mddi.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825
  1. /*
  2. * MSM MDDI Transport
  3. *
  4. * Copyright (C) 2007 Google Incorporated
  5. * Copyright (C) 2007 QUALCOMM Incorporated
  6. *
  7. * This software is licensed under the terms of the GNU General Public
  8. * License version 2, as published by the Free Software Foundation, and
  9. * may be copied, distributed, and modified under those terms.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. */
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/dma-mapping.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/platform_device.h>
  22. #include <linux/delay.h>
  23. #include <linux/gfp.h>
  24. #include <linux/spinlock.h>
  25. #include <linux/clk.h>
  26. #include <linux/io.h>
  27. #include <linux/sched.h>
  28. #include <mach/msm_iomap.h>
  29. #include <mach/irqs.h>
  30. #include <mach/board.h>
  31. #include <mach/msm_fb.h>
  32. #include "mddi_hw.h"
  33. #define FLAG_DISABLE_HIBERNATION 0x0001
  34. #define FLAG_HAVE_CAPS 0x0002
  35. #define FLAG_HAS_VSYNC_IRQ 0x0004
  36. #define FLAG_HAVE_STATUS 0x0008
  37. #define CMD_GET_CLIENT_CAP 0x0601
  38. #define CMD_GET_CLIENT_STATUS 0x0602
  39. union mddi_rev {
  40. unsigned char raw[MDDI_REV_BUFFER_SIZE];
  41. struct mddi_rev_packet hdr;
  42. struct mddi_client_status status;
  43. struct mddi_client_caps caps;
  44. struct mddi_register_access reg;
  45. };
  46. struct reg_read_info {
  47. struct completion done;
  48. uint32_t reg;
  49. uint32_t status;
  50. uint32_t result;
  51. };
  52. struct mddi_info {
  53. uint16_t flags;
  54. uint16_t version;
  55. char __iomem *base;
  56. int irq;
  57. struct clk *clk;
  58. struct msm_mddi_client_data client_data;
  59. /* buffer for rev encap packets */
  60. void *rev_data;
  61. dma_addr_t rev_addr;
  62. struct mddi_llentry *reg_write_data;
  63. dma_addr_t reg_write_addr;
  64. struct mddi_llentry *reg_read_data;
  65. dma_addr_t reg_read_addr;
  66. size_t rev_data_curr;
  67. spinlock_t int_lock;
  68. uint32_t int_enable;
  69. uint32_t got_int;
  70. wait_queue_head_t int_wait;
  71. struct mutex reg_write_lock;
  72. struct mutex reg_read_lock;
  73. struct reg_read_info *reg_read;
  74. struct mddi_client_caps caps;
  75. struct mddi_client_status status;
  76. void (*power_client)(struct msm_mddi_client_data *, int);
  77. /* client device published to bind us to the
  78. * appropriate mddi_client driver
  79. */
  80. char client_name[20];
  81. struct platform_device client_pdev;
  82. };
  83. static void mddi_init_rev_encap(struct mddi_info *mddi);
  84. #define mddi_readl(r) readl(mddi->base + (MDDI_##r))
  85. #define mddi_writel(v, r) writel((v), mddi->base + (MDDI_##r))
  86. void mddi_activate_link(struct msm_mddi_client_data *cdata)
  87. {
  88. struct mddi_info *mddi = container_of(cdata, struct mddi_info,
  89. client_data);
  90. mddi_writel(MDDI_CMD_LINK_ACTIVE, CMD);
  91. }
  92. static void mddi_handle_link_list_done(struct mddi_info *mddi)
  93. {
  94. }
  95. static void mddi_reset_rev_encap_ptr(struct mddi_info *mddi)
  96. {
  97. printk(KERN_INFO "mddi: resetting rev ptr\n");
  98. mddi->rev_data_curr = 0;
  99. mddi_writel(mddi->rev_addr, REV_PTR);
