netxen_nic_init.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168
  1. /*
  2. * Copyright (C) 2003 - 2009 NetXen, Inc.
  3. * All rights reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation; either version 2
  8. * of the License, or (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
  18. * MA 02111-1307, USA.
  19. *
  20. * The full GNU General Public License is included in this distribution
  21. * in the file called LICENSE.
  22. *
  23. * Contact Information:
  24. * info@netxen.com
  25. * NetXen Inc,
  26. * 18922 Forge Drive
  27. * Cupertino, CA 95014-0701
  28. *
  29. */
  30. #include <linux/netdevice.h>
  31. #include <linux/delay.h>
  32. #include "netxen_nic.h"
  33. #include "netxen_nic_hw.h"
  34. #include "netxen_nic_phan_reg.h"
  35. struct crb_addr_pair {
  36. u32 addr;
  37. u32 data;
  38. };
  39. #define NETXEN_MAX_CRB_XFORM 60
  40. static unsigned int crb_addr_xform[NETXEN_MAX_CRB_XFORM];
  41. #define NETXEN_ADDR_ERROR (0xffffffff)
  42. #define crb_addr_transform(name) \
  43. crb_addr_xform[NETXEN_HW_PX_MAP_CRB_##name] = \
  44. NETXEN_HW_CRB_HUB_AGT_ADR_##name << 20
  45. #define NETXEN_NIC_XDMA_RESET 0x8000ff
  46. static void netxen_post_rx_buffers_nodb(struct netxen_adapter *adapter,
  47. uint32_t ctx, uint32_t ringid);
  48. static void crb_addr_transform_setup(void)
  49. {
  50. crb_addr_transform(XDMA);
  51. crb_addr_transform(TIMR);
  52. crb_addr_transform(SRE);
  53. crb_addr_transform(SQN3);
  54. crb_addr_transform(SQN2);
  55. crb_addr_transform(SQN1);
  56. crb_addr_transform(SQN0);
  57. crb_addr_transform(SQS3);
  58. crb_addr_transform(SQS2);
  59. crb_addr_transform(SQS1);
  60. crb_addr_transform(SQS0);
  61. crb_addr_transform(RPMX7);
  62. crb_addr_transform(RPMX6);
  63. crb_addr_transform(RPMX5);
  64. crb_addr_transform(RPMX4);
  65. crb_addr_transform(RPMX3);
  66. crb_addr_transform(RPMX2);
  67. crb_addr_transform(RPMX1);
  68. crb_addr_transform(RPMX0);
  69. crb_addr_transform(ROMUSB);
  70. crb_addr_transform(SN);
  71. crb_addr_transform(QMN);
  72. crb_addr_transform(QMS);
  73. crb_addr_transform(PGNI);
  74. crb_addr_transform(PGND);
  75. crb_addr_transform(PGN3);
  76. crb_addr_transform(PGN2);
  77. crb_addr_transform(PGN1);
  78. crb_addr_transform(PGN0);
  79. crb_addr_transform(PGSI);
  80. crb_addr_transform(PGSD);
  81. crb_addr_transform(PGS3);
  82. crb_addr_transform(PGS2);
  83. crb_addr_transform(PGS1);
  84. crb_addr_transform(PGS0);
  85. crb_addr_transform(PS);
  86. crb_addr_transform(PH);
  87. crb_addr_transform(NIU);
  88. crb_addr_transform(I2Q);
  89. crb_addr_transform(EG);
  90. crb_addr_transform(MN);
  91. crb_addr_transform(MS);
  92. crb_addr_transform(CAS2);
  93. crb_addr_transform(CAS1);
  94. crb_addr_transform(CAS0);
  95. crb_addr_transform(CAM);
  96. crb_addr_transform(C2C1);
  97. crb_addr_transform(C2C0);
  98. crb_addr_transform(SMB);
  99. crb_addr_transform(OCM0);
  100. crb_addr_transform(I2C0);
  101. }
  102. int netxen_init_firmware(struct netxen_adapter *adapter)
  103. {
  104. u32 state = 0, loops = 0, err = 0;
  105. /* Window 1 call */
  106. state = adapter->pci_read_normalize(adapter, CRB_CMDPEG_STATE);
  107. if (state == PHAN_INITIALIZE_ACK)
  108. return 0;
  109. while (state != PHAN_INITIALIZE_COMPLETE && loops < 2000) {
  110. msleep(1);
  111. /* Window 1 call */
  112. state = adapter->pci_read_normalize(adapter, CRB_CMDPEG_STATE);
  113. loops++;
  114. }
  115. if (loops >= 2000) {
  116. printk(KERN_ERR "Cmd Peg initialization not complete:%x.\n",
  117. state);
  118. err = -EIO;
  119. return err;
  120. }
  121. /* Window 1 call */
  122. adapter->pci_write_normalize(adapter,
  123. CRB_NIC_CAPABILITIES_HOST, INTR_SCHEME_PERPORT);
  124. adapter->pci_write_normalize(adapter,
  125. CRB_NIC_MSI_MODE_HOST, MSI_MODE_MULTIFUNC);
  126. adapter->pci_write_normalize(adapter,
  127. CRB_MPORT_MODE, MPORT_MULTI_FUNCTION_MODE);
  128. adapter->pci_write_normalize(adapter,
  129. CRB_CMDPEG_STATE, PHAN_INITIALIZE_ACK);
  130. return err;
  131. }
  132. void netxen_release_rx_buffers(struct netxen_adapter *adapter)
  133. {
  134. struct netxen_recv_context *recv_ctx;
  135. struct nx_host_rds_ring *rds_ring;
  136. struct netxen_rx_buffer *rx_buf;
  137. int i, ctxid, ring;
  138. for (ctxid = 0; ctxid < MAX_RCV_CTX; ++ctxid) {
  139. recv_ctx = &adapter->recv_ctx[ctxid];
  140. for (ring = 0; ring < adapter->max_rds_rings; ring++) {
  141. rds_ring = &recv_ctx->rds_rings[ring];
