kvm_main.c 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "iodev.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <linux/compat.h>
  45. #include <linux/srcu.h>
  46. #include <linux/hugetlb.h>
  47. #include <linux/slab.h>
  48. #include <asm/processor.h>
  49. #include <asm/io.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/pgtable.h>
  52. #include "coalesced_mmio.h"
  53. #include "async_pf.h"
  54. #define CREATE_TRACE_POINTS
  55. #include <trace/events/kvm.h>
  56. MODULE_AUTHOR("Qumranet");
  57. MODULE_LICENSE("GPL");
  58. /*
  59. * Ordering of locks:
  60. *
  61. * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  62. */
  63. DEFINE_RAW_SPINLOCK(kvm_lock);
  64. LIST_HEAD(vm_list);
  65. static cpumask_var_t cpus_hardware_enabled;
  66. static int kvm_usage_count = 0;
  67. static atomic_t hardware_enable_failed;
  68. struct kmem_cache *kvm_vcpu_cache;
  69. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  70. static __read_mostly struct preempt_ops kvm_preempt_ops;
  71. struct dentry *kvm_debugfs_dir;
  72. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  73. unsigned long arg);
  74. static int hardware_enable_all(void);
  75. static void hardware_disable_all(void);
  76. static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  77. bool kvm_rebooting;
  78. EXPORT_SYMBOL_GPL(kvm_rebooting);
  79. static bool largepages_enabled = true;
  80. static struct page *hwpoison_page;
  81. static pfn_t hwpoison_pfn;
  82. static struct page *fault_page;
  83. static pfn_t fault_pfn;
  84. inline int kvm_is_mmio_pfn(pfn_t pfn)
  85. {
  86. if (pfn_valid(pfn)) {
  87. int reserved;
  88. struct page *tail = pfn_to_page(pfn);
  89. struct page *head = compound_trans_head(tail);
  90. reserved = PageReserved(head);
  91. if (head != tail) {
  92. /*
  93. * "head" is not a dangling pointer
  94. * (compound_trans_head takes care of that)
  95. * but the hugepage may have been splitted
  96. * from under us (and we may not hold a
  97. * reference count on the head page so it can
  98. * be reused before we run PageReferenced), so
  99. * we've to check PageTail before returning
  100. * what we just read.
  101. */
  102. smp_rmb();
  103. if (PageTail(tail))
  104. return reserved;
  105. }
  106. return PageReserved(tail);
  107. }
  108. return true;
  109. }
  110. /*
  111. * Switches to specified vcpu, until a matching vcpu_put()
  112. */
  113. void vcpu_load(struct kvm_vcpu *vcpu)
  114. {
  115. int cpu;
  116. mutex_lock(&vcpu->mutex);
  117. if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
  118. /* The thread running this VCPU changed. */
  119. struct pid *oldpid = vcpu->pid;
  120. struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
  121. rcu_assign_pointer(vcpu->pid, newpid);
  122. synchronize_rcu();
  123. put_pid(oldpid);
  124. }
  125. cpu = get_cpu();
  126. preempt_notifier_register(&vcpu->preempt_notifier);
  127. kvm_arch_vcpu_load(vcpu, cpu);
  128. put_cpu();
  129. }
  130. void vcpu_put(struct kvm_vcpu *vcpu)
  131. {
  132. preempt_disable();
  133. kvm_arch_vcpu_put(vcpu);
  134. preempt_notifier_unregister(&vcpu->preempt_notifier);
  135. preempt_enable();
  136. mutex_unlock(&vcpu->mutex);
  137. }
  138. static void ack_flush(void *_completed)
  139. {
  140. }
  141. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  142. {
  143. int i, cpu, me;
  144. cpumask_var_t cpus;
  145. bool called = true;
  146. struct kvm_vcpu *vcpu;
  147. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  148. me = get_cpu();
  149. kvm_for_each_vcpu(i, vcpu, kvm) {
  150. kvm_make_request(req, vcpu);
  151. cpu = vcpu->cpu;
  152. /* Set ->requests bit before we read ->mode */
  153. smp_mb();
  154. if (cpus != NULL && cpu != -1 && cpu != me &&
  155. kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
  156. cpumask_set_cpu(cpu, cpus);
  157. }
  158. if (unlikely(cpus == NULL))
  159. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  160. else if (!cpumask_empty(cpus))
  161. smp_call_function_many(cpus, ack_flush, NULL, 1);
  162. else
  163. called = false;
  164. put_cpu();
  165. free_cpumask_var(cpus);
  166. return called;
  167. }
  168. void kvm_flush_remote_tlbs(struct kvm *kvm)
  169. {
  170. int dirty_count = kvm->tlbs_dirty;
  171. smp_mb();
  172. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  173. ++kvm->stat.remote_tlb_flush;
  174. cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
  175. }
  176. void kvm_reload_remote_mmus(struct kvm *kvm)
  177. {
  178. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  179. }
  180. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  181. {
  182. struct page *page;
  183. int r;
  184. mutex_init(&vcpu->mutex);
  185. vcpu->cpu = -1;
  186. vcpu->kvm = kvm;
  187. vcpu->vcpu_id = id;
  188. vcpu->pid = NULL;
  189. init_waitqueue_head(&vcpu->wq);
  190. kvm_async_pf_vcpu_init(vcpu);
  191. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  192. if (!page) {
  193. r = -ENOMEM;
  194. goto fail;
  195. }
  196. vcpu->run = page_address(page);
  197. r = kvm_arch_vcpu_init(vcpu);
  198. if (r < 0)
  199. goto fail_free_run;
  200. return 0;
  201. fail_free_run:
  202. free_page((unsigned long)vcpu->run);
  203. fail:
  204. return r;
  205. }
  206. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  207. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  208. {
  209. put_pid(vcpu->pid);
  210. kvm_arch_vcpu_uninit(vcpu);
  211. free_page((unsigned long)vcpu->run);
  212. }
  213. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  214. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  215. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  216. {
  217. return container_of(mn, struct kvm, mmu_notifier);
  218. }
  219. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  220. struct mm_struct *mm,
  221. unsigned long address)
  222. {
  223. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  224. int need_tlb_flush, idx;
  225. /*
  226. * When ->invalidate_page runs, the linux pte has been zapped
  227. * already but the page is still allocated until
  228. * ->invalidate_page returns. So if we increase the sequence
  229. * here the kvm page fault will notice if the spte can't be
  230. * established because the page is going to be freed. If
  231. * instead the kvm page fault establishes the spte before
  232. * ->invalidate_page runs, kvm_unmap_hva will release it
  233. * before returning.
  234. *
  235. * The sequence increase only need to be seen at spin_unlock
  236. * time, and not at spin_lock time.
  237. *
  238. * Increasing the sequence after the spin_unlock would be
  239. * unsafe because the kvm page fault could then establish the
  240. * pte after kvm_unmap_hva returned, without noticing the page
  241. * is going to be freed.
  242. */
  243. idx = srcu_read_lock(&kvm->srcu);
  244. spin_lock(&kvm->mmu_lock);
  245. kvm->mmu_notifier_seq++;
  246. need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
  247. spin_unlock(&kvm->mmu_lock);
  248. srcu_read_unlock(&kvm->srcu, idx);
  249. /* we've to flush the tlb before the pages can be freed */
  250. if (need_tlb_flush)
  251. kvm_flush_remote_tlbs(kvm);
  252. }
  253. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  254. struct mm_struct *mm,
  255. unsigned long address,
  256. pte_t pte)
  257. {
  258. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  259. int idx;
  260. idx = srcu_read_lock(&kvm->srcu);
  261. spin_lock(&kvm->mmu_lock);
  262. kvm->mmu_notifier_seq++;
  263. kvm_set_spte_hva(kvm, address, pte);
  264. spin_unlock(&kvm->mmu_lock);
  265. srcu_read_unlock(&kvm->srcu, idx);
  266. }
  267. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  268. struct mm_struct *mm,
  269. unsigned long start,
  270. unsigned long end)
  271. {
  272. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  273. int need_tlb_flush = 0, idx;
  274. idx = srcu_read_lock(&kvm->srcu);
  275. spin_lock(&kvm->mmu_lock);
  276. /*
  277. * The count increase must become visible at unlock time as no
  278. * spte can be established without taking the mmu_lock and
  279. * count is also read inside the mmu_lock critical section.
  280. */
  281. kvm->mmu_notifier_count++;
  282. for (; start < end; start += PAGE_SIZE)
  283. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  284. need_tlb_flush |= kvm->tlbs_dirty;
  285. spin_unlock(&kvm->mmu_lock);
  286. srcu_read_unlock(&kvm->srcu, idx);
  287. /* we've to flush the tlb before the pages can be freed */
  288. if (need_tlb_flush)
  289. kvm_flush_remote_tlbs(kvm);
  290. }
  291. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  292. struct mm_struct *mm,
  293. unsigned long start,
  294. unsigned long end)
  295. {
  296. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  297. spin_lock(&kvm->mmu_lock);
  298. /*
  299. * This sequence increase will notify the kvm page fault that
  300. * the page that is going to be mapped in the spte could have
  301. * been freed.
