if (r)
  473. return -EFAULT;
  474. mark_page_dirty(kvm, gfn);
  475. return 0;
  476. }
  477. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  478. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  479. unsigned long len)
  480. {
  481. gfn_t gfn = gpa >> PAGE_SHIFT;
  482. int seg;
  483. int offset = offset_in_page(gpa);
  484. int ret;
  485. while ((seg = next_segment(len, offset)) != 0) {
  486. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  487. if (ret < 0)
  488. return ret;
  489. offset = 0;
  490. len -= seg;
  491. data += seg;
  492. ++gfn;
  493. }
  494. return 0;
  495. }
  496. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  497. {
  498. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  499. }
  500. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  501. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  502. {
  503. gfn_t gfn = gpa >> PAGE_SHIFT;
  504. int seg;
  505. int offset = offset_in_page(gpa);
  506. int ret;
  507. while ((seg = next_segment(len, offset)) != 0) {
  508. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  509. if (ret < 0)
  510. return ret;
  511. offset = 0;
  512. len -= seg;
  513. ++gfn;
  514. }
  515. return 0;
  516. }
  517. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  518. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  519. {
  520. struct kvm_memory_slot *memslot;
  521. gfn = unalias_gfn(kvm, gfn);
  522. memslot = __gfn_to_memslot(kvm, gfn);
  523. if (memslot && memslot->dirty_bitmap) {
  524. unsigned long rel_gfn = gfn - memslot->base_gfn;
  525. /* avoid RMW */
  526. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  527. set_bit(rel_gfn, memslot->dirty_bitmap);
  528. }
  529. }
  530. /*
  531. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  532. */
  533. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  534. {
  535. DECLARE_WAITQUEUE(wait, current);
  536. add_wait_queue(&vcpu->wq, &wait);
  537. /*
  538. * We will block until either an interrupt or a signal wakes us up
  539. */
  540. while (!kvm_cpu_has_interrupt(vcpu)
  541. && !signal_pending(current)
  542. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  543. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  544. set_current_state(TASK_INTERRUPTIBLE);
  545. vcpu_put(vcpu);
  546. schedule();
  547. vcpu_load(vcpu);
  548. }
  549. __set_current_state(TASK_RUNNING);
  550. remove_wait_queue(&vcpu->wq, &wait);
  551. }
  552. void kvm_resched(struct kvm_vcpu *vcpu)
  553. {
  554. if (!need_resched())
  555. return;
  556. cond_resched();
  557. }
  558. EXPORT_SYMBOL_GPL(kvm_resched);
  559. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  560. struct kvm_interrupt *irq)
  561. {
  562. if (irq->irq < 0 || irq->irq >= 256)
  563. return -EINVAL;
  564. if (irqchip_in_kernel(vcpu->kvm))
  565. return -ENXIO;
  566. vcpu_load(vcpu);
  567. set_bit(irq->irq, vcpu->irq_pending);
  568. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  569. vcpu_put(vcpu);
  570. return 0;
  571. }
  572. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  573. unsigned long address,
  574. int *type)
  575. {
  576. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  577. unsigned long pgoff;
  578. struct page *page;
  579. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  580. if (pgoff == 0)
  581. page = virt_to_page(vcpu->run);
  582. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  583. page = virt_to_page(vcpu->pio_data);
  584. else
  585. return NOPAGE_SIGBUS;
  586. get_page(page);
  587. if (type != NULL)
  588. *type = VM_FAULT_MINOR;
  589. return page;
  590. }
  591. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  592. .nopage = kvm_vcpu_nopage,
  593. };
  594. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  595. {
  596. vma->vm_ops = &kvm_vcpu_vm_ops;
  597. return 0;
  598. }
  599. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  600. {
  601. struct kvm_vcpu *vcpu = filp->private_data;
  602. fput(vcpu->kvm->filp);
  603. return 0;
  604. }
  605. static struct file_operations kvm_vcpu_fops = {
  606. .release = kvm_vcpu_release,
  607. .unlocked_ioctl = kvm_vcpu_ioctl,
  608. .compat_ioctl = kvm_vcpu_ioctl,
  609. .mmap = kvm_vcpu_mmap,
  610. };
  611. /*
  612. * Allocates an inode for the vcpu.
