rt2x00queue.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187
  1. /*
  2. Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
  3. Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
  4. Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
  5. <http://rt2x00.serialmonkey.com>
  6. This program is free software; you can redistribute it and/or modify
  7. it under the terms of the GNU General Public License as published by
  8. the Free Software Foundation; either version 2 of the License, or
  9. (at your option) any later version.
  10. This program is distributed in the hope that it will be useful,
  11. but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. GNU General Public License for more details.
  14. You should have received a copy of the GNU General Public License
  15. along with this program; if not, write to the
  16. Free Software Foundation, Inc.,
  17. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  18. */
  19. /*
  20. Module: rt2x00lib
  21. Abstract: rt2x00 queue specific routines.
  22. */
  23. #include <linux/slab.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/dma-mapping.h>
  27. #include "rt2x00.h"
  28. #include "rt2x00lib.h"
  29. struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry)
  30. {
  31. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  32. struct sk_buff *skb;
  33. struct skb_frame_desc *skbdesc;
  34. unsigned int frame_size;
  35. unsigned int head_size = 0;
  36. unsigned int tail_size = 0;
  37. /*
  38. * The frame size includes descriptor size, because the
  39. * hardware directly receive the frame into the skbuffer.
  40. */
  41. frame_size = entry->queue->data_size + entry->queue->desc_size;
  42. /*
  43. * The payload should be aligned to a 4-byte boundary,
  44. * this means we need at least 3 bytes for moving the frame
  45. * into the correct offset.
  46. */
  47. head_size = 4;
  48. /*
  49. * For IV/EIV/ICV assembly we must make sure there is
  50. * at least 8 bytes bytes available in headroom for IV/EIV
  51. * and 8 bytes for ICV data as tailroon.
  52. */
  53. if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
  54. head_size += 8;
  55. tail_size += 8;
  56. }
  57. /*
  58. * Allocate skbuffer.
  59. */
  60. skb = dev_alloc_skb(frame_size + head_size + tail_size);
  61. if (!skb)
  62. return NULL;
  63. /*
  64. * Make sure we not have a frame with the requested bytes
  65. * available in the head and tail.
  66. */
  67. skb_reserve(skb, head_size);
  68. skb_put(skb, frame_size);
  69. /*
  70. * Populate skbdesc.
  71. */
  72. skbdesc = get_skb_frame_desc(skb);
  73. memset(skbdesc, 0, sizeof(*skbdesc));
  74. skbdesc->entry = entry;
  75. if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
  76. skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
  77. skb->data,
  78. skb->len,
  79. DMA_FROM_DEVICE);
  80. skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
  81. }
  82. return skb;
  83. }
  84. void rt2x00queue_map_txskb(struct queue_entry *entry)
  85. {
  86. struct device *dev = entry->queue->rt2x00dev->dev;
  87. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  88. skbdesc->skb_dma =
  89. dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
  90. skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
  91. }
  92. EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
  93. void rt2x00queue_unmap_skb(struct queue_entry *entry)
  94. {
  95. struct device *dev = entry->queue->rt2x00dev->dev;
  96. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  97. if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
  98. dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
  99. DMA_FROM_DEVICE);
  100. skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
  101. } else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
  102. dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
  103. DMA_TO_DEVICE);
  104. skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
  105. }
  106. }
  107. EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
  108. void rt2x00queue_free_skb(struct queue_entry *entry)
  109. {
  110. if (!entry->skb)
  111. return;
  112. rt2x00queue_unmap_skb(entry);
  113. dev_kfree_skb_any(entry->skb);
  114. entry->skb = NULL;
  115. }
  116. void rt2x00queue_align_frame(struct sk_buff *skb)
  117. {
  118. unsigned int frame_length = skb->len;
  119. unsigned int align = ALIGN_SIZE(skb, 0);
  120. if (!align)
  121. return;
  122. skb_push(skb, align);
  123. memmove(skb->data, skb->data + align, frame_length);
  124. skb_trim(skb, frame_length);
  125. }
  126. void rt2x00queue_align_payload(struct sk_buff *skb, unsigned int header_length)
  127. {
  128. unsigned int frame_length = skb->len;
  129. unsigned int align = ALIGN_SIZE(skb, header_length);
  130. if (!align)
  131. return;
  132. skb_push(skb, align);
  133. memmove(skb->data, skb->data + align, frame_length);
  134. skb_trim(skb, frame_length);
  135. }
  136. void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
  137. {
  138. unsigned int payload_length = skb->len - header_length;
  139. unsigned int header_align = ALIGN_SIZE(skb, 0);
  140. unsigned int payload_align = ALIGN_SIZE(skb, header_length);
  141. unsigned int l2pad = payload_length ? L2PAD_SIZE(header_length) : 0;
  142. /*
  143. * Adjust the header alignment if the payload needs to be moved more
  144. * than the header.
