gc.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980
  1. /*
  2. * This file is part of UBIFS.
  3. *
  4. * Copyright (C) 2006-2008 Nokia Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published by
  8. * the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc., 51
  17. * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18. *
  19. * Authors: Adrian Hunter
  20. * Artem Bityutskiy (Битюцкий Артём)
  21. */
  22. /*
  23. * This file implements garbage collection. The procedure for garbage collection
  24. * is different depending on whether a LEB as an index LEB (contains index
  25. * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
  26. * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
  27. * nodes to the journal, at which point the garbage-collected LEB is free to be
  28. * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
  29. * dirty in the TNC, and after the next commit, the garbage-collected LEB is
  30. * to be reused. Garbage collection will cause the number of dirty index nodes
  31. * to grow, however sufficient space is reserved for the index to ensure the
  32. * commit will never run out of space.
  33. *
  34. * Notes about dead watermark. At current UBIFS implementation we assume that
  35. * LEBs which have less than @c->dead_wm bytes of free + dirty space are full
  36. * and not worth garbage-collecting. The dead watermark is one min. I/O unit
  37. * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS
  38. * Garbage Collector has to synchronize the GC head's write buffer before
  39. * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can
  40. * actually reclaim even very small pieces of dirty space by garbage collecting
  41. * enough dirty LEBs, but we do not bother doing this at this implementation.
  42. *
  43. * Notes about dark watermark. The results of GC work depends on how big are
  44. * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed,
  45. * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would
  46. * have to waste large pieces of free space at the end of LEB B, because nodes
  47. * from LEB A would not fit. And the worst situation is when all nodes are of
  48. * maximum size. So dark watermark is the amount of free + dirty space in LEB
  49. * which are guaranteed to be reclaimable. If LEB has less space, the GC might
  50. * be unable to reclaim it. So, LEBs with free + dirty greater than dark
  51. * watermark are "good" LEBs from GC's point of few. The other LEBs are not so
  52. * good, and GC takes extra care when moving them.
  53. */
  54. #include <linux/slab.h>
  55. #include <linux/pagemap.h>
  56. #include <linux/list_sort.h>
  57. #include "ubifs.h"
  58. /*
  59. * GC may need to move more than one LEB to make progress. The below constants
  60. * define "soft" and "hard" limits on the number of LEBs the garbage collector
  61. * may move.
  62. */
  63. #define SOFT_LEBS_LIMIT 4
  64. #define HARD_LEBS_LIMIT 32
  65. /**
  66. * switch_gc_head - switch the garbage collection journal head.
  67. * @c: UBIFS file-system description object
  68. * @buf: buffer to write
  69. * @len: length of the buffer to write
  70. * @lnum: LEB number written is returned here
  71. * @offs: offset written is returned here
  72. *
  73. * This function switch the GC head to the next LEB which is reserved in
  74. * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
  75. * and other negative error code in case of failures.
  76. */
  77. static int switch_gc_head(struct ubifs_info *c)
  78. {
  79. int err, gc_lnum = c->gc_lnum;
  80. struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
  81. ubifs_assert(gc_lnum != -1);
  82. dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
  83. wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum,
  84. c->leb_size - wbuf->offs - wbuf->used);
  85. err = ubifs_wbuf_sync_nolock(wbuf);
  86. if (err)
  87. return err;
  88. /*
  89. * The GC write-buffer was synchronized, we may safely unmap
  90. * 'c->gc_lnum'.
  91. */
  92. err = ubifs_leb_unmap(c, gc_lnum);
  93. if (err)
  94. return err;
  95. err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0);
  96. if (err)
  97. return err;
  98. c->gc_lnum = -1;
  99. err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0, UBI_LONGTERM);
  100. return err;
  101. }
  102. /**
  103. * data_nodes_cmp - compare 2 data nodes.
  104. * @priv: UBIFS file-system description object
  105. * @a: first data node
  106. * @a: second data node
  107. *
  108. * This function compares data nodes @a and @b. Returns %1 if @a has greater
  109. * inode or block number, and %-1 otherwise.
