process.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741
  1. /*
  2. * Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  3. * Licensed under the GPL
  4. */
  5. #include <stdlib.h>
  6. #include <unistd.h>
  7. #include <sched.h>
  8. #include <errno.h>
  9. #include <string.h>
  10. #include <sys/mman.h>
  11. #include <sys/ptrace.h>
  12. #include <sys/wait.h>
  13. #include <asm/unistd.h>
  14. #include "as-layout.h"
  15. #include "chan_user.h"
  16. #include "kern_util.h"
  17. #include "mem.h"
  18. #include "os.h"
  19. #include "proc_mm.h"
  20. #include "ptrace_user.h"
  21. #include "registers.h"
  22. #include "skas.h"
  23. #include "skas_ptrace.h"
  24. #include "sysdep/stub.h"
  25. int is_skas_winch(int pid, int fd, void *data)
  26. {
  27. if (pid != getpgrp())
  28. return 0;
  29. register_winch_irq(-1, fd, -1, data, 0);
  30. return 1;
  31. }
  32. static int ptrace_dump_regs(int pid)
  33. {
  34. unsigned long regs[MAX_REG_NR];
  35. int i;
  36. if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0)
  37. return -errno;
  38. printk(UM_KERN_ERR "Stub registers -\n");
  39. for (i = 0; i < ARRAY_SIZE(regs); i++)
  40. printk(UM_KERN_ERR "\t%d - %lx\n", i, regs[i]);
  41. return 0;
  42. }
  43. /*
  44. * Signals that are OK to receive in the stub - we'll just continue it.
  45. * SIGWINCH will happen when UML is inside a detached screen.
  46. */
  47. #define STUB_SIG_MASK ((1 << SIGVTALRM) | (1 << SIGWINCH))
  48. /* Signals that the stub will finish with - anything else is an error */
  49. #define STUB_DONE_MASK (1 << SIGTRAP)
  50. void wait_stub_done(int pid)
  51. {
  52. int n, status, err;
  53. while (1) {
  54. CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
  55. if ((n < 0) || !WIFSTOPPED(status))
  56. goto bad_wait;
  57. if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0)
  58. break;
  59. err = ptrace(PTRACE_CONT, pid, 0, 0);
  60. if (err) {
  61. printk(UM_KERN_ERR "wait_stub_done : continue failed, "
  62. "errno = %d\n", errno);
  63. fatal_sigsegv();
  64. }
  65. }
  66. if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0)
  67. return;
  68. bad_wait:
  69. err = ptrace_dump_regs(pid);
  70. if (err)
  71. printk(UM_KERN_ERR "Failed to get registers from stub, "
  72. "errno = %d\n", -err);
  73. printk(UM_KERN_ERR "wait_stub_done : failed to wait for SIGTRAP, "
  74. "pid = %d, n = %d, errno = %d, status = 0x%x\n", pid, n, errno,
  75. status);
  76. fatal_sigsegv();
  77. }
  78. extern unsigned long current_stub_stack(void);
  79. static void get_skas_faultinfo(int pid, struct faultinfo *fi)
  80. {
  81. int err;
  82. if (ptrace_faultinfo) {
  83. err = ptrace(PTRACE_FAULTINFO, pid, 0, fi);
  84. if (err) {
  85. printk(UM_KERN_ERR "get_skas_faultinfo - "
  86. "PTRACE_FAULTINFO failed, errno = %d\n", errno);
  87. fatal_sigsegv();
  88. }
  89. /* Special handling for i386, which has different structs */
  90. if (sizeof(struct ptrace_faultinfo) < sizeof(struct faultinfo))
  91. memset((char *)fi + sizeof(struct ptrace_faultinfo), 0,
  92. sizeof(struct faultinfo) -
  93. sizeof(struct ptrace_faultinfo));
  94. }
  95. else {
  96. unsigned long fpregs[FP_SIZE];
  97. err = get_fp_registers(pid, fpregs);
  98. if (err < 0) {
  99. printk(UM_KERN_ERR "save_fp_registers returned %d\n",
  100. err);
  101. fatal_sigsegv();
  102. }
  103. err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV);
  104. if (err) {
  105. printk(UM_KERN_ERR "Failed to continue stub, pid = %d, "
  106. "errno = %d\n", pid, errno);
  107. fatal_sigsegv();
  108. }
  109. wait_stub_done(pid);
  110. /*
  111. * faultinfo is prepared by the stub-segv-handler at start of
  112. * the stub stack page. We just have to copy it.