  142. for (i = 0; i < rds_ring->max_rx_desc_count; ++i) {
  143. rx_buf = &(rds_ring->rx_buf_arr[i]);
  144. if (rx_buf->state == NETXEN_BUFFER_FREE)
  145. continue;
  146. pci_unmap_single(adapter->pdev,
  147. rx_buf->dma,
  148. rds_ring->dma_size,
  149. PCI_DMA_FROMDEVICE);
  150. if (rx_buf->skb != NULL)
  151. dev_kfree_skb_any(rx_buf->skb);
  152. }
  153. }
  154. }
  155. }
  156. void netxen_release_tx_buffers(struct netxen_adapter *adapter)
  157. {
  158. struct netxen_cmd_buffer *cmd_buf;
  159. struct netxen_skb_frag *buffrag;
  160. int i, j;
  161. cmd_buf = adapter->cmd_buf_arr;
  162. for (i = 0; i < adapter->max_tx_desc_count; i++) {
  163. buffrag = cmd_buf->frag_array;
  164. if (buffrag->dma) {
  165. pci_unmap_single(adapter->pdev, buffrag->dma,
  166. buffrag->length, PCI_DMA_TODEVICE);
  167. buffrag->dma = 0ULL;
  168. }
  169. for (j = 0; j < cmd_buf->frag_count; j++) {
  170. buffrag++;
  171. if (buffrag->dma) {
  172. pci_unmap_page(adapter->pdev, buffrag->dma,
  173. buffrag->length,
  174. PCI_DMA_TODEVICE);
  175. buffrag->dma = 0ULL;
  176. }
  177. }
  178. /* Free the skb we received in netxen_nic_xmit_frame */
  179. if (cmd_buf->skb) {
  180. dev_kfree_skb_any(cmd_buf->skb);
  181. cmd_buf->skb = NULL;
  182. }
  183. cmd_buf++;
  184. }
  185. }
  186. void netxen_free_sw_resources(struct netxen_adapter *adapter)
  187. {
  188. struct netxen_recv_context *recv_ctx;
  189. struct nx_host_rds_ring *rds_ring;
  190. int ctx, ring;
  191. for (ctx = 0; ctx < MAX_RCV_CTX; ctx++) {
  192. recv_ctx = &adapter->recv_ctx[ctx];
  193. for (ring = 0; ring < adapter->max_rds_rings; ring++) {
  194. rds_ring = &recv_ctx->rds_rings[ring];
  195. if (rds_ring->rx_buf_arr) {
  196. vfree(rds_ring->rx_buf_arr);
  197. rds_ring->rx_buf_arr = NULL;
  198. }
  199. }
  200. }
  201. if (adapter->cmd_buf_arr)
  202. vfree(adapter->cmd_buf_arr);
  203. return;
  204. }
  205. int netxen_alloc_sw_resources(struct netxen_adapter *adapter)
  206. {
  207. struct netxen_recv_context *recv_ctx;
  208. struct nx_host_rds_ring *rds_ring;
  209. struct netxen_rx_buffer *rx_buf;
  210. int ctx, ring, i, num_rx_bufs;
  211. struct netxen_cmd_buffer *cmd_buf_arr;
  212. struct net_device *netdev = adapter->netdev;
  213. cmd_buf_arr = (struct netxen_cmd_buffer *)vmalloc(TX_RINGSIZE);
  214. if (cmd_buf_arr == NULL) {
  215. printk(KERN_ERR "%s: Failed to allocate cmd buffer ring\n",
  216. netdev->name);
  217. return -ENOMEM;
  218. }
  219. memset(cmd_buf_arr, 0, TX_RINGSIZE);
  220. adapter->cmd_buf_arr = cmd_buf_arr;
  221. for (ctx = 0; ctx < MAX_RCV_CTX; ctx++) {
  222. recv_ctx = &adapter->recv_ctx[ctx];
  223. for (ring = 0; ring < adapter->max_rds_rings; ring++) {
  224. rds_ring = &recv_ctx->rds_rings[ring];
  225. switch (RCV_DESC_TYPE(ring)) {
  226. case RCV_DESC_NORMAL:
  227. rds_ring->max_rx_desc_count =
  228. adapter->max_rx_desc_count;
  229. rds_ring->flags = RCV_DESC_NORMAL;
  230. if (adapter->ahw.cut_through) {
  231. rds_ring->dma_size =
  232. NX_CT_DEFAULT_RX_BUF_LEN;
  233. rds_ring->skb_size =
  234. NX_CT_DEFAULT_RX_BUF_LEN;
  235. } else {
  236. rds_ring->dma_size = RX_DMA_MAP_LEN;
  237. rds_ring->skb_size =
  238. MAX_RX_BUFFER_LENGTH;
  239. }
  240. break;
  241. case RCV_DESC_JUMBO:
  242. rds_ring->max_rx_desc_count =
  243. adapter->max_jumbo_rx_desc_count;
  244. rds_ring->flags = RCV_DESC_JUMBO;
  245. if (NX_IS_REVISION_P3(adapter->ahw.revision_id))
  246. rds_ring->dma_size =
  247. NX_P3_RX_JUMBO_BUF_MAX_LEN;
  248. else
  249. rds_ring->dma_size =
  250. NX_P2_RX_JUMBO_BUF_MAX_LEN;
  251. rds_ring->skb_size =
  252. rds_ring->dma_size + NET_IP_ALIGN;
  253. break;
  254. case RCV_RING_LRO:
  255. rds_ring->max_rx_desc_count =
  256. adapter->max_lro_rx_desc_count;
  257. rds_ring->flags = RCV_DESC_LRO;
  258. rds_ring->dma_size = RX_LRO_DMA_MAP_LEN;
  259. rds_ring->skb_size = MAX_RX_LRO_BUFFER_LENGTH;
  260. break;
  261. }
  262. rds_ring->rx_buf_arr = (struct netxen_rx_buffer *)
  263. vmalloc(RCV_BUFFSIZE);
  264. if (rds_ring->rx_buf_arr == NULL) {
  265. printk(KERN_ERR "%s: Failed to allocate "
  266. "rx buffer ring %d\n",
  267. netdev->name, ring);
  268. /* free whatever was already allocated */
  269. goto err_out;
  270. }
  271. memset(rds_ring->rx_buf_arr, 0, RCV_BUFFSIZE);
  272. INIT_LIST_HEAD(&rds_ring->free_list);
  273. /*
  274. * Now go through all of them, set reference handles
  275. * and put them in the queues.
