xmit.c 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "ath9k.h"
  17. #include "ar9003_mac.h"
  18. #define BITS_PER_BYTE 8
  19. #define OFDM_PLCP_BITS 22
  20. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  21. #define L_STF 8
  22. #define L_LTF 8
  23. #define L_SIG 4
  24. #define HT_SIG 8
  25. #define HT_STF 4
  26. #define HT_LTF(_ns) (4 * (_ns))
  27. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  28. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  29. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  30. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  31. static u16 bits_per_symbol[][2] = {
  32. /* 20MHz 40MHz */
  33. { 26, 54 }, /* 0: BPSK */
  34. { 52, 108 }, /* 1: QPSK 1/2 */
  35. { 78, 162 }, /* 2: QPSK 3/4 */
  36. { 104, 216 }, /* 3: 16-QAM 1/2 */
  37. { 156, 324 }, /* 4: 16-QAM 3/4 */
  38. { 208, 432 }, /* 5: 64-QAM 2/3 */
  39. { 234, 486 }, /* 6: 64-QAM 3/4 */
  40. { 260, 540 }, /* 7: 64-QAM 5/6 */
  41. };
  42. #define IS_HT_RATE(_rate) ((_rate) & 0x80)
  43. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  44. struct ath_atx_tid *tid,
  45. struct list_head *bf_head);
  46. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  47. struct ath_txq *txq, struct list_head *bf_q,
  48. struct ath_tx_status *ts, int txok, int sendbar);
  49. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  50. struct list_head *head);
  51. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf, int len);
  52. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  53. struct ath_tx_status *ts, int nframes, int nbad,
  54. int txok, bool update_rc);
  55. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  56. int seqno);
  57. enum {
  58. MCS_HT20,
  59. MCS_HT20_SGI,
  60. MCS_HT40,
  61. MCS_HT40_SGI,
  62. };
  63. static int ath_max_4ms_framelen[4][32] = {
  64. [MCS_HT20] = {
  65. 3212, 6432, 9648, 12864, 19300, 25736, 28952, 32172,
  66. 6424, 12852, 19280, 25708, 38568, 51424, 57852, 64280,
  67. 9628, 19260, 28896, 38528, 57792, 65532, 65532, 65532,
  68. 12828, 25656, 38488, 51320, 65532, 65532, 65532, 65532,
  69. },
  70. [MCS_HT20_SGI] = {
  71. 3572, 7144, 10720, 14296, 21444, 28596, 32172, 35744,
  72. 7140, 14284, 21428, 28568, 42856, 57144, 64288, 65532,
  73. 10700, 21408, 32112, 42816, 64228, 65532, 65532, 65532,
  74. 14256, 28516, 42780, 57040, 65532, 65532, 65532, 65532,
  75. },
  76. [MCS_HT40] = {
  77. 6680, 13360, 20044, 26724, 40092, 53456, 60140, 65532,
  78. 13348, 26700, 40052, 53400, 65532, 65532, 65532, 65532,
  79. 20004, 40008, 60016, 65532, 65532, 65532, 65532, 65532,
  80. 26644, 53292, 65532, 65532, 65532, 65532, 65532, 65532,
  81. },
  82. [MCS_HT40_SGI] = {
  83. 7420, 14844, 22272, 29696, 44544, 59396, 65532, 65532,
  84. 14832, 29668, 44504, 59340, 65532, 65532, 65532, 65532,
  85. 22232, 44464, 65532, 65532, 65532, 65532, 65532, 65532,
  86. 29616, 59232, 65532, 65532, 65532, 65532, 65532, 65532,
  87. }
  88. };
  89. /*********************/
  90. /* Aggregation logic */
  91. /*********************/
  92. static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
  93. {
  94. struct ath_atx_ac *ac = tid->ac;
  95. if (tid->paused)
  96. return;
  97. if (tid->sched)
  98. return;
  99. tid->sched = true;
  100. list_add_tail(&tid->list, &ac->tid_q);
  101. if (ac->sched)
  102. return;
  103. ac->sched = true;
  104. list_add_tail(&ac->list, &txq->axq_acq);
  105. }
  106. static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  107. {
  108. struct ath_txq *txq = tid->ac->txq;
  109. WARN_ON(!tid->paused);
  110. spin_lock_bh(&txq->axq_lock);
  111. tid->paused = false;
  112. if (list_empty(&tid->buf_q))
  113. goto unlock;
  114. ath_tx_queue_tid(txq, tid);
  115. ath_txq_schedule(sc, txq);
  116. unlock:
  117. spin_unlock_bh(&txq->axq_lock);
  118. }
  119. static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
  120. {
  121. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  122. BUILD_BUG_ON(sizeof(struct ath_frame_info) >
  123. sizeof(tx_info->rate_driver_data));
  124. return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
  125. }
  126. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  127. {
  128. struct ath_txq *txq = tid->ac->txq;
  129. struct ath_buf *bf;
  130. struct list_head bf_head;
  131. struct ath_tx_status ts;
  132. struct ath_frame_info *fi;
  133. INIT_LIST_HEAD(&bf_head);
  134. memset(&ts, 0, sizeof(ts));
  135. spin_lock_bh(&txq->axq_lock);
  136. while (!list_empty(&tid->buf_q)) {
  137. bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
  138. list_move_tail(&bf->list, &bf_head);
  139. spin_unlock_bh(&txq->axq_lock);
  140. fi = get_frame_info(bf->bf_mpdu);
  141. if (fi->retries) {
  142. ath_tx_update_baw(sc, tid, fi->seqno);
  143. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 1);
  144. } else {
  145. ath_tx_send_normal(sc, txq, NULL, &bf_head);
  146. }
  147. spin_lock_bh(&txq->axq_lock);
  148. }
  149. spin_unlock_bh(&txq->axq_lock);
  150. }
  151. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  152. int seqno)
  153. {
  154. int index, cindex;
  155. index = ATH_BA_INDEX(tid->seq_start, seqno);
  156. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  157. __clear_bit(cindex, tid->tx_buf);
  158. while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
  159. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  160. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  161. }
  162. }
  163. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  164. u16 seqno)
  165. {
  166. int index, cindex;
  167. index = ATH_BA_INDEX(tid->seq_start, seqno);
  168. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  169. __set_bit(cindex, tid->tx_buf);
  170. if (index >= ((tid->baw_tail - tid->baw_head) &
  171. (ATH_TID_MAX_BUFS - 1))) {
  172. tid->baw_tail = cindex;
  173. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  174. }
  175. }
  176. /*
  177. * TODO: For frame(s) that are in the retry state, we will reuse the
  178. * sequence number(s) without setting the retry bit. The
  179. * alternative is to give up on these and BAR the receiver's window
  180. * forward.
  181. */
  182. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  183. struct ath_atx_tid *tid)
  184. {
  185. struct ath_buf *bf;
  186. struct list_head bf_head;
  187. struct ath_tx_status ts;
  188. struct ath_frame_info *fi;
  189. memset(&ts, 0, sizeof(ts));
  190. INIT_LIST_HEAD(&bf_head);
  191. for (;;) {
  192. if (list_empty(&tid->buf_q))
  193. break;
  194. bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
  195. list_move_tail(&bf->list, &bf_head);
  196. fi = get_frame_info(bf->bf_mpdu);
  197. if (fi->retries)
  198. ath_tx_update_baw(sc, tid, fi->seqno);
  199. spin_unlock(&txq->axq_lock);
  200. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
  201. spin_lock(&txq->axq_lock);
  202. }
  203. tid->seq_next = tid->seq_start;
  204. tid->baw_tail = tid->baw_head;
  205. }
  206. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  207. struct sk_buff *skb)
  208. {
  209. struct ath_frame_info *fi = get_frame_info(skb);
  210. struct ieee80211_hdr *hdr;
  211. TX_STAT_INC(txq->axq_qnum, a_retries);
  212. if (fi->retries++ > 0)
  213. return;
  214. hdr = (struct ieee80211_hdr *)skb->data;
  215. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  216. }
  217. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  218. {
  219. struct ath_buf *bf = NULL;
  220. spin_lock_bh(&sc->tx.txbuflock);
  221. if (unlikely(list_empty(&sc->tx.txbuf))) {
  222. spin_unlock_bh(&sc->tx.txbuflock);
  223. return NULL;
  224. }
  225. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  226. list_del(&bf->list);
  227. spin_unlock_bh(&sc->tx.txbuflock);
  228. return bf;
  229. }
  230. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  231. {
  232. spin_lock_bh(&sc->tx.txbuflock);
  233. list_add_tail(&bf->list, &sc->tx.txbuf);
  234. spin_unlock_bh(&sc->tx.txbuflock);
  235. }
  236. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  237. {
  238. struct ath_buf *tbf;
  239. tbf = ath_tx_get_buffer(sc);
  240. if (WARN_ON(!tbf))
  241. return NULL;
  242. ATH_TXBUF_RESET(tbf);
  243. tbf->bf_mpdu = bf->bf_mpdu;
  244. tbf->bf_buf_addr = bf->bf_buf_addr;
  245. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  246. tbf->bf_state = bf->bf_state;
  247. return tbf;
  248. }
  249. static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
  250. struct ath_tx_status *ts, int txok,
  251. int *nframes, int *nbad)
  252. {
  253. struct ath_frame_info *fi;
  254. u16 seq_st = 0;
  255. u32 ba[WME_BA_BMP_SIZE >> 5];
  256. int ba_index;
  257. int isaggr = 0;
  258. *nbad = 0;
  259. *nframes = 0;
  260. isaggr = bf_isaggr(bf);
  261. if (isaggr) {
  262. seq_st = ts->ts_seqnum;
  263. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  264. }
  265. while (bf) {
  266. fi = get_frame_info(bf->bf_mpdu);
  267. ba_index = ATH_BA_INDEX(seq_st, fi->seqno);
  268. (*nframes)++;
  269. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  270. (*nbad)++;
  271. bf = bf->bf_next;
  272. }
  273. }
  274. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  275. struct ath_buf *bf, struct list_head *bf_q,
  276. struct ath_tx_status *ts, int txok, bool retry)
  277. {
  278. struct ath_node *an = NULL;
  279. struct sk_buff *skb;
  280. struct ieee80211_sta *sta;
  281. struct ieee80211_hw *hw = sc->hw;
  282. struct ieee80211_hdr *hdr;
  283. struct ieee80211_tx_info *tx_info;
  284. struct ath_atx_tid *tid = NULL;
  285. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  286. struct list_head bf_head, bf_pending;
  287. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0;
  288. u32 ba[WME_BA_BMP_SIZE >> 5];
  289. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  290. bool rc_update = true;
  291. struct ieee80211_tx_rate rates[4];
  292. struct ath_frame_info *fi;
  293. int nframes;
  294. u8 tidno;
  295. skb = bf->bf_mpdu;
  296. hdr = (struct ieee80211_hdr *)skb->data;
  297. tx_info = IEEE80211_SKB_CB(skb);
  298. memcpy(rates, tx_info->control.rates, sizeof(rates));
  299. rcu_read_lock();
  300. sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
  301. if (!sta) {
  302. rcu_read_unlock();
  303. INIT_LIST_HEAD(&bf_head);
  304. while (bf) {
  305. bf_next = bf->bf_next;
  306. bf->bf_state.bf_type |= BUF_XRETRY;
  307. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) ||
  308. !bf->bf_stale || bf_next != NULL)
  309. list_move_tail(&bf->list, &bf_head);
  310. ath_tx_rc_status(sc, bf, ts, 1, 1, 0, false);
  311. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  312. 0, 0);
  313. bf = bf_next;
  314. }
  315. return;
  316. }
  317. an = (struct ath_node *)sta->drv_priv;
  318. tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
  319. tid = ATH_AN_2_TID(an, tidno);
  320. /*
  321. * The hardware occasionally sends a tx status for the wrong TID.