  110. */
  111. int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
  112. {
  113. ino_t inuma, inumb;
  114. struct ubifs_info *c = priv;
  115. struct ubifs_scan_node *sa, *sb;
  116. cond_resched();
  117. if (a == b)
  118. return 0;
  119. sa = list_entry(a, struct ubifs_scan_node, list);
  120. sb = list_entry(b, struct ubifs_scan_node, list);
  121. ubifs_assert(key_type(c, &sa->key) == UBIFS_DATA_KEY);
  122. ubifs_assert(key_type(c, &sb->key) == UBIFS_DATA_KEY);
  123. ubifs_assert(sa->type == UBIFS_DATA_NODE);
  124. ubifs_assert(sb->type == UBIFS_DATA_NODE);
  125. inuma = key_inum(c, &sa->key);
  126. inumb = key_inum(c, &sb->key);
  127. if (inuma == inumb) {
  128. unsigned int blka = key_block(c, &sa->key);
  129. unsigned int blkb = key_block(c, &sb->key);
  130. if (blka <= blkb)
  131. return -1;
  132. } else if (inuma <= inumb)
  133. return -1;
  134. return 1;
  135. }
  136. /*
  137. * nondata_nodes_cmp - compare 2 non-data nodes.
  138. * @priv: UBIFS file-system description object
  139. * @a: first node
  140. * @a: second node
  141. *
  142. * This function compares nodes @a and @b. It makes sure that inode nodes go
  143. * first and sorted by length in descending order. Directory entry nodes go
  144. * after inode nodes and are sorted in ascending hash valuer order.
  145. */
  146. int nondata_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
  147. {
  148. ino_t inuma, inumb;
  149. struct ubifs_info *c = priv;
  150. struct ubifs_scan_node *sa, *sb;
  151. cond_resched();
  152. if (a == b)
  153. return 0;
  154. sa = list_entry(a, struct ubifs_scan_node, list);
  155. sb = list_entry(b, struct ubifs_scan_node, list);
  156. ubifs_assert(key_type(c, &sa->key) != UBIFS_DATA_KEY &&
  157. key_type(c, &sb->key) != UBIFS_DATA_KEY);
  158. ubifs_assert(sa->type != UBIFS_DATA_NODE &&
  159. sb->type != UBIFS_DATA_NODE);
  160. /* Inodes go before directory entries */
  161. if (sa->type == UBIFS_INO_NODE) {
  162. if (sb->type == UBIFS_INO_NODE)
  163. return sb->len - sa->len;
  164. return -1;
  165. }
  166. if (sb->type == UBIFS_INO_NODE)
  167. return 1;
  168. ubifs_assert(key_type(c, &sa->key) == UBIFS_DENT_KEY ||
  169. key_type(c, &sa->key) == UBIFS_XENT_KEY);
  170. ubifs_assert(key_type(c, &sb->key) == UBIFS_DENT_KEY ||
  171. key_type(c, &sb->key) == UBIFS_XENT_KEY);
  172. ubifs_assert(sa->type == UBIFS_DENT_NODE ||
  173. sa->type == UBIFS_XENT_NODE);
  174. ubifs_assert(sb->type == UBIFS_DENT_NODE ||
  175. sb->type == UBIFS_XENT_NODE);
  176. inuma = key_inum(c, &sa->key);
  177. inumb = key_inum(c, &sb->key);
  178. if (inuma == inumb) {
  179. uint32_t hasha = key_hash(c, &sa->key);
  180. uint32_t hashb = key_hash(c, &sb->key);
  181. if (hasha <= hashb)
  182. return -1;
  183. } else if (inuma <= inumb)
  184. return -1;
  185. return 1;
  186. }
  187. /**
  188. * sort_nodes - sort nodes for GC.
  189. * @c: UBIFS file-system description object
  190. * @sleb: describes nodes to sort and contains the result on exit
  191. * @nondata: contains non-data nodes on exit
  192. * @min: minimum node size is returned here
  193. *
  194. * This function sorts the list of inodes to garbage collect. First of all, it
  195. * kills obsolete nodes and separates data and non-data nodes to the
  196. * @sleb->nodes and @nondata lists correspondingly.
  197. *
  198. * Data nodes are then sorted in block number order - this is important for
  199. * bulk-read; data nodes with lower inode number go before data nodes with
  200. * higher inode number, and data nodes with lower block number go before data
  201. * nodes with higher block number;
  202. *
  203. * Non-data nodes are sorted as follows.