  276. */
  277. num_rx_bufs = rds_ring->max_rx_desc_count;
  278. rx_buf = rds_ring->rx_buf_arr;
  279. for (i = 0; i < num_rx_bufs; i++) {
  280. list_add_tail(&rx_buf->list,
  281. &rds_ring->free_list);
  282. rx_buf->ref_handle = i;
  283. rx_buf->state = NETXEN_BUFFER_FREE;
  284. rx_buf++;
  285. }
  286. }
  287. }
  288. return 0;
  289. err_out:
  290. netxen_free_sw_resources(adapter);
  291. return -ENOMEM;
  292. }
  293. void netxen_initialize_adapter_ops(struct netxen_adapter *adapter)
  294. {
  295. switch (adapter->ahw.board_type) {
  296. case NETXEN_NIC_GBE:
  297. adapter->enable_phy_interrupts =
  298. netxen_niu_gbe_enable_phy_interrupts;
  299. adapter->disable_phy_interrupts =
  300. netxen_niu_gbe_disable_phy_interrupts;
  301. adapter->macaddr_set = netxen_niu_macaddr_set;
  302. adapter->set_mtu = netxen_nic_set_mtu_gb;
  303. adapter->set_promisc = netxen_niu_set_promiscuous_mode;
  304. adapter->phy_read = netxen_niu_gbe_phy_read;
  305. adapter->phy_write = netxen_niu_gbe_phy_write;
  306. adapter->init_port = netxen_niu_gbe_init_port;
  307. adapter->stop_port = netxen_niu_disable_gbe_port;
  308. break;
  309. case NETXEN_NIC_XGBE:
  310. adapter->enable_phy_interrupts =
  311. netxen_niu_xgbe_enable_phy_interrupts;
  312. adapter->disable_phy_interrupts =
  313. netxen_niu_xgbe_disable_phy_interrupts;
  314. adapter->macaddr_set = netxen_niu_xg_macaddr_set;
  315. adapter->set_mtu = netxen_nic_set_mtu_xgb;
  316. adapter->init_port = netxen_niu_xg_init_port;
  317. adapter->set_promisc = netxen_niu_xg_set_promiscuous_mode;
  318. adapter->stop_port = netxen_niu_disable_xg_port;
  319. break;
  320. default:
  321. break;
  322. }
  323. if (NX_IS_REVISION_P3(adapter->ahw.revision_id)) {
  324. adapter->set_mtu = nx_fw_cmd_set_mtu;
  325. adapter->set_promisc = netxen_p3_nic_set_promisc;
  326. }
  327. }
  328. /*
  329. * netxen_decode_crb_addr(0 - utility to translate from internal Phantom CRB
  330. * address to external PCI CRB address.
  331. */
  332. static u32 netxen_decode_crb_addr(u32 addr)
  333. {
  334. int i;
  335. u32 base_addr, offset, pci_base;
  336. crb_addr_transform_setup();
  337. pci_base = NETXEN_ADDR_ERROR;
  338. base_addr = addr & 0xfff00000;
  339. offset = addr & 0x000fffff;
  340. for (i = 0; i < NETXEN_MAX_CRB_XFORM; i++) {
  341. if (crb_addr_xform[i] == base_addr) {
  342. pci_base = i << 20;
  343. break;
  344. }
  345. }
  346. if (pci_base == NETXEN_ADDR_ERROR)
  347. return pci_base;
  348. else
  349. return (pci_base + offset);
  350. }
  351. static long rom_max_timeout = 100;
  352. static long rom_lock_timeout = 10000;
  353. static int rom_lock(struct netxen_adapter *adapter)
  354. {
  355. int iter;
  356. u32 done = 0;
  357. int timeout = 0;
  358. while (!done) {
  359. /* acquire semaphore2 from PCI HW block */
  360. netxen_nic_read_w0(adapter, NETXEN_PCIE_REG(PCIE_SEM2_LOCK),
  361. &done);
  362. if (done == 1)
  363. break;
  364. if (timeout >= rom_lock_timeout)
  365. return -EIO;
  366. timeout++;
  367. /*
  368. * Yield CPU
  369. */
  370. if (!in_atomic())
  371. schedule();
  372. else {
  373. for (iter = 0; iter < 20; iter++)
  374. cpu_relax(); /*This a nop instr on i386 */
  375. }
  376. }
  377. netxen_nic_reg_write(adapter, NETXEN_ROM_LOCK_ID, ROM_LOCK_DRIVER);
  378. return 0;
  379. }
  380. static int netxen_wait_rom_done(struct netxen_adapter *adapter)
  381. {
  382. long timeout = 0;
  383. long done = 0;
  384. cond_resched();
  385. while (done == 0) {
  386. done = netxen_nic_reg_read(adapter, NETXEN_ROMUSB_GLB_STATUS);
  387. done &= 2;
  388. timeout++;
  389. if (timeout >= rom_max_timeout) {
  390. printk("Timeout reached waiting for rom done");
  391. return -EIO;
  392. }
  393. }
  394. return 0;
  395. }
  396. static void netxen_rom_unlock(struct netxen_adapter *adapter)
  397. {
  398. u32 val;
  399. /* release semaphore2 */
  400. netxen_nic_read_w0(adapter, NETXEN_PCIE_REG(PCIE_SEM2_UNLOCK), &val);
  401. }
  402. static int do_rom_fast_read(struct netxen_adapter *adapter,
  403. int addr, int *valp)
  404. {
  405. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ADDRESS, addr);