  322. * In this case, the BA status cannot be considered valid and all
  323. * subframes need to be retransmitted
  324. */
  325. if (tidno != ts->tid)
  326. txok = false;
  327. isaggr = bf_isaggr(bf);
  328. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  329. if (isaggr && txok) {
  330. if (ts->ts_flags & ATH9K_TX_BA) {
  331. seq_st = ts->ts_seqnum;
  332. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  333. } else {
  334. /*
  335. * AR5416 can become deaf/mute when BA
  336. * issue happens. Chip needs to be reset.
  337. * But AP code may have sychronization issues
  338. * when perform internal reset in this routine.
  339. * Only enable reset in STA mode for now.
  340. */
  341. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  342. needreset = 1;
  343. }
  344. }
  345. INIT_LIST_HEAD(&bf_pending);
  346. INIT_LIST_HEAD(&bf_head);
  347. ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
  348. while (bf) {
  349. txfail = txpending = sendbar = 0;
  350. bf_next = bf->bf_next;
  351. skb = bf->bf_mpdu;
  352. tx_info = IEEE80211_SKB_CB(skb);
  353. fi = get_frame_info(skb);
  354. if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, fi->seqno))) {
  355. /* transmit completion, subframe is
  356. * acked by block ack */
  357. acked_cnt++;
  358. } else if (!isaggr && txok) {
  359. /* transmit completion */
  360. acked_cnt++;
  361. } else {
  362. if (!(tid->state & AGGR_CLEANUP) && retry) {
  363. if (fi->retries < ATH_MAX_SW_RETRIES) {
  364. ath_tx_set_retry(sc, txq, bf->bf_mpdu);
  365. txpending = 1;
  366. } else {
  367. bf->bf_state.bf_type |= BUF_XRETRY;
  368. txfail = 1;
  369. sendbar = 1;
  370. txfail_cnt++;
  371. }
  372. } else {
  373. /*
  374. * cleanup in progress, just fail
  375. * the un-acked sub-frames
  376. */
  377. txfail = 1;
  378. }
  379. }
  380. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
  381. bf_next == NULL) {
  382. /*
  383. * Make sure the last desc is reclaimed if it
  384. * not a holding desc.
  385. */
  386. if (!bf_last->bf_stale)
  387. list_move_tail(&bf->list, &bf_head);
  388. else
  389. INIT_LIST_HEAD(&bf_head);
  390. } else {
  391. BUG_ON(list_empty(bf_q));
  392. list_move_tail(&bf->list, &bf_head);
  393. }
  394. if (!txpending || (tid->state & AGGR_CLEANUP)) {
  395. /*
  396. * complete the acked-ones/xretried ones; update
  397. * block-ack window
  398. */
  399. spin_lock_bh(&txq->axq_lock);
  400. ath_tx_update_baw(sc, tid, fi->seqno);
  401. spin_unlock_bh(&txq->axq_lock);
  402. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  403. memcpy(tx_info->control.rates, rates, sizeof(rates));
  404. ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok, true);
  405. rc_update = false;
  406. } else {
  407. ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok, false);
  408. }
  409. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  410. !txfail, sendbar);
  411. } else {
  412. /* retry the un-acked ones */
  413. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) {
  414. if (bf->bf_next == NULL && bf_last->bf_stale) {
  415. struct ath_buf *tbf;
  416. tbf = ath_clone_txbuf(sc, bf_last);
  417. /*
  418. * Update tx baw and complete the
  419. * frame with failed status if we
  420. * run out of tx buf.
  421. */
  422. if (!tbf) {
  423. spin_lock_bh(&txq->axq_lock);
  424. ath_tx_update_baw(sc, tid, fi->seqno);
  425. spin_unlock_bh(&txq->axq_lock);
  426. bf->bf_state.bf_type |=
  427. BUF_XRETRY;
  428. ath_tx_rc_status(sc, bf, ts, nframes,
  429. nbad, 0, false);
  430. ath_tx_complete_buf(sc, bf, txq,
  431. &bf_head,
  432. ts, 0, 0);
  433. break;
  434. }
  435. ath9k_hw_cleartxdesc(sc->sc_ah,
  436. tbf->bf_desc);
  437. list_add_tail(&tbf->list, &bf_head);
  438. } else {
  439. /*
  440. * Clear descriptor status words for
  441. * software retry
  442. */
  443. ath9k_hw_cleartxdesc(sc->sc_ah,
  444. bf->bf_desc);
  445. }
  446. }
  447. /*
  448. * Put this buffer to the temporary pending
  449. * queue to retain ordering
  450. */
  451. list_splice_tail_init(&bf_head, &bf_pending);
  452. }
  453. bf = bf_next;
  454. }
  455. /* prepend un-acked frames to the beginning of the pending frame queue */
  456. if (!list_empty(&bf_pending)) {
  457. spin_lock_bh(&txq->axq_lock);
  458. list_splice(&bf_pending, &tid->buf_q);
  459. ath_tx_queue_tid(txq, tid);
  460. spin_unlock_bh(&txq->axq_lock);
  461. }
  462. if (tid->state & AGGR_CLEANUP) {
  463. ath_tx_flush_tid(sc, tid);
  464. if (tid->baw_head == tid->baw_tail) {
  465. tid->state &= ~AGGR_ADDBA_COMPLETE;
  466. tid->state &= ~AGGR_CLEANUP;
  467. }
  468. }
  469. rcu_read_unlock();
  470. if (needreset) {
  471. spin_unlock_bh(&sc->sc_pcu_lock);
  472. ath_reset(sc, false);
  473. spin_lock_bh(&sc->sc_pcu_lock);
  474. }
  475. }
  476. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  477. struct ath_atx_tid *tid)
  478. {
  479. struct sk_buff *skb;
  480. struct ieee80211_tx_info *tx_info;
  481. struct ieee80211_tx_rate *rates;
  482. u32 max_4ms_framelen, frmlen;
  483. u16 aggr_limit, legacy = 0;
  484. int i;
  485. skb = bf->bf_mpdu;
  486. tx_info = IEEE80211_SKB_CB(skb);
  487. rates = tx_info->control.rates;
  488. /*
  489. * Find the lowest frame length among the rate series that will have a
  490. * 4ms transmit duration.
  491. * TODO - TXOP limit needs to be considered.
  492. */
  493. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  494. for (i = 0; i < 4; i++) {
  495. if (rates[i].count) {
  496. int modeidx;
  497. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  498. legacy = 1;
  499. break;
  500. }
  501. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  502. modeidx = MCS_HT40;
  503. else
  504. modeidx = MCS_HT20;
  505. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  506. modeidx++;
  507. frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx];
  508. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  509. }
  510. }
  511. /*
  512. * limit aggregate size by the minimum rate if rate selected is
  513. * not a probe rate, if rate selected is a probe rate then
  514. * avoid aggregation of this packet.
  515. */
  516. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  517. return 0;
  518. if (sc->sc_flags & SC_OP_BT_PRIORITY_DETECTED)
  519. aggr_limit = min((max_4ms_framelen * 3) / 8,
  520. (u32)ATH_AMPDU_LIMIT_MAX);
  521. else
  522. aggr_limit = min(max_4ms_framelen,
  523. (u32)ATH_AMPDU_LIMIT_MAX);
  524. /*
  525. * h/w can accept aggregates upto 16 bit lengths (65535).
  526. * The IE, however can hold upto 65536, which shows up here
  527. * as zero. Ignore 65536 since we are constrained by hw.
  528. */
  529. if (tid->an->maxampdu)
  530. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  531. return aggr_limit;
  532. }
  533. /*
  534. * Returns the number of delimiters to be added to
  535. * meet the minimum required mpdudensity.
  536. */
  537. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  538. struct ath_buf *bf, u16 frmlen)
  539. {
  540. struct sk_buff *skb = bf->bf_mpdu;
  541. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  542. u32 nsymbits, nsymbols;
  543. u16 minlen;
  544. u8 flags, rix;
  545. int width, streams, half_gi, ndelim, mindelim;
  546. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  547. /* Select standard number of delimiters based on frame length alone */
  548. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  549. /*
  550. * If encryption enabled, hardware requires some more padding between
  551. * subframes.