  113. */
  114. memcpy(fi, (void *)current_stub_stack(), sizeof(*fi));
  115. err = put_fp_registers(pid, fpregs);
  116. if (err < 0) {
  117. printk(UM_KERN_ERR "put_fp_registers returned %d\n",
  118. err);
  119. fatal_sigsegv();
  120. }
  121. }
  122. }
  123. static void handle_segv(int pid, struct uml_pt_regs * regs)
  124. {
  125. get_skas_faultinfo(pid, &regs->faultinfo);
  126. segv(regs->faultinfo, 0, 1, NULL);
  127. }
  128. /*
  129. * To use the same value of using_sysemu as the caller, ask it that value
  130. * (in local_using_sysemu
  131. */
  132. static void handle_trap(int pid, struct uml_pt_regs *regs,
  133. int local_using_sysemu)
  134. {
  135. int err, status;
  136. if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END))
  137. fatal_sigsegv();
  138. /* Mark this as a syscall */
  139. UPT_SYSCALL_NR(regs) = PT_SYSCALL_NR(regs->gp);
  140. if (!local_using_sysemu)
  141. {
  142. err = ptrace(PTRACE_POKEUSR, pid, PT_SYSCALL_NR_OFFSET,
  143. __NR_getpid);
  144. if (err < 0) {
  145. printk(UM_KERN_ERR "handle_trap - nullifying syscall "
  146. "failed, errno = %d\n", errno);
  147. fatal_sigsegv();
  148. }
  149. err = ptrace(PTRACE_SYSCALL, pid, 0, 0);
  150. if (err < 0) {
  151. printk(UM_KERN_ERR "handle_trap - continuing to end of "
  152. "syscall failed, errno = %d\n", errno);
  153. fatal_sigsegv();
  154. }
  155. CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
  156. if ((err < 0) || !WIFSTOPPED(status) ||
  157. (WSTOPSIG(status) != SIGTRAP + 0x80)) {
  158. err = ptrace_dump_regs(pid);
  159. if (err)
  160. printk(UM_KERN_ERR "Failed to get registers "
  161. "from process, errno = %d\n", -err);
  162. printk(UM_KERN_ERR "handle_trap - failed to wait at "
  163. "end of syscall, errno = %d, status = %d\n",
  164. errno, status);
  165. fatal_sigsegv();
  166. }
  167. }
  168. handle_syscall(regs);
  169. }
  170. extern int __syscall_stub_start;
  171. static int userspace_tramp(void *stack)
  172. {
  173. void *addr;
  174. int err;
  175. ptrace(PTRACE_TRACEME, 0, 0, 0);
  176. signal(SIGTERM, SIG_DFL);
  177. signal(SIGWINCH, SIG_IGN);
  178. err = set_interval();
  179. if (err) {
  180. printk(UM_KERN_ERR "userspace_tramp - setting timer failed, "
  181. "errno = %d\n", err);
  182. exit(1);
  183. }
  184. if (!proc_mm) {
  185. /*
  186. * This has a pte, but it can't be mapped in with the usual
  187. * tlb_flush mechanism because this is part of that mechanism
  188. */
  189. int fd;
  190. unsigned long long offset;
  191. fd = phys_mapping(to_phys(&__syscall_stub_start), &offset);
  192. addr = mmap64((void *) STUB_CODE, UM_KERN_PAGE_SIZE,
  193. PROT_EXEC, MAP_FIXED | MAP_PRIVATE, fd, offset);
  194. if (addr == MAP_FAILED) {
  195. printk(UM_KERN_ERR "mapping mmap stub at 0x%lx failed, "
  196. "errno = %d\n", STUB_CODE, errno);
  197. exit(1);
  198. }
  199. if (stack != NULL) {
  200. fd = phys_mapping(to_phys(stack), &offset);
  201. addr = mmap((void *) STUB_DATA,
  202. UM_KERN_PAGE_SIZE, PROT_READ | PROT_WRITE,
  203. MAP_FIXED | MAP_SHARED, fd, offset);
  204. if (addr == MAP_FAILED) {
  205. printk(UM_KERN_ERR "mapping segfault stack "
  206. "at 0x%lx failed, errno = %d\n",
  207. STUB_DATA, errno);
  208. exit(1);
  209. }
  210. }
  211. }
  212. if (!ptrace_faultinfo && (stack != NULL)) {
  213. struct sigaction sa;
  214. unsigned long v = STUB_CODE +
  215. (unsigned long) stub_segv_handler -
  216. (unsigned long) &__syscall_stub_start;