  406. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_DUMMY_BYTE_CNT, 0);
  407. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 3);
  408. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE, 0xb);
  409. if (netxen_wait_rom_done(adapter)) {
  410. printk("Error waiting for rom done\n");
  411. return -EIO;
  412. }
  413. /* reset abyte_cnt and dummy_byte_cnt */
  414. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0);
  415. udelay(10);
  416. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_DUMMY_BYTE_CNT, 0);
  417. *valp = netxen_nic_reg_read(adapter, NETXEN_ROMUSB_ROM_RDATA);
  418. return 0;
  419. }
  420. static int do_rom_fast_read_words(struct netxen_adapter *adapter, int addr,
  421. u8 *bytes, size_t size)
  422. {
  423. int addridx;
  424. int ret = 0;
  425. for (addridx = addr; addridx < (addr + size); addridx += 4) {
  426. int v;
  427. ret = do_rom_fast_read(adapter, addridx, &v);
  428. if (ret != 0)
  429. break;
  430. *(__le32 *)bytes = cpu_to_le32(v);
  431. bytes += 4;
  432. }
  433. return ret;
  434. }
  435. int
  436. netxen_rom_fast_read_words(struct netxen_adapter *adapter, int addr,
  437. u8 *bytes, size_t size)
  438. {
  439. int ret;
  440. ret = rom_lock(adapter);
  441. if (ret < 0)
  442. return ret;
  443. ret = do_rom_fast_read_words(adapter, addr, bytes, size);
  444. netxen_rom_unlock(adapter);
  445. return ret;
  446. }
  447. int netxen_rom_fast_read(struct netxen_adapter *adapter, int addr, int *valp)
  448. {
  449. int ret;
  450. if (rom_lock(adapter) != 0)
  451. return -EIO;
  452. ret = do_rom_fast_read(adapter, addr, valp);
  453. netxen_rom_unlock(adapter);
  454. return ret;
  455. }
  456. #define NETXEN_BOARDTYPE 0x4008
  457. #define NETXEN_BOARDNUM 0x400c
  458. #define NETXEN_CHIPNUM 0x4010
  459. int netxen_pinit_from_rom(struct netxen_adapter *adapter, int verbose)
  460. {
  461. int addr, val;
  462. int i, n, init_delay = 0;
  463. struct crb_addr_pair *buf;
  464. unsigned offset;
  465. u32 off;
  466. /* resetall */
  467. rom_lock(adapter);
  468. netxen_crb_writelit_adapter(adapter, NETXEN_ROMUSB_GLB_SW_RESET,
  469. 0xffffffff);
  470. netxen_rom_unlock(adapter);
  471. if (verbose) {
  472. if (netxen_rom_fast_read(adapter, NETXEN_BOARDTYPE, &val) == 0)
  473. printk("P2 ROM board type: 0x%08x\n", val);
  474. else
  475. printk("Could not read board type\n");
  476. if (netxen_rom_fast_read(adapter, NETXEN_BOARDNUM, &val) == 0)
  477. printk("P2 ROM board num: 0x%08x\n", val);
  478. else
  479. printk("Could not read board number\n");
  480. if (netxen_rom_fast_read(adapter, NETXEN_CHIPNUM, &val) == 0)
  481. printk("P2 ROM chip num: 0x%08x\n", val);
  482. else
  483. printk("Could not read chip number\n");
  484. }
  485. if (NX_IS_REVISION_P3(adapter->ahw.revision_id)) {
  486. if (netxen_rom_fast_read(adapter, 0, &n) != 0 ||
  487. (n != 0xcafecafe) ||
  488. netxen_rom_fast_read(adapter, 4, &n) != 0) {
  489. printk(KERN_ERR "%s: ERROR Reading crb_init area: "
  490. "n: %08x\n", netxen_nic_driver_name, n);
  491. return -EIO;
  492. }
  493. offset = n & 0xffffU;
  494. n = (n >> 16) & 0xffffU;
  495. } else {
  496. if (netxen_rom_fast_read(adapter, 0, &n) != 0 ||
  497. !(n & 0x80000000)) {
  498. printk(KERN_ERR "%s: ERROR Reading crb_init area: "
  499. "n: %08x\n", netxen_nic_driver_name, n);
  500. return -EIO;
  501. }
  502. offset = 1;
  503. n &= ~0x80000000;
  504. }
  505. if (n < 1024) {
  506. if (verbose)
  507. printk(KERN_DEBUG "%s: %d CRB init values found"
  508. " in ROM.\n", netxen_nic_driver_name, n);
  509. } else {
  510. printk(KERN_ERR "%s:n=0x%x Error! NetXen card flash not"
  511. " initialized.\n", __func__, n);
  512. return -EIO;
  513. }
  514. buf = kcalloc(n, sizeof(struct crb_addr_pair), GFP_KERNEL);
  515. if (buf == NULL) {
  516. printk("%s: netxen_pinit_from_rom: Unable to calloc memory.\n",
  517. netxen_nic_driver_name);
  518. return -ENOMEM;
  519. }
  520. for (i = 0; i < n; i++) {
  521. if (netxen_rom_fast_read(adapter, 8*i + 4*offset, &val) != 0 ||
  522. netxen_rom_fast_read(adapter, 8*i + 4*offset + 4, &addr) != 0) {