  204. * o First go inode nodes - they are sorted in descending length order.
  205. * o Then go directory entry nodes - they are sorted in hash order, which
  206. * should supposedly optimize 'readdir()'. Direntry nodes with lower parent
  207. * inode number go before direntry nodes with higher parent inode number,
  208. * and direntry nodes with lower name hash values go before direntry nodes
  209. * with higher name hash values.
  210. *
  211. * This function returns zero in case of success and a negative error code in
  212. * case of failure.
  213. */
  214. static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
  215. struct list_head *nondata, int *min)
  216. {
  217. int err;
  218. struct ubifs_scan_node *snod, *tmp;
  219. *min = INT_MAX;
  220. /* Separate data nodes and non-data nodes */
  221. list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
  222. ubifs_assert(snod->type == UBIFS_INO_NODE ||
  223. snod->type == UBIFS_DATA_NODE ||
  224. snod->type == UBIFS_DENT_NODE ||
  225. snod->type == UBIFS_XENT_NODE ||
  226. snod->type == UBIFS_TRUN_NODE);
  227. if (snod->type != UBIFS_INO_NODE &&
  228. snod->type != UBIFS_DATA_NODE &&
  229. snod->type != UBIFS_DENT_NODE &&
  230. snod->type != UBIFS_XENT_NODE) {
  231. /* Probably truncation node, zap it */
  232. list_del(&snod->list);
  233. kfree(snod);
  234. continue;
  235. }
  236. ubifs_assert(key_type(c, &snod->key) == UBIFS_DATA_KEY ||
  237. key_type(c, &snod->key) == UBIFS_INO_KEY ||
  238. key_type(c, &snod->key) == UBIFS_DENT_KEY ||
  239. key_type(c, &snod->key) == UBIFS_XENT_KEY);
  240. err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum,
  241. snod->offs, 0);
  242. if (err < 0)
  243. return err;
  244. if (!err) {
  245. /* The node is obsolete, remove it from the list */
  246. list_del(&snod->list);
  247. kfree(snod);
  248. continue;
  249. }
  250. if (snod->len < *min)
  251. *min = snod->len;
  252. if (key_type(c, &snod->key) != UBIFS_DATA_KEY)
  253. list_move_tail(&snod->list, nondata);
  254. }
  255. /* Sort data and non-data nodes */
  256. list_sort(c, &sleb->nodes, &data_nodes_cmp);
  257. list_sort(c, nondata, &nondata_nodes_cmp);
  258. err = dbg_check_data_nodes_order(c, &sleb->nodes);
  259. if (err)
  260. return err;
  261. err = dbg_check_nondata_nodes_order(c, nondata);
  262. if (err)
  263. return err;
  264. return 0;
  265. }
  266. /**
  267. * move_node - move a node.
  268. * @c: UBIFS file-system description object
  269. * @sleb: describes the LEB to move nodes from
  270. * @snod: the mode to move
  271. * @wbuf: write-buffer to move node to
  272. *
  273. * This function moves node @snod to @wbuf, changes TNC correspondingly, and
  274. * destroys @snod. Returns zero in case of success and a negative error code in
  275. * case of failure.
  276. */
  277. static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
  278. struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf)
  279. {
  280. int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used;
  281. cond_resched();
  282. err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len);
  283. if (err)
  284. return err;
  285. err = ubifs_tnc_replace(c, &snod->key, sleb->lnum,
  286. snod->offs, new_lnum, new_offs,
  287. snod->len);
  288. list_del(&snod->list);
  289. kfree(snod);
  290. return err;
  291. }
  292. /**
  293. * move_nodes - move nodes.
  294. * @c: UBIFS file-system description object
  295. * @sleb: describes the LEB to move nodes from
  296. *
  297. * This function moves valid nodes from data LEB described by @sleb to the GC
  298. * journal head. This function returns zero in case of success, %-EAGAIN if
  299. * commit is required, and other negative error codes in case of other
  300. * failures.
  301. */
  302. static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb)
  303. {
  304. int err, min;
  305. LIST_HEAD(nondata);
  306. struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
  307. if (wbuf->lnum == -1) {
  308. /*
  309. * The GC journal head is not set, because it is the first GC
  310. * invocation since mount.