  302. */
  303. kvm->mmu_notifier_seq++;
  304. /*
  305. * The above sequence increase must be visible before the
  306. * below count decrease but both values are read by the kvm
  307. * page fault under mmu_lock spinlock so we don't need to add
  308. * a smb_wmb() here in between the two.
  309. */
  310. kvm->mmu_notifier_count--;
  311. spin_unlock(&kvm->mmu_lock);
  312. BUG_ON(kvm->mmu_notifier_count < 0);
  313. }
  314. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  315. struct mm_struct *mm,
  316. unsigned long address)
  317. {
  318. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  319. int young, idx;
  320. idx = srcu_read_lock(&kvm->srcu);
  321. spin_lock(&kvm->mmu_lock);
  322. young = kvm_age_hva(kvm, address);
  323. spin_unlock(&kvm->mmu_lock);
  324. srcu_read_unlock(&kvm->srcu, idx);
  325. if (young)
  326. kvm_flush_remote_tlbs(kvm);
  327. return young;
  328. }
  329. static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
  330. struct mm_struct *mm,
  331. unsigned long address)
  332. {
  333. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  334. int young, idx;
  335. idx = srcu_read_lock(&kvm->srcu);
  336. spin_lock(&kvm->mmu_lock);
  337. young = kvm_test_age_hva(kvm, address);
  338. spin_unlock(&kvm->mmu_lock);
  339. srcu_read_unlock(&kvm->srcu, idx);
  340. return young;
  341. }
  342. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  343. struct mm_struct *mm)
  344. {
  345. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  346. int idx;
  347. idx = srcu_read_lock(&kvm->srcu);
  348. kvm_arch_flush_shadow(kvm);
  349. srcu_read_unlock(&kvm->srcu, idx);
  350. }
  351. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  352. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  353. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  354. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  355. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  356. .test_young = kvm_mmu_notifier_test_young,
  357. .change_pte = kvm_mmu_notifier_change_pte,
  358. .release = kvm_mmu_notifier_release,
  359. };
  360. static int kvm_init_mmu_notifier(struct kvm *kvm)
  361. {
  362. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  363. return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  364. }
  365. #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
  366. static int kvm_init_mmu_notifier(struct kvm *kvm)
  367. {
  368. return 0;
  369. }
  370. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  371. static struct kvm *kvm_create_vm(void)
  372. {
  373. int r, i;
  374. struct kvm *kvm = kvm_arch_alloc_vm();
  375. if (!kvm)
  376. return ERR_PTR(-ENOMEM);
  377. r = kvm_arch_init_vm(kvm);
  378. if (r)
  379. goto out_err_nodisable;
  380. r = hardware_enable_all();
  381. if (r)
  382. goto out_err_nodisable;
  383. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  384. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  385. INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
  386. #endif
  387. r = -ENOMEM;
  388. kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  389. if (!kvm->memslots)
  390. goto out_err_nosrcu;
  391. if (init_srcu_struct(&kvm->srcu))
  392. goto out_err_nosrcu;
  393. for (i = 0; i < KVM_NR_BUSES; i++) {
  394. kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
  395. GFP_KERNEL);
  396. if (!kvm->buses[i])
  397. goto out_err;
  398. }
  399. r = kvm_init_mmu_notifier(kvm);
  400. if (r)
  401. goto out_err;
  402. kvm->mm = current->mm;
  403. atomic_inc(&kvm->mm->mm_count);
  404. spin_lock_init(&kvm->mmu_lock);
  405. kvm_eventfd_init(kvm);
  406. mutex_init(&kvm->lock);
  407. mutex_init(&kvm->irq_lock);
  408. mutex_init(&kvm->slots_lock);
  409. atomic_set(&kvm->users_count, 1);
  410. raw_spin_lock(&kvm_lock);
  411. list_add(&kvm->vm_list, &vm_list);
  412. raw_spin_unlock(&kvm_lock);
  413. return kvm;
  414. out_err:
  415. cleanup_srcu_struct(&kvm->srcu);
  416. out_err_nosrcu:
  417. hardware_disable_all();
  418. out_err_nodisable:
  419. for (i = 0; i < KVM_NR_BUSES; i++)
  420. kfree(kvm->buses[i]);
  421. kfree(kvm->memslots);
  422. kvm_arch_free_vm(kvm);
  423. return ERR_PTR(r);
  424. }
  425. static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
  426. {
  427. if (!memslot->dirty_bitmap)
  428. return;
  429. if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
  430. vfree(memslot->dirty_bitmap_head);
  431. else
  432. kfree(memslot->dirty_bitmap_head);
  433. memslot->dirty_bitmap = NULL;
  434. memslot->dirty_bitmap_head = NULL;
  435. }
  436. /*
  437. * Free any memory in @free but not in @dont.
  438. */
  439. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  440. struct kvm_memory_slot *dont)
  441. {
  442. int i;
  443. if (!dont || free->rmap != dont->rmap)
  444. vfree(free->rmap);
  445. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  446. kvm_destroy_dirty_bitmap(free);
  447. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  448. if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
  449. vfree(free->lpage_info[i]);
  450. free->lpage_info[i] = NULL;
  451. }
  452. }
  453. free->npages = 0;
  454. free->rmap = NULL;
  455. }
  456. void kvm_free_physmem(struct kvm *kvm)
  457. {
  458. int i;
  459. struct kvm_memslots *slots = kvm->memslots;
  460. for (i = 0; i < slots->nmemslots; ++i)
  461. kvm_free_physmem_slot(&slots->memslots[i], NULL);
  462. kfree(kvm->memslots);
  463. }
  464. static void kvm_destroy_vm(struct kvm *kvm)
  465. {
  466. int i;
  467. struct mm_struct *mm = kvm->mm;
  468. kvm_arch_sync_events(kvm);
  469. raw_spin_lock(&kvm_lock);
  470. list_del(&kvm->vm_list);
  471. raw_spin_unlock(&kvm_lock);
  472. kvm_free_irq_routing(kvm);
  473. for (i = 0; i < KVM_NR_BUSES; i++)
  474. kvm_io_bus_destroy(kvm->buses[i]);
  475. kvm_coalesced_mmio_free(kvm);
  476. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  477. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  478. #else
  479. kvm_arch_flush_shadow(kvm);
  480. #endif
  481. kvm_arch_destroy_vm(kvm);
  482. kvm_free_physmem(kvm);
  483. cleanup_srcu_struct(&kvm->srcu);
  484. kvm_arch_free_vm(kvm);
  485. hardware_disable_all();
  486. mmdrop(mm);
  487. }
  488. void kvm_get_kvm(struct kvm *kvm)
  489. {
  490. atomic_inc(&kvm->users_count);
  491. }
  492. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  493. void kvm_put_kvm(struct kvm *kvm)
  494. {
  495. if (atomic_dec_and_test(&kvm->users_count))
  496. kvm_destroy_vm(kvm);
  497. }
  498. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  499. static int kvm_vm_release(struct inode *inode, struct file *filp)
  500. {
  501. struct kvm *kvm = filp->private_data;
  502. kvm_irqfd_release(kvm);
  503. kvm_put_kvm(kvm);
  504. return 0;
  505. }
  506. #ifndef CONFIG_S390
  507. /*
  508. * Allocation size is twice as large as the actual dirty bitmap size.
  509. * This makes it possible to do double buffering: see x86's
  510. * kvm_vm_ioctl_get_dirty_log().
  511. */
  512. static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
  513. {
  514. unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
  515. if (dirty_bytes > PAGE_SIZE)
  516. memslot->dirty_bitmap = vzalloc(dirty_bytes);
  517. else
  518. memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
  519. if (!memslot->dirty_bitmap)
  520. return -ENOMEM;
  521. memslot->dirty_bitmap_head = memslot->dirty_bitmap;
  522. return 0;
  523. }
  524. #endif /* !CONFIG_S390 */
  525. /*
  526. * Allocate some memory and give it an address in the guest physical address
  527. * space.
  528. *
  529. * Discontiguous memory is allowed, mostly for framebuffers.
  530. *
  531. * Must be called holding mmap_sem for write.