  100. mddi_writel(mddi->rev_addr, REV_PTR);
  101. mddi_writel(MDDI_CMD_FORCE_NEW_REV_PTR, CMD);
  102. }
  103. static void mddi_handle_rev_data(struct mddi_info *mddi, union mddi_rev *rev)
  104. {
  105. int i;
  106. struct reg_read_info *ri;
  107. if ((rev->hdr.length <= MDDI_REV_BUFFER_SIZE - 2) &&
  108. (rev->hdr.length >= sizeof(struct mddi_rev_packet) - 2)) {
  109. switch (rev->hdr.type) {
  110. case TYPE_CLIENT_CAPS:
  111. memcpy(&mddi->caps, &rev->caps,
  112. sizeof(struct mddi_client_caps));
  113. mddi->flags |= FLAG_HAVE_CAPS;
  114. wake_up(&mddi->int_wait);
  115. break;
  116. case TYPE_CLIENT_STATUS:
  117. memcpy(&mddi->status, &rev->status,
  118. sizeof(struct mddi_client_status));
  119. mddi->flags |= FLAG_HAVE_STATUS;
  120. wake_up(&mddi->int_wait);
  121. break;
  122. case TYPE_REGISTER_ACCESS:
  123. ri = mddi->reg_read;
  124. if (ri == 0) {
  125. printk(KERN_INFO "rev: got reg %x = %x without "
  126. " pending read\n",
  127. rev->reg.register_address,
  128. rev->reg.register_data_list);
  129. break;
  130. }
  131. if (ri->reg != rev->reg.register_address) {
  132. printk(KERN_INFO "rev: got reg %x = %x for "
  133. "wrong register, expected "
  134. "%x\n",
  135. rev->reg.register_address,
  136. rev->reg.register_data_list, ri->reg);
  137. break;
  138. }
  139. mddi->reg_read = NULL;
  140. ri->status = 0;
  141. ri->result = rev->reg.register_data_list;
  142. complete(&ri->done);
  143. break;
  144. default:
  145. printk(KERN_INFO "rev: unknown reverse packet: "
  146. "len=%04x type=%04x CURR_REV_PTR=%x\n",
  147. rev->hdr.length, rev->hdr.type,
  148. mddi_readl(CURR_REV_PTR));
  149. for (i = 0; i < rev->hdr.length + 2; i++) {
  150. if ((i % 16) == 0)
  151. printk(KERN_INFO "\n");
  152. printk(KERN_INFO " %02x", rev->raw[i]);
  153. }
  154. printk(KERN_INFO "\n");
  155. mddi_reset_rev_encap_ptr(mddi);
  156. }
  157. } else {
  158. printk(KERN_INFO "bad rev length, %d, CURR_REV_PTR %x\n",
  159. rev->hdr.length, mddi_readl(CURR_REV_PTR));
  160. mddi_reset_rev_encap_ptr(mddi);
  161. }
  162. }
  163. static void mddi_wait_interrupt(struct mddi_info *mddi, uint32_t intmask);
  164. static void mddi_handle_rev_data_avail(struct mddi_info *mddi)
  165. {
  166. uint32_t rev_data_count;
  167. uint32_t rev_crc_err_count;
  168. struct reg_read_info *ri;
  169. size_t prev_offset;
  170. uint16_t length;
  171. union mddi_rev *crev = mddi->rev_data + mddi->rev_data_curr;
  172. /* clear the interrupt */
  173. mddi_writel(MDDI_INT_REV_DATA_AVAIL, INT);
  174. rev_data_count = mddi_readl(REV_PKT_CNT);
  175. rev_crc_err_count = mddi_readl(REV_CRC_ERR);
  176. if (rev_data_count > 1)
  177. printk(KERN_INFO "rev_data_count %d\n", rev_data_count);
  178. if (rev_crc_err_count) {
  179. printk(KERN_INFO "rev_crc_err_count %d, INT %x\n",
  180. rev_crc_err_count, mddi_readl(INT));
  181. ri = mddi->reg_read;
  182. if (ri == 0) {
  183. printk(KERN_INFO "rev: got crc error without pending "
  184. "read\n");
  185. } else {
  186. mddi->reg_read = NULL;
  187. ri->status = -EIO;
  188. ri->result = -1;
  189. complete(&ri->done);
  190. }
  191. }
  192. if (rev_data_count == 0)
  193. return;
  194. prev_offset = mddi->rev_data_curr;