  523. kfree(buf);
  524. return -EIO;
  525. }
  526. buf[i].addr = addr;
  527. buf[i].data = val;
  528. if (verbose)
  529. printk(KERN_DEBUG "%s: PCI: 0x%08x == 0x%08x\n",
  530. netxen_nic_driver_name,
  531. (u32)netxen_decode_crb_addr(addr), val);
  532. }
  533. for (i = 0; i < n; i++) {
  534. off = netxen_decode_crb_addr(buf[i].addr);
  535. if (off == NETXEN_ADDR_ERROR) {
  536. printk(KERN_ERR"CRB init value out of range %x\n",
  537. buf[i].addr);
  538. continue;
  539. }
  540. off += NETXEN_PCI_CRBSPACE;
  541. /* skipping cold reboot MAGIC */
  542. if (off == NETXEN_CAM_RAM(0x1fc))
  543. continue;
  544. if (NX_IS_REVISION_P3(adapter->ahw.revision_id)) {
  545. /* do not reset PCI */
  546. if (off == (ROMUSB_GLB + 0xbc))
  547. continue;
  548. if (off == (ROMUSB_GLB + 0xa8))
  549. continue;
  550. if (off == (ROMUSB_GLB + 0xc8)) /* core clock */
  551. continue;
  552. if (off == (ROMUSB_GLB + 0x24)) /* MN clock */
  553. continue;
  554. if (off == (ROMUSB_GLB + 0x1c)) /* MS clock */
  555. continue;
  556. if (off == (NETXEN_CRB_PEG_NET_1 + 0x18))
  557. buf[i].data = 0x1020;
  558. /* skip the function enable register */
  559. if (off == NETXEN_PCIE_REG(PCIE_SETUP_FUNCTION))
  560. continue;
  561. if (off == NETXEN_PCIE_REG(PCIE_SETUP_FUNCTION2))
  562. continue;
  563. if ((off & 0x0ff00000) == NETXEN_CRB_SMB)
  564. continue;
  565. }
  566. if (off == NETXEN_ADDR_ERROR) {
  567. printk(KERN_ERR "%s: Err: Unknown addr: 0x%08x\n",
  568. netxen_nic_driver_name, buf[i].addr);
  569. continue;
  570. }
  571. init_delay = 1;
  572. /* After writing this register, HW needs time for CRB */
  573. /* to quiet down (else crb_window returns 0xffffffff) */
  574. if (off == NETXEN_ROMUSB_GLB_SW_RESET) {
  575. init_delay = 1000;
  576. if (NX_IS_REVISION_P2(adapter->ahw.revision_id)) {
  577. /* hold xdma in reset also */
  578. buf[i].data = NETXEN_NIC_XDMA_RESET;
  579. buf[i].data = 0x8000ff;
  580. }
  581. }
  582. adapter->hw_write_wx(adapter, off, &buf[i].data, 4);
  583. msleep(init_delay);
  584. }
  585. kfree(buf);
  586. /* disable_peg_cache_all */
  587. /* unreset_net_cache */
  588. if (NX_IS_REVISION_P2(adapter->ahw.revision_id)) {
  589. adapter->hw_read_wx(adapter,
  590. NETXEN_ROMUSB_GLB_SW_RESET, &val, 4);
  591. netxen_crb_writelit_adapter(adapter,
  592. NETXEN_ROMUSB_GLB_SW_RESET, (val & 0xffffff0f));
  593. }
  594. /* p2dn replyCount */
  595. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_D + 0xec, 0x1e);
  596. /* disable_peg_cache 0 */
  597. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_D + 0x4c, 8);
  598. /* disable_peg_cache 1 */
  599. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_I + 0x4c, 8);
  600. /* peg_clr_all */
  601. /* peg_clr 0 */
  602. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_0 + 0x8, 0);
  603. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_0 + 0xc, 0);
  604. /* peg_clr 1 */
  605. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_1 + 0x8, 0);
  606. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_1 + 0xc, 0);
  607. /* peg_clr 2 */
  608. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_2 + 0x8, 0);
  609. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_2 + 0xc, 0);
  610. /* peg_clr 3 */
  611. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_3 + 0x8, 0);
  612. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_3 + 0xc, 0);
  613. return 0;
  614. }
  615. int netxen_initialize_adapter_offload(struct netxen_adapter *adapter)
  616. {
  617. uint64_t addr;
  618. uint32_t hi;
  619. uint32_t lo;
  620. adapter->dummy_dma.addr =
  621. pci_alloc_consistent(adapter->pdev,
  622. NETXEN_HOST_DUMMY_DMA_SIZE,
  623. &adapter->dummy_dma.phys_addr);
  624. if (adapter->dummy_dma.addr == NULL) {
  625. printk("%s: ERROR: Could not allocate dummy DMA memory\n",
  626. __func__);
  627. return -ENOMEM;
  628. }
  629. addr = (uint64_t) adapter->dummy_dma.phys_addr;
  630. hi = (addr >> 32) & 0xffffffff;
  631. lo = addr & 0xffffffff;
  632. adapter->pci_write_normalize(adapter, CRB_HOST_DUMMY_BUF_ADDR_HI, hi);
  633. adapter->pci_write_normalize(adapter, CRB_HOST_DUMMY_BUF_ADDR_LO, lo);