  311. */
  312. err = switch_gc_head(c);
  313. if (err)
  314. return err;
  315. }
  316. err = sort_nodes(c, sleb, &nondata, &min);
  317. if (err)
  318. goto out;
  319. /* Write nodes to their new location. Use the first-fit strategy */
  320. while (1) {
  321. int avail;
  322. struct ubifs_scan_node *snod, *tmp;
  323. /* Move data nodes */
  324. list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
  325. avail = c->leb_size - wbuf->offs - wbuf->used;
  326. if (snod->len > avail)
  327. /*
  328. * Do not skip data nodes in order to optimize
  329. * bulk-read.
  330. */
  331. break;
  332. err = move_node(c, sleb, snod, wbuf);
  333. if (err)
  334. goto out;
  335. }
  336. /* Move non-data nodes */
  337. list_for_each_entry_safe(snod, tmp, &nondata, list) {
  338. avail = c->leb_size - wbuf->offs - wbuf->used;
  339. if (avail < min)
  340. break;
  341. if (snod->len > avail) {
  342. /*
  343. * Keep going only if this is an inode with
  344. * some data. Otherwise stop and switch the GC
  345. * head. IOW, we assume that data-less inode
  346. * nodes and direntry nodes are roughly of the
  347. * same size.
  348. */
  349. if (key_type(c, &snod->key) == UBIFS_DENT_KEY ||
  350. snod->len == UBIFS_INO_NODE_SZ)
  351. break;
  352. continue;
  353. }
  354. err = move_node(c, sleb, snod, wbuf);
  355. if (err)
  356. goto out;
  357. }
  358. if (list_empty(&sleb->nodes) && list_empty(&nondata))
  359. break;
  360. /*
  361. * Waste the rest of the space in the LEB and switch to the
  362. * next LEB.
  363. */
  364. err = switch_gc_head(c);
  365. if (err)
  366. goto out;
  367. }
  368. return 0;
  369. out:
  370. list_splice_tail(&nondata, &sleb->nodes);
  371. return err;
  372. }
  373. /**
  374. * gc_sync_wbufs - sync write-buffers for GC.
  375. * @c: UBIFS file-system description object
  376. *
  377. * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
  378. * be in a write-buffer instead. That is, a node could be written to a
  379. * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
  380. * erased before the write-buffer is sync'd and then there is an unclean
  381. * unmount, then an existing node is lost. To avoid this, we sync all
  382. * write-buffers.
  383. *
  384. * This function returns %0 on success or a negative error code on failure.
  385. */
  386. static int gc_sync_wbufs(struct ubifs_info *c)
  387. {
  388. int err, i;
  389. for (i = 0; i < c->jhead_cnt; i++) {
  390. if (i == GCHD)
  391. continue;
  392. err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
  393. if (err)
  394. return err;
  395. }
  396. return 0;
  397. }
  398. /**
  399. * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
  400. * @c: UBIFS file-system description object
  401. * @lp: describes the LEB to garbage collect
  402. *
  403. * This function garbage-collects an LEB and returns one of the @LEB_FREED,
  404. * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
  405. * required, and other negative error codes in case of failures.
  406. */
  407. int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp)
  408. {
  409. struct ubifs_scan_leb *sleb;
  410. struct ubifs_scan_node *snod;
  411. struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
  412. int err = 0, lnum = lp->lnum;
  413. ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 ||
  414. c->need_recovery);
  415. ubifs_assert(c->gc_lnum != lnum);
  416. ubifs_assert(wbuf->lnum != lnum);
  417. /*
  418. * We scan the entire LEB even though we only really need to scan up to
  419. * (c->leb_size - lp->free).