  613. */
  614. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  615. {
  616. int fd, r;
  617. struct inode *inode;
  618. struct file *file;
  619. r = anon_inode_getfd(&fd, &inode, &file,
  620. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  621. if (r)
  622. return r;
  623. atomic_inc(&vcpu->kvm->filp->f_count);
  624. return fd;
  625. }
  626. /*
  627. * Creates some virtual cpus. Good luck creating more than one.
  628. */
  629. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  630. {
  631. int r;
  632. struct kvm_vcpu *vcpu;
  633. if (!valid_vcpu(n))
  634. return -EINVAL;
  635. vcpu = kvm_arch_vcpu_create(kvm, n);
  636. if (IS_ERR(vcpu))
  637. return PTR_ERR(vcpu);
  638. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  639. mutex_lock(&kvm->lock);
  640. if (kvm->vcpus[n]) {
  641. r = -EEXIST;
  642. mutex_unlock(&kvm->lock);
  643. goto vcpu_destroy;
  644. }
  645. kvm->vcpus[n] = vcpu;
  646. mutex_unlock(&kvm->lock);
  647. /* Now it's all set up, let userspace reach it */
  648. r = create_vcpu_fd(vcpu);
  649. if (r < 0)
  650. goto unlink;
  651. return r;
  652. unlink:
  653. mutex_lock(&kvm->lock);
  654. kvm->vcpus[n] = NULL;
  655. mutex_unlock(&kvm->lock);
  656. vcpu_destroy:
  657. kvm_arch_vcpu_destroy(vcpu);
  658. return r;
  659. }
  660. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  661. {
  662. if (sigset) {
  663. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  664. vcpu->sigset_active = 1;
  665. vcpu->sigset = *sigset;
  666. } else
  667. vcpu->sigset_active = 0;
  668. return 0;
  669. }
  670. static long kvm_vcpu_ioctl(struct file *filp,
  671. unsigned int ioctl, unsigned long arg)
  672. {
  673. struct kvm_vcpu *vcpu = filp->private_data;
  674. void __user *argp = (void __user *)arg;
  675. int r;
  676. switch (ioctl) {
  677. case KVM_RUN:
  678. r = -EINVAL;
  679. if (arg)
  680. goto out;
  681. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  682. break;
  683. case KVM_GET_REGS: {
  684. struct kvm_regs kvm_regs;
  685. memset(&kvm_regs, 0, sizeof kvm_regs);
  686. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  687. if (r)
  688. goto out;
  689. r = -EFAULT;
  690. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  691. goto out;
  692. r = 0;
  693. break;
  694. }
  695. case KVM_SET_REGS: {
  696. struct kvm_regs kvm_regs;
  697. r = -EFAULT;
  698. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  699. goto out;
  700. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  701. if (r)
  702. goto out;
  703. r = 0;
  704. break;
  705. }
  706. case KVM_GET_SREGS: {
  707. struct kvm_sregs kvm_sregs;
  708. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  709. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  710. if (r)
  711. goto out;
  712. r = -EFAULT;
  713. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  714. goto out;
  715. r = 0;
  716. break;
  717. }
  718. case KVM_SET_SREGS: {
  719. struct kvm_sregs kvm_sregs;
  720. r = -EFAULT;
  721. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  722. goto out;
  723. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  724. if (r)
  725. goto out;
  726. r = 0;
  727. break;
  728. }
  729. case KVM_TRANSLATE: {
  730. struct kvm_translation tr;
  731. r = -EFAULT;
  732. if (copy_from_user(&tr, argp, sizeof tr))
  733. goto out;
  734. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  735. if (r)
  736. goto out;
  737. r = -EFAULT;
  738. if (copy_to_user(argp, &tr, sizeof tr))