  532. */
  533. int __kvm_set_memory_region(struct kvm *kvm,
  534. struct kvm_userspace_memory_region *mem,
  535. int user_alloc)
  536. {
  537. int r;
  538. gfn_t base_gfn;
  539. unsigned long npages;
  540. unsigned long i;
  541. struct kvm_memory_slot *memslot;
  542. struct kvm_memory_slot old, new;
  543. struct kvm_memslots *slots, *old_memslots;
  544. r = -EINVAL;
  545. /* General sanity checks */
  546. if (mem->memory_size & (PAGE_SIZE - 1))
  547. goto out;
  548. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  549. goto out;
  550. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  551. goto out;
  552. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  553. goto out;
  554. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  555. goto out;
  556. memslot = &kvm->memslots->memslots[mem->slot];
  557. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  558. npages = mem->memory_size >> PAGE_SHIFT;
  559. r = -EINVAL;
  560. if (npages > KVM_MEM_MAX_NR_PAGES)
  561. goto out;
  562. if (!npages)
  563. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  564. new = old = *memslot;
  565. new.id = mem->slot;
  566. new.base_gfn = base_gfn;
  567. new.npages = npages;
  568. new.flags = mem->flags;
  569. /* Disallow changing a memory slot's size. */
  570. r = -EINVAL;
  571. if (npages && old.npages && npages != old.npages)
  572. goto out_free;
  573. /* Check for overlaps */
  574. r = -EEXIST;
  575. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  576. struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
  577. if (s == memslot || !s->npages)
  578. continue;
  579. if (!((base_gfn + npages <= s->base_gfn) ||
  580. (base_gfn >= s->base_gfn + s->npages)))
  581. goto out_free;
  582. }
  583. /* Free page dirty bitmap if unneeded */
  584. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  585. new.dirty_bitmap = NULL;
  586. r = -ENOMEM;
  587. /* Allocate if a slot is being created */
  588. #ifndef CONFIG_S390
  589. if (npages && !new.rmap) {
  590. new.rmap = vzalloc(npages * sizeof(*new.rmap));
  591. if (!new.rmap)
  592. goto out_free;
  593. new.user_alloc = user_alloc;
  594. new.userspace_addr = mem->userspace_addr;
  595. }
  596. if (!npages)
  597. goto skip_lpage;
  598. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  599. unsigned long ugfn;
  600. unsigned long j;
  601. int lpages;
  602. int level = i + 2;
  603. /* Avoid unused variable warning if no large pages */
  604. (void)level;
  605. if (new.lpage_info[i])
  606. continue;
  607. lpages = 1 + ((base_gfn + npages - 1)
  608. >> KVM_HPAGE_GFN_SHIFT(level));
  609. lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
  610. new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
  611. if (!new.lpage_info[i])
  612. goto out_free;
  613. if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
  614. new.lpage_info[i][0].write_count = 1;
  615. if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
  616. new.lpage_info[i][lpages - 1].write_count = 1;
  617. ugfn = new.userspace_addr >> PAGE_SHIFT;
  618. /*
  619. * If the gfn and userspace address are not aligned wrt each
  620. * other, or if explicitly asked to, disable large page
  621. * support for this slot
  622. */
  623. if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
  624. !largepages_enabled)
  625. for (j = 0; j < lpages; ++j)
  626. new.lpage_info[i][j].write_count = 1;
  627. }
  628. skip_lpage:
  629. /* Allocate page dirty bitmap if needed */
  630. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  631. if (kvm_create_dirty_bitmap(&new) < 0)
  632. goto out_free;
  633. /* destroy any largepage mappings for dirty tracking */
  634. }
  635. #else /* not defined CONFIG_S390 */
  636. new.user_alloc = user_alloc;
  637. if (user_alloc)
  638. new.userspace_addr = mem->userspace_addr;
  639. #endif /* not defined CONFIG_S390 */
  640. if (!npages) {
  641. r = -ENOMEM;
  642. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  643. if (!slots)
  644. goto out_free;
  645. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  646. if (mem->slot >= slots->nmemslots)
  647. slots->nmemslots = mem->slot + 1;
  648. slots->generation++;
  649. slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
  650. old_memslots = kvm->memslots;
  651. rcu_assign_pointer(kvm->memslots, slots);
  652. synchronize_srcu_expedited(&kvm->srcu);
  653. /* From this point no new shadow pages pointing to a deleted
  654. * memslot will be created.
  655. *
  656. * validation of sp->gfn happens in:
  657. * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
  658. * - kvm_is_visible_gfn (mmu_check_roots)
  659. */
  660. kvm_arch_flush_shadow(kvm);
  661. kfree(old_memslots);
  662. }
  663. r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
  664. if (r)
  665. goto out_free;
  666. /* map the pages in iommu page table */
  667. if (npages) {
  668. r = kvm_iommu_map_pages(kvm, &new);
  669. if (r)
  670. goto out_free;
  671. }
  672. r = -ENOMEM;
  673. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  674. if (!slots)
  675. goto out_free;
  676. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  677. if (mem->slot >= slots->nmemslots)
  678. slots->nmemslots = mem->slot + 1;
  679. slots->generation++;
  680. /* actual memory is freed via old in kvm_free_physmem_slot below */
  681. if (!npages) {
  682. new.rmap = NULL;
  683. new.dirty_bitmap = NULL;
  684. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
  685. new.lpage_info[i] = NULL;
  686. }
  687. slots->memslots[mem->slot] = new;
  688. old_memslots = kvm->memslots;
  689. rcu_assign_pointer(kvm->memslots, slots);
  690. synchronize_srcu_expedited(&kvm->srcu);
  691. kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
  692. kvm_free_physmem_slot(&old, &new);
  693. kfree(old_memslots);
  694. return 0;
  695. out_free:
  696. kvm_free_physmem_slot(&new, &old);
  697. out:
  698. return r;
  699. }
  700. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  701. int kvm_set_memory_region(struct kvm *kvm,
  702. struct kvm_userspace_memory_region *mem,
  703. int user_alloc)
  704. {
  705. int r;
  706. mutex_lock(&kvm->slots_lock);
  707. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  708. mutex_unlock(&kvm->slots_lock);
  709. return r;
  710. }
  711. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  712. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  713. struct
  714. kvm_userspace_memory_region *mem,
  715. int user_alloc)
  716. {
  717. if (mem->slot >= KVM_MEMORY_SLOTS)
  718. return -EINVAL;
  719. return kvm_set_memory_region(kvm, mem, user_alloc);
  720. }
  721. int kvm_get_dirty_log(struct kvm *kvm,
  722. struct kvm_dirty_log *log, int *is_dirty)
  723. {
  724. struct kvm_memory_slot *memslot;
  725. int r, i;
  726. unsigned long n;
  727. unsigned long any = 0;
  728. r = -EINVAL;
  729. if (log->slot >= KVM_MEMORY_SLOTS)
  730. goto out;
  731. memslot = &kvm->memslots->memslots[log->slot];
  732. r = -ENOENT;
  733. if (!memslot->dirty_bitmap)
  734. goto out;
  735. n = kvm_dirty_bitmap_bytes(memslot);
  736. for (i = 0; !any && i < n/sizeof(long); ++i)
  737. any = memslot->dirty_bitmap[i];
  738. r = -EFAULT;
  739. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  740. goto out;
  741. if (any)
  742. *is_dirty = 1;
  743. r = 0;
  744. out:
  745. return r;
  746. }
  747. void kvm_disable_largepages(void)
  748. {
  749. largepages_enabled = false;
  750. }
  751. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  752. int is_error_page(struct page *page)
  753. {
  754. return page == bad_page || page == hwpoison_page || page == fault_page;
  755. }
  756. EXPORT_SYMBOL_GPL(is_error_page);
  757. int is_error_pfn(pfn_t pfn)
  758. {
  759. return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
  760. }
  761. EXPORT_SYMBOL_GPL(is_error_pfn);
  762. int is_hwpoison_pfn(pfn_t pfn)
  763. {
  764. return pfn == hwpoison_pfn;
  765. }
  766. EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
  767. int is_fault_pfn(pfn_t pfn)
  768. {
  769. return pfn == fault_pfn;
  770. }
  771. EXPORT_SYMBOL_GPL(is_fault_pfn);
  772. static inline unsigned long bad_hva(void)
  773. {
  774. return PAGE_OFFSET;
  775. }
  776. int kvm_is_error_hva(unsigned long addr)
  777. {
  778. return addr == bad_hva();
  779. }
  780. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  781. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
  782. gfn_t gfn)
  783. {
  784. int i;
  785. for (i = 0; i < slots->nmemslots; ++i) {
  786. struct kvm_memory_slot *memslot = &slots->memslots[i];
  787. if (gfn >= memslot->base_gfn
  788. && gfn < memslot->base_gfn + memslot->npages)
  789. return memslot;
  790. }
  791. return NULL;
  792. }
  793. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  794. {
  795. return __gfn_to_memslot(kvm_memslots(kvm), gfn);
  796. }
  797. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  798. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  799. {
  800. int i;
  801. struct kvm_memslots *slots = kvm_memslots(kvm);
  802. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  803. struct kvm_memory_slot *memslot = &slots->memslots[i];
  804. if (memslot->flags & KVM_MEMSLOT_INVALID)
  805. continue;
  806. if (gfn >= memslot->base_gfn
  807. && gfn < memslot->base_gfn + memslot->npages)
  808. return 1;
  809. }
  810. return 0;
  811. }