  420. */
  421. sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0);
  422. if (IS_ERR(sleb))
  423. return PTR_ERR(sleb);
  424. ubifs_assert(!list_empty(&sleb->nodes));
  425. snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
  426. if (snod->type == UBIFS_IDX_NODE) {
  427. struct ubifs_gced_idx_leb *idx_gc;
  428. dbg_gc("indexing LEB %d (free %d, dirty %d)",
  429. lnum, lp->free, lp->dirty);
  430. list_for_each_entry(snod, &sleb->nodes, list) {
  431. struct ubifs_idx_node *idx = snod->node;
  432. int level = le16_to_cpu(idx->level);
  433. ubifs_assert(snod->type == UBIFS_IDX_NODE);
  434. key_read(c, ubifs_idx_key(c, idx), &snod->key);
  435. err = ubifs_dirty_idx_node(c, &snod->key, level, lnum,
  436. snod->offs);
  437. if (err)
  438. goto out;
  439. }
  440. idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
  441. if (!idx_gc) {
  442. err = -ENOMEM;
  443. goto out;
  444. }
  445. idx_gc->lnum = lnum;
  446. idx_gc->unmap = 0;
  447. list_add(&idx_gc->list, &c->idx_gc);
  448. /*
  449. * Don't release the LEB until after the next commit, because
  450. * it may contain data which is needed for recovery. So
  451. * although we freed this LEB, it will become usable only after
  452. * the commit.
  453. */
  454. err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0,
  455. LPROPS_INDEX, 1);
  456. if (err)
  457. goto out;
  458. err = LEB_FREED_IDX;
  459. } else {
  460. dbg_gc("data LEB %d (free %d, dirty %d)",
  461. lnum, lp->free, lp->dirty);
  462. err = move_nodes(c, sleb);
  463. if (err)
  464. goto out_inc_seq;
  465. err = gc_sync_wbufs(c);
  466. if (err)
  467. goto out_inc_seq;
  468. err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0);
  469. if (err)
  470. goto out_inc_seq;
  471. /* Allow for races with TNC */
  472. c->gced_lnum = lnum;
  473. smp_wmb();
  474. c->gc_seq += 1;
  475. smp_wmb();
  476. if (c->gc_lnum == -1) {
  477. c->gc_lnum = lnum;
  478. err = LEB_RETAINED;
  479. } else {
  480. err = ubifs_wbuf_sync_nolock(wbuf);
  481. if (err)
  482. goto out;
  483. err = ubifs_leb_unmap(c, lnum);
  484. if (err)
  485. goto out;
  486. err = LEB_FREED;
  487. }
  488. }
  489. out:
  490. ubifs_scan_destroy(sleb);
  491. return err;
  492. out_inc_seq:
  493. /* We may have moved at least some nodes so allow for races with TNC */
  494. c->gced_lnum = lnum;
  495. smp_wmb();
  496. c->gc_seq += 1;
  497. smp_wmb();
  498. goto out;
  499. }
  500. /**
  501. * ubifs_garbage_collect - UBIFS garbage collector.
  502. * @c: UBIFS file-system description object
  503. * @anyway: do GC even if there are free LEBs
  504. *
  505. * This function does out-of-place garbage collection. The return codes are:
  506. * o positive LEB number if the LEB has been freed and may be used;
  507. * o %-EAGAIN if the caller has to run commit;
  508. * o %-ENOSPC if GC failed to make any progress;
  509. * o other negative error codes in case of other errors.
  510. *
  511. * Garbage collector writes data to the journal when GC'ing data LEBs, and just
  512. * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
  513. * commit may be required. But commit cannot be run from inside GC, because the
  514. * caller might be holding the commit lock, so %-EAGAIN is returned instead;
  515. * And this error code means that the caller has to run commit, and re-run GC
  516. * if there is still no free space.
  517. *
  518. * There are many reasons why this function may return %-EAGAIN:
  519. * o the log is full and there is no space to write an LEB reference for
  520. * @c->gc_lnum;
  521. * o the journal is too large and exceeds size limitations;
  522. * o GC moved indexing LEBs, but they can be used only after the commit;
  523. * o the shrinker fails to find clean znodes to free and requests the commit;
  524. * o etc.