  552. * TODO - this could be improved to be dependent on the rate.
  553. * The hardware can keep up at lower rates, but not higher rates
  554. */
  555. if (fi->keyix != ATH9K_TXKEYIX_INVALID)
  556. ndelim += ATH_AGGR_ENCRYPTDELIM;
  557. /*
  558. * Convert desired mpdu density from microeconds to bytes based
  559. * on highest rate in rate series (i.e. first rate) to determine
  560. * required minimum length for subframe. Take into account
  561. * whether high rate is 20 or 40Mhz and half or full GI.
  562. *
  563. * If there is no mpdu density restriction, no further calculation
  564. * is needed.
  565. */
  566. if (tid->an->mpdudensity == 0)
  567. return ndelim;
  568. rix = tx_info->control.rates[0].idx;
  569. flags = tx_info->control.rates[0].flags;
  570. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  571. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  572. if (half_gi)
  573. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  574. else
  575. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  576. if (nsymbols == 0)
  577. nsymbols = 1;
  578. streams = HT_RC_2_STREAMS(rix);
  579. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  580. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  581. if (frmlen < minlen) {
  582. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  583. ndelim = max(mindelim, ndelim);
  584. }
  585. return ndelim;
  586. }
  587. static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
  588. struct ath_txq *txq,
  589. struct ath_atx_tid *tid,
  590. struct list_head *bf_q,
  591. int *aggr_len)
  592. {
  593. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  594. struct ath_buf *bf, *bf_first, *bf_prev = NULL;
  595. int rl = 0, nframes = 0, ndelim, prev_al = 0;
  596. u16 aggr_limit = 0, al = 0, bpad = 0,
  597. al_delta, h_baw = tid->baw_size / 2;
  598. enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
  599. struct ieee80211_tx_info *tx_info;
  600. struct ath_frame_info *fi;
  601. bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
  602. do {
  603. bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
  604. fi = get_frame_info(bf->bf_mpdu);
  605. /* do not step over block-ack window */
  606. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, fi->seqno)) {
  607. status = ATH_AGGR_BAW_CLOSED;
  608. break;
  609. }
  610. if (!rl) {
  611. aggr_limit = ath_lookup_rate(sc, bf, tid);
  612. rl = 1;
  613. }
  614. /* do not exceed aggregation limit */
  615. al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
  616. if (nframes &&
  617. (aggr_limit < (al + bpad + al_delta + prev_al))) {
  618. status = ATH_AGGR_LIMITED;
  619. break;
  620. }
  621. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  622. if (nframes && ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
  623. !(tx_info->control.rates[0].flags & IEEE80211_TX_RC_MCS)))
  624. break;
  625. /* do not exceed subframe limit */
  626. if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
  627. status = ATH_AGGR_LIMITED;
  628. break;
  629. }
  630. nframes++;
  631. /* add padding for previous frame to aggregation length */
  632. al += bpad + al_delta;
  633. /*
  634. * Get the delimiters needed to meet the MPDU
  635. * density for this node.
  636. */
  637. ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen);
  638. bpad = PADBYTES(al_delta) + (ndelim << 2);
  639. bf->bf_next = NULL;
  640. ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, 0);
  641. /* link buffers of this frame to the aggregate */
  642. if (!fi->retries)
  643. ath_tx_addto_baw(sc, tid, fi->seqno);
  644. ath9k_hw_set11n_aggr_middle(sc->sc_ah, bf->bf_desc, ndelim);
  645. list_move_tail(&bf->list, bf_q);
  646. if (bf_prev) {
  647. bf_prev->bf_next = bf;
  648. ath9k_hw_set_desc_link(sc->sc_ah, bf_prev->bf_desc,
  649. bf->bf_daddr);
  650. }
  651. bf_prev = bf;
  652. } while (!list_empty(&tid->buf_q));
  653. *aggr_len = al;
  654. return status;
  655. #undef PADBYTES
  656. }
  657. static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  658. struct ath_atx_tid *tid)
  659. {
  660. struct ath_buf *bf;
  661. enum ATH_AGGR_STATUS status;
  662. struct ath_frame_info *fi;
  663. struct list_head bf_q;
  664. int aggr_len;
  665. do {
  666. if (list_empty(&tid->buf_q))
  667. return;
  668. INIT_LIST_HEAD(&bf_q);
  669. status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
  670. /*
  671. * no frames picked up to be aggregated;
  672. * block-ack window is not open.
  673. */
  674. if (list_empty(&bf_q))
  675. break;
  676. bf = list_first_entry(&bf_q, struct ath_buf, list);
  677. bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
  678. /* if only one frame, send as non-aggregate */
  679. if (bf == bf->bf_lastbf) {
  680. fi = get_frame_info(bf->bf_mpdu);
  681. bf->bf_state.bf_type &= ~BUF_AGGR;
  682. ath9k_hw_clr11n_aggr(sc->sc_ah, bf->bf_desc);
  683. ath_buf_set_rate(sc, bf, fi->framelen);
  684. ath_tx_txqaddbuf(sc, txq, &bf_q);
  685. continue;
  686. }
  687. /* setup first desc of aggregate */
  688. bf->bf_state.bf_type |= BUF_AGGR;
  689. ath_buf_set_rate(sc, bf, aggr_len);
  690. ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, aggr_len);
  691. /* anchor last desc of aggregate */
  692. ath9k_hw_set11n_aggr_last(sc->sc_ah, bf->bf_lastbf->bf_desc);
  693. ath_tx_txqaddbuf(sc, txq, &bf_q);
  694. TX_STAT_INC(txq->axq_qnum, a_aggr);
  695. } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
  696. status != ATH_AGGR_BAW_CLOSED);
  697. }
  698. int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  699. u16 tid, u16 *ssn)
  700. {
  701. struct ath_atx_tid *txtid;
  702. struct ath_node *an;
  703. an = (struct ath_node *)sta->drv_priv;
  704. txtid = ATH_AN_2_TID(an, tid);
  705. if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
  706. return -EAGAIN;
  707. txtid->state |= AGGR_ADDBA_PROGRESS;
  708. txtid->paused = true;
  709. *ssn = txtid->seq_start = txtid->seq_next;
  710. memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
  711. txtid->baw_head = txtid->baw_tail = 0;
  712. return 0;
  713. }
  714. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  715. {
  716. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  717. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  718. struct ath_txq *txq = txtid->ac->txq;
  719. if (txtid->state & AGGR_CLEANUP)
  720. return;
  721. if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
  722. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  723. return;
  724. }
  725. spin_lock_bh(&txq->axq_lock);
  726. txtid->paused = true;
  727. /*
  728. * If frames are still being transmitted for this TID, they will be
  729. * cleaned up during tx completion. To prevent race conditions, this
  730. * TID can only be reused after all in-progress subframes have been
  731. * completed.
  732. */
  733. if (txtid->baw_head != txtid->baw_tail)
  734. txtid->state |= AGGR_CLEANUP;
  735. else
  736. txtid->state &= ~AGGR_ADDBA_COMPLETE;
  737. spin_unlock_bh(&txq->axq_lock);
  738. ath_tx_flush_tid(sc, txtid);
  739. }
  740. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  741. {
  742. struct ath_atx_tid *txtid;
  743. struct ath_node *an;
  744. an = (struct ath_node *)sta->drv_priv;
  745. if (sc->sc_flags & SC_OP_TXAGGR) {
  746. txtid = ATH_AN_2_TID(an, tid);
  747. txtid->baw_size =
  748. IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  749. txtid->state |= AGGR_ADDBA_COMPLETE;
  750. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  751. ath_tx_resume_tid(sc, txtid);
  752. }
  753. }
  754. /********************/
  755. /* Queue Management */
  756. /********************/
  757. static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
  758. struct ath_txq *txq)
  759. {
  760. struct ath_atx_ac *ac, *ac_tmp;
  761. struct ath_atx_tid *tid, *tid_tmp;
  762. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  763. list_del(&ac->list);
  764. ac->sched = false;
  765. list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
  766. list_del(&tid->list);
  767. tid->sched = false;
  768. ath_tid_drain(sc, txq, tid);
  769. }
  770. }
  771. }
  772. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  773. {
  774. struct ath_hw *ah = sc->sc_ah;
  775. struct ath_common *common = ath9k_hw_common(ah);
  776. struct ath9k_tx_queue_info qi;
  777. static const int subtype_txq_to_hwq[] = {
  778. [WME_AC_BE] = ATH_TXQ_AC_BE,
  779. [WME_AC_BK] = ATH_TXQ_AC_BK,
  780. [WME_AC_VI] = ATH_TXQ_AC_VI,
  781. [WME_AC_VO] = ATH_TXQ_AC_VO,
  782. };
  783. int axq_qnum, i;
  784. memset(&qi, 0, sizeof(qi));
  785. qi.tqi_subtype = subtype_txq_to_hwq[subtype];
  786. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  787. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  788. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  789. qi.tqi_physCompBuf = 0;
  790. /*
  791. * Enable interrupts only for EOL and DESC conditions.
  792. * We mark tx descriptors to receive a DESC interrupt
  793. * when a tx queue gets deep; otherwise waiting for the
  794. * EOL to reap descriptors. Note that this is done to
  795. * reduce interrupt load and this only defers reaping
  796. * descriptors, never transmitting frames. Aside from
  797. * reducing interrupts this also permits more concurrency.
  798. * The only potential downside is if the tx queue backs
  799. * up in which case the top half of the kernel may backup
  800. * due to a lack of tx descriptors.
  801. *
  802. * The UAPSD queue is an exception, since we take a desc-
  803. * based intr on the EOSP frames.