  145. */
  146. if (payload_align > header_align)
  147. header_align += 4;
  148. /* There is nothing to do if no alignment is needed */
  149. if (!header_align)
  150. return;
  151. /* Reserve the amount of space needed in front of the frame */
  152. skb_push(skb, header_align);
  153. /*
  154. * Move the header.
  155. */
  156. memmove(skb->data, skb->data + header_align, header_length);
  157. /* Move the payload, if present and if required */
  158. if (payload_length && payload_align)
  159. memmove(skb->data + header_length + l2pad,
  160. skb->data + header_length + l2pad + payload_align,
  161. payload_length);
  162. /* Trim the skb to the correct size */
  163. skb_trim(skb, header_length + l2pad + payload_length);
  164. }
  165. void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
  166. {
  167. /*
  168. * L2 padding is only present if the skb contains more than just the
  169. * IEEE 802.11 header.
  170. */
  171. unsigned int l2pad = (skb->len > header_length) ?
  172. L2PAD_SIZE(header_length) : 0;
  173. if (!l2pad)
  174. return;
  175. memmove(skb->data + l2pad, skb->data, header_length);
  176. skb_pull(skb, l2pad);
  177. }
  178. static void rt2x00queue_create_tx_descriptor_seq(struct queue_entry *entry,
  179. struct txentry_desc *txdesc)
  180. {
  181. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
  182. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
  183. struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
  184. unsigned long irqflags;
  185. if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
  186. return;
  187. __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
  188. if (!test_bit(DRIVER_REQUIRE_SW_SEQNO, &entry->queue->rt2x00dev->flags))
  189. return;
  190. /*
  191. * The hardware is not able to insert a sequence number. Assign a
  192. * software generated one here.
  193. *
  194. * This is wrong because beacons are not getting sequence
  195. * numbers assigned properly.
  196. *
  197. * A secondary problem exists for drivers that cannot toggle
  198. * sequence counting per-frame, since those will override the
  199. * sequence counter given by mac80211.
  200. */
  201. spin_lock_irqsave(&intf->seqlock, irqflags);
  202. if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
  203. intf->seqno += 0x10;
  204. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  205. hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
  206. spin_unlock_irqrestore(&intf->seqlock, irqflags);
  207. }
  208. static void rt2x00queue_create_tx_descriptor_plcp(struct queue_entry *entry,
  209. struct txentry_desc *txdesc,
  210. const struct rt2x00_rate *hwrate)
  211. {
  212. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  213. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
  214. struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
  215. unsigned int data_length;
  216. unsigned int duration;
  217. unsigned int residual;
  218. /*
  219. * Determine with what IFS priority this frame should be send.
  220. * Set ifs to IFS_SIFS when the this is not the first fragment,
  221. * or this fragment came after RTS/CTS.
  222. */
  223. if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
  224. txdesc->u.plcp.ifs = IFS_BACKOFF;
  225. else
  226. txdesc->u.plcp.ifs = IFS_SIFS;
  227. /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
  228. data_length = entry->skb->len + 4;
  229. data_length += rt2x00crypto_tx_overhead(rt2x00dev, entry->skb);
  230. /*
  231. * PLCP setup
  232. * Length calculation depends on OFDM/CCK rate.
  233. */
  234. txdesc->u.plcp.signal = hwrate->plcp;
  235. txdesc->u.plcp.service = 0x04;
  236. if (hwrate->flags & DEV_RATE_OFDM) {
  237. txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
  238. txdesc->u.plcp.length_low = data_length & 0x3f;
  239. } else {
  240. /*
  241. * Convert length to microseconds.
  242. */
  243. residual = GET_DURATION_RES(data_length, hwrate->bitrate);
  244. duration = GET_DURATION(data_length, hwrate->bitrate);
  245. if (residual != 0) {
  246. duration++;
  247. /*
  248. * Check if we need to set the Length Extension
  249. */
  250. if (hwrate->bitrate == 110 && residual <= 30)
  251. txdesc->u.plcp.service |= 0x80;
  252. }
  253. txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
  254. txdesc->u.plcp.length_low = duration & 0xff;
  255. /*
  256. * When preamble is enabled we should set the
  257. * preamble bit for the signal.