  634. if (NX_IS_REVISION_P3(adapter->ahw.revision_id)) {
  635. uint32_t temp = 0;
  636. adapter->hw_write_wx(adapter, CRB_HOST_DUMMY_BUF, &temp, 4);
  637. }
  638. return 0;
  639. }
  640. void netxen_free_adapter_offload(struct netxen_adapter *adapter)
  641. {
  642. int i = 100;
  643. if (!adapter->dummy_dma.addr)
  644. return;
  645. if (NX_IS_REVISION_P2(adapter->ahw.revision_id)) {
  646. do {
  647. if (dma_watchdog_shutdown_request(adapter) == 1)
  648. break;
  649. msleep(50);
  650. if (dma_watchdog_shutdown_poll_result(adapter) == 1)
  651. break;
  652. } while (--i);
  653. }
  654. if (i) {
  655. pci_free_consistent(adapter->pdev,
  656. NETXEN_HOST_DUMMY_DMA_SIZE,
  657. adapter->dummy_dma.addr,
  658. adapter->dummy_dma.phys_addr);
  659. adapter->dummy_dma.addr = NULL;
  660. } else {
  661. printk(KERN_ERR "%s: dma_watchdog_shutdown failed\n",
  662. adapter->netdev->name);
  663. }
  664. }
  665. int netxen_phantom_init(struct netxen_adapter *adapter, int pegtune_val)
  666. {
  667. u32 val = 0;
  668. int retries = 60;
  669. if (!pegtune_val) {
  670. do {
  671. val = adapter->pci_read_normalize(adapter,
  672. CRB_CMDPEG_STATE);
  673. if (val == PHAN_INITIALIZE_COMPLETE ||
  674. val == PHAN_INITIALIZE_ACK)
  675. return 0;
  676. msleep(500);
  677. } while (--retries);
  678. if (!retries) {
  679. pegtune_val = adapter->pci_read_normalize(adapter,
  680. NETXEN_ROMUSB_GLB_PEGTUNE_DONE);
  681. printk(KERN_WARNING "netxen_phantom_init: init failed, "
  682. "pegtune_val=%x\n", pegtune_val);
  683. return -1;
  684. }
  685. }
  686. return 0;
  687. }
  688. int netxen_receive_peg_ready(struct netxen_adapter *adapter)
  689. {
  690. u32 val = 0;
  691. int retries = 2000;
  692. do {
  693. val = adapter->pci_read_normalize(adapter, CRB_RCVPEG_STATE);
  694. if (val == PHAN_PEG_RCV_INITIALIZED)
  695. return 0;
  696. msleep(10);
  697. } while (--retries);
  698. if (!retries) {
  699. printk(KERN_ERR "Receive Peg initialization not "
  700. "complete, state: 0x%x.\n", val);
  701. return -EIO;
  702. }
  703. return 0;
  704. }
  705. static struct sk_buff *netxen_process_rxbuf(struct netxen_adapter *adapter,
  706. struct nx_host_rds_ring *rds_ring, u16 index, u16 cksum)
  707. {
  708. struct netxen_rx_buffer *buffer;
  709. struct sk_buff *skb;
  710. buffer = &rds_ring->rx_buf_arr[index];
  711. pci_unmap_single(adapter->pdev, buffer->dma, rds_ring->dma_size,
  712. PCI_DMA_FROMDEVICE);
  713. skb = buffer->skb;
  714. if (!skb)
  715. goto no_skb;
  716. if (likely(adapter->rx_csum && cksum == STATUS_CKSUM_OK)) {
  717. adapter->stats.csummed++;
  718. skb->ip_summed = CHECKSUM_UNNECESSARY;
  719. } else
  720. skb->ip_summed = CHECKSUM_NONE;
  721. skb->dev = adapter->netdev;
  722. buffer->skb = NULL;
  723. no_skb:
  724. buffer->state = NETXEN_BUFFER_FREE;
  725. buffer->lro_current_frags = 0;
  726. buffer->lro_expected_frags = 0;
  727. list_add_tail(&buffer->list, &rds_ring->free_list);
  728. return skb;
  729. }
  730. static void netxen_process_rcv(struct netxen_adapter *adapter, int ctxid,
  731. struct status_desc *desc)
  732. {
  733. struct net_device *netdev = adapter->netdev;
  734. u64 sts_data = le64_to_cpu(desc->status_desc_data);
  735. int index = netxen_get_sts_refhandle(sts_data);
  736. struct netxen_recv_context *recv_ctx = &(adapter->recv_ctx[ctxid]);
  737. struct netxen_rx_buffer *buffer;
  738. struct sk_buff *skb;
  739. u32 length = netxen_get_sts_totallength(sts_data);
  740. u32 desc_ctx;
  741. u16 pkt_offset = 0, cksum;
  742. struct nx_host_rds_ring *rds_ring;
  743. desc_ctx = netxen_get_sts_type(sts_data);
  744. if (unlikely(desc_ctx >= NUM_RCV_DESC_RINGS)) {
  745. return;
  746. }
  747. rds_ring = &recv_ctx->rds_rings[desc_ctx];
  748. if (unlikely(index > rds_ring->max_rx_desc_count)) {
  749. return;
  750. }
  751. buffer = &rds_ring->rx_buf_arr[index];
  752. if (desc_ctx == RCV_DESC_LRO_CTXID) {
  753. buffer->lro_current_frags++;
  754. if (netxen_get_sts_desc_lro_last_frag(desc)) {
  755. buffer->lro_expected_frags =
  756. netxen_get_sts_desc_lro_cnt(desc);