  739. goto out;
  740. r = 0;
  741. break;
  742. }
  743. case KVM_INTERRUPT: {
  744. struct kvm_interrupt irq;
  745. r = -EFAULT;
  746. if (copy_from_user(&irq, argp, sizeof irq))
  747. goto out;
  748. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  749. if (r)
  750. goto out;
  751. r = 0;
  752. break;
  753. }
  754. case KVM_DEBUG_GUEST: {
  755. struct kvm_debug_guest dbg;
  756. r = -EFAULT;
  757. if (copy_from_user(&dbg, argp, sizeof dbg))
  758. goto out;
  759. r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
  760. if (r)
  761. goto out;
  762. r = 0;
  763. break;
  764. }
  765. case KVM_SET_SIGNAL_MASK: {
  766. struct kvm_signal_mask __user *sigmask_arg = argp;
  767. struct kvm_signal_mask kvm_sigmask;
  768. sigset_t sigset, *p;
  769. p = NULL;
  770. if (argp) {
  771. r = -EFAULT;
  772. if (copy_from_user(&kvm_sigmask, argp,
  773. sizeof kvm_sigmask))
  774. goto out;
  775. r = -EINVAL;
  776. if (kvm_sigmask.len != sizeof sigset)
  777. goto out;
  778. r = -EFAULT;
  779. if (copy_from_user(&sigset, sigmask_arg->sigset,
  780. sizeof sigset))
  781. goto out;
  782. p = &sigset;
  783. }
  784. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  785. break;
  786. }
  787. case KVM_GET_FPU: {
  788. struct kvm_fpu fpu;
  789. memset(&fpu, 0, sizeof fpu);
  790. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu);
  791. if (r)
  792. goto out;
  793. r = -EFAULT;
  794. if (copy_to_user(argp, &fpu, sizeof fpu))
  795. goto out;
  796. r = 0;
  797. break;
  798. }
  799. case KVM_SET_FPU: {
  800. struct kvm_fpu fpu;
  801. r = -EFAULT;
  802. if (copy_from_user(&fpu, argp, sizeof fpu))
  803. goto out;
  804. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu);
  805. if (r)
  806. goto out;
  807. r = 0;
  808. break;
  809. }
  810. default:
  811. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  812. }
  813. out:
  814. return r;
  815. }
  816. static long kvm_vm_ioctl(struct file *filp,
  817. unsigned int ioctl, unsigned long arg)
  818. {
  819. struct kvm *kvm = filp->private_data;
  820. void __user *argp = (void __user *)arg;
  821. int r;
  822. switch (ioctl) {
  823. case KVM_CREATE_VCPU:
  824. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  825. if (r < 0)
  826. goto out;
  827. break;
  828. case KVM_SET_USER_MEMORY_REGION: {
  829. struct kvm_userspace_memory_region kvm_userspace_mem;
  830. r = -EFAULT;
  831. if (copy_from_user(&kvm_userspace_mem, argp,
  832. sizeof kvm_userspace_mem))
  833. goto out;
  834. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  835. if (r)
  836. goto out;
  837. break;
  838. }
  839. case KVM_GET_DIRTY_LOG: {
  840. struct kvm_dirty_log log;
  841. r = -EFAULT;
  842. if (copy_from_user(&log, argp, sizeof log))
  843. goto out;
  844. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  845. if (r)
  846. goto out;
  847. break;
  848. }
  849. default:
  850. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  851. }
  852. out:
  853. return r;
  854. }
  855. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  856. unsigned long address,
  857. int *type)
  858. {
  859. struct kvm *kvm = vma->vm_file->private_data;
  860. unsigned long pgoff;
  861. struct page *page;
  862. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  863. if (!kvm_is_visible_gfn(kvm, pgoff))
  864. return NOPAGE_SIGBUS;
  865. /* current->mm->mmap_sem is already held so call lockless version */
  866. page = __gfn_to_page(kvm, pgoff);
  867. if (is_error_page(page)) {