  258. */
  259. if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  260. txdesc->u.plcp.signal |= 0x08;
  261. }
  262. }
  263. static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
  264. struct txentry_desc *txdesc)
  265. {
  266. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  267. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
  268. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
  269. struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
  270. struct ieee80211_rate *rate;
  271. const struct rt2x00_rate *hwrate = NULL;
  272. memset(txdesc, 0, sizeof(*txdesc));
  273. /*
  274. * Header and frame information.
  275. */
  276. txdesc->length = entry->skb->len;
  277. txdesc->header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
  278. /*
  279. * Check whether this frame is to be acked.
  280. */
  281. if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
  282. __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
  283. /*
  284. * Check if this is a RTS/CTS frame
  285. */
  286. if (ieee80211_is_rts(hdr->frame_control) ||
  287. ieee80211_is_cts(hdr->frame_control)) {
  288. __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
  289. if (ieee80211_is_rts(hdr->frame_control))
  290. __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
  291. else
  292. __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
  293. if (tx_info->control.rts_cts_rate_idx >= 0)
  294. rate =
  295. ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
  296. }
  297. /*
  298. * Determine retry information.
  299. */
  300. txdesc->retry_limit = tx_info->control.rates[0].count - 1;
  301. if (txdesc->retry_limit >= rt2x00dev->long_retry)
  302. __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
  303. /*
  304. * Check if more fragments are pending
  305. */
  306. if (ieee80211_has_morefrags(hdr->frame_control)) {
  307. __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
  308. __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
  309. }
  310. /*
  311. * Check if more frames (!= fragments) are pending
  312. */
  313. if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
  314. __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
  315. /*
  316. * Beacons and probe responses require the tsf timestamp
  317. * to be inserted into the frame.
  318. */
  319. if (ieee80211_is_beacon(hdr->frame_control) ||
  320. ieee80211_is_probe_resp(hdr->frame_control))
  321. __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
  322. if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
  323. !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
  324. __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
  325. /*
  326. * Determine rate modulation.
  327. */
  328. if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
  329. txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
  330. else if (txrate->flags & IEEE80211_TX_RC_MCS)
  331. txdesc->rate_mode = RATE_MODE_HT_MIX;
  332. else {
  333. rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
  334. hwrate = rt2x00_get_rate(rate->hw_value);
  335. if (hwrate->flags & DEV_RATE_OFDM)
  336. txdesc->rate_mode = RATE_MODE_OFDM;
  337. else
  338. txdesc->rate_mode = RATE_MODE_CCK;
  339. }
  340. /*
  341. * Apply TX descriptor handling by components
  342. */
  343. rt2x00crypto_create_tx_descriptor(entry, txdesc);
  344. rt2x00queue_create_tx_descriptor_seq(entry, txdesc);
  345. if (test_bit(DRIVER_REQUIRE_HT_TX_DESC, &rt2x00dev->flags))
  346. rt2x00ht_create_tx_descriptor(entry, txdesc, hwrate);
  347. else
  348. rt2x00queue_create_tx_descriptor_plcp(entry, txdesc, hwrate);
  349. }
  350. static int rt2x00queue_write_tx_data(struct queue_entry *entry,
  351. struct txentry_desc *txdesc)
  352. {
  353. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  354. /*
  355. * This should not happen, we already checked the entry
  356. * was ours. When the hardware disagrees there has been
  357. * a queue corruption!
  358. */
  359. if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
  360. rt2x00dev->ops->lib->get_entry_state(entry))) {
  361. ERROR(rt2x00dev,
  362. "Corrupt queue %d, accessing entry which is not ours.\n"
  363. "Please file bug report to %s.\n",
  364. entry->queue->qid, DRV_PROJECT);
  365. return -EINVAL;
  366. }
  367. /*
  368. * Add the requested extra tx headroom in front of the skb.
  369. */
  370. skb_push(entry->skb, rt2x00dev->ops->extra_tx_headroom);
  371. memset(entry->skb->data, 0, rt2x00dev->ops->extra_tx_headroom);
  372. /*
  373. * Call the driver's write_tx_data function, if it exists.