  195. length = *((uint8_t *)mddi->rev_data + mddi->rev_data_curr);
  196. mddi->rev_data_curr++;
  197. if (mddi->rev_data_curr == MDDI_REV_BUFFER_SIZE)
  198. mddi->rev_data_curr = 0;
  199. length += *((uint8_t *)mddi->rev_data + mddi->rev_data_curr) << 8;
  200. mddi->rev_data_curr += 1 + length;
  201. if (mddi->rev_data_curr >= MDDI_REV_BUFFER_SIZE)
  202. mddi->rev_data_curr =
  203. mddi->rev_data_curr % MDDI_REV_BUFFER_SIZE;
  204. if (length > MDDI_REV_BUFFER_SIZE - 2) {
  205. printk(KERN_INFO "mddi: rev data length greater than buffer"
  206. "size\n");
  207. mddi_reset_rev_encap_ptr(mddi);
  208. return;
  209. }
  210. if (prev_offset + 2 + length >= MDDI_REV_BUFFER_SIZE) {
  211. union mddi_rev tmprev;
  212. size_t rem = MDDI_REV_BUFFER_SIZE - prev_offset;
  213. memcpy(&tmprev.raw[0], mddi->rev_data + prev_offset, rem);
  214. memcpy(&tmprev.raw[rem], mddi->rev_data, 2 + length - rem);
  215. mddi_handle_rev_data(mddi, &tmprev);
  216. } else {
  217. mddi_handle_rev_data(mddi, crev);
  218. }
  219. if (prev_offset < MDDI_REV_BUFFER_SIZE / 2 &&
  220. mddi->rev_data_curr >= MDDI_REV_BUFFER_SIZE / 2) {
  221. mddi_writel(mddi->rev_addr, REV_PTR);
  222. }
  223. }
  224. static irqreturn_t mddi_isr(int irq, void *data)
  225. {
  226. struct msm_mddi_client_data *cdata = data;
  227. struct mddi_info *mddi = container_of(cdata, struct mddi_info,
  228. client_data);
  229. uint32_t active, status;
  230. spin_lock(&mddi->int_lock);
  231. active = mddi_readl(INT);
  232. status = mddi_readl(STAT);
  233. mddi_writel(active, INT);
  234. /* ignore any interrupts we have disabled */
  235. active &= mddi->int_enable;
  236. mddi->got_int |= active;
  237. wake_up(&mddi->int_wait);
  238. if (active & MDDI_INT_PRI_LINK_LIST_DONE) {
  239. mddi->int_enable &= (~MDDI_INT_PRI_LINK_LIST_DONE);
  240. mddi_handle_link_list_done(mddi);
  241. }
  242. if (active & MDDI_INT_REV_DATA_AVAIL)
  243. mddi_handle_rev_data_avail(mddi);
  244. if (active & ~MDDI_INT_NEED_CLEAR)
  245. mddi->int_enable &= ~(active & ~MDDI_INT_NEED_CLEAR);
  246. if (active & MDDI_INT_LINK_ACTIVE) {
  247. mddi->int_enable &= (~MDDI_INT_LINK_ACTIVE);
  248. mddi->int_enable |= MDDI_INT_IN_HIBERNATION;
  249. }
  250. if (active & MDDI_INT_IN_HIBERNATION) {
  251. mddi->int_enable &= (~MDDI_INT_IN_HIBERNATION);
  252. mddi->int_enable |= MDDI_INT_LINK_ACTIVE;
  253. }
  254. mddi_writel(mddi->int_enable, INTEN);
  255. spin_unlock(&mddi->int_lock);
  256. return IRQ_HANDLED;
  257. }
  258. static long mddi_wait_interrupt_timeout(struct mddi_info *mddi,
  259. uint32_t intmask, int timeout)
  260. {
  261. unsigned long irq_flags;
  262. spin_lock_irqsave(&mddi->int_lock, irq_flags);
  263. mddi->got_int &= ~intmask;
  264. mddi->int_enable |= intmask;
  265. mddi_writel(mddi->int_enable, INTEN);
  266. spin_unlock_irqrestore(&mddi->int_lock, irq_flags);
  267. return wait_event_timeout(mddi->int_wait, mddi->got_int & intmask,
  268. timeout);
  269. }
  270. static void mddi_wait_interrupt(struct mddi_info *mddi, uint32_t intmask)
  271. {
  272. if (mddi_wait_interrupt_timeout(mddi, intmask, HZ/10) == 0)
  273. printk(KERN_INFO "mddi_wait_interrupt %d, timeout "
  274. "waiting for %x, INT = %x, STAT = %x gotint = %x\n",