  812. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  813. unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
  814. {
  815. struct vm_area_struct *vma;
  816. unsigned long addr, size;
  817. size = PAGE_SIZE;
  818. addr = gfn_to_hva(kvm, gfn);
  819. if (kvm_is_error_hva(addr))
  820. return PAGE_SIZE;
  821. down_read(&current->mm->mmap_sem);
  822. vma = find_vma(current->mm, addr);
  823. if (!vma)
  824. goto out;
  825. size = vma_kernel_pagesize(vma);
  826. out:
  827. up_read(&current->mm->mmap_sem);
  828. return size;
  829. }
  830. int memslot_id(struct kvm *kvm, gfn_t gfn)
  831. {
  832. int i;
  833. struct kvm_memslots *slots = kvm_memslots(kvm);
  834. struct kvm_memory_slot *memslot = NULL;
  835. for (i = 0; i < slots->nmemslots; ++i) {
  836. memslot = &slots->memslots[i];
  837. if (gfn >= memslot->base_gfn
  838. && gfn < memslot->base_gfn + memslot->npages)
  839. break;
  840. }
  841. return memslot - slots->memslots;
  842. }
  843. static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
  844. gfn_t *nr_pages)
  845. {
  846. if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
  847. return bad_hva();
  848. if (nr_pages)
  849. *nr_pages = slot->npages - (gfn - slot->base_gfn);
  850. return gfn_to_hva_memslot(slot, gfn);
  851. }
  852. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  853. {
  854. return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
  855. }
  856. EXPORT_SYMBOL_GPL(gfn_to_hva);
  857. static pfn_t get_fault_pfn(void)
  858. {
  859. get_page(fault_page);
  860. return fault_pfn;
  861. }
  862. static inline int check_user_page_hwpoison(unsigned long addr)
  863. {
  864. int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
  865. rc = __get_user_pages(current, current->mm, addr, 1,
  866. flags, NULL, NULL, NULL);
  867. return rc == -EHWPOISON;
  868. }
  869. static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
  870. bool *async, bool write_fault, bool *writable)
  871. {
  872. struct page *page[1];
  873. int npages = 0;
  874. pfn_t pfn;
  875. /* we can do it either atomically or asynchronously, not both */
  876. BUG_ON(atomic && async);
  877. BUG_ON(!write_fault && !writable);
  878. if (writable)
  879. *writable = true;
  880. if (atomic || async)
  881. npages = __get_user_pages_fast(addr, 1, 1, page);
  882. if (unlikely(npages != 1) && !atomic) {
  883. might_sleep();
  884. if (writable)
  885. *writable = write_fault;
  886. npages = get_user_pages_fast(addr, 1, write_fault, page);
  887. /* map read fault as writable if possible */
  888. if (unlikely(!write_fault) && npages == 1) {
  889. struct page *wpage[1];
  890. npages = __get_user_pages_fast(addr, 1, 1, wpage);
  891. if (npages == 1) {
  892. *writable = true;
  893. put_page(page[0]);
  894. page[0] = wpage[0];
  895. }
  896. npages = 1;
  897. }
  898. }
  899. if (unlikely(npages != 1)) {
  900. struct vm_area_struct *vma;
  901. if (atomic)
  902. return get_fault_pfn();
  903. down_read(&current->mm->mmap_sem);
  904. if (check_user_page_hwpoison(addr)) {
  905. up_read(&current->mm->mmap_sem);
  906. get_page(hwpoison_page);
  907. return page_to_pfn(hwpoison_page);
  908. }
  909. vma = find_vma_intersection(current->mm, addr, addr+1);
  910. if (vma == NULL)
  911. pfn = get_fault_pfn();
  912. else if ((vma->vm_flags & VM_PFNMAP)) {
  913. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
  914. vma->vm_pgoff;
  915. BUG_ON(!kvm_is_mmio_pfn(pfn));
  916. } else {
  917. if (async && (vma->vm_flags & VM_WRITE))
  918. *async = true;
  919. pfn = get_fault_pfn();
  920. }
  921. up_read(&current->mm->mmap_sem);
  922. } else
  923. pfn = page_to_pfn(page[0]);
  924. return pfn;
  925. }
  926. pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
  927. {
  928. return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
  929. }
  930. EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
  931. static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
  932. bool write_fault, bool *writable)
  933. {
  934. unsigned long addr;
  935. if (async)
  936. *async = false;
  937. addr = gfn_to_hva(kvm, gfn);
  938. if (kvm_is_error_hva(addr)) {
  939. get_page(bad_page);
  940. return page_to_pfn(bad_page);
  941. }
  942. return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
  943. }
  944. pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
  945. {
  946. return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
  947. }
  948. EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
  949. pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
  950. bool write_fault, bool *writable)
  951. {
  952. return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
  953. }
  954. EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
  955. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  956. {
  957. return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
  958. }
  959. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  960. pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
  961. bool *writable)
  962. {
  963. return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
  964. }
  965. EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
  966. pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
  967. struct kvm_memory_slot *slot, gfn_t gfn)
  968. {
  969. unsigned long addr = gfn_to_hva_memslot(slot, gfn);
  970. return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
  971. }
  972. int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
  973. int nr_pages)
  974. {
  975. unsigned long addr;
  976. gfn_t entry;
  977. addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
  978. if (kvm_is_error_hva(addr))
  979. return -1;
  980. if (entry < nr_pages)
  981. return 0;
  982. return __get_user_pages_fast(addr, nr_pages, 1, pages);
  983. }
  984. EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
  985. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  986. {
  987. pfn_t pfn;
  988. pfn = gfn_to_pfn(kvm, gfn);
  989. if (!kvm_is_mmio_pfn(pfn))
  990. return pfn_to_page(pfn);
  991. WARN_ON(kvm_is_mmio_pfn(pfn));
  992. get_page(bad_page);
  993. return bad_page;
  994. }
  995. EXPORT_SYMBOL_GPL(gfn_to_page);
  996. void kvm_release_page_clean(struct page *page)
  997. {
  998. kvm_release_pfn_clean(page_to_pfn(page));
  999. }
  1000. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  1001. void kvm_release_pfn_clean(pfn_t pfn)
  1002. {
  1003. if (!kvm_is_mmio_pfn(pfn))
  1004. put_page(pfn_to_page(pfn));
  1005. }
  1006. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  1007. void kvm_release_page_dirty(struct page *page)
  1008. {
  1009. kvm_release_pfn_dirty(page_to_pfn(page));
  1010. }
  1011. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  1012. void kvm_release_pfn_dirty(pfn_t pfn)
  1013. {
  1014. kvm_set_pfn_dirty(pfn);
  1015. kvm_release_pfn_clean(pfn);
  1016. }
  1017. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1018. void kvm_set_page_dirty(struct page *page)
  1019. {
  1020. kvm_set_pfn_dirty(page_to_pfn(page));
  1021. }
  1022. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1023. void kvm_set_pfn_dirty(pfn_t pfn)
  1024. {
  1025. if (!kvm_is_mmio_pfn(pfn)) {
  1026. struct page *page = pfn_to_page(pfn);
  1027. if (!PageReserved(page))
  1028. SetPageDirty(page);
  1029. }
  1030. }
  1031. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1032. void kvm_set_pfn_accessed(pfn_t pfn)
  1033. {
  1034. if (!kvm_is_mmio_pfn(pfn))
  1035. mark_page_accessed(pfn_to_page(pfn));
  1036. }
  1037. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1038. void kvm_get_pfn(pfn_t pfn)
  1039. {
  1040. if (!kvm_is_mmio_pfn(pfn))
  1041. get_page(pfn_to_page(pfn));
  1042. }
  1043. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1044. static int next_segment(unsigned long len, int offset)
  1045. {
  1046. if (len > PAGE_SIZE - offset)
  1047. return PAGE_SIZE - offset;
  1048. else
  1049. return len;
  1050. }
  1051. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1052. int len)
  1053. {
  1054. int r;
  1055. unsigned long addr;
  1056. addr = gfn_to_hva(kvm, gfn);
  1057. if (kvm_is_error_hva(addr))
  1058. return -EFAULT;
  1059. r = copy_from_user(data, (void __user *)addr + offset, len);
  1060. if (r)
  1061. return -EFAULT;
  1062. return 0;
  1063. }
  1064. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1065. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1066. {
  1067. gfn_t gfn = gpa >> PAGE_SHIFT;
  1068. int seg;
  1069. int offset = offset_in_page(gpa);
  1070. int ret;
  1071. while ((seg = next_segment(len, offset)) != 0) {
  1072. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1073. if (ret < 0)
  1074. return ret;
  1075. offset = 0;
  1076. len -= seg;
  1077. data += seg;
  1078. ++gfn;
  1079. }
  1080. return 0;
  1081. }
  1082. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1083. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1084. unsigned long len)
  1085. {
  1086. int r;
  1087. unsigned long addr;
  1088. gfn_t gfn = gpa >> PAGE_SHIFT;
  1089. int offset = offset_in_page(gpa);
  1090. addr = gfn_to_hva(kvm, gfn);
  1091. if (kvm_is_error_hva(addr))
  1092. return -EFAULT;
  1093. pagefault_disable();
  1094. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1095. pagefault_enable();
  1096. if (r)
  1097. return -EFAULT;
  1098. return 0;
  1099. }