  374. */
  375. if (rt2x00dev->ops->lib->write_tx_data)
  376. rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
  377. /*
  378. * Map the skb to DMA.
  379. */
  380. if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags))
  381. rt2x00queue_map_txskb(entry);
  382. return 0;
  383. }
  384. static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
  385. struct txentry_desc *txdesc)
  386. {
  387. struct data_queue *queue = entry->queue;
  388. queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
  389. /*
  390. * All processing on the frame has been completed, this means
  391. * it is now ready to be dumped to userspace through debugfs.
  392. */
  393. rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry->skb);
  394. }
  395. static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
  396. struct txentry_desc *txdesc)
  397. {
  398. /*
  399. * Check if we need to kick the queue, there are however a few rules
  400. * 1) Don't kick unless this is the last in frame in a burst.
  401. * When the burst flag is set, this frame is always followed
  402. * by another frame which in some way are related to eachother.
  403. * This is true for fragments, RTS or CTS-to-self frames.
  404. * 2) Rule 1 can be broken when the available entries
  405. * in the queue are less then a certain threshold.
  406. */
  407. if (rt2x00queue_threshold(queue) ||
  408. !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
  409. queue->rt2x00dev->ops->lib->kick_queue(queue);
  410. }
  411. int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
  412. bool local)
  413. {
  414. struct ieee80211_tx_info *tx_info;
  415. struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
  416. struct txentry_desc txdesc;
  417. struct skb_frame_desc *skbdesc;
  418. u8 rate_idx, rate_flags;
  419. if (unlikely(rt2x00queue_full(queue)))
  420. return -ENOBUFS;
  421. if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
  422. &entry->flags))) {
  423. ERROR(queue->rt2x00dev,
  424. "Arrived at non-free entry in the non-full queue %d.\n"
  425. "Please file bug report to %s.\n",
  426. queue->qid, DRV_PROJECT);
  427. return -EINVAL;
  428. }
  429. /*
  430. * Copy all TX descriptor information into txdesc,
  431. * after that we are free to use the skb->cb array
  432. * for our information.
  433. */
  434. entry->skb = skb;
  435. rt2x00queue_create_tx_descriptor(entry, &txdesc);
  436. /*
  437. * All information is retrieved from the skb->cb array,
  438. * now we should claim ownership of the driver part of that
  439. * array, preserving the bitrate index and flags.
  440. */
  441. tx_info = IEEE80211_SKB_CB(skb);
  442. rate_idx = tx_info->control.rates[0].idx;
  443. rate_flags = tx_info->control.rates[0].flags;
  444. skbdesc = get_skb_frame_desc(skb);
  445. memset(skbdesc, 0, sizeof(*skbdesc));
  446. skbdesc->entry = entry;
  447. skbdesc->tx_rate_idx = rate_idx;
  448. skbdesc->tx_rate_flags = rate_flags;
  449. if (local)
  450. skbdesc->flags |= SKBDESC_NOT_MAC80211;
  451. /*
  452. * When hardware encryption is supported, and this frame
  453. * is to be encrypted, we should strip the IV/EIV data from
  454. * the frame so we can provide it to the driver separately.
  455. */
  456. if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
  457. !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
  458. if (test_bit(DRIVER_REQUIRE_COPY_IV, &queue->rt2x00dev->flags))
  459. rt2x00crypto_tx_copy_iv(skb, &txdesc);
  460. else
  461. rt2x00crypto_tx_remove_iv(skb, &txdesc);
  462. }
  463. /*
  464. * When DMA allocation is required we should guarentee to the
  465. * driver that the DMA is aligned to a 4-byte boundary.
  466. * However some drivers require L2 padding to pad the payload
  467. * rather then the header. This could be a requirement for
  468. * PCI and USB devices, while header alignment only is valid
  469. * for PCI devices.
  470. */
  471. if (test_bit(DRIVER_REQUIRE_L2PAD, &queue->rt2x00dev->flags))
  472. rt2x00queue_insert_l2pad(entry->skb, txdesc.header_length);
  473. else if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
  474. rt2x00queue_align_frame(entry->skb);
  475. /*
  476. * It could be possible that the queue was corrupted and this
  477. * call failed. Since we always return NETDEV_TX_OK to mac80211,
  478. * this frame will simply be dropped.