  804. */
  805. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  806. qi.tqi_qflags = TXQ_FLAG_TXOKINT_ENABLE |
  807. TXQ_FLAG_TXERRINT_ENABLE;
  808. } else {
  809. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  810. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  811. else
  812. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  813. TXQ_FLAG_TXDESCINT_ENABLE;
  814. }
  815. axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  816. if (axq_qnum == -1) {
  817. /*
  818. * NB: don't print a message, this happens
  819. * normally on parts with too few tx queues
  820. */
  821. return NULL;
  822. }
  823. if (axq_qnum >= ARRAY_SIZE(sc->tx.txq)) {
  824. ath_err(common, "qnum %u out of range, max %zu!\n",
  825. axq_qnum, ARRAY_SIZE(sc->tx.txq));
  826. ath9k_hw_releasetxqueue(ah, axq_qnum);
  827. return NULL;
  828. }
  829. if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
  830. struct ath_txq *txq = &sc->tx.txq[axq_qnum];
  831. txq->axq_qnum = axq_qnum;
  832. txq->mac80211_qnum = -1;
  833. txq->axq_link = NULL;
  834. INIT_LIST_HEAD(&txq->axq_q);
  835. INIT_LIST_HEAD(&txq->axq_acq);
  836. spin_lock_init(&txq->axq_lock);
  837. txq->axq_depth = 0;
  838. txq->axq_ampdu_depth = 0;
  839. txq->axq_tx_inprogress = false;
  840. sc->tx.txqsetup |= 1<<axq_qnum;
  841. txq->txq_headidx = txq->txq_tailidx = 0;
  842. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  843. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  844. INIT_LIST_HEAD(&txq->txq_fifo_pending);
  845. }
  846. return &sc->tx.txq[axq_qnum];
  847. }
  848. int ath_txq_update(struct ath_softc *sc, int qnum,
  849. struct ath9k_tx_queue_info *qinfo)
  850. {
  851. struct ath_hw *ah = sc->sc_ah;
  852. int error = 0;
  853. struct ath9k_tx_queue_info qi;
  854. if (qnum == sc->beacon.beaconq) {
  855. /*
  856. * XXX: for beacon queue, we just save the parameter.
  857. * It will be picked up by ath_beaconq_config when
  858. * it's necessary.
  859. */
  860. sc->beacon.beacon_qi = *qinfo;
  861. return 0;
  862. }
  863. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  864. ath9k_hw_get_txq_props(ah, qnum, &qi);
  865. qi.tqi_aifs = qinfo->tqi_aifs;
  866. qi.tqi_cwmin = qinfo->tqi_cwmin;
  867. qi.tqi_cwmax = qinfo->tqi_cwmax;
  868. qi.tqi_burstTime = qinfo->tqi_burstTime;
  869. qi.tqi_readyTime = qinfo->tqi_readyTime;
  870. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  871. ath_err(ath9k_hw_common(sc->sc_ah),
  872. "Unable to update hardware queue %u!\n", qnum);
  873. error = -EIO;
  874. } else {
  875. ath9k_hw_resettxqueue(ah, qnum);
  876. }
  877. return error;
  878. }
  879. int ath_cabq_update(struct ath_softc *sc)
  880. {
  881. struct ath9k_tx_queue_info qi;
  882. struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
  883. int qnum = sc->beacon.cabq->axq_qnum;
  884. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  885. /*
  886. * Ensure the readytime % is within the bounds.
  887. */
  888. if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
  889. sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
  890. else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
  891. sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
  892. qi.tqi_readyTime = (cur_conf->beacon_interval *
  893. sc->config.cabqReadytime) / 100;
  894. ath_txq_update(sc, qnum, &qi);
  895. return 0;
  896. }
  897. static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
  898. {
  899. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
  900. return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
  901. }
  902. /*
  903. * Drain a given TX queue (could be Beacon or Data)
  904. *
  905. * This assumes output has been stopped and
  906. * we do not need to block ath_tx_tasklet.
  907. */
  908. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
  909. {
  910. struct ath_buf *bf, *lastbf;
  911. struct list_head bf_head;
  912. struct ath_tx_status ts;
  913. memset(&ts, 0, sizeof(ts));
  914. INIT_LIST_HEAD(&bf_head);
  915. for (;;) {
  916. spin_lock_bh(&txq->axq_lock);
  917. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  918. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  919. txq->txq_headidx = txq->txq_tailidx = 0;
  920. spin_unlock_bh(&txq->axq_lock);
  921. break;
  922. } else {
  923. bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
  924. struct ath_buf, list);
  925. }
  926. } else {
  927. if (list_empty(&txq->axq_q)) {
  928. txq->axq_link = NULL;
  929. spin_unlock_bh(&txq->axq_lock);
  930. break;
  931. }
  932. bf = list_first_entry(&txq->axq_q, struct ath_buf,
  933. list);
  934. if (bf->bf_stale) {
  935. list_del(&bf->list);
  936. spin_unlock_bh(&txq->axq_lock);
  937. ath_tx_return_buffer(sc, bf);
  938. continue;
  939. }
  940. }
  941. lastbf = bf->bf_lastbf;
  942. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  943. list_cut_position(&bf_head,
  944. &txq->txq_fifo[txq->txq_tailidx],
  945. &lastbf->list);
  946. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  947. } else {
  948. /* remove ath_buf's of the same mpdu from txq */
  949. list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
  950. }
  951. txq->axq_depth--;
  952. if (bf_is_ampdu_not_probing(bf))
  953. txq->axq_ampdu_depth--;
  954. spin_unlock_bh(&txq->axq_lock);
  955. if (bf_isampdu(bf))
  956. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0,
  957. retry_tx);
  958. else
  959. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
  960. }
  961. spin_lock_bh(&txq->axq_lock);
  962. txq->axq_tx_inprogress = false;
  963. spin_unlock_bh(&txq->axq_lock);
  964. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  965. spin_lock_bh(&txq->axq_lock);
  966. while (!list_empty(&txq->txq_fifo_pending)) {
  967. bf = list_first_entry(&txq->txq_fifo_pending,
  968. struct ath_buf, list);
  969. list_cut_position(&bf_head,
  970. &txq->txq_fifo_pending,
  971. &bf->bf_lastbf->list);
  972. spin_unlock_bh(&txq->axq_lock);
  973. if (bf_isampdu(bf))
  974. ath_tx_complete_aggr(sc, txq, bf, &bf_head,
  975. &ts, 0, retry_tx);
  976. else
  977. ath_tx_complete_buf(sc, bf, txq, &bf_head,
  978. &ts, 0, 0);
  979. spin_lock_bh(&txq->axq_lock);
  980. }
  981. spin_unlock_bh(&txq->axq_lock);
  982. }
  983. /* flush any pending frames if aggregation is enabled */
  984. if (sc->sc_flags & SC_OP_TXAGGR) {
  985. if (!retry_tx) {
  986. spin_lock_bh(&txq->axq_lock);
  987. ath_txq_drain_pending_buffers(sc, txq);
  988. spin_unlock_bh(&txq->axq_lock);
  989. }
  990. }
  991. }
  992. bool ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
  993. {
  994. struct ath_hw *ah = sc->sc_ah;
  995. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  996. struct ath_txq *txq;
  997. int i, npend = 0;
  998. if (sc->sc_flags & SC_OP_INVALID)
  999. return true;
  1000. ath9k_hw_abort_tx_dma(ah);
  1001. /* Check if any queue remains active */
  1002. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1003. if (!ATH_TXQ_SETUP(sc, i))
  1004. continue;
  1005. npend += ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum);
  1006. }
  1007. if (npend)
  1008. ath_err(common, "Failed to stop TX DMA!\n");
  1009. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1010. if (!ATH_TXQ_SETUP(sc, i))
  1011. continue;
  1012. /*
  1013. * The caller will resume queues with ieee80211_wake_queues.
  1014. * Mark the queue as not stopped to prevent ath_tx_complete
  1015. * from waking the queue too early.
  1016. */
  1017. txq = &sc->tx.txq[i];
  1018. txq->stopped = false;
  1019. ath_draintxq(sc, txq, retry_tx);
  1020. }
  1021. return !npend;
  1022. }
  1023. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  1024. {
  1025. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  1026. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  1027. }
  1028. /* For each axq_acq entry, for each tid, try to schedule packets
  1029. * for transmit until ampdu_depth has reached min Q depth.
  1030. */
  1031. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  1032. {
  1033. struct ath_atx_ac *ac, *ac_tmp, *last_ac;
  1034. struct ath_atx_tid *tid, *last_tid;
  1035. if (list_empty(&txq->axq_acq) ||
  1036. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1037. return;
  1038. ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
  1039. last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
  1040. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  1041. last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
  1042. list_del(&ac->list);
  1043. ac->sched = false;
  1044. while (!list_empty(&ac->tid_q)) {
  1045. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
  1046. list);
  1047. list_del(&tid->list);
  1048. tid->sched = false;
  1049. if (tid->paused)
  1050. continue;
  1051. ath_tx_sched_aggr(sc, txq, tid);
  1052. /*
  1053. * add tid to round-robin queue if more frames
  1054. * are pending for the tid
  1055. */
  1056. if (!list_empty(&tid->buf_q))
  1057. ath_tx_queue_tid(txq, tid);
  1058. if (tid == last_tid ||
  1059. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1060. break;
  1061. }
  1062. if (!list_empty(&ac->tid_q)) {
  1063. if (!ac->sched) {
  1064. ac->sched = true;
  1065. list_add_tail(&ac->list, &txq->axq_acq);
  1066. }
  1067. }
  1068. if (ac == last_ac ||
  1069. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1070. return;
  1071. }
  1072. }
  1073. /***********/
  1074. /* TX, DMA */
  1075. /***********/
  1076. /*
  1077. * Insert a chain of ath_buf (descriptors) on a txq and
  1078. * assume the descriptors are already chained together by caller.