  275. current->pid, intmask, mddi_readl(INT), mddi_readl(STAT),
  276. mddi->got_int);
  277. }
  278. static void mddi_init_rev_encap(struct mddi_info *mddi)
  279. {
  280. memset(mddi->rev_data, 0xee, MDDI_REV_BUFFER_SIZE);
  281. mddi_writel(mddi->rev_addr, REV_PTR);
  282. mddi_writel(MDDI_CMD_FORCE_NEW_REV_PTR, CMD);
  283. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  284. }
  285. void mddi_set_auto_hibernate(struct msm_mddi_client_data *cdata, int on)
  286. {
  287. struct mddi_info *mddi = container_of(cdata, struct mddi_info,
  288. client_data);
  289. mddi_writel(MDDI_CMD_POWERDOWN, CMD);
  290. mddi_wait_interrupt(mddi, MDDI_INT_IN_HIBERNATION);
  291. mddi_writel(MDDI_CMD_HIBERNATE | !!on, CMD);
  292. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  293. }
  294. static uint16_t mddi_init_registers(struct mddi_info *mddi)
  295. {
  296. mddi_writel(0x0001, VERSION);
  297. mddi_writel(MDDI_HOST_BYTES_PER_SUBFRAME, BPS);
  298. mddi_writel(0x0003, SPM); /* subframes per media */
  299. mddi_writel(0x0005, TA1_LEN);
  300. mddi_writel(MDDI_HOST_TA2_LEN, TA2_LEN);
  301. mddi_writel(0x0096, DRIVE_HI);
  302. /* 0x32 normal, 0x50 for Toshiba display */
  303. mddi_writel(0x0050, DRIVE_LO);
  304. mddi_writel(0x003C, DISP_WAKE); /* wakeup counter */
  305. mddi_writel(MDDI_HOST_REV_RATE_DIV, REV_RATE_DIV);
  306. mddi_writel(MDDI_REV_BUFFER_SIZE, REV_SIZE);
  307. mddi_writel(MDDI_MAX_REV_PKT_SIZE, REV_ENCAP_SZ);
  308. /* disable periodic rev encap */
  309. mddi_writel(MDDI_CMD_PERIODIC_REV_ENCAP, CMD);
  310. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  311. if (mddi_readl(PAD_CTL) == 0) {
  312. /* If we are turning on band gap, need to wait 5us before
  313. * turning on the rest of the PAD */
  314. mddi_writel(0x08000, PAD_CTL);
  315. udelay(5);
  316. }
  317. /* Recommendation from PAD hw team */
  318. mddi_writel(0xa850f, PAD_CTL);
  319. /* Need an even number for counts */
  320. mddi_writel(0x60006, DRIVER_START_CNT);
  321. mddi_set_auto_hibernate(&mddi->client_data, 0);
  322. mddi_writel(MDDI_CMD_DISP_IGNORE, CMD);
  323. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  324. mddi_init_rev_encap(mddi);
  325. return mddi_readl(CORE_VER) & 0xffff;
  326. }
  327. static void mddi_suspend(struct msm_mddi_client_data *cdata)
  328. {
  329. struct mddi_info *mddi = container_of(cdata, struct mddi_info,
  330. client_data);
  331. /* turn off the client */
  332. if (mddi->power_client)
  333. mddi->power_client(&mddi->client_data, 0);
  334. /* turn off the link */
  335. mddi_writel(MDDI_CMD_RESET, CMD);
  336. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  337. /* turn off the clock */
  338. clk_disable(mddi->clk);
  339. }
  340. static void mddi_resume(struct msm_mddi_client_data *cdata)
  341. {
  342. struct mddi_info *mddi = container_of(cdata, struct mddi_info,
  343. client_data);
  344. mddi_set_auto_hibernate(&mddi->client_data, 0);
  345. /* turn on the client */
  346. if (mddi->power_client)
  347. mddi->power_client(&mddi->client_data, 1);
  348. /* turn on the clock */
  349. clk_enable(mddi->clk);
  350. /* set up the local registers */
  351. mddi->rev_data_curr = 0;
  352. mddi_init_registers(mddi);
  353. mddi_writel(mddi->int_enable, INTEN);