  479. */
  480. if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
  481. clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
  482. entry->skb = NULL;
  483. return -EIO;
  484. }
  485. set_bit(ENTRY_DATA_PENDING, &entry->flags);
  486. rt2x00queue_index_inc(queue, Q_INDEX);
  487. rt2x00queue_write_tx_descriptor(entry, &txdesc);
  488. rt2x00queue_kick_tx_queue(queue, &txdesc);
  489. return 0;
  490. }
  491. int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
  492. struct ieee80211_vif *vif)
  493. {
  494. struct rt2x00_intf *intf = vif_to_intf(vif);
  495. if (unlikely(!intf->beacon))
  496. return -ENOBUFS;
  497. mutex_lock(&intf->beacon_skb_mutex);
  498. /*
  499. * Clean up the beacon skb.
  500. */
  501. rt2x00queue_free_skb(intf->beacon);
  502. /*
  503. * Clear beacon (single bssid devices don't need to clear the beacon
  504. * since the beacon queue will get stopped anyway).
  505. */
  506. if (rt2x00dev->ops->lib->clear_beacon)
  507. rt2x00dev->ops->lib->clear_beacon(intf->beacon);
  508. mutex_unlock(&intf->beacon_skb_mutex);
  509. return 0;
  510. }
  511. int rt2x00queue_update_beacon_locked(struct rt2x00_dev *rt2x00dev,
  512. struct ieee80211_vif *vif)
  513. {
  514. struct rt2x00_intf *intf = vif_to_intf(vif);
  515. struct skb_frame_desc *skbdesc;
  516. struct txentry_desc txdesc;
  517. if (unlikely(!intf->beacon))
  518. return -ENOBUFS;
  519. /*
  520. * Clean up the beacon skb.
  521. */
  522. rt2x00queue_free_skb(intf->beacon);
  523. intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
  524. if (!intf->beacon->skb)
  525. return -ENOMEM;
  526. /*
  527. * Copy all TX descriptor information into txdesc,
  528. * after that we are free to use the skb->cb array
  529. * for our information.
  530. */
  531. rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
  532. /*
  533. * Fill in skb descriptor
  534. */
  535. skbdesc = get_skb_frame_desc(intf->beacon->skb);
  536. memset(skbdesc, 0, sizeof(*skbdesc));
  537. skbdesc->entry = intf->beacon;
  538. /*
  539. * Send beacon to hardware.
  540. */
  541. rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
  542. return 0;
  543. }
  544. int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
  545. struct ieee80211_vif *vif)
  546. {
  547. struct rt2x00_intf *intf = vif_to_intf(vif);
  548. int ret;
  549. mutex_lock(&intf->beacon_skb_mutex);
  550. ret = rt2x00queue_update_beacon_locked(rt2x00dev, vif);
  551. mutex_unlock(&intf->beacon_skb_mutex);
  552. return ret;
  553. }
  554. void rt2x00queue_for_each_entry(struct data_queue *queue,
  555. enum queue_index start,
  556. enum queue_index end,
  557. void (*fn)(struct queue_entry *entry))
  558. {
  559. unsigned long irqflags;
  560. unsigned int index_start;
  561. unsigned int index_end;
  562. unsigned int i;
  563. if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
  564. ERROR(queue->rt2x00dev,
  565. "Entry requested from invalid index range (%d - %d)\n",
  566. start, end);
  567. return;
  568. }
  569. /*
  570. * Only protect the range we are going to loop over,
  571. * if during our loop a extra entry is set to pending
  572. * it should not be kicked during this run, since it
  573. * is part of another TX operation.
  574. */
  575. spin_lock_irqsave(&queue->index_lock, irqflags);
  576. index_start = queue->index[start];
  577. index_end = queue->index[end];
  578. spin_unlock_irqrestore(&queue->index_lock, irqflags);
  579. /*
  580. * Start from the TX done pointer, this guarentees that we will
  581. * send out all frames in the correct order.