  217. set_sigstack((void *) STUB_DATA, UM_KERN_PAGE_SIZE);
  218. sigemptyset(&sa.sa_mask);
  219. sa.sa_flags = SA_ONSTACK | SA_NODEFER | SA_SIGINFO;
  220. sa.sa_sigaction = (void *) v;
  221. sa.sa_restorer = NULL;
  222. if (sigaction(SIGSEGV, &sa, NULL) < 0) {
  223. printk(UM_KERN_ERR "userspace_tramp - setting SIGSEGV "
  224. "handler failed - errno = %d\n", errno);
  225. exit(1);
  226. }
  227. }
  228. kill(os_getpid(), SIGSTOP);
  229. return 0;
  230. }
  231. /* Each element set once, and only accessed by a single processor anyway */
  232. #undef NR_CPUS
  233. #define NR_CPUS 1
  234. int userspace_pid[NR_CPUS];
  235. int start_userspace(unsigned long stub_stack)
  236. {
  237. void *stack;
  238. unsigned long sp;
  239. int pid, status, n, flags, err;
  240. stack = mmap(NULL, UM_KERN_PAGE_SIZE,
  241. PROT_READ | PROT_WRITE | PROT_EXEC,
  242. MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  243. if (stack == MAP_FAILED) {
  244. err = -errno;
  245. printk(UM_KERN_ERR "start_userspace : mmap failed, "
  246. "errno = %d\n", errno);
  247. return err;
  248. }
  249. sp = (unsigned long) stack + UM_KERN_PAGE_SIZE - sizeof(void *);
  250. flags = CLONE_FILES;
  251. if (proc_mm)
  252. flags |= CLONE_VM;
  253. else
  254. flags |= SIGCHLD;
  255. pid = clone(userspace_tramp, (void *) sp, flags, (void *) stub_stack);
  256. if (pid < 0) {
  257. err = -errno;
  258. printk(UM_KERN_ERR "start_userspace : clone failed, "
  259. "errno = %d\n", errno);
  260. return err;
  261. }
  262. do {
  263. CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
  264. if (n < 0) {
  265. err = -errno;
  266. printk(UM_KERN_ERR "start_userspace : wait failed, "
  267. "errno = %d\n", errno);
  268. goto out_kill;
  269. }
  270. } while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGVTALRM));
  271. if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) {
  272. err = -EINVAL;
  273. printk(UM_KERN_ERR "start_userspace : expected SIGSTOP, got "
  274. "status = %d\n", status);
  275. goto out_kill;
  276. }
  277. if (ptrace(PTRACE_OLDSETOPTIONS, pid, NULL,
  278. (void *) PTRACE_O_TRACESYSGOOD) < 0) {
  279. err = -errno;
  280. printk(UM_KERN_ERR "start_userspace : PTRACE_OLDSETOPTIONS "
  281. "failed, errno = %d\n", errno);
  282. goto out_kill;
  283. }
  284. if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) {
  285. err = -errno;
  286. printk(UM_KERN_ERR "start_userspace : munmap failed, "
  287. "errno = %d\n", errno);
  288. goto out_kill;
  289. }
  290. return pid;
  291. out_kill:
  292. os_kill_ptraced_process(pid, 1);
  293. return err;
  294. }
  295. void userspace(struct uml_pt_regs *regs)
  296. {
  297. struct itimerval timer;
  298. unsigned long long nsecs, now;
  299. int err, status, op, pid = userspace_pid[0];
  300. /* To prevent races if using_sysemu changes under us.*/
  301. int local_using_sysemu;
  302. if (getitimer(ITIMER_VIRTUAL, &timer))
  303. printk(UM_KERN_ERR "Failed to get itimer, errno = %d\n", errno);
  304. nsecs = timer.it_value.tv_sec * UM_NSEC_PER_SEC +
  305. timer.it_value.tv_usec * UM_NSEC_PER_USEC;
  306. nsecs += os_nsecs();
  307. while (1) {
  308. /*
  309. * This can legitimately fail if the process loads a
  310. * bogus value into a segment register. It will
  311. * segfault and PTRACE_GETREGS will read that value
  312. * out of the process. However, PTRACE_SETREGS will
  313. * fail. In this case, there is nothing to do but
  314. * just kill the process.