  354. mddi_writel(MDDI_CMD_LINK_ACTIVE, CMD);
  355. mddi_writel(MDDI_CMD_SEND_RTD, CMD);
  356. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  357. mddi_set_auto_hibernate(&mddi->client_data, 1);
  358. }
  359. static int __init mddi_get_client_caps(struct mddi_info *mddi)
  360. {
  361. int i, j;
  362. /* clear any stale interrupts */
  363. mddi_writel(0xffffffff, INT);
  364. mddi->int_enable = MDDI_INT_LINK_ACTIVE |
  365. MDDI_INT_IN_HIBERNATION |
  366. MDDI_INT_PRI_LINK_LIST_DONE |
  367. MDDI_INT_REV_DATA_AVAIL |
  368. MDDI_INT_REV_OVERFLOW |
  369. MDDI_INT_REV_OVERWRITE |
  370. MDDI_INT_RTD_FAILURE;
  371. mddi_writel(mddi->int_enable, INTEN);
  372. mddi_writel(MDDI_CMD_LINK_ACTIVE, CMD);
  373. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  374. for (j = 0; j < 3; j++) {
  375. /* the toshiba vga panel does not respond to get
  376. * caps unless you SEND_RTD, but the first SEND_RTD
  377. * will fail...
  378. */
  379. for (i = 0; i < 4; i++) {
  380. uint32_t stat;
  381. mddi_writel(MDDI_CMD_SEND_RTD, CMD);
  382. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  383. stat = mddi_readl(STAT);
  384. printk(KERN_INFO "mddi cmd send rtd: int %x, stat %x, "
  385. "rtd val %x\n", mddi_readl(INT), stat,
  386. mddi_readl(RTD_VAL));
  387. if ((stat & MDDI_STAT_RTD_MEAS_FAIL) == 0)
  388. break;
  389. msleep(1);
  390. }
  391. mddi_writel(CMD_GET_CLIENT_CAP, CMD);
  392. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  393. wait_event_timeout(mddi->int_wait, mddi->flags & FLAG_HAVE_CAPS,
  394. HZ / 100);
  395. if (mddi->flags & FLAG_HAVE_CAPS)
  396. break;
  397. printk(KERN_INFO "mddi_init, timeout waiting for caps\n");
  398. }
  399. return mddi->flags & FLAG_HAVE_CAPS;
  400. }
  401. /* link must be active when this is called */
  402. int mddi_check_status(struct mddi_info *mddi)
  403. {
  404. int ret = -1, retry = 3;
  405. mutex_lock(&mddi->reg_read_lock);
  406. mddi_writel(MDDI_CMD_PERIODIC_REV_ENCAP | 1, CMD);
  407. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  408. do {
  409. mddi->flags &= ~FLAG_HAVE_STATUS;
  410. mddi_writel(CMD_GET_CLIENT_STATUS, CMD);
  411. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  412. wait_event_timeout(mddi->int_wait,
  413. mddi->flags & FLAG_HAVE_STATUS,
  414. HZ / 100);
  415. if (mddi->flags & FLAG_HAVE_STATUS) {
  416. if (mddi->status.crc_error_count)
  417. printk(KERN_INFO "mddi status: crc_error "
  418. "count: %d\n",
  419. mddi->status.crc_error_count);
  420. else
  421. ret = 0;
  422. break;
  423. } else
  424. printk(KERN_INFO "mddi status: failed to get client "
  425. "status\n");
  426. mddi_writel(MDDI_CMD_SEND_RTD, CMD);
  427. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  428. } while (--retry);
  429. mddi_writel(MDDI_CMD_PERIODIC_REV_ENCAP | 0, CMD);
  430. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  431. mutex_unlock(&mddi->reg_read_lock);
  432. return ret;
  433. }
  434. void mddi_remote_write(struct msm_mddi_client_data *cdata, uint32_t val,
  435. uint32_t reg)
  436. {
  437. struct mddi_info *mddi = container_of(cdata, struct mddi_info,
  438. client_data);
  439. struct mddi_llentry *ll;
  440. struct mddi_register_access *ra;