  582. */
  583. if (index_start < index_end) {
  584. for (i = index_start; i < index_end; i++)
  585. fn(&queue->entries[i]);
  586. } else {
  587. for (i = index_start; i < queue->limit; i++)
  588. fn(&queue->entries[i]);
  589. for (i = 0; i < index_end; i++)
  590. fn(&queue->entries[i]);
  591. }
  592. }
  593. EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
  594. struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
  595. enum queue_index index)
  596. {
  597. struct queue_entry *entry;
  598. unsigned long irqflags;
  599. if (unlikely(index >= Q_INDEX_MAX)) {
  600. ERROR(queue->rt2x00dev,
  601. "Entry requested from invalid index type (%d)\n", index);
  602. return NULL;
  603. }
  604. spin_lock_irqsave(&queue->index_lock, irqflags);
  605. entry = &queue->entries[queue->index[index]];
  606. spin_unlock_irqrestore(&queue->index_lock, irqflags);
  607. return entry;
  608. }
  609. EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
  610. void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
  611. {
  612. unsigned long irqflags;
  613. if (unlikely(index >= Q_INDEX_MAX)) {
  614. ERROR(queue->rt2x00dev,
  615. "Index change on invalid index type (%d)\n", index);
  616. return;
  617. }
  618. spin_lock_irqsave(&queue->index_lock, irqflags);
  619. queue->index[index]++;
  620. if (queue->index[index] >= queue->limit)
  621. queue->index[index] = 0;
  622. queue->last_action[index] = jiffies;
  623. if (index == Q_INDEX) {
  624. queue->length++;
  625. } else if (index == Q_INDEX_DONE) {
  626. queue->length--;
  627. queue->count++;
  628. }
  629. spin_unlock_irqrestore(&queue->index_lock, irqflags);
  630. }
  631. void rt2x00queue_pause_queue(struct data_queue *queue)
  632. {
  633. if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
  634. !test_bit(QUEUE_STARTED, &queue->flags) ||
  635. test_and_set_bit(QUEUE_PAUSED, &queue->flags))
  636. return;
  637. switch (queue->qid) {
  638. case QID_AC_VO:
  639. case QID_AC_VI:
  640. case QID_AC_BE:
  641. case QID_AC_BK:
  642. /*
  643. * For TX queues, we have to disable the queue
  644. * inside mac80211.
  645. */
  646. ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
  647. break;
  648. default:
  649. break;
  650. }
  651. }
  652. EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
  653. void rt2x00queue_unpause_queue(struct data_queue *queue)
  654. {
  655. if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
  656. !test_bit(QUEUE_STARTED, &queue->flags) ||
  657. !test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
  658. return;
  659. switch (queue->qid) {
  660. case QID_AC_VO:
  661. case QID_AC_VI:
  662. case QID_AC_BE:
  663. case QID_AC_BK:
  664. /*
  665. * For TX queues, we have to enable the queue
  666. * inside mac80211.
  667. */
  668. ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
  669. break;
  670. case QID_RX:
  671. /*
  672. * For RX we need to kick the queue now in order to
  673. * receive frames.
  674. */
  675. queue->rt2x00dev->ops->lib->kick_queue(queue);
  676. default:
  677. break;
  678. }
  679. }
  680. EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
  681. void rt2x00queue_start_queue(struct data_queue *queue)
  682. {
  683. mutex_lock(&queue->status_lock);
  684. if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
  685. test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
  686. mutex_unlock(&queue->status_lock);
  687. return;
  688. }
  689. set_bit(QUEUE_PAUSED, &queue->flags);
  690. queue->rt2x00dev->ops->lib->start_queue(queue);
  691. rt2x00queue_unpause_queue(queue);
  692. mutex_unlock(&queue->status_lock);
  693. }
  694. EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
  695. void rt2x00queue_stop_queue(struct data_queue *queue)
  696. {
  697. mutex_lock(&queue->status_lock);
  698. if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
  699. mutex_unlock(&queue->status_lock);
  700. return;
  701. }
  702. rt2x00queue_pause_queue(queue);
  703. queue->rt2x00dev->ops->lib->stop_queue(queue);
  704. mutex_unlock(&queue->status_lock);
  705. }
  706. EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
  707. void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
  708. {
  709. unsigned int i;
  710. bool started;
  711. bool tx_queue =
  712. (queue->qid == QID_AC_VO) ||
  713. (queue->qid == QID_AC_VI) ||
  714. (queue->qid == QID_AC_BE) ||
  715. (queue->qid == QID_AC_BK);
  716. mutex_lock(&queue->status_lock);
  717. /*
  718. * If the queue has been started, we must stop it temporarily
  719. * to prevent any new frames to be queued on the device. If
  720. * we are not dropping the pending frames, the queue must
  721. * only be stopped in the software and not the hardware,
  722. * otherwise the queue will never become empty on its own.