  1100. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1101. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1102. int offset, int len)
  1103. {
  1104. int r;
  1105. unsigned long addr;
  1106. addr = gfn_to_hva(kvm, gfn);
  1107. if (kvm_is_error_hva(addr))
  1108. return -EFAULT;
  1109. r = copy_to_user((void __user *)addr + offset, data, len);
  1110. if (r)
  1111. return -EFAULT;
  1112. mark_page_dirty(kvm, gfn);
  1113. return 0;
  1114. }
  1115. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1116. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1117. unsigned long len)
  1118. {
  1119. gfn_t gfn = gpa >> PAGE_SHIFT;
  1120. int seg;
  1121. int offset = offset_in_page(gpa);
  1122. int ret;
  1123. while ((seg = next_segment(len, offset)) != 0) {
  1124. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1125. if (ret < 0)
  1126. return ret;
  1127. offset = 0;
  1128. len -= seg;
  1129. data += seg;
  1130. ++gfn;
  1131. }
  1132. return 0;
  1133. }
  1134. int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1135. gpa_t gpa)
  1136. {
  1137. struct kvm_memslots *slots = kvm_memslots(kvm);
  1138. int offset = offset_in_page(gpa);
  1139. gfn_t gfn = gpa >> PAGE_SHIFT;
  1140. ghc->gpa = gpa;
  1141. ghc->generation = slots->generation;
  1142. ghc->memslot = __gfn_to_memslot(slots, gfn);
  1143. ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
  1144. if (!kvm_is_error_hva(ghc->hva))
  1145. ghc->hva += offset;
  1146. else
  1147. return -EFAULT;
  1148. return 0;
  1149. }
  1150. EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
  1151. int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1152. void *data, unsigned long len)
  1153. {
  1154. struct kvm_memslots *slots = kvm_memslots(kvm);
  1155. int r;
  1156. if (slots->generation != ghc->generation)
  1157. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1158. if (kvm_is_error_hva(ghc->hva))
  1159. return -EFAULT;
  1160. r = copy_to_user((void __user *)ghc->hva, data, len);
  1161. if (r)
  1162. return -EFAULT;
  1163. mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
  1164. return 0;
  1165. }
  1166. EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
  1167. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1168. {
  1169. return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
  1170. offset, len);
  1171. }
  1172. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1173. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1174. {
  1175. gfn_t gfn = gpa >> PAGE_SHIFT;
  1176. int seg;
  1177. int offset = offset_in_page(gpa);
  1178. int ret;
  1179. while ((seg = next_segment(len, offset)) != 0) {
  1180. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1181. if (ret < 0)
  1182. return ret;
  1183. offset = 0;
  1184. len -= seg;
  1185. ++gfn;
  1186. }
  1187. return 0;
  1188. }
  1189. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1190. void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
  1191. gfn_t gfn)
  1192. {
  1193. if (memslot && memslot->dirty_bitmap) {
  1194. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1195. __set_bit_le(rel_gfn, memslot->dirty_bitmap);
  1196. }
  1197. }
  1198. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1199. {
  1200. struct kvm_memory_slot *memslot;
  1201. memslot = gfn_to_memslot(kvm, gfn);
  1202. mark_page_dirty_in_slot(kvm, memslot, gfn);
  1203. }
  1204. /*
  1205. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1206. */
  1207. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1208. {
  1209. DEFINE_WAIT(wait);
  1210. for (;;) {
  1211. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1212. if (kvm_arch_vcpu_runnable(vcpu)) {
  1213. kvm_make_request(KVM_REQ_UNHALT, vcpu);
  1214. break;
  1215. }
  1216. if (kvm_cpu_has_pending_timer(vcpu))
  1217. break;
  1218. if (signal_pending(current))
  1219. break;
  1220. schedule();
  1221. }
  1222. finish_wait(&vcpu->wq, &wait);
  1223. }
  1224. void kvm_resched(struct kvm_vcpu *vcpu)
  1225. {
  1226. if (!need_resched())
  1227. return;
  1228. cond_resched();
  1229. }
  1230. EXPORT_SYMBOL_GPL(kvm_resched);
  1231. void kvm_vcpu_on_spin(struct kvm_vcpu *me)
  1232. {
  1233. struct kvm *kvm = me->kvm;
  1234. struct kvm_vcpu *vcpu;
  1235. int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
  1236. int yielded = 0;
  1237. int pass;
  1238. int i;
  1239. /*
  1240. * We boost the priority of a VCPU that is runnable but not
  1241. * currently running, because it got preempted by something
  1242. * else and called schedule in __vcpu_run. Hopefully that
  1243. * VCPU is holding the lock that we need and will release it.
  1244. * We approximate round-robin by starting at the last boosted VCPU.
  1245. */
  1246. for (pass = 0; pass < 2 && !yielded; pass++) {
  1247. kvm_for_each_vcpu(i, vcpu, kvm) {
  1248. struct task_struct *task = NULL;
  1249. struct pid *pid;
  1250. if (!pass && i < last_boosted_vcpu) {
  1251. i = last_boosted_vcpu;
  1252. continue;
  1253. } else if (pass && i > last_boosted_vcpu)
  1254. break;
  1255. if (vcpu == me)
  1256. continue;
  1257. if (waitqueue_active(&vcpu->wq))
  1258. continue;
  1259. rcu_read_lock();
  1260. pid = rcu_dereference(vcpu->pid);
  1261. if (pid)
  1262. task = get_pid_task(vcpu->pid, PIDTYPE_PID);
  1263. rcu_read_unlock();
  1264. if (!task)
  1265. continue;
  1266. if (task->flags & PF_VCPU) {
  1267. put_task_struct(task);
  1268. continue;
  1269. }
  1270. if (yield_to(task, 1)) {
  1271. put_task_struct(task);
  1272. kvm->last_boosted_vcpu = i;
  1273. yielded = 1;
  1274. break;
  1275. }
  1276. put_task_struct(task);
  1277. }
  1278. }
  1279. }
  1280. EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
  1281. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1282. {
  1283. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1284. struct page *page;
  1285. if (vmf->pgoff == 0)
  1286. page = virt_to_page(vcpu->run);
  1287. #ifdef CONFIG_X86
  1288. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1289. page = virt_to_page(vcpu->arch.pio_data);
  1290. #endif
  1291. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1292. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1293. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1294. #endif
  1295. else
  1296. return VM_FAULT_SIGBUS;
  1297. get_page(page);
  1298. vmf->page = page;
  1299. return 0;
  1300. }
  1301. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  1302. .fault = kvm_vcpu_fault,
  1303. };
  1304. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1305. {
  1306. vma->vm_ops = &kvm_vcpu_vm_ops;
  1307. return 0;
  1308. }
  1309. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1310. {
  1311. struct kvm_vcpu *vcpu = filp->private_data;
  1312. kvm_put_kvm(vcpu->kvm);
  1313. return 0;
  1314. }
  1315. static struct file_operations kvm_vcpu_fops = {
  1316. .release = kvm_vcpu_release,
  1317. .unlocked_ioctl = kvm_vcpu_ioctl,
  1318. .compat_ioctl = kvm_vcpu_ioctl,
  1319. .mmap = kvm_vcpu_mmap,
  1320. .llseek = noop_llseek,
  1321. };
  1322. /*
  1323. * Allocates an inode for the vcpu.
  1324. */
  1325. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1326. {
  1327. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
  1328. }
  1329. /*
  1330. * Creates some virtual cpus. Good luck creating more than one.
  1331. */
  1332. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1333. {
  1334. int r;
  1335. struct kvm_vcpu *vcpu, *v;
  1336. vcpu = kvm_arch_vcpu_create(kvm, id);
  1337. if (IS_ERR(vcpu))
  1338. return PTR_ERR(vcpu);
  1339. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1340. r = kvm_arch_vcpu_setup(vcpu);
  1341. if (r)
  1342. return r;
  1343. mutex_lock(&kvm->lock);
  1344. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1345. r = -EINVAL;
  1346. goto vcpu_destroy;
  1347. }
  1348. kvm_for_each_vcpu(r, v, kvm)
  1349. if (v->vcpu_id == id) {
  1350. r = -EEXIST;
  1351. goto vcpu_destroy;
  1352. }
  1353. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1354. /* Now it's all set up, let userspace reach it */
  1355. kvm_get_kvm(kvm);
  1356. r = create_vcpu_fd(vcpu);
  1357. if (r < 0) {
  1358. kvm_put_kvm(kvm);
  1359. goto vcpu_destroy;
  1360. }
  1361. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1362. smp_wmb();
  1363. atomic_inc(&kvm->online_vcpus);
  1364. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1365. if (kvm->bsp_vcpu_id == id)
  1366. kvm->bsp_vcpu = vcpu;
  1367. #endif
  1368. mutex_unlock(&kvm->lock);
  1369. return r;
  1370. vcpu_destroy:
  1371. mutex_unlock(&kvm->lock);
  1372. kvm_arch_vcpu_destroy(vcpu);
  1373. return r;
  1374. }
  1375. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1376. {
  1377. if (sigset) {
  1378. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1379. vcpu->sigset_active = 1;
  1380. vcpu->sigset = *sigset;
  1381. } else
  1382. vcpu->sigset_active = 0;
  1383. return 0;
  1384. }
  1385. static long kvm_vcpu_ioctl(struct file *filp,
  1386. unsigned int ioctl, unsigned long arg)
  1387. {
  1388. struct kvm_vcpu *vcpu = filp->private_data;
  1389. void __user *argp = (void __user *)arg;
  1390. int r;
  1391. struct kvm_fpu *fpu = NULL;
  1392. struct kvm_sregs *kvm_sregs = NULL;
  1393. if (vcpu->kvm->mm != current->mm)
  1394. return -EIO;
  1395. #if defined(CONFIG_S390) || defined(CONFIG_PPC)
  1396. /*
  1397. * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
  1398. * so vcpu_load() would break it.