  441. mutex_lock(&mddi->reg_write_lock);
  442. ll = mddi->reg_write_data;
  443. ra = &(ll->u.r);
  444. ra->length = 14 + 4;
  445. ra->type = TYPE_REGISTER_ACCESS;
  446. ra->client_id = 0;
  447. ra->read_write_info = MDDI_WRITE | 1;
  448. ra->crc16 = 0;
  449. ra->register_address = reg;
  450. ra->register_data_list = val;
  451. ll->flags = 1;
  452. ll->header_count = 14;
  453. ll->data_count = 4;
  454. ll->data = mddi->reg_write_addr + offsetof(struct mddi_llentry,
  455. u.r.register_data_list);
  456. ll->next = 0;
  457. ll->reserved = 0;
  458. mddi_writel(mddi->reg_write_addr, PRI_PTR);
  459. mddi_wait_interrupt(mddi, MDDI_INT_PRI_LINK_LIST_DONE);
  460. mutex_unlock(&mddi->reg_write_lock);
  461. }
  462. uint32_t mddi_remote_read(struct msm_mddi_client_data *cdata, uint32_t reg)
  463. {
  464. struct mddi_info *mddi = container_of(cdata, struct mddi_info,
  465. client_data);
  466. struct mddi_llentry *ll;
  467. struct mddi_register_access *ra;
  468. struct reg_read_info ri;
  469. unsigned s;
  470. int retry_count = 2;
  471. unsigned long irq_flags;
  472. mutex_lock(&mddi->reg_read_lock);
  473. ll = mddi->reg_read_data;
  474. ra = &(ll->u.r);
  475. ra->length = 14;
  476. ra->type = TYPE_REGISTER_ACCESS;
  477. ra->client_id = 0;
  478. ra->read_write_info = MDDI_READ | 1;
  479. ra->crc16 = 0;
  480. ra->register_address = reg;
  481. ll->flags = 0x11;
  482. ll->header_count = 14;
  483. ll->data_count = 0;
  484. ll->data = 0;
  485. ll->next = 0;
  486. ll->reserved = 0;
  487. s = mddi_readl(STAT);
  488. ri.reg = reg;
  489. ri.status = -1;
  490. do {
  491. init_completion(&ri.done);
  492. mddi->reg_read = &ri;
  493. mddi_writel(mddi->reg_read_addr, PRI_PTR);
  494. mddi_wait_interrupt(mddi, MDDI_INT_PRI_LINK_LIST_DONE);
  495. /* Enable Periodic Reverse Encapsulation. */
  496. mddi_writel(MDDI_CMD_PERIODIC_REV_ENCAP | 1, CMD);
  497. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  498. if (wait_for_completion_timeout(&ri.done, HZ/10) == 0 &&
  499. !ri.done.done) {
  500. printk(KERN_INFO "mddi_remote_read(%x) timeout "
  501. "(%d %d %d)\n",
  502. reg, ri.status, ri.result, ri.done.done);
  503. spin_lock_irqsave(&mddi->int_lock, irq_flags);
  504. mddi->reg_read = NULL;
  505. spin_unlock_irqrestore(&mddi->int_lock, irq_flags);
  506. ri.status = -1;
  507. ri.result = -1;
  508. }
  509. if (ri.status == 0)
  510. break;
  511. mddi_writel(MDDI_CMD_SEND_RTD, CMD);
  512. mddi_writel(MDDI_CMD_LINK_ACTIVE, CMD);
  513. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  514. printk(KERN_INFO "mddi_remote_read: failed, sent "
  515. "MDDI_CMD_SEND_RTD: int %x, stat %x, rtd val %x "
  516. "curr_rev_ptr %x\n", mddi_readl(INT), mddi_readl(STAT),
  517. mddi_readl(RTD_VAL), mddi_readl(CURR_REV_PTR));
  518. } while (retry_count-- > 0);
  519. /* Disable Periodic Reverse Encapsulation. */
  520. mddi_writel(MDDI_CMD_PERIODIC_REV_ENCAP | 0, CMD);
  521. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  522. mddi->reg_read = NULL;
  523. mutex_unlock(&mddi->reg_read_lock);
  524. return ri.result;
  525. }
  526. static struct mddi_info mddi_info[2];
  527. static int __init mddi_clk_setup(struct platform_device *pdev,
  528. struct mddi_info *mddi,