  868. kvm_release_page_clean(page);
  869. return NOPAGE_SIGBUS;
  870. }
  871. if (type != NULL)
  872. *type = VM_FAULT_MINOR;
  873. return page;
  874. }
  875. static struct vm_operations_struct kvm_vm_vm_ops = {
  876. .nopage = kvm_vm_nopage,
  877. };
  878. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  879. {
  880. vma->vm_ops = &kvm_vm_vm_ops;
  881. return 0;
  882. }
  883. static struct file_operations kvm_vm_fops = {
  884. .release = kvm_vm_release,
  885. .unlocked_ioctl = kvm_vm_ioctl,
  886. .compat_ioctl = kvm_vm_ioctl,
  887. .mmap = kvm_vm_mmap,
  888. };
  889. static int kvm_dev_ioctl_create_vm(void)
  890. {
  891. int fd, r;
  892. struct inode *inode;
  893. struct file *file;
  894. struct kvm *kvm;
  895. kvm = kvm_create_vm();
  896. if (IS_ERR(kvm))
  897. return PTR_ERR(kvm);
  898. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  899. if (r) {
  900. kvm_destroy_vm(kvm);
  901. return r;
  902. }
  903. kvm->filp = file;
  904. return fd;
  905. }
  906. static long kvm_dev_ioctl(struct file *filp,
  907. unsigned int ioctl, unsigned long arg)
  908. {
  909. void __user *argp = (void __user *)arg;
  910. long r = -EINVAL;
  911. switch (ioctl) {
  912. case KVM_GET_API_VERSION:
  913. r = -EINVAL;
  914. if (arg)
  915. goto out;
  916. r = KVM_API_VERSION;
  917. break;
  918. case KVM_CREATE_VM:
  919. r = -EINVAL;
  920. if (arg)
  921. goto out;
  922. r = kvm_dev_ioctl_create_vm();
  923. break;
  924. case KVM_CHECK_EXTENSION:
  925. r = kvm_dev_ioctl_check_extension((long)argp);
  926. break;
  927. case KVM_GET_VCPU_MMAP_SIZE:
  928. r = -EINVAL;
  929. if (arg)
  930. goto out;
  931. r = 2 * PAGE_SIZE;
  932. break;
  933. default:
  934. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  935. }
  936. out:
  937. return r;
  938. }
  939. static struct file_operations kvm_chardev_ops = {
  940. .unlocked_ioctl = kvm_dev_ioctl,
  941. .compat_ioctl = kvm_dev_ioctl,
  942. };
  943. static struct miscdevice kvm_dev = {
  944. KVM_MINOR,
  945. "kvm",
  946. &kvm_chardev_ops,
  947. };
  948. static void hardware_enable(void *junk)
  949. {
  950. int cpu = raw_smp_processor_id();
  951. if (cpu_isset(cpu, cpus_hardware_enabled))
  952. return;
  953. cpu_set(cpu, cpus_hardware_enabled);
  954. kvm_arch_hardware_enable(NULL);
  955. }
  956. static void hardware_disable(void *junk)
  957. {
  958. int cpu = raw_smp_processor_id();
  959. if (!cpu_isset(cpu, cpus_hardware_enabled))
  960. return;
  961. cpu_clear(cpu, cpus_hardware_enabled);
  962. decache_vcpus_on_cpu(cpu);
  963. kvm_arch_hardware_disable(NULL);
  964. }
  965. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  966. void *v)
  967. {
  968. int cpu = (long)v;
  969. val &= ~CPU_TASKS_FROZEN;
  970. switch (val) {
  971. case CPU_DYING:
  972. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  973. cpu);
  974. hardware_disable(NULL);
  975. break;
  976. case CPU_UP_CANCELED:
  977. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  978. cpu);
  979. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  980. break;
  981. case CPU_ONLINE:
  982. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  983. cpu);
  984. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  985. break;
  986. }
  987. return NOTIFY_OK;
  988. }
  989. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  990. void *v)
  991. {
  992. if (val == SYS_RESTART) {
  993. /*
  994. * Some (well, at least mine) BIOSes hang on reboot if
  995. * in vmx root mode.