  757. buffer->lro_length = length;
  758. }
  759. if (buffer->lro_current_frags != buffer->lro_expected_frags) {
  760. return;
  761. }
  762. }
  763. cksum = netxen_get_sts_status(sts_data);
  764. skb = netxen_process_rxbuf(adapter, rds_ring, index, cksum);
  765. if (!skb)
  766. return;
  767. if (desc_ctx == RCV_DESC_LRO_CTXID) {
  768. /* True length was only available on the last pkt */
  769. skb_put(skb, buffer->lro_length);
  770. } else {
  771. if (length > rds_ring->skb_size)
  772. skb_put(skb, rds_ring->skb_size);
  773. else
  774. skb_put(skb, length);
  775. pkt_offset = netxen_get_sts_pkt_offset(sts_data);
  776. if (pkt_offset)
  777. skb_pull(skb, pkt_offset);
  778. }
  779. skb->protocol = eth_type_trans(skb, netdev);
  780. netif_receive_skb(skb);
  781. adapter->stats.no_rcv++;
  782. adapter->stats.rxbytes += length;
  783. }
  784. /* Process Receive status ring */
  785. u32 netxen_process_rcv_ring(struct netxen_adapter *adapter, int ctxid, int max)
  786. {
  787. struct netxen_recv_context *recv_ctx = &(adapter->recv_ctx[ctxid]);
  788. struct status_desc *desc_head = recv_ctx->rcv_status_desc_head;
  789. struct status_desc *desc;
  790. u32 consumer = recv_ctx->status_rx_consumer;
  791. int count = 0, ring;
  792. u64 sts_data;
  793. u16 opcode;
  794. while (count < max) {
  795. desc = &desc_head[consumer];
  796. sts_data = le64_to_cpu(desc->status_desc_data);
  797. if (!(sts_data & STATUS_OWNER_HOST))
  798. break;
  799. opcode = netxen_get_sts_opcode(sts_data);
  800. netxen_process_rcv(adapter, ctxid, desc);
  801. desc->status_desc_data = cpu_to_le64(STATUS_OWNER_PHANTOM);
  802. consumer = get_next_index(consumer,
  803. adapter->max_rx_desc_count);
  804. count++;
  805. }
  806. for (ring = 0; ring < adapter->max_rds_rings; ring++)
  807. netxen_post_rx_buffers_nodb(adapter, ctxid, ring);
  808. if (count) {
  809. recv_ctx->status_rx_consumer = consumer;
  810. adapter->pci_write_normalize(adapter,
  811. recv_ctx->crb_sts_consumer, consumer);
  812. }
  813. return count;
  814. }
  815. /* Process Command status ring */
  816. int netxen_process_cmd_ring(struct netxen_adapter *adapter)
  817. {
  818. u32 last_consumer, consumer;
  819. int count = 0, i;
  820. struct netxen_cmd_buffer *buffer;
  821. struct pci_dev *pdev = adapter->pdev;
  822. struct net_device *netdev = adapter->netdev;
  823. struct netxen_skb_frag *frag;
  824. int done = 0;
  825. last_consumer = adapter->last_cmd_consumer;
  826. consumer = le32_to_cpu(*(adapter->cmd_consumer));
  827. while (last_consumer != consumer) {
  828. buffer = &adapter->cmd_buf_arr[last_consumer];
  829. if (buffer->skb) {
  830. frag = &buffer->frag_array[0];
  831. pci_unmap_single(pdev, frag->dma, frag->length,
  832. PCI_DMA_TODEVICE);
  833. frag->dma = 0ULL;
  834. for (i = 1; i < buffer->frag_count; i++) {
  835. frag++; /* Get the next frag */
  836. pci_unmap_page(pdev, frag->dma, frag->length,
  837. PCI_DMA_TODEVICE);
  838. frag->dma = 0ULL;
  839. }
  840. adapter->stats.xmitfinished++;
  841. dev_kfree_skb_any(buffer->skb);
  842. buffer->skb = NULL;
  843. }
  844. last_consumer = get_next_index(last_consumer,
  845. adapter->max_tx_desc_count);
  846. if (++count >= MAX_STATUS_HANDLE)
  847. break;
  848. }
  849. if (count) {
  850. adapter->last_cmd_consumer = last_consumer;
  851. smp_mb();
  852. if (netif_queue_stopped(netdev) && netif_running(netdev)) {
  853. netif_tx_lock(netdev);
  854. netif_wake_queue(netdev);
  855. smp_mb();
  856. netif_tx_unlock(netdev);
  857. }
  858. }
  859. /*
  860. * If everything is freed up to consumer then check if the ring is full
  861. * If the ring is full then check if more needs to be freed and
  862. * schedule the call back again.
  863. *
  864. * This happens when there are 2 CPUs. One could be freeing and the
  865. * other filling it. If the ring is full when we get out of here and
  866. * the card has already interrupted the host then the host can miss the
  867. * interrupt.
  868. *
  869. * There is still a possible race condition and the host could miss an
  870. * interrupt. The card has to take care of this.