  529. unsigned long clk_rate)
  530. {
  531. int ret;
  532. /* set up the clocks */
  533. mddi->clk = clk_get(&pdev->dev, "mddi_clk");
  534. if (IS_ERR(mddi->clk)) {
  535. printk(KERN_INFO "mddi: failed to get clock\n");
  536. return PTR_ERR(mddi->clk);
  537. }
  538. ret = clk_enable(mddi->clk);
  539. if (ret)
  540. goto fail;
  541. ret = clk_set_rate(mddi->clk, clk_rate);
  542. if (ret)
  543. goto fail;
  544. return 0;
  545. fail:
  546. clk_put(mddi->clk);
  547. return ret;
  548. }
  549. static int __init mddi_rev_data_setup(struct mddi_info *mddi)
  550. {
  551. void *dma;
  552. dma_addr_t dma_addr;
  553. /* set up dma buffer */
  554. dma = dma_alloc_coherent(NULL, 0x1000, &dma_addr, GFP_KERNEL);
  555. if (dma == 0)
  556. return -ENOMEM;
  557. mddi->rev_data = dma;
  558. mddi->rev_data_curr = 0;
  559. mddi->rev_addr = dma_addr;
  560. mddi->reg_write_data = dma + MDDI_REV_BUFFER_SIZE;
  561. mddi->reg_write_addr = dma_addr + MDDI_REV_BUFFER_SIZE;
  562. mddi->reg_read_data = mddi->reg_write_data + 1;
  563. mddi->reg_read_addr = mddi->reg_write_addr +
  564. sizeof(*mddi->reg_write_data);
  565. return 0;
  566. }
  567. static int __devinit mddi_probe(struct platform_device *pdev)
  568. {
  569. struct msm_mddi_platform_data *pdata = pdev->dev.platform_data;
  570. struct mddi_info *mddi = &mddi_info[pdev->id];
  571. struct resource *resource;
  572. int ret, i;
  573. resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  574. if (!resource) {
  575. printk(KERN_ERR "mddi: no associated mem resource!\n");
  576. return -ENOMEM;
  577. }
  578. mddi->base = ioremap(resource->start, resource->end - resource->start);
  579. if (!mddi->base) {
  580. printk(KERN_ERR "mddi: failed to remap base!\n");
  581. ret = -EINVAL;
  582. goto error_ioremap;
  583. }
  584. resource = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
  585. if (!resource) {
  586. printk(KERN_ERR "mddi: no associated irq resource!\n");
  587. ret = -EINVAL;
  588. goto error_get_irq_resource;
  589. }
  590. mddi->irq = resource->start;
  591. printk(KERN_INFO "mddi: init() base=0x%p irq=%d\n", mddi->base,
  592. mddi->irq);
  593. mddi->power_client = pdata->power_client;
  594. mutex_init(&mddi->reg_write_lock);
  595. mutex_init(&mddi->reg_read_lock);
  596. spin_lock_init(&mddi->int_lock);
  597. init_waitqueue_head(&mddi->int_wait);
  598. ret = mddi_clk_setup(pdev, mddi, pdata->clk_rate);
  599. if (ret) {
  600. printk(KERN_ERR "mddi: failed to setup clock!\n");
  601. goto error_clk_setup;
  602. }
  603. ret = mddi_rev_data_setup(mddi);
  604. if (ret) {
  605. printk(KERN_ERR "mddi: failed to setup rev data!\n");
  606. goto error_rev_data;
  607. }
  608. mddi->int_enable = 0;
  609. mddi_writel(mddi->int_enable, INTEN);
  610. ret = request_irq(mddi->irq, mddi_isr, IRQF_DISABLED, "mddi",
  611. &mddi->client_data);
  612. if (ret) {
  613. printk(KERN_ERR "mddi: failed to request enable irq!\n");
  614. goto error_request_irq;
  615. }
  616. /* turn on the mddi client bridge chip */
  617. if (mddi->power_client)
  618. mddi->power_client(&mddi->client_data, 1);
  619. /* initialize the mddi registers */
  620. mddi_set_auto_hibernate(&mddi->client_data, 0);