  996. */
  997. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  998. on_each_cpu(hardware_disable, NULL, 0, 1);
  999. }
  1000. return NOTIFY_OK;
  1001. }
  1002. static struct notifier_block kvm_reboot_notifier = {
  1003. .notifier_call = kvm_reboot,
  1004. .priority = 0,
  1005. };
  1006. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1007. {
  1008. memset(bus, 0, sizeof(*bus));
  1009. }
  1010. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1011. {
  1012. int i;
  1013. for (i = 0; i < bus->dev_count; i++) {
  1014. struct kvm_io_device *pos = bus->devs[i];
  1015. kvm_iodevice_destructor(pos);
  1016. }
  1017. }
  1018. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  1019. {
  1020. int i;
  1021. for (i = 0; i < bus->dev_count; i++) {
  1022. struct kvm_io_device *pos = bus->devs[i];
  1023. if (pos->in_range(pos, addr))
  1024. return pos;
  1025. }
  1026. return NULL;
  1027. }
  1028. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1029. {
  1030. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1031. bus->devs[bus->dev_count++] = dev;
  1032. }
  1033. static struct notifier_block kvm_cpu_notifier = {
  1034. .notifier_call = kvm_cpu_hotplug,
  1035. .priority = 20, /* must be > scheduler priority */
  1036. };
  1037. static u64 vm_stat_get(void *_offset)
  1038. {
  1039. unsigned offset = (long)_offset;
  1040. u64 total = 0;
  1041. struct kvm *kvm;
  1042. spin_lock(&kvm_lock);
  1043. list_for_each_entry(kvm, &vm_list, vm_list)
  1044. total += *(u32 *)((void *)kvm + offset);
  1045. spin_unlock(&kvm_lock);
  1046. return total;
  1047. }
  1048. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1049. static u64 vcpu_stat_get(void *_offset)
  1050. {
  1051. unsigned offset = (long)_offset;
  1052. u64 total = 0;
  1053. struct kvm *kvm;
  1054. struct kvm_vcpu *vcpu;
  1055. int i;
  1056. spin_lock(&kvm_lock);
  1057. list_for_each_entry(kvm, &vm_list, vm_list)
  1058. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1059. vcpu = kvm->vcpus[i];
  1060. if (vcpu)
  1061. total += *(u32 *)((void *)vcpu + offset);
  1062. }
  1063. spin_unlock(&kvm_lock);
  1064. return total;
  1065. }
  1066. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1067. static struct file_operations *stat_fops[] = {
  1068. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1069. [KVM_STAT_VM] = &vm_stat_fops,
  1070. };
  1071. static void kvm_init_debug(void)
  1072. {
  1073. struct kvm_stats_debugfs_item *p;
  1074. debugfs_dir = debugfs_create_dir("kvm", NULL);
  1075. for (p = debugfs_entries; p->name; ++p)
  1076. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  1077. (void *)(long)p->offset,
  1078. stat_fops[p->kind]);
  1079. }
  1080. static void kvm_exit_debug(void)
  1081. {
  1082. struct kvm_stats_debugfs_item *p;
  1083. for (p = debugfs_entries; p->name; ++p)
  1084. debugfs_remove(p->dentry);
  1085. debugfs_remove(debugfs_dir);
  1086. }
  1087. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1088. {
  1089. hardware_disable(NULL);
  1090. return 0;
  1091. }
  1092. static int kvm_resume(struct sys_device *dev)
  1093. {
  1094. hardware_enable(NULL);
  1095. return 0;
  1096. }
  1097. static struct sysdev_class kvm_sysdev_class = {
  1098. .name = "kvm",
  1099. .suspend = kvm_suspend,
  1100. .resume = kvm_resume,
  1101. };