  1079. */
  1080. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1081. struct list_head *head)
  1082. {
  1083. struct ath_hw *ah = sc->sc_ah;
  1084. struct ath_common *common = ath9k_hw_common(ah);
  1085. struct ath_buf *bf;
  1086. /*
  1087. * Insert the frame on the outbound list and
  1088. * pass it on to the hardware.
  1089. */
  1090. if (list_empty(head))
  1091. return;
  1092. bf = list_first_entry(head, struct ath_buf, list);
  1093. ath_dbg(common, ATH_DBG_QUEUE,
  1094. "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
  1095. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1096. if (txq->axq_depth >= ATH_TXFIFO_DEPTH) {
  1097. list_splice_tail_init(head, &txq->txq_fifo_pending);
  1098. return;
  1099. }
  1100. if (!list_empty(&txq->txq_fifo[txq->txq_headidx]))
  1101. ath_dbg(common, ATH_DBG_XMIT,
  1102. "Initializing tx fifo %d which is non-empty\n",
  1103. txq->txq_headidx);
  1104. INIT_LIST_HEAD(&txq->txq_fifo[txq->txq_headidx]);
  1105. list_splice_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1106. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1107. TX_STAT_INC(txq->axq_qnum, puttxbuf);
  1108. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1109. ath_dbg(common, ATH_DBG_XMIT, "TXDP[%u] = %llx (%p)\n",
  1110. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1111. } else {
  1112. list_splice_tail_init(head, &txq->axq_q);
  1113. if (txq->axq_link == NULL) {
  1114. TX_STAT_INC(txq->axq_qnum, puttxbuf);
  1115. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1116. ath_dbg(common, ATH_DBG_XMIT, "TXDP[%u] = %llx (%p)\n",
  1117. txq->axq_qnum, ito64(bf->bf_daddr),
  1118. bf->bf_desc);
  1119. } else {
  1120. *txq->axq_link = bf->bf_daddr;
  1121. ath_dbg(common, ATH_DBG_XMIT,
  1122. "link[%u] (%p)=%llx (%p)\n",
  1123. txq->axq_qnum, txq->axq_link,
  1124. ito64(bf->bf_daddr), bf->bf_desc);
  1125. }
  1126. ath9k_hw_get_desc_link(ah, bf->bf_lastbf->bf_desc,
  1127. &txq->axq_link);
  1128. TX_STAT_INC(txq->axq_qnum, txstart);
  1129. ath9k_hw_txstart(ah, txq->axq_qnum);
  1130. }
  1131. txq->axq_depth++;
  1132. if (bf_is_ampdu_not_probing(bf))
  1133. txq->axq_ampdu_depth++;
  1134. }
  1135. static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
  1136. struct ath_buf *bf, struct ath_tx_control *txctl)
  1137. {
  1138. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  1139. struct list_head bf_head;
  1140. bf->bf_state.bf_type |= BUF_AMPDU;
  1141. /*
  1142. * Do not queue to h/w when any of the following conditions is true:
  1143. * - there are pending frames in software queue
  1144. * - the TID is currently paused for ADDBA/BAR request
  1145. * - seqno is not within block-ack window
  1146. * - h/w queue depth exceeds low water mark
  1147. */
  1148. if (!list_empty(&tid->buf_q) || tid->paused ||
  1149. !BAW_WITHIN(tid->seq_start, tid->baw_size, fi->seqno) ||
  1150. txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) {
  1151. /*
  1152. * Add this frame to software queue for scheduling later
  1153. * for aggregation.
  1154. */
  1155. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw);
  1156. list_add_tail(&bf->list, &tid->buf_q);
  1157. ath_tx_queue_tid(txctl->txq, tid);
  1158. return;
  1159. }
  1160. INIT_LIST_HEAD(&bf_head);
  1161. list_add(&bf->list, &bf_head);
  1162. /* Add sub-frame to BAW */
  1163. if (!fi->retries)
  1164. ath_tx_addto_baw(sc, tid, fi->seqno);
  1165. /* Queue to h/w without aggregation */
  1166. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw);
  1167. bf->bf_lastbf = bf;
  1168. ath_buf_set_rate(sc, bf, fi->framelen);
  1169. ath_tx_txqaddbuf(sc, txctl->txq, &bf_head);
  1170. }
  1171. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1172. struct ath_atx_tid *tid,
  1173. struct list_head *bf_head)
  1174. {
  1175. struct ath_frame_info *fi;
  1176. struct ath_buf *bf;
  1177. bf = list_first_entry(bf_head, struct ath_buf, list);
  1178. bf->bf_state.bf_type &= ~BUF_AMPDU;
  1179. /* update starting sequence number for subsequent ADDBA request */
  1180. if (tid)
  1181. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  1182. bf->bf_lastbf = bf;
  1183. fi = get_frame_info(bf->bf_mpdu);
  1184. ath_buf_set_rate(sc, bf, fi->framelen);
  1185. ath_tx_txqaddbuf(sc, txq, bf_head);
  1186. TX_STAT_INC(txq->axq_qnum, queued);
  1187. }
  1188. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  1189. {
  1190. struct ieee80211_hdr *hdr;
  1191. enum ath9k_pkt_type htype;
  1192. __le16 fc;
  1193. hdr = (struct ieee80211_hdr *)skb->data;
  1194. fc = hdr->frame_control;
  1195. if (ieee80211_is_beacon(fc))
  1196. htype = ATH9K_PKT_TYPE_BEACON;
  1197. else if (ieee80211_is_probe_resp(fc))
  1198. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  1199. else if (ieee80211_is_atim(fc))
  1200. htype = ATH9K_PKT_TYPE_ATIM;
  1201. else if (ieee80211_is_pspoll(fc))
  1202. htype = ATH9K_PKT_TYPE_PSPOLL;
  1203. else
  1204. htype = ATH9K_PKT_TYPE_NORMAL;
  1205. return htype;
  1206. }
  1207. static void setup_frame_info(struct ieee80211_hw *hw, struct sk_buff *skb,
  1208. int framelen)
  1209. {
  1210. struct ath_softc *sc = hw->priv;
  1211. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1212. struct ieee80211_sta *sta = tx_info->control.sta;
  1213. struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
  1214. struct ieee80211_hdr *hdr;
  1215. struct ath_frame_info *fi = get_frame_info(skb);
  1216. struct ath_node *an;
  1217. struct ath_atx_tid *tid;
  1218. enum ath9k_key_type keytype;
  1219. u16 seqno = 0;
  1220. u8 tidno;
  1221. keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
  1222. hdr = (struct ieee80211_hdr *)skb->data;
  1223. if (sta && ieee80211_is_data_qos(hdr->frame_control) &&
  1224. conf_is_ht(&hw->conf) && (sc->sc_flags & SC_OP_TXAGGR)) {
  1225. an = (struct ath_node *) sta->drv_priv;
  1226. tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
  1227. /*
  1228. * Override seqno set by upper layer with the one
  1229. * in tx aggregation state.
  1230. */
  1231. tid = ATH_AN_2_TID(an, tidno);
  1232. seqno = tid->seq_next;
  1233. hdr->seq_ctrl = cpu_to_le16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
  1234. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1235. }
  1236. memset(fi, 0, sizeof(*fi));
  1237. if (hw_key)
  1238. fi->keyix = hw_key->hw_key_idx;
  1239. else
  1240. fi->keyix = ATH9K_TXKEYIX_INVALID;
  1241. fi->keytype = keytype;
  1242. fi->framelen = framelen;
  1243. fi->seqno = seqno;
  1244. }
  1245. static int setup_tx_flags(struct sk_buff *skb)
  1246. {
  1247. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1248. int flags = 0;
  1249. flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
  1250. flags |= ATH9K_TXDESC_INTREQ;
  1251. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  1252. flags |= ATH9K_TXDESC_NOACK;
  1253. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  1254. flags |= ATH9K_TXDESC_LDPC;
  1255. return flags;
  1256. }
  1257. /*
  1258. * rix - rate index
  1259. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  1260. * width - 0 for 20 MHz, 1 for 40 MHz
  1261. * half_gi - to use 4us v/s 3.6 us for symbol time
  1262. */
  1263. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
  1264. int width, int half_gi, bool shortPreamble)
  1265. {
  1266. u32 nbits, nsymbits, duration, nsymbols;
  1267. int streams;
  1268. /* find number of symbols: PLCP + data */
  1269. streams = HT_RC_2_STREAMS(rix);
  1270. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  1271. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  1272. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  1273. if (!half_gi)
  1274. duration = SYMBOL_TIME(nsymbols);
  1275. else
  1276. duration = SYMBOL_TIME_HALFGI(nsymbols);
  1277. /* addup duration for legacy/ht training and signal fields */
  1278. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  1279. return duration;
  1280. }
  1281. u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
  1282. {
  1283. struct ath_hw *ah = sc->sc_ah;
  1284. struct ath9k_channel *curchan = ah->curchan;
  1285. if ((sc->sc_flags & SC_OP_ENABLE_APM) &&
  1286. (curchan->channelFlags & CHANNEL_5GHZ) &&
  1287. (chainmask == 0x7) && (rate < 0x90))
  1288. return 0x3;
  1289. else
  1290. return chainmask;
  1291. }
  1292. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf, int len)
  1293. {
  1294. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1295. struct ath9k_11n_rate_series series[4];
  1296. struct sk_buff *skb;
  1297. struct ieee80211_tx_info *tx_info;
  1298. struct ieee80211_tx_rate *rates;
  1299. const struct ieee80211_rate *rate;
  1300. struct ieee80211_hdr *hdr;
  1301. int i, flags = 0;
  1302. u8 rix = 0, ctsrate = 0;
  1303. bool is_pspoll;
  1304. memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
  1305. skb = bf->bf_mpdu;
  1306. tx_info = IEEE80211_SKB_CB(skb);
  1307. rates = tx_info->control.rates;
  1308. hdr = (struct ieee80211_hdr *)skb->data;
  1309. is_pspoll = ieee80211_is_pspoll(hdr->frame_control);
  1310. /*
  1311. * We check if Short Preamble is needed for the CTS rate by
  1312. * checking the BSS's global flag.