  1399. */
  1400. if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
  1401. return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1402. #endif
  1403. vcpu_load(vcpu);
  1404. switch (ioctl) {
  1405. case KVM_RUN:
  1406. r = -EINVAL;
  1407. if (arg)
  1408. goto out;
  1409. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1410. trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
  1411. break;
  1412. case KVM_GET_REGS: {
  1413. struct kvm_regs *kvm_regs;
  1414. r = -ENOMEM;
  1415. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1416. if (!kvm_regs)
  1417. goto out;
  1418. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1419. if (r)
  1420. goto out_free1;
  1421. r = -EFAULT;
  1422. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1423. goto out_free1;
  1424. r = 0;
  1425. out_free1:
  1426. kfree(kvm_regs);
  1427. break;
  1428. }
  1429. case KVM_SET_REGS: {
  1430. struct kvm_regs *kvm_regs;
  1431. r = -ENOMEM;
  1432. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1433. if (!kvm_regs)
  1434. goto out;
  1435. r = -EFAULT;
  1436. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1437. goto out_free2;
  1438. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1439. if (r)
  1440. goto out_free2;
  1441. r = 0;
  1442. out_free2:
  1443. kfree(kvm_regs);
  1444. break;
  1445. }
  1446. case KVM_GET_SREGS: {
  1447. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1448. r = -ENOMEM;
  1449. if (!kvm_sregs)
  1450. goto out;
  1451. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1452. if (r)
  1453. goto out;
  1454. r = -EFAULT;
  1455. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1456. goto out;
  1457. r = 0;
  1458. break;
  1459. }
  1460. case KVM_SET_SREGS: {
  1461. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1462. r = -ENOMEM;
  1463. if (!kvm_sregs)
  1464. goto out;
  1465. r = -EFAULT;
  1466. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1467. goto out;
  1468. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1469. if (r)
  1470. goto out;
  1471. r = 0;
  1472. break;
  1473. }
  1474. case KVM_GET_MP_STATE: {
  1475. struct kvm_mp_state mp_state;
  1476. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1477. if (r)
  1478. goto out;
  1479. r = -EFAULT;
  1480. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1481. goto out;
  1482. r = 0;
  1483. break;
  1484. }
  1485. case KVM_SET_MP_STATE: {
  1486. struct kvm_mp_state mp_state;
  1487. r = -EFAULT;
  1488. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1489. goto out;
  1490. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1491. if (r)
  1492. goto out;
  1493. r = 0;
  1494. break;
  1495. }
  1496. case KVM_TRANSLATE: {
  1497. struct kvm_translation tr;
  1498. r = -EFAULT;
  1499. if (copy_from_user(&tr, argp, sizeof tr))
  1500. goto out;
  1501. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1502. if (r)
  1503. goto out;
  1504. r = -EFAULT;
  1505. if (copy_to_user(argp, &tr, sizeof tr))
  1506. goto out;
  1507. r = 0;
  1508. break;
  1509. }
  1510. case KVM_SET_GUEST_DEBUG: {
  1511. struct kvm_guest_debug dbg;
  1512. r = -EFAULT;
  1513. if (copy_from_user(&dbg, argp, sizeof dbg))
  1514. goto out;
  1515. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1516. if (r)
  1517. goto out;
  1518. r = 0;
  1519. break;
  1520. }
  1521. case KVM_SET_SIGNAL_MASK: {
  1522. struct kvm_signal_mask __user *sigmask_arg = argp;
  1523. struct kvm_signal_mask kvm_sigmask;
  1524. sigset_t sigset, *p;
  1525. p = NULL;
  1526. if (argp) {
  1527. r = -EFAULT;
  1528. if (copy_from_user(&kvm_sigmask, argp,
  1529. sizeof kvm_sigmask))
  1530. goto out;
  1531. r = -EINVAL;
  1532. if (kvm_sigmask.len != sizeof sigset)
  1533. goto out;
  1534. r = -EFAULT;
  1535. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1536. sizeof sigset))
  1537. goto out;
  1538. p = &sigset;
  1539. }
  1540. r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
  1541. break;
  1542. }
  1543. case KVM_GET_FPU: {
  1544. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1545. r = -ENOMEM;
  1546. if (!fpu)
  1547. goto out;
  1548. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1549. if (r)
  1550. goto out;
  1551. r = -EFAULT;
  1552. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1553. goto out;
  1554. r = 0;
  1555. break;
  1556. }
  1557. case KVM_SET_FPU: {
  1558. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1559. r = -ENOMEM;
  1560. if (!fpu)
  1561. goto out;
  1562. r = -EFAULT;
  1563. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1564. goto out;
  1565. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1566. if (r)
  1567. goto out;
  1568. r = 0;
  1569. break;
  1570. }
  1571. default:
  1572. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1573. }
  1574. out:
  1575. vcpu_put(vcpu);
  1576. kfree(fpu);
  1577. kfree(kvm_sregs);
  1578. return r;
  1579. }
  1580. static long kvm_vm_ioctl(struct file *filp,
  1581. unsigned int ioctl, unsigned long arg)
  1582. {
  1583. struct kvm *kvm = filp->private_data;
  1584. void __user *argp = (void __user *)arg;
  1585. int r;
  1586. if (kvm->mm != current->mm)
  1587. return -EIO;
  1588. switch (ioctl) {
  1589. case KVM_CREATE_VCPU:
  1590. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1591. if (r < 0)
  1592. goto out;
  1593. break;
  1594. case KVM_SET_USER_MEMORY_REGION: {
  1595. struct kvm_userspace_memory_region kvm_userspace_mem;
  1596. r = -EFAULT;
  1597. if (copy_from_user(&kvm_userspace_mem, argp,
  1598. sizeof kvm_userspace_mem))
  1599. goto out;
  1600. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1601. if (r)
  1602. goto out;
  1603. break;
  1604. }
  1605. case KVM_GET_DIRTY_LOG: {
  1606. struct kvm_dirty_log log;
  1607. r = -EFAULT;
  1608. if (copy_from_user(&log, argp, sizeof log))
  1609. goto out;
  1610. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1611. if (r)
  1612. goto out;
  1613. break;
  1614. }
  1615. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1616. case KVM_REGISTER_COALESCED_MMIO: {
  1617. struct kvm_coalesced_mmio_zone zone;
  1618. r = -EFAULT;
  1619. if (copy_from_user(&zone, argp, sizeof zone))
  1620. goto out;
  1621. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1622. if (r)
  1623. goto out;
  1624. r = 0;
  1625. break;
  1626. }
  1627. case KVM_UNREGISTER_COALESCED_MMIO: {
  1628. struct kvm_coalesced_mmio_zone zone;
  1629. r = -EFAULT;
  1630. if (copy_from_user(&zone, argp, sizeof zone))
  1631. goto out;
  1632. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1633. if (r)
  1634. goto out;
  1635. r = 0;
  1636. break;
  1637. }
  1638. #endif
  1639. case KVM_IRQFD: {
  1640. struct kvm_irqfd data;
  1641. r = -EFAULT;
  1642. if (copy_from_user(&data, argp, sizeof data))
  1643. goto out;
  1644. r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
  1645. break;
  1646. }
  1647. case KVM_IOEVENTFD: {
  1648. struct kvm_ioeventfd data;
  1649. r = -EFAULT;
  1650. if (copy_from_user(&data, argp, sizeof data))
  1651. goto out;
  1652. r = kvm_ioeventfd(kvm, &data);
  1653. break;
  1654. }
  1655. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1656. case KVM_SET_BOOT_CPU_ID:
  1657. r = 0;
  1658. mutex_lock(&kvm->lock);
  1659. if (atomic_read(&kvm->online_vcpus) != 0)
  1660. r = -EBUSY;
  1661. else
  1662. kvm->bsp_vcpu_id = arg;
  1663. mutex_unlock(&kvm->lock);
  1664. break;
  1665. #endif
  1666. default:
  1667. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1668. if (r == -ENOTTY)
  1669. r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
  1670. }
  1671. out:
  1672. return r;
  1673. }
  1674. #ifdef CONFIG_COMPAT
  1675. struct compat_kvm_dirty_log {
  1676. __u32 slot;
  1677. __u32 padding1;