  315. */
  316. if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp))
  317. fatal_sigsegv();
  318. if (put_fp_registers(pid, regs->fp))
  319. fatal_sigsegv();
  320. /* Now we set local_using_sysemu to be used for one loop */
  321. local_using_sysemu = get_using_sysemu();
  322. op = SELECT_PTRACE_OPERATION(local_using_sysemu,
  323. singlestepping(NULL));
  324. if (ptrace(op, pid, 0, 0)) {
  325. printk(UM_KERN_ERR "userspace - ptrace continue "
  326. "failed, op = %d, errno = %d\n", op, errno);
  327. fatal_sigsegv();
  328. }
  329. CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
  330. if (err < 0) {
  331. printk(UM_KERN_ERR "userspace - wait failed, "
  332. "errno = %d\n", errno);
  333. fatal_sigsegv();
  334. }
  335. regs->is_user = 1;
  336. if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) {
  337. printk(UM_KERN_ERR "userspace - PTRACE_GETREGS failed, "
  338. "errno = %d\n", errno);
  339. fatal_sigsegv();
  340. }
  341. if (get_fp_registers(pid, regs->fp)) {
  342. printk(UM_KERN_ERR "userspace - get_fp_registers failed, "
  343. "errno = %d\n", errno);
  344. fatal_sigsegv();
  345. }
  346. UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */
  347. if (WIFSTOPPED(status)) {
  348. int sig = WSTOPSIG(status);
  349. switch (sig) {
  350. case SIGSEGV:
  351. if (PTRACE_FULL_FAULTINFO ||
  352. !ptrace_faultinfo) {
  353. get_skas_faultinfo(pid,
  354. &regs->faultinfo);
  355. (*sig_info[SIGSEGV])(SIGSEGV, regs);
  356. }
  357. else handle_segv(pid, regs);
  358. break;
  359. case SIGTRAP + 0x80:
  360. handle_trap(pid, regs, local_using_sysemu);
  361. break;
  362. case SIGTRAP:
  363. relay_signal(SIGTRAP, regs);
  364. break;
  365. case SIGVTALRM:
  366. now = os_nsecs();
  367. if (now < nsecs)
  368. break;
  369. block_signals();
  370. (*sig_info[sig])(sig, regs);
  371. unblock_signals();
  372. nsecs = timer.it_value.tv_sec *
  373. UM_NSEC_PER_SEC +
  374. timer.it_value.tv_usec *
  375. UM_NSEC_PER_USEC;
  376. nsecs += os_nsecs();
  377. break;
  378. case SIGIO:
  379. case SIGILL:
  380. case SIGBUS:
  381. case SIGFPE:
  382. case SIGWINCH:
  383. block_signals();
  384. (*sig_info[sig])(sig, regs);
  385. unblock_signals();
  386. break;
  387. default:
  388. printk(UM_KERN_ERR "userspace - child stopped "
  389. "with signal %d\n", sig);
  390. fatal_sigsegv();
  391. }
  392. pid = userspace_pid[0];
  393. interrupt_end();
  394. /* Avoid -ERESTARTSYS handling in host */
  395. if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET)
  396. PT_SYSCALL_NR(regs->gp) = -1;
  397. }
  398. }
  399. }
  400. static unsigned long thread_regs[MAX_REG_NR];
  401. static unsigned long thread_fp_regs[FP_SIZE];
  402. static int __init init_thread_regs(void)
  403. {
  404. get_safe_registers(thread_regs, thread_fp_regs);
  405. /* Set parent's instruction pointer to start of clone-stub */
  406. thread_regs[REGS_IP_INDEX] = STUB_CODE +
  407. (unsigned long) stub_clone_handler -
  408. (unsigned long) &__syscall_stub_start;
  409. thread_regs[REGS_SP_INDEX] = STUB_DATA + UM_KERN_PAGE_SIZE -
  410. sizeof(void *);
  411. #ifdef __SIGNAL_FRAMESIZE
  412. thread_regs[REGS_SP_INDEX] -= __SIGNAL_FRAMESIZE;
  413. #endif
  414. return 0;
  415. }
  416. __initcall(init_thread_regs);
  417. int copy_context_skas0(unsigned long new_stack, int pid)
  418. {
  419. struct timeval tv = { .tv_sec = 0, .tv_usec = UM_USEC_PER_SEC / UM_HZ };
  420. int err;
  421. unsigned long current_stack = current_stub_stack();
  422. struct stub_data *data = (struct stub_data *) current_stack;
  423. struct stub_data *child_data = (struct stub_data *) new_stack;
  424. unsigned long long new_offset;
  425. int new_fd = phys_mapping(to_phys((void *)new_stack), &new_offset);
  426. /*
  427. * prepare offset and fd of child's stack as argument for parent's
  428. * and child's mmap2 calls
  429. */
  430. *data = ((struct stub_data) { .offset = MMAP_OFFSET(new_offset),
  431. .fd = new_fd,
  432. .timer = ((struct itimerval)
  433. { .it_value = tv,
  434. .it_interval = tv }) });
  435. err = ptrace_setregs(pid, thread_regs);
  436. if (err < 0) {
  437. err = -errno;
  438. printk(UM_KERN_ERR "copy_context_skas0 : PTRACE_SETREGS "
  439. "failed, pid = %d, errno = %d\n", pid, -err);
  440. return err;
  441. }
  442. err = put_fp_registers(pid, thread_fp_regs);
  443. if (err < 0) {
  444. printk(UM_KERN_ERR "copy_context_skas0 : put_fp_registers "
  445. "failed, pid = %d, err = %d\n", pid, err);
  446. return err;
  447. }
  448. /* set a well known return code for detection of child write failure */
  449. child_data->err = 12345678;
  450. /*
  451. * Wait, until parent has finished its work: read child's pid from
  452. * parent's stack, and check, if bad result.