  1313. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  1314. */
  1315. rate = ieee80211_get_rts_cts_rate(sc->hw, tx_info);
  1316. ctsrate = rate->hw_value;
  1317. if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
  1318. ctsrate |= rate->hw_value_short;
  1319. for (i = 0; i < 4; i++) {
  1320. bool is_40, is_sgi, is_sp;
  1321. int phy;
  1322. if (!rates[i].count || (rates[i].idx < 0))
  1323. continue;
  1324. rix = rates[i].idx;
  1325. series[i].Tries = rates[i].count;
  1326. if ((sc->config.ath_aggr_prot && bf_isaggr(bf)) ||
  1327. (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS)) {
  1328. series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  1329. flags |= ATH9K_TXDESC_RTSENA;
  1330. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  1331. series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  1332. flags |= ATH9K_TXDESC_CTSENA;
  1333. }
  1334. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  1335. series[i].RateFlags |= ATH9K_RATESERIES_2040;
  1336. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  1337. series[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  1338. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  1339. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  1340. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  1341. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  1342. /* MCS rates */
  1343. series[i].Rate = rix | 0x80;
  1344. series[i].ChSel = ath_txchainmask_reduction(sc,
  1345. common->tx_chainmask, series[i].Rate);
  1346. series[i].PktDuration = ath_pkt_duration(sc, rix, len,
  1347. is_40, is_sgi, is_sp);
  1348. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  1349. series[i].RateFlags |= ATH9K_RATESERIES_STBC;
  1350. continue;
  1351. }
  1352. /* legacy rates */
  1353. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  1354. !(rate->flags & IEEE80211_RATE_ERP_G))
  1355. phy = WLAN_RC_PHY_CCK;
  1356. else
  1357. phy = WLAN_RC_PHY_OFDM;
  1358. rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
  1359. series[i].Rate = rate->hw_value;
  1360. if (rate->hw_value_short) {
  1361. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  1362. series[i].Rate |= rate->hw_value_short;
  1363. } else {
  1364. is_sp = false;
  1365. }
  1366. if (bf->bf_state.bfs_paprd)
  1367. series[i].ChSel = common->tx_chainmask;
  1368. else
  1369. series[i].ChSel = ath_txchainmask_reduction(sc,
  1370. common->tx_chainmask, series[i].Rate);
  1371. series[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  1372. phy, rate->bitrate * 100, len, rix, is_sp);
  1373. }
  1374. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  1375. if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
  1376. flags &= ~ATH9K_TXDESC_RTSENA;
  1377. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  1378. if (flags & ATH9K_TXDESC_RTSENA)
  1379. flags &= ~ATH9K_TXDESC_CTSENA;
  1380. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  1381. ath9k_hw_set11n_ratescenario(sc->sc_ah, bf->bf_desc,
  1382. bf->bf_lastbf->bf_desc,
  1383. !is_pspoll, ctsrate,
  1384. 0, series, 4, flags);
  1385. if (sc->config.ath_aggr_prot && flags)
  1386. ath9k_hw_set11n_burstduration(sc->sc_ah, bf->bf_desc, 8192);
  1387. }
  1388. static struct ath_buf *ath_tx_setup_buffer(struct ieee80211_hw *hw,
  1389. struct ath_txq *txq,
  1390. struct sk_buff *skb)
  1391. {
  1392. struct ath_softc *sc = hw->priv;
  1393. struct ath_hw *ah = sc->sc_ah;
  1394. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1395. struct ath_frame_info *fi = get_frame_info(skb);
  1396. struct ath_buf *bf;
  1397. struct ath_desc *ds;
  1398. int frm_type;
  1399. bf = ath_tx_get_buffer(sc);
  1400. if (!bf) {
  1401. ath_dbg(common, ATH_DBG_XMIT, "TX buffers are full\n");
  1402. return NULL;
  1403. }
  1404. ATH_TXBUF_RESET(bf);
  1405. bf->bf_flags = setup_tx_flags(skb);
  1406. bf->bf_mpdu = skb;
  1407. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  1408. skb->len, DMA_TO_DEVICE);
  1409. if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
  1410. bf->bf_mpdu = NULL;
  1411. bf->bf_buf_addr = 0;
  1412. ath_err(ath9k_hw_common(sc->sc_ah),
  1413. "dma_mapping_error() on TX\n");
  1414. ath_tx_return_buffer(sc, bf);
  1415. return NULL;
  1416. }
  1417. frm_type = get_hw_packet_type(skb);
  1418. ds = bf->bf_desc;
  1419. ath9k_hw_set_desc_link(ah, ds, 0);
  1420. ath9k_hw_set11n_txdesc(ah, ds, fi->framelen, frm_type, MAX_RATE_POWER,
  1421. fi->keyix, fi->keytype, bf->bf_flags);
  1422. ath9k_hw_filltxdesc(ah, ds,
  1423. skb->len, /* segment length */
  1424. true, /* first segment */
  1425. true, /* last segment */
  1426. ds, /* first descriptor */
  1427. bf->bf_buf_addr,
  1428. txq->axq_qnum);
  1429. return bf;
  1430. }
  1431. /* FIXME: tx power */
  1432. static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf,
  1433. struct ath_tx_control *txctl)
  1434. {
  1435. struct sk_buff *skb = bf->bf_mpdu;
  1436. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1437. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1438. struct list_head bf_head;
  1439. struct ath_atx_tid *tid = NULL;
  1440. u8 tidno;
  1441. spin_lock_bh(&txctl->txq->axq_lock);
  1442. if (ieee80211_is_data_qos(hdr->frame_control) && txctl->an) {
  1443. tidno = ieee80211_get_qos_ctl(hdr)[0] &
  1444. IEEE80211_QOS_CTL_TID_MASK;
  1445. tid = ATH_AN_2_TID(txctl->an, tidno);
  1446. WARN_ON(tid->ac->txq != txctl->txq);
  1447. }
  1448. if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
  1449. /*
  1450. * Try aggregation if it's a unicast data frame
  1451. * and the destination is HT capable.
  1452. */
  1453. ath_tx_send_ampdu(sc, tid, bf, txctl);
  1454. } else {
  1455. INIT_LIST_HEAD(&bf_head);
  1456. list_add_tail(&bf->list, &bf_head);
  1457. bf->bf_state.bfs_ftype = txctl->frame_type;
  1458. bf->bf_state.bfs_paprd = txctl->paprd;
  1459. if (bf->bf_state.bfs_paprd)
  1460. ar9003_hw_set_paprd_txdesc(sc->sc_ah, bf->bf_desc,
  1461. bf->bf_state.bfs_paprd);
  1462. if (txctl->paprd)
  1463. bf->bf_state.bfs_paprd_timestamp = jiffies;
  1464. ath_tx_send_normal(sc, txctl->txq, tid, &bf_head);
  1465. }
  1466. spin_unlock_bh(&txctl->txq->axq_lock);
  1467. }
  1468. /* Upon failure caller should free skb */
  1469. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1470. struct ath_tx_control *txctl)
  1471. {
  1472. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1473. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1474. struct ieee80211_sta *sta = info->control.sta;
  1475. struct ath_softc *sc = hw->priv;
  1476. struct ath_txq *txq = txctl->txq;
  1477. struct ath_buf *bf;
  1478. int padpos, padsize;
  1479. int frmlen = skb->len + FCS_LEN;
  1480. int q;
  1481. /* NOTE: sta can be NULL according to net/mac80211.h */
  1482. if (sta)
  1483. txctl->an = (struct ath_node *)sta->drv_priv;
  1484. if (info->control.hw_key)
  1485. frmlen += info->control.hw_key->icv_len;
  1486. /*
  1487. * As a temporary workaround, assign seq# here; this will likely need
  1488. * to be cleaned up to work better with Beacon transmission and virtual
  1489. * BSSes.
  1490. */
  1491. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1492. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1493. sc->tx.seq_no += 0x10;
  1494. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1495. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1496. }
  1497. /* Add the padding after the header if this is not already done */
  1498. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1499. padsize = padpos & 3;
  1500. if (padsize && skb->len > padpos) {
  1501. if (skb_headroom(skb) < padsize)
  1502. return -ENOMEM;
  1503. skb_push(skb, padsize);
  1504. memmove(skb->data, skb->data + padsize, padpos);
  1505. }
  1506. setup_frame_info(hw, skb, frmlen);
  1507. /*
  1508. * At this point, the vif, hw_key and sta pointers in the tx control
  1509. * info are no longer valid (overwritten by the ath_frame_info data.
  1510. */
  1511. bf = ath_tx_setup_buffer(hw, txctl->txq, skb);
  1512. if (unlikely(!bf))
  1513. return -ENOMEM;
  1514. q = skb_get_queue_mapping(skb);
  1515. spin_lock_bh(&txq->axq_lock);
  1516. if (txq == sc->tx.txq_map[q] &&
  1517. ++txq->pending_frames > ATH_MAX_QDEPTH && !txq->stopped) {
  1518. ieee80211_stop_queue(sc->hw, q);
  1519. txq->stopped = 1;
  1520. }
  1521. spin_unlock_bh(&txq->axq_lock);
  1522. ath_tx_start_dma(sc, bf, txctl);
  1523. return 0;
  1524. }
  1525. /*****************/
  1526. /* TX Completion */
  1527. /*****************/
  1528. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1529. int tx_flags, int ftype, struct ath_txq *txq)
  1530. {
  1531. struct ieee80211_hw *hw = sc->hw;
  1532. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1533. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1534. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1535. int q, padpos, padsize;
  1536. ath_dbg(common, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
  1537. if (tx_flags & ATH_TX_BAR)
  1538. tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
  1539. if (!(tx_flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) {
  1540. /* Frame was ACKed */
  1541. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1542. }
  1543. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1544. padsize = padpos & 3;
  1545. if (padsize && skb->len>padpos+padsize) {
  1546. /*
  1547. * Remove MAC header padding before giving the frame back to
  1548. * mac80211.