  525. *
  526. * Note, if the file-system is close to be full, this function may return
  527. * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
  528. * the function. E.g., this happens if the limits on the journal size are too
  529. * tough and GC writes too much to the journal before an LEB is freed. This
  530. * might also mean that the journal is too large, and the TNC becomes to big,
  531. * so that the shrinker is constantly called, finds not clean znodes to free,
  532. * and requests commit. Well, this may also happen if the journal is all right,
  533. * but another kernel process consumes too much memory. Anyway, infinite
  534. * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
  535. */
  536. int ubifs_garbage_collect(struct ubifs_info *c, int anyway)
  537. {
  538. int i, err, ret, min_space = c->dead_wm;
  539. struct ubifs_lprops lp;
  540. struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
  541. ubifs_assert_cmt_locked(c);
  542. ubifs_assert(!c->ro_media && !c->ro_mount);
  543. if (ubifs_gc_should_commit(c))
  544. return -EAGAIN;
  545. mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
  546. if (c->ro_error) {
  547. ret = -EROFS;
  548. goto out_unlock;
  549. }
  550. /* We expect the write-buffer to be empty on entry */
  551. ubifs_assert(!wbuf->used);
  552. for (i = 0; ; i++) {
  553. int space_before = c->leb_size - wbuf->offs - wbuf->used;
  554. int space_after;
  555. cond_resched();
  556. /* Give the commit an opportunity to run */
  557. if (ubifs_gc_should_commit(c)) {
  558. ret = -EAGAIN;
  559. break;
  560. }
  561. if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) {
  562. /*
  563. * We've done enough iterations. Indexing LEBs were
  564. * moved and will be available after the commit.
  565. */
  566. dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
  567. ubifs_commit_required(c);
  568. ret = -EAGAIN;
  569. break;
  570. }
  571. if (i > HARD_LEBS_LIMIT) {
  572. /*
  573. * We've moved too many LEBs and have not made
  574. * progress, give up.
  575. */
  576. dbg_gc("hard limit, -ENOSPC");
  577. ret = -ENOSPC;
  578. break;
  579. }
  580. /*
  581. * Empty and freeable LEBs can turn up while we waited for
  582. * the wbuf lock, or while we have been running GC. In that
  583. * case, we should just return one of those instead of
  584. * continuing to GC dirty LEBs. Hence we request
  585. * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
  586. */
  587. ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1);
  588. if (ret) {
  589. if (ret == -ENOSPC)
  590. dbg_gc("no more dirty LEBs");
  591. break;
  592. }
  593. dbg_gc("found LEB %d: free %d, dirty %d, sum %d "
  594. "(min. space %d)", lp.lnum, lp.free, lp.dirty,
  595. lp.free + lp.dirty, min_space);
  596. if (lp.free + lp.dirty == c->leb_size) {
  597. /* An empty LEB was returned */
  598. dbg_gc("LEB %d is free, return it", lp.lnum);
  599. /*
  600. * ubifs_find_dirty_leb() doesn't return freeable index
  601. * LEBs.
  602. */
  603. ubifs_assert(!(lp.flags & LPROPS_INDEX));
  604. if (lp.free != c->leb_size) {
  605. /*
  606. * Write buffers must be sync'd before
  607. * unmapping freeable LEBs, because one of them
  608. * may contain data which obsoletes something
  609. * in 'lp.pnum'.
  610. */
  611. ret = gc_sync_wbufs(c);
  612. if (ret)
  613. goto out;
  614. ret = ubifs_change_one_lp(c, lp.lnum,
  615. c->leb_size, 0, 0, 0,
  616. 0);
  617. if (ret)
  618. goto out;
  619. }
  620. ret = ubifs_leb_unmap(c, lp.lnum);
  621. if (ret)
  622. goto out;
  623. ret = lp.lnum;
  624. break;
  625. }
  626. space_before = c->leb_size - wbuf->offs - wbuf->used;
  627. if (wbuf->lnum == -1)
  628. space_before = 0;
  629. ret = ubifs_garbage_collect_leb(c, &lp);
  630. if (ret < 0) {
  631. if (ret == -EAGAIN) {
  632. /*
  633. * This is not error, so we have to return the
  634. * LEB to lprops. But if 'ubifs_return_leb()'
  635. * fails, its failure code is propagated to the
  636. * caller instead of the original '-EAGAIN'.
  637. */
  638. err = ubifs_return_leb(c, lp.lnum);
  639. if (err)
  640. ret = err;
  641. break;
  642. }
  643. goto out;
  644. }
  645. if (ret == LEB_FREED) {
  646. /* An LEB has been freed and is ready for use */
  647. dbg_gc("LEB %d freed, return", lp.lnum);
  648. ret = lp.lnum;
  649. break;
  650. }
  651. if (ret == LEB_FREED_IDX) {
  652. /*
  653. * This was an indexing LEB and it cannot be
  654. * immediately used. And instead of requesting the
  655. * commit straight away, we try to garbage collect some
  656. * more.