  453. */
  454. err = ptrace(PTRACE_CONT, pid, 0, 0);
  455. if (err) {
  456. err = -errno;
  457. printk(UM_KERN_ERR "Failed to continue new process, pid = %d, "
  458. "errno = %d\n", pid, errno);
  459. return err;
  460. }
  461. wait_stub_done(pid);
  462. pid = data->err;
  463. if (pid < 0) {
  464. printk(UM_KERN_ERR "copy_context_skas0 - stub-parent reports "
  465. "error %d\n", -pid);
  466. return pid;
  467. }
  468. /*
  469. * Wait, until child has finished too: read child's result from
  470. * child's stack and check it.
  471. */
  472. wait_stub_done(pid);
  473. if (child_data->err != STUB_DATA) {
  474. printk(UM_KERN_ERR "copy_context_skas0 - stub-child reports "
  475. "error %ld\n", child_data->err);
  476. err = child_data->err;
  477. goto out_kill;
  478. }
  479. if (ptrace(PTRACE_OLDSETOPTIONS, pid, NULL,
  480. (void *)PTRACE_O_TRACESYSGOOD) < 0) {
  481. err = -errno;
  482. printk(UM_KERN_ERR "copy_context_skas0 : PTRACE_OLDSETOPTIONS "
  483. "failed, errno = %d\n", errno);
  484. goto out_kill;
  485. }
  486. return pid;
  487. out_kill:
  488. os_kill_ptraced_process(pid, 1);
  489. return err;
  490. }
  491. /*
  492. * This is used only, if stub pages are needed, while proc_mm is
  493. * available. Opening /proc/mm creates a new mm_context, which lacks
  494. * the stub-pages. Thus, we map them using /proc/mm-fd
  495. */
  496. int map_stub_pages(int fd, unsigned long code, unsigned long data,
  497. unsigned long stack)
  498. {
  499. struct proc_mm_op mmop;
  500. int n;
  501. unsigned long long code_offset;
  502. int code_fd = phys_mapping(to_phys((void *) &__syscall_stub_start),
  503. &code_offset);
  504. mmop = ((struct proc_mm_op) { .op = MM_MMAP,
  505. .u =
  506. { .mmap =
  507. { .addr = code,
  508. .len = UM_KERN_PAGE_SIZE,
  509. .prot = PROT_EXEC,
  510. .flags = MAP_FIXED | MAP_PRIVATE,
  511. .fd = code_fd,
  512. .offset = code_offset
  513. } } });
  514. CATCH_EINTR(n = write(fd, &mmop, sizeof(mmop)));
  515. if (n != sizeof(mmop)) {
  516. n = errno;
  517. printk(UM_KERN_ERR "mmap args - addr = 0x%lx, fd = %d, "
  518. "offset = %llx\n", code, code_fd,
  519. (unsigned long long) code_offset);
  520. printk(UM_KERN_ERR "map_stub_pages : /proc/mm map for code "
  521. "failed, err = %d\n", n);
  522. return -n;
  523. }
  524. if (stack) {
  525. unsigned long long map_offset;
  526. int map_fd = phys_mapping(to_phys((void *)stack), &map_offset);
  527. mmop = ((struct proc_mm_op)
  528. { .op = MM_MMAP,
  529. .u =
  530. { .mmap =
  531. { .addr = data,
  532. .len = UM_KERN_PAGE_SIZE,
  533. .prot = PROT_READ | PROT_WRITE,
  534. .flags = MAP_FIXED | MAP_SHARED,
  535. .fd = map_fd,
  536. .offset = map_offset
  537. } } });
  538. CATCH_EINTR(n = write(fd, &mmop, sizeof(mmop)));
  539. if (n != sizeof(mmop)) {
  540. n = errno;
  541. printk(UM_KERN_ERR "map_stub_pages : /proc/mm map for "
  542. "data failed, err = %d\n", n);
  543. return -n;
  544. }