  1549. */
  1550. memmove(skb->data + padsize, skb->data, padpos);
  1551. skb_pull(skb, padsize);
  1552. }
  1553. if (sc->ps_flags & PS_WAIT_FOR_TX_ACK) {
  1554. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  1555. ath_dbg(common, ATH_DBG_PS,
  1556. "Going back to sleep after having received TX status (0x%lx)\n",
  1557. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1558. PS_WAIT_FOR_CAB |
  1559. PS_WAIT_FOR_PSPOLL_DATA |
  1560. PS_WAIT_FOR_TX_ACK));
  1561. }
  1562. q = skb_get_queue_mapping(skb);
  1563. if (txq == sc->tx.txq_map[q]) {
  1564. spin_lock_bh(&txq->axq_lock);
  1565. if (WARN_ON(--txq->pending_frames < 0))
  1566. txq->pending_frames = 0;
  1567. if (txq->stopped && txq->pending_frames < ATH_MAX_QDEPTH) {
  1568. ieee80211_wake_queue(sc->hw, q);
  1569. txq->stopped = 0;
  1570. }
  1571. spin_unlock_bh(&txq->axq_lock);
  1572. }
  1573. ieee80211_tx_status(hw, skb);
  1574. }
  1575. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  1576. struct ath_txq *txq, struct list_head *bf_q,
  1577. struct ath_tx_status *ts, int txok, int sendbar)
  1578. {
  1579. struct sk_buff *skb = bf->bf_mpdu;
  1580. unsigned long flags;
  1581. int tx_flags = 0;
  1582. if (sendbar)
  1583. tx_flags = ATH_TX_BAR;
  1584. if (!txok) {
  1585. tx_flags |= ATH_TX_ERROR;
  1586. if (bf_isxretried(bf))
  1587. tx_flags |= ATH_TX_XRETRY;
  1588. }
  1589. dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
  1590. bf->bf_buf_addr = 0;
  1591. if (bf->bf_state.bfs_paprd) {
  1592. if (time_after(jiffies,
  1593. bf->bf_state.bfs_paprd_timestamp +
  1594. msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
  1595. dev_kfree_skb_any(skb);
  1596. else
  1597. complete(&sc->paprd_complete);
  1598. } else {
  1599. ath_debug_stat_tx(sc, bf, ts, txq);
  1600. ath_tx_complete(sc, skb, tx_flags,
  1601. bf->bf_state.bfs_ftype, txq);
  1602. }
  1603. /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
  1604. * accidentally reference it later.
  1605. */
  1606. bf->bf_mpdu = NULL;
  1607. /*
  1608. * Return the list of ath_buf of this mpdu to free queue
  1609. */
  1610. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  1611. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  1612. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  1613. }
  1614. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  1615. struct ath_tx_status *ts, int nframes, int nbad,
  1616. int txok, bool update_rc)
  1617. {
  1618. struct sk_buff *skb = bf->bf_mpdu;
  1619. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1620. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1621. struct ieee80211_hw *hw = sc->hw;
  1622. struct ath_hw *ah = sc->sc_ah;
  1623. u8 i, tx_rateindex;
  1624. if (txok)
  1625. tx_info->status.ack_signal = ts->ts_rssi;
  1626. tx_rateindex = ts->ts_rateindex;
  1627. WARN_ON(tx_rateindex >= hw->max_rates);
  1628. if (ts->ts_status & ATH9K_TXERR_FILT)
  1629. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1630. if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && update_rc) {
  1631. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  1632. BUG_ON(nbad > nframes);
  1633. tx_info->status.ampdu_len = nframes;
  1634. tx_info->status.ampdu_ack_len = nframes - nbad;
  1635. }
  1636. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  1637. (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0 && update_rc) {
  1638. /*
  1639. * If an underrun error is seen assume it as an excessive
  1640. * retry only if max frame trigger level has been reached
  1641. * (2 KB for single stream, and 4 KB for dual stream).
  1642. * Adjust the long retry as if the frame was tried
  1643. * hw->max_rate_tries times to affect how rate control updates
  1644. * PER for the failed rate.
  1645. * In case of congestion on the bus penalizing this type of
  1646. * underruns should help hardware actually transmit new frames
  1647. * successfully by eventually preferring slower rates.
  1648. * This itself should also alleviate congestion on the bus.
  1649. */
  1650. if (ieee80211_is_data(hdr->frame_control) &&
  1651. (ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
  1652. ATH9K_TX_DELIM_UNDERRUN)) &&
  1653. ah->tx_trig_level >= sc->sc_ah->caps.tx_triglevel_max)
  1654. tx_info->status.rates[tx_rateindex].count =
  1655. hw->max_rate_tries;
  1656. }
  1657. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  1658. tx_info->status.rates[i].count = 0;
  1659. tx_info->status.rates[i].idx = -1;
  1660. }
  1661. tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
  1662. }
  1663. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  1664. {
  1665. struct ath_hw *ah = sc->sc_ah;
  1666. struct ath_common *common = ath9k_hw_common(ah);
  1667. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  1668. struct list_head bf_head;
  1669. struct ath_desc *ds;
  1670. struct ath_tx_status ts;
  1671. int txok;
  1672. int status;
  1673. ath_dbg(common, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
  1674. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  1675. txq->axq_link);
  1676. for (;;) {
  1677. spin_lock_bh(&txq->axq_lock);
  1678. if (list_empty(&txq->axq_q)) {
  1679. txq->axq_link = NULL;
  1680. if (sc->sc_flags & SC_OP_TXAGGR)
  1681. ath_txq_schedule(sc, txq);
  1682. spin_unlock_bh(&txq->axq_lock);
  1683. break;
  1684. }
  1685. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  1686. /*
  1687. * There is a race condition that a BH gets scheduled
  1688. * after sw writes TxE and before hw re-load the last
  1689. * descriptor to get the newly chained one.
  1690. * Software must keep the last DONE descriptor as a
  1691. * holding descriptor - software does so by marking
  1692. * it with the STALE flag.
  1693. */
  1694. bf_held = NULL;
  1695. if (bf->bf_stale) {
  1696. bf_held = bf;
  1697. if (list_is_last(&bf_held->list, &txq->axq_q)) {
  1698. spin_unlock_bh(&txq->axq_lock);
  1699. break;
  1700. } else {
  1701. bf = list_entry(bf_held->list.next,
  1702. struct ath_buf, list);
  1703. }
  1704. }
  1705. lastbf = bf->bf_lastbf;
  1706. ds = lastbf->bf_desc;
  1707. memset(&ts, 0, sizeof(ts));
  1708. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  1709. if (status == -EINPROGRESS) {
  1710. spin_unlock_bh(&txq->axq_lock);
  1711. break;
  1712. }
  1713. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  1714. /*
  1715. * Remove ath_buf's of the same transmit unit from txq,
  1716. * however leave the last descriptor back as the holding
  1717. * descriptor for hw.
  1718. */
  1719. lastbf->bf_stale = true;
  1720. INIT_LIST_HEAD(&bf_head);
  1721. if (!list_is_singular(&lastbf->list))
  1722. list_cut_position(&bf_head,
  1723. &txq->axq_q, lastbf->list.prev);
  1724. txq->axq_depth--;
  1725. txok = !(ts.ts_status & ATH9K_TXERR_MASK);
  1726. txq->axq_tx_inprogress = false;
  1727. if (bf_held)
  1728. list_del(&bf_held->list);
  1729. if (bf_is_ampdu_not_probing(bf))
  1730. txq->axq_ampdu_depth--;
  1731. spin_unlock_bh(&txq->axq_lock);
  1732. if (bf_held)
  1733. ath_tx_return_buffer(sc, bf_held);
  1734. if (!bf_isampdu(bf)) {
  1735. /*
  1736. * This frame is sent out as a single frame.
  1737. * Use hardware retry status for this frame.
  1738. */
  1739. if (ts.ts_status & ATH9K_TXERR_XRETRY)
  1740. bf->bf_state.bf_type |= BUF_XRETRY;
  1741. ath_tx_rc_status(sc, bf, &ts, 1, txok ? 0 : 1, txok, true);
  1742. }
  1743. if (bf_isampdu(bf))
  1744. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, txok,
  1745. true);
  1746. else
  1747. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, txok, 0);
  1748. spin_lock_bh(&txq->axq_lock);
  1749. if (sc->sc_flags & SC_OP_TXAGGR)
  1750. ath_txq_schedule(sc, txq);
  1751. spin_unlock_bh(&txq->axq_lock);
  1752. }
  1753. }
  1754. static void ath_hw_pll_work(struct work_struct *work)
  1755. {
  1756. struct ath_softc *sc = container_of(work, struct ath_softc,
  1757. hw_pll_work.work);
  1758. static int count;
  1759. if (AR_SREV_9485(sc->sc_ah)) {
  1760. if (ar9003_get_pll_sqsum_dvc(sc->sc_ah) >= 0x40000) {
  1761. count++;
  1762. if (count == 3) {
  1763. /* Rx is hung for more than 500ms. Reset it */
  1764. ath_reset(sc, true);
  1765. count = 0;
  1766. }
  1767. } else
  1768. count = 0;
  1769. ieee80211_queue_delayed_work(sc->hw, &sc->hw_pll_work, HZ/5);
  1770. }
  1771. }
  1772. static void ath_tx_complete_poll_work(struct work_struct *work)
  1773. {
  1774. struct ath_softc *sc = container_of(work, struct ath_softc,
  1775. tx_complete_work.work);
  1776. struct ath_txq *txq;
  1777. int i;
  1778. bool needreset = false;
  1779. #ifdef CONFIG_ATH9K_DEBUGFS
  1780. sc->tx_complete_poll_work_seen++;
  1781. #endif
  1782. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1783. if (ATH_TXQ_SETUP(sc, i)) {
  1784. txq = &sc->tx.txq[i];
  1785. spin_lock_bh(&txq->axq_lock);
  1786. if (txq->axq_depth) {
  1787. if (txq->axq_tx_inprogress) {
  1788. needreset = true;
  1789. spin_unlock_bh(&txq->axq_lock);
  1790. break;
  1791. } else {
  1792. txq->axq_tx_inprogress = true;
  1793. }
  1794. } else {
  1795. /* If the queue has pending buffers, then it
  1796. * should be doing tx work (and have axq_depth).