  723. */
  724. started = test_bit(QUEUE_STARTED, &queue->flags);
  725. if (started) {
  726. /*
  727. * Pause the queue
  728. */
  729. rt2x00queue_pause_queue(queue);
  730. /*
  731. * If we are not supposed to drop any pending
  732. * frames, this means we must force a start (=kick)
  733. * to the queue to make sure the hardware will
  734. * start transmitting.
  735. */
  736. if (!drop && tx_queue)
  737. queue->rt2x00dev->ops->lib->kick_queue(queue);
  738. }
  739. /*
  740. * Check if driver supports flushing, we can only guarentee
  741. * full support for flushing if the driver is able
  742. * to cancel all pending frames (drop = true).
  743. */
  744. if (drop && queue->rt2x00dev->ops->lib->flush_queue)
  745. queue->rt2x00dev->ops->lib->flush_queue(queue);
  746. /*
  747. * When we don't want to drop any frames, or when
  748. * the driver doesn't fully flush the queue correcly,
  749. * we must wait for the queue to become empty.
  750. */
  751. for (i = 0; !rt2x00queue_empty(queue) && i < 100; i++)
  752. msleep(10);
  753. /*
  754. * The queue flush has failed...
  755. */
  756. if (unlikely(!rt2x00queue_empty(queue)))
  757. WARNING(queue->rt2x00dev, "Queue %d failed to flush\n", queue->qid);
  758. /*
  759. * Restore the queue to the previous status
  760. */
  761. if (started)
  762. rt2x00queue_unpause_queue(queue);
  763. mutex_unlock(&queue->status_lock);
  764. }
  765. EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
  766. void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
  767. {
  768. struct data_queue *queue;
  769. /*
  770. * rt2x00queue_start_queue will call ieee80211_wake_queue
  771. * for each queue after is has been properly initialized.
  772. */
  773. tx_queue_for_each(rt2x00dev, queue)
  774. rt2x00queue_start_queue(queue);
  775. rt2x00queue_start_queue(rt2x00dev->rx);
  776. }
  777. EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
  778. void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
  779. {
  780. struct data_queue *queue;
  781. /*
  782. * rt2x00queue_stop_queue will call ieee80211_stop_queue
  783. * as well, but we are completely shutting doing everything
  784. * now, so it is much safer to stop all TX queues at once,
  785. * and use rt2x00queue_stop_queue for cleaning up.
  786. */
  787. ieee80211_stop_queues(rt2x00dev->hw);
  788. tx_queue_for_each(rt2x00dev, queue)
  789. rt2x00queue_stop_queue(queue);
  790. rt2x00queue_stop_queue(rt2x00dev->rx);
  791. }
  792. EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
  793. void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
  794. {
  795. struct data_queue *queue;
  796. tx_queue_for_each(rt2x00dev, queue)
  797. rt2x00queue_flush_queue(queue, drop);
  798. rt2x00queue_flush_queue(rt2x00dev->rx, drop);
  799. }
  800. EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
  801. static void rt2x00queue_reset(struct data_queue *queue)
  802. {
  803. unsigned long irqflags;
  804. unsigned int i;
  805. spin_lock_irqsave(&queue->index_lock, irqflags);
  806. queue->count = 0;
  807. queue->length = 0;
  808. for (i = 0; i < Q_INDEX_MAX; i++) {
  809. queue->index[i] = 0;
  810. queue->last_action[i] = jiffies;
  811. }
  812. spin_unlock_irqrestore(&queue->index_lock, irqflags);
  813. }
  814. void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
  815. {
  816. struct data_queue *queue;
  817. unsigned int i;
  818. queue_for_each(rt2x00dev, queue) {
  819. rt2x00queue_reset(queue);
  820. for (i = 0; i < queue->limit; i++)
  821. rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
  822. }
  823. }
  824. static int rt2x00queue_alloc_entries(struct data_queue *queue,
  825. const struct data_queue_desc *qdesc)
  826. {
  827. struct queue_entry *entries;
  828. unsigned int entry_size;
  829. unsigned int i;
  830. rt2x00queue_reset(queue);
  831. queue->limit = qdesc->entry_num;
  832. queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
  833. queue->data_size = qdesc->data_size;
  834. queue->desc_size = qdesc->desc_size;
  835. /*
  836. * Allocate all queue entries.