  657. */
  658. dbg_gc("indexing LEB %d freed, continue", lp.lnum);
  659. continue;
  660. }
  661. ubifs_assert(ret == LEB_RETAINED);
  662. space_after = c->leb_size - wbuf->offs - wbuf->used;
  663. dbg_gc("LEB %d retained, freed %d bytes", lp.lnum,
  664. space_after - space_before);
  665. if (space_after > space_before) {
  666. /* GC makes progress, keep working */
  667. min_space >>= 1;
  668. if (min_space < c->dead_wm)
  669. min_space = c->dead_wm;
  670. continue;
  671. }
  672. dbg_gc("did not make progress");
  673. /*
  674. * GC moved an LEB bud have not done any progress. This means
  675. * that the previous GC head LEB contained too few free space
  676. * and the LEB which was GC'ed contained only large nodes which
  677. * did not fit that space.
  678. *
  679. * We can do 2 things:
  680. * 1. pick another LEB in a hope it'll contain a small node
  681. * which will fit the space we have at the end of current GC
  682. * head LEB, but there is no guarantee, so we try this out
  683. * unless we have already been working for too long;
  684. * 2. request an LEB with more dirty space, which will force
  685. * 'ubifs_find_dirty_leb()' to start scanning the lprops
  686. * table, instead of just picking one from the heap
  687. * (previously it already picked the dirtiest LEB).
  688. */
  689. if (i < SOFT_LEBS_LIMIT) {
  690. dbg_gc("try again");
  691. continue;
  692. }
  693. min_space <<= 1;
  694. if (min_space > c->dark_wm)
  695. min_space = c->dark_wm;
  696. dbg_gc("set min. space to %d", min_space);
  697. }
  698. if (ret == -ENOSPC && !list_empty(&c->idx_gc)) {
  699. dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
  700. ubifs_commit_required(c);
  701. ret = -EAGAIN;
  702. }
  703. err = ubifs_wbuf_sync_nolock(wbuf);
  704. if (!err)
  705. err = ubifs_leb_unmap(c, c->gc_lnum);
  706. if (err) {
  707. ret = err;
  708. goto out;
  709. }
  710. out_unlock:
  711. mutex_unlock(&wbuf->io_mutex);
  712. return ret;
  713. out:
  714. ubifs_assert(ret < 0);
  715. ubifs_assert(ret != -ENOSPC && ret != -EAGAIN);
  716. ubifs_wbuf_sync_nolock(wbuf);
  717. ubifs_ro_mode(c, ret);
  718. mutex_unlock(&wbuf->io_mutex);
  719. ubifs_return_leb(c, lp.lnum);
  720. return ret;
  721. }
  722. /**
  723. * ubifs_gc_start_commit - garbage collection at start of commit.
  724. * @c: UBIFS file-system description object
  725. *
  726. * If a LEB has only dirty and free space, then we may safely unmap it and make
  727. * it free. Note, we cannot do this with indexing LEBs because dirty space may
  728. * correspond index nodes that are required for recovery. In that case, the
  729. * LEB cannot be unmapped until after the next commit.
  730. *
  731. * This function returns %0 upon success and a negative error code upon failure.
  732. */
  733. int ubifs_gc_start_commit(struct ubifs_info *c)
  734. {
  735. struct ubifs_gced_idx_leb *idx_gc;
  736. const struct ubifs_lprops *lp;
  737. int err = 0, flags;
  738. ubifs_get_lprops(c);
  739. /*
  740. * Unmap (non-index) freeable LEBs. Note that recovery requires that all
  741. * wbufs are sync'd before this, which is done in 'do_commit()'.