  1102. static struct sys_device kvm_sysdev = {
  1103. .id = 0,
  1104. .cls = &kvm_sysdev_class,
  1105. };
  1106. struct page *bad_page;
  1107. static inline
  1108. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1109. {
  1110. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1111. }
  1112. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1113. {
  1114. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1115. kvm_arch_vcpu_load(vcpu, cpu);
  1116. }
  1117. static void kvm_sched_out(struct preempt_notifier *pn,
  1118. struct task_struct *next)
  1119. {
  1120. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1121. kvm_arch_vcpu_put(vcpu);
  1122. }
  1123. int kvm_init(void *opaque, unsigned int vcpu_size,
  1124. struct module *module)
  1125. {
  1126. int r;
  1127. int cpu;
  1128. kvm_init_debug();
  1129. r = kvm_arch_init(opaque);
  1130. if (r)
  1131. goto out4;
  1132. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1133. if (bad_page == NULL) {
  1134. r = -ENOMEM;
  1135. goto out;
  1136. }
  1137. r = kvm_arch_hardware_setup();
  1138. if (r < 0)
  1139. goto out;
  1140. for_each_online_cpu(cpu) {
  1141. smp_call_function_single(cpu,
  1142. kvm_arch_check_processor_compat,
  1143. &r, 0, 1);
  1144. if (r < 0)
  1145. goto out_free_0;
  1146. }
  1147. on_each_cpu(hardware_enable, NULL, 0, 1);
  1148. r = register_cpu_notifier(&kvm_cpu_notifier);
  1149. if (r)
  1150. goto out_free_1;
  1151. register_reboot_notifier(&kvm_reboot_notifier);
  1152. r = sysdev_class_register(&kvm_sysdev_class);
  1153. if (r)
  1154. goto out_free_2;
  1155. r = sysdev_register(&kvm_sysdev);
  1156. if (r)
  1157. goto out_free_3;
  1158. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1159. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1160. __alignof__(struct kvm_vcpu),
  1161. 0, NULL);
  1162. if (!kvm_vcpu_cache) {
  1163. r = -ENOMEM;
  1164. goto out_free_4;
  1165. }
  1166. kvm_chardev_ops.owner = module;
  1167. r = misc_register(&kvm_dev);
  1168. if (r) {
  1169. printk(KERN_ERR "kvm: misc device register failed\n");
  1170. goto out_free;
  1171. }
  1172. kvm_preempt_ops.sched_in = kvm_sched_in;
  1173. kvm_preempt_ops.sched_out = kvm_sched_out;
  1174. return 0;
  1175. out_free:
  1176. kmem_cache_destroy(kvm_vcpu_cache);
  1177. out_free_4:
  1178. sysdev_unregister(&kvm_sysdev);
  1179. out_free_3:
  1180. sysdev_class_unregister(&kvm_sysdev_class);
  1181. out_free_2:
  1182. unregister_reboot_notifier(&kvm_reboot_notifier);
  1183. unregister_cpu_notifier(&kvm_cpu_notifier);
  1184. out_free_1:
  1185. on_each_cpu(hardware_disable, NULL, 0, 1);
  1186. out_free_0:
  1187. kvm_arch_hardware_unsetup();
  1188. out:
  1189. kvm_arch_exit();
  1190. kvm_exit_debug();
  1191. out4:
  1192. return r;
  1193. }
  1194. EXPORT_SYMBOL_GPL(kvm_init);
  1195. void kvm_exit(void)
  1196. {
  1197. misc_deregister(&kvm_dev);
  1198. kmem_cache_destroy(kvm_vcpu_cache);
  1199. sysdev_unregister(&kvm_sysdev);
  1200. sysdev_class_unregister(&kvm_sysdev_class);
  1201. unregister_reboot_notifier(&kvm_reboot_notifier);
  1202. unregister_cpu_notifier(&kvm_cpu_notifier);
  1203. on_each_cpu(hardware_disable, NULL, 0, 1);
  1204. kvm_arch_hardware_unsetup();
  1205. kvm_arch_exit();
  1206. kvm_exit_debug();
  1207. __free_page(bad_page);
  1208. }
  1209. EXPORT_SYMBOL_GPL(kvm_exit);