  837. */
  838. entry_size = sizeof(*entries) + qdesc->priv_size;
  839. entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
  840. if (!entries)
  841. return -ENOMEM;
  842. #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
  843. (((char *)(__base)) + ((__limit) * (__esize)) + \
  844. ((__index) * (__psize)))
  845. for (i = 0; i < queue->limit; i++) {
  846. entries[i].flags = 0;
  847. entries[i].queue = queue;
  848. entries[i].skb = NULL;
  849. entries[i].entry_idx = i;
  850. entries[i].priv_data =
  851. QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
  852. sizeof(*entries), qdesc->priv_size);
  853. }
  854. #undef QUEUE_ENTRY_PRIV_OFFSET
  855. queue->entries = entries;
  856. return 0;
  857. }
  858. static void rt2x00queue_free_skbs(struct data_queue *queue)
  859. {
  860. unsigned int i;
  861. if (!queue->entries)
  862. return;
  863. for (i = 0; i < queue->limit; i++) {
  864. rt2x00queue_free_skb(&queue->entries[i]);
  865. }
  866. }
  867. static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
  868. {
  869. unsigned int i;
  870. struct sk_buff *skb;
  871. for (i = 0; i < queue->limit; i++) {
  872. skb = rt2x00queue_alloc_rxskb(&queue->entries[i]);
  873. if (!skb)
  874. return -ENOMEM;
  875. queue->entries[i].skb = skb;
  876. }
  877. return 0;
  878. }
  879. int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
  880. {
  881. struct data_queue *queue;
  882. int status;
  883. status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
  884. if (status)
  885. goto exit;
  886. tx_queue_for_each(rt2x00dev, queue) {
  887. status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
  888. if (status)
  889. goto exit;
  890. }
  891. status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
  892. if (status)
  893. goto exit;
  894. if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
  895. status = rt2x00queue_alloc_entries(rt2x00dev->atim,
  896. rt2x00dev->ops->atim);
  897. if (status)
  898. goto exit;
  899. }
  900. status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
  901. if (status)
  902. goto exit;
  903. return 0;
  904. exit:
  905. ERROR(rt2x00dev, "Queue entries allocation failed.\n");
  906. rt2x00queue_uninitialize(rt2x00dev);
  907. return status;
  908. }
  909. void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
  910. {
  911. struct data_queue *queue;
  912. rt2x00queue_free_skbs(rt2x00dev->rx);
  913. queue_for_each(rt2x00dev, queue) {
  914. kfree(queue->entries);
  915. queue->entries = NULL;
  916. }
  917. }
  918. static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
  919. struct data_queue *queue, enum data_queue_qid qid)
  920. {
  921. mutex_init(&queue->status_lock);
  922. spin_lock_init(&queue->index_lock);
  923. queue->rt2x00dev = rt2x00dev;
  924. queue->qid = qid;
  925. queue->txop = 0;
  926. queue->aifs = 2;
  927. queue->cw_min = 5;
  928. queue->cw_max = 10;
  929. }
  930. int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
  931. {
  932. struct data_queue *queue;
  933. enum data_queue_qid qid;
  934. unsigned int req_atim =
  935. !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  936. /*
  937. * We need the following queues:
  938. * RX: 1
  939. * TX: ops->tx_queues
  940. * Beacon: 1
  941. * Atim: 1 (if required)
  942. */
  943. rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
  944. queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
  945. if (!queue) {
  946. ERROR(rt2x00dev, "Queue allocation failed.\n");
  947. return -ENOMEM;
  948. }
  949. /*
  950. * Initialize pointers
  951. */
  952. rt2x00dev->rx = queue;
  953. rt2x00dev->tx = &queue[1];
  954. rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
  955. rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
  956. /*
  957. * Initialize queue parameters.
  958. * RX: qid = QID_RX
  959. * TX: qid = QID_AC_VO + index
  960. * TX: cw_min: 2^5 = 32.
  961. * TX: cw_max: 2^10 = 1024.
  962. * BCN: qid = QID_BEACON
  963. * ATIM: qid = QID_ATIM
  964. */
  965. rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
  966. qid = QID_AC_VO;
  967. tx_queue_for_each(rt2x00dev, queue)
  968. rt2x00queue_init(rt2x00dev, queue, qid++);
  969. rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
  970. if (req_atim)
  971. rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
  972. return 0;
  973. }
  974. void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
  975. {
  976. kfree(rt2x00dev->rx);
  977. rt2x00dev->rx = NULL;
  978. rt2x00dev->tx = NULL;
  979. rt2x00dev->bcn = NULL;
  980. }