  742. */
  743. while (1) {
  744. lp = ubifs_fast_find_freeable(c);
  745. if (IS_ERR(lp)) {
  746. err = PTR_ERR(lp);
  747. goto out;
  748. }
  749. if (!lp)
  750. break;
  751. ubifs_assert(!(lp->flags & LPROPS_TAKEN));
  752. ubifs_assert(!(lp->flags & LPROPS_INDEX));
  753. err = ubifs_leb_unmap(c, lp->lnum);
  754. if (err)
  755. goto out;
  756. lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0);
  757. if (IS_ERR(lp)) {
  758. err = PTR_ERR(lp);
  759. goto out;
  760. }
  761. ubifs_assert(!(lp->flags & LPROPS_TAKEN));
  762. ubifs_assert(!(lp->flags & LPROPS_INDEX));
  763. }
  764. /* Mark GC'd index LEBs OK to unmap after this commit finishes */
  765. list_for_each_entry(idx_gc, &c->idx_gc, list)
  766. idx_gc->unmap = 1;
  767. /* Record index freeable LEBs for unmapping after commit */
  768. while (1) {
  769. lp = ubifs_fast_find_frdi_idx(c);
  770. if (IS_ERR(lp)) {
  771. err = PTR_ERR(lp);
  772. goto out;
  773. }
  774. if (!lp)
  775. break;
  776. idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
  777. if (!idx_gc) {
  778. err = -ENOMEM;
  779. goto out;
  780. }
  781. ubifs_assert(!(lp->flags & LPROPS_TAKEN));
  782. ubifs_assert(lp->flags & LPROPS_INDEX);
  783. /* Don't release the LEB until after the next commit */
  784. flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX;
  785. lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1);
  786. if (IS_ERR(lp)) {
  787. err = PTR_ERR(lp);
  788. kfree(idx_gc);
  789. goto out;
  790. }
  791. ubifs_assert(lp->flags & LPROPS_TAKEN);
  792. ubifs_assert(!(lp->flags & LPROPS_INDEX));
  793. idx_gc->lnum = lp->lnum;
  794. idx_gc->unmap = 1;
  795. list_add(&idx_gc->list, &c->idx_gc);
  796. }
  797. out:
  798. ubifs_release_lprops(c);
  799. return err;
  800. }
  801. /**
  802. * ubifs_gc_end_commit - garbage collection at end of commit.
  803. * @c: UBIFS file-system description object
  804. *
  805. * This function completes out-of-place garbage collection of index LEBs.
  806. */
  807. int ubifs_gc_end_commit(struct ubifs_info *c)
  808. {
  809. struct ubifs_gced_idx_leb *idx_gc, *tmp;
  810. struct ubifs_wbuf *wbuf;
  811. int err = 0;
  812. wbuf = &c->jheads[GCHD].wbuf;
  813. mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
  814. list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list)
  815. if (idx_gc->unmap) {
  816. dbg_gc("LEB %d", idx_gc->lnum);
  817. err = ubifs_leb_unmap(c, idx_gc->lnum);
  818. if (err)
  819. goto out;
  820. err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC,
  821. LPROPS_NC, 0, LPROPS_TAKEN, -1);
  822. if (err)
  823. goto out;
  824. list_del(&idx_gc->list);
  825. kfree(idx_gc);
  826. }
  827. out:
  828. mutex_unlock(&wbuf->io_mutex);
  829. return err;
  830. }
  831. /**
  832. * ubifs_destroy_idx_gc - destroy idx_gc list.
  833. * @c: UBIFS file-system description object
  834. *
  835. * This function destroys the @c->idx_gc list. It is called when unmounting
  836. * so locks are not needed. Returns zero in case of success and a negative
  837. * error code in case of failure.
  838. */
  839. void ubifs_destroy_idx_gc(struct ubifs_info *c)
  840. {
  841. while (!list_empty(&c->idx_gc)) {
  842. struct ubifs_gced_idx_leb *idx_gc;
  843. idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb,
  844. list);
  845. c->idx_gc_cnt -= 1;
  846. list_del(&idx_gc->list);
  847. kfree(idx_gc);
  848. }
  849. }
  850. /**
  851. * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
  852. * @c: UBIFS file-system description object
  853. *
  854. * Called during start commit so locks are not needed.
  855. */
  856. int ubifs_get_idx_gc_leb(struct ubifs_info *c)
  857. {
  858. struct ubifs_gced_idx_leb *idx_gc;
  859. int lnum;
  860. if (list_empty(&c->idx_gc))
  861. return -ENOSPC;
  862. idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list);
  863. lnum = idx_gc->lnum;
  864. /* c->idx_gc_cnt is updated by the caller when lprops are updated */
  865. list_del(&idx_gc->list);
  866. kfree(idx_gc);
  867. return lnum;
  868. }