  871. */
  872. consumer = le32_to_cpu(*(adapter->cmd_consumer));
  873. done = (last_consumer == consumer);
  874. return (done);
  875. }
  876. /*
  877. * netxen_post_rx_buffers puts buffer in the Phantom memory
  878. */
  879. void netxen_post_rx_buffers(struct netxen_adapter *adapter, u32 ctx, u32 ringid)
  880. {
  881. struct pci_dev *pdev = adapter->pdev;
  882. struct sk_buff *skb;
  883. struct netxen_recv_context *recv_ctx = &(adapter->recv_ctx[ctx]);
  884. struct nx_host_rds_ring *rds_ring = NULL;
  885. uint producer;
  886. struct rcv_desc *pdesc;
  887. struct netxen_rx_buffer *buffer;
  888. int count = 0;
  889. netxen_ctx_msg msg = 0;
  890. dma_addr_t dma;
  891. struct list_head *head;
  892. rds_ring = &recv_ctx->rds_rings[ringid];
  893. producer = rds_ring->producer;
  894. head = &rds_ring->free_list;
  895. /* We can start writing rx descriptors into the phantom memory. */
  896. while (!list_empty(head)) {
  897. skb = dev_alloc_skb(rds_ring->skb_size);
  898. if (unlikely(!skb)) {
  899. break;
  900. }
  901. if (!adapter->ahw.cut_through)
  902. skb_reserve(skb, 2);
  903. dma = pci_map_single(pdev, skb->data,
  904. rds_ring->dma_size, PCI_DMA_FROMDEVICE);
  905. if (pci_dma_mapping_error(pdev, dma)) {
  906. dev_kfree_skb_any(skb);
  907. break;
  908. }
  909. count++;
  910. buffer = list_entry(head->next, struct netxen_rx_buffer, list);
  911. list_del(&buffer->list);
  912. buffer->skb = skb;
  913. buffer->state = NETXEN_BUFFER_BUSY;
  914. buffer->dma = dma;
  915. /* make a rcv descriptor */
  916. pdesc = &rds_ring->desc_head[producer];
  917. pdesc->addr_buffer = cpu_to_le64(dma);
  918. pdesc->reference_handle = cpu_to_le16(buffer->ref_handle);
  919. pdesc->buffer_length = cpu_to_le32(rds_ring->dma_size);
  920. producer = get_next_index(producer, rds_ring->max_rx_desc_count);
  921. }
  922. /* if we did allocate buffers, then write the count to Phantom */
  923. if (count) {
  924. rds_ring->producer = producer;
  925. /* Window = 1 */
  926. adapter->pci_write_normalize(adapter,
  927. rds_ring->crb_rcv_producer,
  928. (producer-1) & (rds_ring->max_rx_desc_count-1));
  929. if (adapter->fw_major < 4) {
  930. /*
  931. * Write a doorbell msg to tell phanmon of change in
  932. * receive ring producer
  933. * Only for firmware version < 4.0.0
  934. */
  935. netxen_set_msg_peg_id(msg, NETXEN_RCV_PEG_DB_ID);
  936. netxen_set_msg_privid(msg);
  937. netxen_set_msg_count(msg,
  938. ((producer -
  939. 1) & (rds_ring->
  940. max_rx_desc_count - 1)));
  941. netxen_set_msg_ctxid(msg, adapter->portnum);
  942. netxen_set_msg_opcode(msg, NETXEN_RCV_PRODUCER(ringid));
  943. writel(msg,
  944. DB_NORMALIZE(adapter,
  945. NETXEN_RCV_PRODUCER_OFFSET));
  946. }
  947. }
  948. }
  949. static void netxen_post_rx_buffers_nodb(struct netxen_adapter *adapter,
  950. uint32_t ctx, uint32_t ringid)
  951. {
  952. struct pci_dev *pdev = adapter->pdev;
  953. struct sk_buff *skb;
  954. struct netxen_recv_context *recv_ctx = &(adapter->recv_ctx[ctx]);
  955. struct nx_host_rds_ring *rds_ring = NULL;
  956. u32 producer;
  957. struct rcv_desc *pdesc;
  958. struct netxen_rx_buffer *buffer;
  959. int count = 0;
  960. struct list_head *head;
  961. dma_addr_t dma;
  962. rds_ring = &recv_ctx->rds_rings[ringid];
  963. producer = rds_ring->producer;
  964. head = &rds_ring->free_list;
  965. /* We can start writing rx descriptors into the phantom memory. */
  966. while (!list_empty(head)) {
  967. skb = dev_alloc_skb(rds_ring->skb_size);
  968. if (unlikely(!skb)) {
  969. break;
  970. }
  971. if (!adapter->ahw.cut_through)
  972. skb_reserve(skb, 2);
  973. dma = pci_map_single(pdev, skb->data,
  974. rds_ring->dma_size, PCI_DMA_FROMDEVICE);
  975. if (pci_dma_mapping_error(pdev, dma)) {
  976. dev_kfree_skb_any(skb);
  977. break;
  978. }
  979. count++;
  980. buffer = list_entry(head->next, struct netxen_rx_buffer, list);
  981. list_del(&buffer->list);
  982. buffer->skb = skb;
  983. buffer->state = NETXEN_BUFFER_BUSY;
  984. buffer->dma = dma;
  985. /* make a rcv descriptor */
  986. pdesc = &rds_ring->desc_head[producer];
  987. pdesc->reference_handle = cpu_to_le16(buffer->ref_handle);
  988. pdesc->buffer_length = cpu_to_le32(rds_ring->dma_size);
  989. pdesc->addr_buffer = cpu_to_le64(buffer->dma);
  990. producer = get_next_index(producer, rds_ring->max_rx_desc_count);
  991. }
  992. /* if we did allocate buffers, then write the count to Phantom */
  993. if (count) {
  994. rds_ring->producer = producer;
  995. /* Window = 1 */
  996. adapter->pci_write_normalize(adapter,
  997. rds_ring->crb_rcv_producer,
  998. (producer-1) & (rds_ring->max_rx_desc_count-1));
  999. wmb();
  1000. }
  1001. }
  1002. void netxen_nic_clear_stats(struct netxen_adapter *adapter)
  1003. {
  1004. memset(&adapter->stats, 0, sizeof(adapter->stats));
  1005. return;
  1006. }