  621. mddi_writel(MDDI_CMD_RESET, CMD);
  622. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  623. mddi->version = mddi_init_registers(mddi);
  624. if (mddi->version < 0x20) {
  625. printk(KERN_ERR "mddi: unsupported version 0x%x\n",
  626. mddi->version);
  627. ret = -ENODEV;
  628. goto error_mddi_version;
  629. }
  630. /* read the capabilities off the client */
  631. if (!mddi_get_client_caps(mddi)) {
  632. printk(KERN_INFO "mddi: no client found\n");
  633. /* power down the panel */
  634. mddi_writel(MDDI_CMD_POWERDOWN, CMD);
  635. printk(KERN_INFO "mddi powerdown: stat %x\n", mddi_readl(STAT));
  636. msleep(100);
  637. printk(KERN_INFO "mddi powerdown: stat %x\n", mddi_readl(STAT));
  638. return 0;
  639. }
  640. mddi_set_auto_hibernate(&mddi->client_data, 1);
  641. if (mddi->caps.Mfr_Name == 0 && mddi->caps.Product_Code == 0)
  642. pdata->fixup(&mddi->caps.Mfr_Name, &mddi->caps.Product_Code);
  643. mddi->client_pdev.id = 0;
  644. for (i = 0; i < pdata->num_clients; i++) {
  645. if (pdata->client_platform_data[i].product_id ==
  646. (mddi->caps.Mfr_Name << 16 | mddi->caps.Product_Code)) {
  647. mddi->client_data.private_client_data =
  648. pdata->client_platform_data[i].client_data;
  649. mddi->client_pdev.name =
  650. pdata->client_platform_data[i].name;
  651. mddi->client_pdev.id =
  652. pdata->client_platform_data[i].id;
  653. /* XXX: possibly set clock */
  654. break;
  655. }
  656. }
  657. if (i >= pdata->num_clients)
  658. mddi->client_pdev.name = "mddi_c_dummy";
  659. printk(KERN_INFO "mddi: registering panel %s\n",
  660. mddi->client_pdev.name);
  661. mddi->client_data.suspend = mddi_suspend;
  662. mddi->client_data.resume = mddi_resume;
  663. mddi->client_data.activate_link = mddi_activate_link;
  664. mddi->client_data.remote_write = mddi_remote_write;
  665. mddi->client_data.remote_read = mddi_remote_read;
  666. mddi->client_data.auto_hibernate = mddi_set_auto_hibernate;
  667. mddi->client_data.fb_resource = pdata->fb_resource;
  668. if (pdev->id == 0)
  669. mddi->client_data.interface_type = MSM_MDDI_PMDH_INTERFACE;
  670. else if (pdev->id == 1)
  671. mddi->client_data.interface_type = MSM_MDDI_EMDH_INTERFACE;
  672. else {
  673. printk(KERN_ERR "mddi: can not determine interface %d!\n",
  674. pdev->id);
  675. ret = -EINVAL;
  676. goto error_mddi_interface;
  677. }
  678. mddi->client_pdev.dev.platform_data = &mddi->client_data;
  679. printk(KERN_INFO "mddi: publish: %s\n", mddi->client_name);
  680. platform_device_register(&mddi->client_pdev);
  681. return 0;
  682. error_mddi_interface:
  683. error_mddi_version:
  684. free_irq(mddi->irq, 0);
  685. error_request_irq:
  686. dma_free_coherent(NULL, 0x1000, mddi->rev_data, mddi->rev_addr);
  687. error_rev_data:
  688. error_clk_setup:
  689. error_get_irq_resource:
  690. iounmap(mddi->base);
  691. error_ioremap:
  692. printk(KERN_INFO "mddi: mddi_init() failed (%d)\n", ret);
  693. return ret;
  694. }
  695. static struct platform_driver mddi_driver = {
  696. .probe = mddi_probe,
  697. .driver = { .name = "msm_mddi" },
  698. };
  699. static int __init _mddi_init(void)
  700. {
  701. return platform_driver_register(&mddi_driver);
  702. }
  703. module_init(_mddi_init);