  1678. union {
  1679. compat_uptr_t dirty_bitmap; /* one bit per page */
  1680. __u64 padding2;
  1681. };
  1682. };
  1683. static long kvm_vm_compat_ioctl(struct file *filp,
  1684. unsigned int ioctl, unsigned long arg)
  1685. {
  1686. struct kvm *kvm = filp->private_data;
  1687. int r;
  1688. if (kvm->mm != current->mm)
  1689. return -EIO;
  1690. switch (ioctl) {
  1691. case KVM_GET_DIRTY_LOG: {
  1692. struct compat_kvm_dirty_log compat_log;
  1693. struct kvm_dirty_log log;
  1694. r = -EFAULT;
  1695. if (copy_from_user(&compat_log, (void __user *)arg,
  1696. sizeof(compat_log)))
  1697. goto out;
  1698. log.slot = compat_log.slot;
  1699. log.padding1 = compat_log.padding1;
  1700. log.padding2 = compat_log.padding2;
  1701. log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
  1702. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1703. if (r)
  1704. goto out;
  1705. break;
  1706. }
  1707. default:
  1708. r = kvm_vm_ioctl(filp, ioctl, arg);
  1709. }
  1710. out:
  1711. return r;
  1712. }
  1713. #endif
  1714. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1715. {
  1716. struct page *page[1];
  1717. unsigned long addr;
  1718. int npages;
  1719. gfn_t gfn = vmf->pgoff;
  1720. struct kvm *kvm = vma->vm_file->private_data;
  1721. addr = gfn_to_hva(kvm, gfn);
  1722. if (kvm_is_error_hva(addr))
  1723. return VM_FAULT_SIGBUS;
  1724. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1725. NULL);
  1726. if (unlikely(npages != 1))
  1727. return VM_FAULT_SIGBUS;
  1728. vmf->page = page[0];
  1729. return 0;
  1730. }
  1731. static const struct vm_operations_struct kvm_vm_vm_ops = {
  1732. .fault = kvm_vm_fault,
  1733. };
  1734. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1735. {
  1736. vma->vm_ops = &kvm_vm_vm_ops;
  1737. return 0;
  1738. }
  1739. static struct file_operations kvm_vm_fops = {
  1740. .release = kvm_vm_release,
  1741. .unlocked_ioctl = kvm_vm_ioctl,
  1742. #ifdef CONFIG_COMPAT
  1743. .compat_ioctl = kvm_vm_compat_ioctl,
  1744. #endif
  1745. .mmap = kvm_vm_mmap,
  1746. .llseek = noop_llseek,
  1747. };
  1748. static int kvm_dev_ioctl_create_vm(void)
  1749. {
  1750. int r;
  1751. struct kvm *kvm;
  1752. kvm = kvm_create_vm();
  1753. if (IS_ERR(kvm))
  1754. return PTR_ERR(kvm);
  1755. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1756. r = kvm_coalesced_mmio_init(kvm);
  1757. if (r < 0) {
  1758. kvm_put_kvm(kvm);
  1759. return r;
  1760. }
  1761. #endif
  1762. r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
  1763. if (r < 0)
  1764. kvm_put_kvm(kvm);
  1765. return r;
  1766. }
  1767. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1768. {
  1769. switch (arg) {
  1770. case KVM_CAP_USER_MEMORY:
  1771. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1772. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1773. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1774. case KVM_CAP_SET_BOOT_CPU_ID:
  1775. #endif
  1776. case KVM_CAP_INTERNAL_ERROR_DATA:
  1777. return 1;
  1778. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  1779. case KVM_CAP_IRQ_ROUTING:
  1780. return KVM_MAX_IRQ_ROUTES;
  1781. #endif
  1782. default:
  1783. break;
  1784. }
  1785. return kvm_dev_ioctl_check_extension(arg);
  1786. }
  1787. static long kvm_dev_ioctl(struct file *filp,
  1788. unsigned int ioctl, unsigned long arg)
  1789. {
  1790. long r = -EINVAL;
  1791. switch (ioctl) {
  1792. case KVM_GET_API_VERSION:
  1793. r = -EINVAL;
  1794. if (arg)
  1795. goto out;
  1796. r = KVM_API_VERSION;
  1797. break;
  1798. case KVM_CREATE_VM:
  1799. r = -EINVAL;
  1800. if (arg)
  1801. goto out;
  1802. r = kvm_dev_ioctl_create_vm();
  1803. break;
  1804. case KVM_CHECK_EXTENSION:
  1805. r = kvm_dev_ioctl_check_extension_generic(arg);
  1806. break;
  1807. case KVM_GET_VCPU_MMAP_SIZE:
  1808. r = -EINVAL;
  1809. if (arg)
  1810. goto out;
  1811. r = PAGE_SIZE; /* struct kvm_run */
  1812. #ifdef CONFIG_X86
  1813. r += PAGE_SIZE; /* pio data page */
  1814. #endif
  1815. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1816. r += PAGE_SIZE; /* coalesced mmio ring page */
  1817. #endif
  1818. break;
  1819. case KVM_TRACE_ENABLE:
  1820. case KVM_TRACE_PAUSE:
  1821. case KVM_TRACE_DISABLE:
  1822. r = -EOPNOTSUPP;
  1823. break;
  1824. default:
  1825. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1826. }
  1827. out:
  1828. return r;
  1829. }
  1830. static struct file_operations kvm_chardev_ops = {
  1831. .unlocked_ioctl = kvm_dev_ioctl,
  1832. .compat_ioctl = kvm_dev_ioctl,
  1833. .llseek = noop_llseek,
  1834. };
  1835. static struct miscdevice kvm_dev = {
  1836. KVM_MINOR,
  1837. "kvm",
  1838. &kvm_chardev_ops,
  1839. };
  1840. static void hardware_enable_nolock(void *junk)
  1841. {
  1842. int cpu = raw_smp_processor_id();
  1843. int r;
  1844. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1845. return;
  1846. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  1847. r = kvm_arch_hardware_enable(NULL);
  1848. if (r) {
  1849. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1850. atomic_inc(&hardware_enable_failed);
  1851. printk(KERN_INFO "kvm: enabling virtualization on "
  1852. "CPU%d failed\n", cpu);
  1853. }
  1854. }
  1855. static void hardware_enable(void *junk)
  1856. {
  1857. raw_spin_lock(&kvm_lock);
  1858. hardware_enable_nolock(junk);
  1859. raw_spin_unlock(&kvm_lock);
  1860. }
  1861. static void hardware_disable_nolock(void *junk)
  1862. {
  1863. int cpu = raw_smp_processor_id();
  1864. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1865. return;
  1866. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1867. kvm_arch_hardware_disable(NULL);
  1868. }
  1869. static void hardware_disable(void *junk)
  1870. {
  1871. raw_spin_lock(&kvm_lock);
  1872. hardware_disable_nolock(junk);
  1873. raw_spin_unlock(&kvm_lock);
  1874. }
  1875. static void hardware_disable_all_nolock(void)
  1876. {
  1877. BUG_ON(!kvm_usage_count);
  1878. kvm_usage_count--;
  1879. if (!kvm_usage_count)
  1880. on_each_cpu(hardware_disable_nolock, NULL, 1);
  1881. }
  1882. static void hardware_disable_all(void)
  1883. {
  1884. raw_spin_lock(&kvm_lock);
  1885. hardware_disable_all_nolock();
  1886. raw_spin_unlock(&kvm_lock);
  1887. }
  1888. static int hardware_enable_all(void)
  1889. {
  1890. int r = 0;
  1891. raw_spin_lock(&kvm_lock);
  1892. kvm_usage_count++;
  1893. if (kvm_usage_count == 1) {
  1894. atomic_set(&hardware_enable_failed, 0);
  1895. on_each_cpu(hardware_enable_nolock, NULL, 1);
  1896. if (atomic_read(&hardware_enable_failed)) {
  1897. hardware_disable_all_nolock();
  1898. r = -EBUSY;
  1899. }
  1900. }
  1901. raw_spin_unlock(&kvm_lock);
  1902. return r;
  1903. }
  1904. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1905. void *v)
  1906. {
  1907. int cpu = (long)v;
  1908. if (!kvm_usage_count)
  1909. return NOTIFY_OK;
  1910. val &= ~CPU_TASKS_FROZEN;
  1911. switch (val) {
  1912. case CPU_DYING:
  1913. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1914. cpu);
  1915. hardware_disable(NULL);
  1916. break;
  1917. case CPU_STARTING:
  1918. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1919. cpu);
  1920. hardware_enable(NULL);
  1921. break;
  1922. }
  1923. return NOTIFY_OK;
  1924. }
  1925. asmlinkage void kvm_spurious_fault(void)
  1926. {
  1927. /* Fault while not rebooting. We want the trace. */
  1928. BUG();
  1929. }
  1930. EXPORT_SYMBOL_GPL(kvm_spurious_fault);
  1931. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1932. void *v)
  1933. {
  1934. /*
  1935. * Some (well, at least mine) BIOSes hang on reboot if
  1936. * in vmx root mode.
  1937. *
  1938. * And Intel TXT required VMX off for all cpu when system shutdown.