  1797. * Shouldn't get to this state I think..but
  1798. * we do.
  1799. */
  1800. if (!(sc->sc_flags & (SC_OP_OFFCHANNEL)) &&
  1801. (txq->pending_frames > 0 ||
  1802. !list_empty(&txq->axq_acq) ||
  1803. txq->stopped)) {
  1804. ath_err(ath9k_hw_common(sc->sc_ah),
  1805. "txq: %p axq_qnum: %u,"
  1806. " mac80211_qnum: %i"
  1807. " axq_link: %p"
  1808. " pending frames: %i"
  1809. " axq_acq empty: %i"
  1810. " stopped: %i"
  1811. " axq_depth: 0 Attempting to"
  1812. " restart tx logic.\n",
  1813. txq, txq->axq_qnum,
  1814. txq->mac80211_qnum,
  1815. txq->axq_link,
  1816. txq->pending_frames,
  1817. list_empty(&txq->axq_acq),
  1818. txq->stopped);
  1819. ath_txq_schedule(sc, txq);
  1820. }
  1821. }
  1822. spin_unlock_bh(&txq->axq_lock);
  1823. }
  1824. if (needreset) {
  1825. ath_dbg(ath9k_hw_common(sc->sc_ah), ATH_DBG_RESET,
  1826. "tx hung, resetting the chip\n");
  1827. ath_reset(sc, true);
  1828. }
  1829. ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
  1830. msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
  1831. }
  1832. void ath_tx_tasklet(struct ath_softc *sc)
  1833. {
  1834. int i;
  1835. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
  1836. ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
  1837. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1838. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  1839. ath_tx_processq(sc, &sc->tx.txq[i]);
  1840. }
  1841. }
  1842. void ath_tx_edma_tasklet(struct ath_softc *sc)
  1843. {
  1844. struct ath_tx_status txs;
  1845. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1846. struct ath_hw *ah = sc->sc_ah;
  1847. struct ath_txq *txq;
  1848. struct ath_buf *bf, *lastbf;
  1849. struct list_head bf_head;
  1850. int status;
  1851. int txok;
  1852. for (;;) {
  1853. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&txs);
  1854. if (status == -EINPROGRESS)
  1855. break;
  1856. if (status == -EIO) {
  1857. ath_dbg(common, ATH_DBG_XMIT,
  1858. "Error processing tx status\n");
  1859. break;
  1860. }
  1861. /* Skip beacon completions */
  1862. if (txs.qid == sc->beacon.beaconq)
  1863. continue;
  1864. txq = &sc->tx.txq[txs.qid];
  1865. spin_lock_bh(&txq->axq_lock);
  1866. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1867. spin_unlock_bh(&txq->axq_lock);
  1868. return;
  1869. }
  1870. bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
  1871. struct ath_buf, list);
  1872. lastbf = bf->bf_lastbf;
  1873. INIT_LIST_HEAD(&bf_head);
  1874. list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
  1875. &lastbf->list);
  1876. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  1877. txq->axq_depth--;
  1878. txq->axq_tx_inprogress = false;
  1879. if (bf_is_ampdu_not_probing(bf))
  1880. txq->axq_ampdu_depth--;
  1881. spin_unlock_bh(&txq->axq_lock);
  1882. txok = !(txs.ts_status & ATH9K_TXERR_MASK);
  1883. if (!bf_isampdu(bf)) {
  1884. if (txs.ts_status & ATH9K_TXERR_XRETRY)
  1885. bf->bf_state.bf_type |= BUF_XRETRY;
  1886. ath_tx_rc_status(sc, bf, &txs, 1, txok ? 0 : 1, txok, true);
  1887. }
  1888. if (bf_isampdu(bf))
  1889. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &txs,
  1890. txok, true);
  1891. else
  1892. ath_tx_complete_buf(sc, bf, txq, &bf_head,
  1893. &txs, txok, 0);
  1894. spin_lock_bh(&txq->axq_lock);
  1895. if (!list_empty(&txq->txq_fifo_pending)) {
  1896. INIT_LIST_HEAD(&bf_head);
  1897. bf = list_first_entry(&txq->txq_fifo_pending,
  1898. struct ath_buf, list);
  1899. list_cut_position(&bf_head,
  1900. &txq->txq_fifo_pending,
  1901. &bf->bf_lastbf->list);
  1902. ath_tx_txqaddbuf(sc, txq, &bf_head);
  1903. } else if (sc->sc_flags & SC_OP_TXAGGR)
  1904. ath_txq_schedule(sc, txq);
  1905. spin_unlock_bh(&txq->axq_lock);
  1906. }
  1907. }
  1908. /*****************/
  1909. /* Init, Cleanup */
  1910. /*****************/
  1911. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  1912. {
  1913. struct ath_descdma *dd = &sc->txsdma;
  1914. u8 txs_len = sc->sc_ah->caps.txs_len;
  1915. dd->dd_desc_len = size * txs_len;
  1916. dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
  1917. &dd->dd_desc_paddr, GFP_KERNEL);
  1918. if (!dd->dd_desc)
  1919. return -ENOMEM;
  1920. return 0;
  1921. }
  1922. static int ath_tx_edma_init(struct ath_softc *sc)
  1923. {
  1924. int err;
  1925. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  1926. if (!err)
  1927. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  1928. sc->txsdma.dd_desc_paddr,
  1929. ATH_TXSTATUS_RING_SIZE);
  1930. return err;
  1931. }
  1932. static void ath_tx_edma_cleanup(struct ath_softc *sc)
  1933. {
  1934. struct ath_descdma *dd = &sc->txsdma;
  1935. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  1936. dd->dd_desc_paddr);
  1937. }
  1938. int ath_tx_init(struct ath_softc *sc, int nbufs)
  1939. {
  1940. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1941. int error = 0;
  1942. spin_lock_init(&sc->tx.txbuflock);
  1943. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  1944. "tx", nbufs, 1, 1);
  1945. if (error != 0) {
  1946. ath_err(common,
  1947. "Failed to allocate tx descriptors: %d\n", error);
  1948. goto err;
  1949. }
  1950. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  1951. "beacon", ATH_BCBUF, 1, 1);
  1952. if (error != 0) {
  1953. ath_err(common,
  1954. "Failed to allocate beacon descriptors: %d\n", error);
  1955. goto err;
  1956. }
  1957. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  1958. INIT_DELAYED_WORK(&sc->hw_pll_work, ath_hw_pll_work);
  1959. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1960. error = ath_tx_edma_init(sc);
  1961. if (error)
  1962. goto err;
  1963. }
  1964. err:
  1965. if (error != 0)
  1966. ath_tx_cleanup(sc);
  1967. return error;
  1968. }
  1969. void ath_tx_cleanup(struct ath_softc *sc)
  1970. {
  1971. if (sc->beacon.bdma.dd_desc_len != 0)
  1972. ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
  1973. if (sc->tx.txdma.dd_desc_len != 0)
  1974. ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
  1975. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  1976. ath_tx_edma_cleanup(sc);
  1977. }
  1978. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  1979. {
  1980. struct ath_atx_tid *tid;
  1981. struct ath_atx_ac *ac;
  1982. int tidno, acno;
  1983. for (tidno = 0, tid = &an->tid[tidno];
  1984. tidno < WME_NUM_TID;
  1985. tidno++, tid++) {
  1986. tid->an = an;
  1987. tid->tidno = tidno;
  1988. tid->seq_start = tid->seq_next = 0;
  1989. tid->baw_size = WME_MAX_BA;
  1990. tid->baw_head = tid->baw_tail = 0;
  1991. tid->sched = false;
  1992. tid->paused = false;
  1993. tid->state &= ~AGGR_CLEANUP;
  1994. INIT_LIST_HEAD(&tid->buf_q);
  1995. acno = TID_TO_WME_AC(tidno);
  1996. tid->ac = &an->ac[acno];
  1997. tid->state &= ~AGGR_ADDBA_COMPLETE;
  1998. tid->state &= ~AGGR_ADDBA_PROGRESS;
  1999. }
  2000. for (acno = 0, ac = &an->ac[acno];
  2001. acno < WME_NUM_AC; acno++, ac++) {
  2002. ac->sched = false;
  2003. ac->txq = sc->tx.txq_map[acno];
  2004. INIT_LIST_HEAD(&ac->tid_q);
  2005. }
  2006. }
  2007. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  2008. {
  2009. struct ath_atx_ac *ac;
  2010. struct ath_atx_tid *tid;
  2011. struct ath_txq *txq;
  2012. int tidno;
  2013. for (tidno = 0, tid = &an->tid[tidno];
  2014. tidno < WME_NUM_TID; tidno++, tid++) {
  2015. ac = tid->ac;
  2016. txq = ac->txq;
  2017. spin_lock_bh(&txq->axq_lock);
  2018. if (tid->sched) {
  2019. list_del(&tid->list);
  2020. tid->sched = false;
  2021. }
  2022. if (ac->sched) {
  2023. list_del(&ac->list);
  2024. tid->ac->sched = false;
  2025. }
  2026. ath_tid_drain(sc, txq, tid);
  2027. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2028. tid->state &= ~AGGR_CLEANUP;
  2029. spin_unlock_bh(&txq->axq_lock);
  2030. }
  2031. }