  545. }
  546. return 0;
  547. }
  548. void new_thread(void *stack, jmp_buf *buf, void (*handler)(void))
  549. {
  550. (*buf)[0].JB_IP = (unsigned long) handler;
  551. (*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE -
  552. sizeof(void *);
  553. }
  554. #define INIT_JMP_NEW_THREAD 0
  555. #define INIT_JMP_CALLBACK 1
  556. #define INIT_JMP_HALT 2
  557. #define INIT_JMP_REBOOT 3
  558. void switch_threads(jmp_buf *me, jmp_buf *you)
  559. {
  560. if (UML_SETJMP(me) == 0)
  561. UML_LONGJMP(you, 1);
  562. }
  563. static jmp_buf initial_jmpbuf;
  564. /* XXX Make these percpu */
  565. static void (*cb_proc)(void *arg);
  566. static void *cb_arg;
  567. static jmp_buf *cb_back;
  568. int start_idle_thread(void *stack, jmp_buf *switch_buf)
  569. {
  570. int n;
  571. set_handler(SIGWINCH);
  572. /*
  573. * Can't use UML_SETJMP or UML_LONGJMP here because they save
  574. * and restore signals, with the possible side-effect of
  575. * trying to handle any signals which came when they were
  576. * blocked, which can't be done on this stack.
  577. * Signals must be blocked when jumping back here and restored
  578. * after returning to the jumper.
  579. */
  580. n = setjmp(initial_jmpbuf);
  581. switch (n) {
  582. case INIT_JMP_NEW_THREAD:
  583. (*switch_buf)[0].JB_IP = (unsigned long) new_thread_handler;
  584. (*switch_buf)[0].JB_SP = (unsigned long) stack +
  585. UM_THREAD_SIZE - sizeof(void *);
  586. break;
  587. case INIT_JMP_CALLBACK:
  588. (*cb_proc)(cb_arg);
  589. longjmp(*cb_back, 1);
  590. break;
  591. case INIT_JMP_HALT:
  592. kmalloc_ok = 0;
  593. return 0;
  594. case INIT_JMP_REBOOT:
  595. kmalloc_ok = 0;
  596. return 1;
  597. default:
  598. printk(UM_KERN_ERR "Bad sigsetjmp return in "
  599. "start_idle_thread - %d\n", n);
  600. fatal_sigsegv();
  601. }
  602. longjmp(*switch_buf, 1);
  603. }
  604. void initial_thread_cb_skas(void (*proc)(void *), void *arg)
  605. {
  606. jmp_buf here;
  607. cb_proc = proc;
  608. cb_arg = arg;
  609. cb_back = &here;
  610. block_signals();
  611. if (UML_SETJMP(&here) == 0)
  612. UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK);
  613. unblock_signals();
  614. cb_proc = NULL;
  615. cb_arg = NULL;
  616. cb_back = NULL;
  617. }
  618. void halt_skas(void)
  619. {
  620. block_signals();
  621. UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT);
  622. }
  623. void reboot_skas(void)
  624. {
  625. block_signals();
  626. UML_LONGJMP(&initial_jmpbuf, INIT_JMP_REBOOT);
  627. }
  628. void __switch_mm(struct mm_id *mm_idp)
  629. {
  630. int err;
  631. /* FIXME: need cpu pid in __switch_mm */
  632. if (proc_mm) {
  633. err = ptrace(PTRACE_SWITCH_MM, userspace_pid[0], 0,
  634. mm_idp->u.mm_fd);
  635. if (err) {
  636. printk(UM_KERN_ERR "__switch_mm - PTRACE_SWITCH_MM "
  637. "failed, errno = %d\n", errno);
  638. fatal_sigsegv();
  639. }
  640. }
  641. else userspace_pid[0] = mm_idp->u.pid;
  642. }