  1939. */
  1940. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1941. kvm_rebooting = true;
  1942. on_each_cpu(hardware_disable_nolock, NULL, 1);
  1943. return NOTIFY_OK;
  1944. }
  1945. static struct notifier_block kvm_reboot_notifier = {
  1946. .notifier_call = kvm_reboot,
  1947. .priority = 0,
  1948. };
  1949. static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1950. {
  1951. int i;
  1952. for (i = 0; i < bus->dev_count; i++) {
  1953. struct kvm_io_device *pos = bus->devs[i];
  1954. kvm_iodevice_destructor(pos);
  1955. }
  1956. kfree(bus);
  1957. }
  1958. /* kvm_io_bus_write - called under kvm->slots_lock */
  1959. int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  1960. int len, const void *val)
  1961. {
  1962. int i;
  1963. struct kvm_io_bus *bus;
  1964. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  1965. for (i = 0; i < bus->dev_count; i++)
  1966. if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
  1967. return 0;
  1968. return -EOPNOTSUPP;
  1969. }
  1970. /* kvm_io_bus_read - called under kvm->slots_lock */
  1971. int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  1972. int len, void *val)
  1973. {
  1974. int i;
  1975. struct kvm_io_bus *bus;
  1976. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  1977. for (i = 0; i < bus->dev_count; i++)
  1978. if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
  1979. return 0;
  1980. return -EOPNOTSUPP;
  1981. }
  1982. /* Caller must hold slots_lock. */
  1983. int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  1984. struct kvm_io_device *dev)
  1985. {
  1986. struct kvm_io_bus *new_bus, *bus;
  1987. bus = kvm->buses[bus_idx];
  1988. if (bus->dev_count > NR_IOBUS_DEVS-1)
  1989. return -ENOSPC;
  1990. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  1991. if (!new_bus)
  1992. return -ENOMEM;
  1993. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  1994. new_bus->devs[new_bus->dev_count++] = dev;
  1995. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  1996. synchronize_srcu_expedited(&kvm->srcu);
  1997. kfree(bus);
  1998. return 0;
  1999. }
  2000. /* Caller must hold slots_lock. */
  2001. int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  2002. struct kvm_io_device *dev)
  2003. {
  2004. int i, r;
  2005. struct kvm_io_bus *new_bus, *bus;
  2006. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  2007. if (!new_bus)
  2008. return -ENOMEM;
  2009. bus = kvm->buses[bus_idx];
  2010. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  2011. r = -ENOENT;
  2012. for (i = 0; i < new_bus->dev_count; i++)
  2013. if (new_bus->devs[i] == dev) {
  2014. r = 0;
  2015. new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
  2016. break;
  2017. }
  2018. if (r) {
  2019. kfree(new_bus);
  2020. return r;
  2021. }
  2022. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  2023. synchronize_srcu_expedited(&kvm->srcu);
  2024. kfree(bus);
  2025. return r;
  2026. }
  2027. static struct notifier_block kvm_cpu_notifier = {
  2028. .notifier_call = kvm_cpu_hotplug,
  2029. };
  2030. static int vm_stat_get(void *_offset, u64 *val)
  2031. {
  2032. unsigned offset = (long)_offset;
  2033. struct kvm *kvm;
  2034. *val = 0;
  2035. raw_spin_lock(&kvm_lock);
  2036. list_for_each_entry(kvm, &vm_list, vm_list)
  2037. *val += *(u32 *)((void *)kvm + offset);
  2038. raw_spin_unlock(&kvm_lock);
  2039. return 0;
  2040. }
  2041. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  2042. static int vcpu_stat_get(void *_offset, u64 *val)
  2043. {
  2044. unsigned offset = (long)_offset;
  2045. struct kvm *kvm;
  2046. struct kvm_vcpu *vcpu;
  2047. int i;
  2048. *val = 0;
  2049. raw_spin_lock(&kvm_lock);
  2050. list_for_each_entry(kvm, &vm_list, vm_list)
  2051. kvm_for_each_vcpu(i, vcpu, kvm)
  2052. *val += *(u32 *)((void *)vcpu + offset);
  2053. raw_spin_unlock(&kvm_lock);
  2054. return 0;
  2055. }
  2056. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  2057. static const struct file_operations *stat_fops[] = {
  2058. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  2059. [KVM_STAT_VM] = &vm_stat_fops,
  2060. };
  2061. static void kvm_init_debug(void)
  2062. {
  2063. struct kvm_stats_debugfs_item *p;
  2064. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  2065. for (p = debugfs_entries; p->name; ++p)
  2066. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  2067. (void *)(long)p->offset,
  2068. stat_fops[p->kind]);
  2069. }
  2070. static void kvm_exit_debug(void)
  2071. {
  2072. struct kvm_stats_debugfs_item *p;
  2073. for (p = debugfs_entries; p->name; ++p)
  2074. debugfs_remove(p->dentry);
  2075. debugfs_remove(kvm_debugfs_dir);
  2076. }
  2077. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2078. {
  2079. if (kvm_usage_count)
  2080. hardware_disable_nolock(NULL);
  2081. return 0;
  2082. }
  2083. static int kvm_resume(struct sys_device *dev)
  2084. {
  2085. if (kvm_usage_count) {
  2086. WARN_ON(raw_spin_is_locked(&kvm_lock));
  2087. hardware_enable_nolock(NULL);
  2088. }
  2089. return 0;
  2090. }
  2091. static struct sysdev_class kvm_sysdev_class = {
  2092. .name = "kvm",
  2093. .suspend = kvm_suspend,
  2094. .resume = kvm_resume,
  2095. };
  2096. static struct sys_device kvm_sysdev = {
  2097. .id = 0,
  2098. .cls = &kvm_sysdev_class,
  2099. };
  2100. struct page *bad_page;
  2101. pfn_t bad_pfn;
  2102. static inline
  2103. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2104. {
  2105. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2106. }
  2107. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2108. {
  2109. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2110. kvm_arch_vcpu_load(vcpu, cpu);
  2111. }
  2112. static void kvm_sched_out(struct preempt_notifier *pn,
  2113. struct task_struct *next)
  2114. {
  2115. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2116. kvm_arch_vcpu_put(vcpu);
  2117. }
  2118. int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
  2119. struct module *module)
  2120. {
  2121. int r;
  2122. int cpu;
  2123. r = kvm_arch_init(opaque);
  2124. if (r)
  2125. goto out_fail;
  2126. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2127. if (bad_page == NULL) {
  2128. r = -ENOMEM;
  2129. goto out;
  2130. }
  2131. bad_pfn = page_to_pfn(bad_page);
  2132. hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2133. if (hwpoison_page == NULL) {
  2134. r = -ENOMEM;
  2135. goto out_free_0;
  2136. }
  2137. hwpoison_pfn = page_to_pfn(hwpoison_page);
  2138. fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2139. if (fault_page == NULL) {
  2140. r = -ENOMEM;
  2141. goto out_free_0;
  2142. }
  2143. fault_pfn = page_to_pfn(fault_page);
  2144. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2145. r = -ENOMEM;
  2146. goto out_free_0;
  2147. }
  2148. r = kvm_arch_hardware_setup();
  2149. if (r < 0)
  2150. goto out_free_0a;
  2151. for_each_online_cpu(cpu) {
  2152. smp_call_function_single(cpu,
  2153. kvm_arch_check_processor_compat,
  2154. &r, 1);
  2155. if (r < 0)
  2156. goto out_free_1;
  2157. }
  2158. r = register_cpu_notifier(&kvm_cpu_notifier);
  2159. if (r)
  2160. goto out_free_2;
  2161. register_reboot_notifier(&kvm_reboot_notifier);
  2162. r = sysdev_class_register(&kvm_sysdev_class);
  2163. if (r)
  2164. goto out_free_3;
  2165. r = sysdev_register(&kvm_sysdev);
  2166. if (r)
  2167. goto out_free_4;
  2168. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2169. if (!vcpu_align)
  2170. vcpu_align = __alignof__(struct kvm_vcpu);
  2171. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
  2172. 0, NULL);
  2173. if (!kvm_vcpu_cache) {
  2174. r = -ENOMEM;
  2175. goto out_free_5;
  2176. }
  2177. r = kvm_async_pf_init();
  2178. if (r)
  2179. goto out_free;
  2180. kvm_chardev_ops.owner = module;
  2181. kvm_vm_fops.owner = module;
  2182. kvm_vcpu_fops.owner = module;
  2183. r = misc_register(&kvm_dev);
  2184. if (r) {
  2185. printk(KERN_ERR "kvm: misc device register failed\n");
  2186. goto out_unreg;
  2187. }
  2188. kvm_preempt_ops.sched_in = kvm_sched_in;
  2189. kvm_preempt_ops.sched_out = kvm_sched_out;
  2190. kvm_init_debug();
  2191. return 0;
  2192. out_unreg:
  2193. kvm_async_pf_deinit();
  2194. out_free:
  2195. kmem_cache_destroy(kvm_vcpu_cache);
  2196. out_free_5:
  2197. sysdev_unregister(&kvm_sysdev);
  2198. out_free_4:
  2199. sysdev_class_unregister(&kvm_sysdev_class);
  2200. out_free_3:
  2201. unregister_reboot_notifier(&kvm_reboot_notifier);
  2202. unregister_cpu_notifier(&kvm_cpu_notifier);
  2203. out_free_2:
  2204. out_free_1:
  2205. kvm_arch_hardware_unsetup();
  2206. out_free_0a:
  2207. free_cpumask_var(cpus_hardware_enabled);
  2208. out_free_0:
  2209. if (fault_page)
  2210. __free_page(fault_page);
  2211. if (hwpoison_page)
  2212. __free_page(hwpoison_page);
  2213. __free_page(bad_page);
  2214. out:
  2215. kvm_arch_exit();
  2216. out_fail:
  2217. return r;
  2218. }
  2219. EXPORT_SYMBOL_GPL(kvm_init);
  2220. void kvm_exit(void)
  2221. {
  2222. kvm_exit_debug();
  2223. misc_deregister(&kvm_dev);
  2224. kmem_cache_destroy(kvm_vcpu_cache);
  2225. kvm_async_pf_deinit();
  2226. sysdev_unregister(&kvm_sysdev);
  2227. sysdev_class_unregister(&kvm_sysdev_class);
  2228. unregister_reboot_notifier(&kvm_reboot_notifier);
  2229. unregister_cpu_notifier(&kvm_cpu_notifier);
  2230. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2231. kvm_arch_hardware_unsetup();
  2232. kvm_arch_exit();
  2233. free_cpumask_var(cpus_hardware_enabled);
  2234. __free_page(hwpoison_page);
  2235. __free_page(bad_page);
  2236. }
  2237. EXPORT_SYMBOL_GPL(kvm_exit);