init.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/slab.h>
  17. #include "ath9k.h"
  18. static char *dev_info = "ath9k";
  19. MODULE_AUTHOR("Atheros Communications");
  20. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  21. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  22. MODULE_LICENSE("Dual BSD/GPL");
  23. static unsigned int ath9k_debug = ATH_DBG_DEFAULT;
  24. module_param_named(debug, ath9k_debug, uint, 0);
  25. MODULE_PARM_DESC(debug, "Debugging mask");
  26. int ath9k_modparam_nohwcrypt;
  27. module_param_named(nohwcrypt, ath9k_modparam_nohwcrypt, int, 0444);
  28. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
  29. int led_blink;
  30. module_param_named(blink, led_blink, int, 0444);
  31. MODULE_PARM_DESC(blink, "Enable LED blink on activity");
  32. static int ath9k_btcoex_enable;
  33. module_param_named(btcoex_enable, ath9k_btcoex_enable, int, 0444);
  34. MODULE_PARM_DESC(btcoex_enable, "Enable wifi-BT coexistence");
  35. bool is_ath9k_unloaded;
  36. /* We use the hw_value as an index into our private channel structure */
  37. #define CHAN2G(_freq, _idx) { \
  38. .band = IEEE80211_BAND_2GHZ, \
  39. .center_freq = (_freq), \
  40. .hw_value = (_idx), \
  41. .max_power = 20, \
  42. }
  43. #define CHAN5G(_freq, _idx) { \
  44. .band = IEEE80211_BAND_5GHZ, \
  45. .center_freq = (_freq), \
  46. .hw_value = (_idx), \
  47. .max_power = 20, \
  48. }
  49. /* Some 2 GHz radios are actually tunable on 2312-2732
  50. * on 5 MHz steps, we support the channels which we know
  51. * we have calibration data for all cards though to make
  52. * this static */
  53. static const struct ieee80211_channel ath9k_2ghz_chantable[] = {
  54. CHAN2G(2412, 0), /* Channel 1 */
  55. CHAN2G(2417, 1), /* Channel 2 */
  56. CHAN2G(2422, 2), /* Channel 3 */
  57. CHAN2G(2427, 3), /* Channel 4 */
  58. CHAN2G(2432, 4), /* Channel 5 */
  59. CHAN2G(2437, 5), /* Channel 6 */
  60. CHAN2G(2442, 6), /* Channel 7 */
  61. CHAN2G(2447, 7), /* Channel 8 */
  62. CHAN2G(2452, 8), /* Channel 9 */
  63. CHAN2G(2457, 9), /* Channel 10 */
  64. CHAN2G(2462, 10), /* Channel 11 */
  65. CHAN2G(2467, 11), /* Channel 12 */
  66. CHAN2G(2472, 12), /* Channel 13 */
  67. CHAN2G(2484, 13), /* Channel 14 */
  68. };
  69. /* Some 5 GHz radios are actually tunable on XXXX-YYYY
  70. * on 5 MHz steps, we support the channels which we know
  71. * we have calibration data for all cards though to make
  72. * this static */
  73. static const struct ieee80211_channel ath9k_5ghz_chantable[] = {
  74. /* _We_ call this UNII 1 */
  75. CHAN5G(5180, 14), /* Channel 36 */
  76. CHAN5G(5200, 15), /* Channel 40 */
  77. CHAN5G(5220, 16), /* Channel 44 */
  78. CHAN5G(5240, 17), /* Channel 48 */
  79. /* _We_ call this UNII 2 */
  80. CHAN5G(5260, 18), /* Channel 52 */
  81. CHAN5G(5280, 19), /* Channel 56 */
  82. CHAN5G(5300, 20), /* Channel 60 */
  83. CHAN5G(5320, 21), /* Channel 64 */
  84. /* _We_ call this "Middle band" */
  85. CHAN5G(5500, 22), /* Channel 100 */
  86. CHAN5G(5520, 23), /* Channel 104 */
  87. CHAN5G(5540, 24), /* Channel 108 */
  88. CHAN5G(5560, 25), /* Channel 112 */
  89. CHAN5G(5580, 26), /* Channel 116 */
  90. CHAN5G(5600, 27), /* Channel 120 */
  91. CHAN5G(5620, 28), /* Channel 124 */
  92. CHAN5G(5640, 29), /* Channel 128 */
  93. CHAN5G(5660, 30), /* Channel 132 */
  94. CHAN5G(5680, 31), /* Channel 136 */
  95. CHAN5G(5700, 32), /* Channel 140 */
  96. /* _We_ call this UNII 3 */
  97. CHAN5G(5745, 33), /* Channel 149 */
  98. CHAN5G(5765, 34), /* Channel 153 */
  99. CHAN5G(5785, 35), /* Channel 157 */
  100. CHAN5G(5805, 36), /* Channel 161 */
  101. CHAN5G(5825, 37), /* Channel 165 */
  102. };
  103. /* Atheros hardware rate code addition for short premble */
  104. #define SHPCHECK(__hw_rate, __flags) \
  105. ((__flags & IEEE80211_RATE_SHORT_PREAMBLE) ? (__hw_rate | 0x04 ) : 0)
  106. #define RATE(_bitrate, _hw_rate, _flags) { \
  107. .bitrate = (_bitrate), \
  108. .flags = (_flags), \
  109. .hw_value = (_hw_rate), \
  110. .hw_value_short = (SHPCHECK(_hw_rate, _flags)) \
  111. }
  112. static struct ieee80211_rate ath9k_legacy_rates[] = {
  113. RATE(10, 0x1b, 0),
  114. RATE(20, 0x1a, IEEE80211_RATE_SHORT_PREAMBLE),
  115. RATE(55, 0x19, IEEE80211_RATE_SHORT_PREAMBLE),
  116. RATE(110, 0x18, IEEE80211_RATE_SHORT_PREAMBLE),
  117. RATE(60, 0x0b, 0),
  118. RATE(90, 0x0f, 0),
  119. RATE(120, 0x0a, 0),
  120. RATE(180, 0x0e, 0),
  121. RATE(240, 0x09, 0),
  122. RATE(360, 0x0d, 0),
  123. RATE(480, 0x08, 0),
  124. RATE(540, 0x0c, 0),
  125. };
  126. #ifdef CONFIG_MAC80211_LEDS
  127. static const struct ieee80211_tpt_blink ath9k_tpt_blink[] = {
  128. { .throughput = 0 * 1024, .blink_time = 334 },
  129. { .throughput = 1 * 1024, .blink_time = 260 },
  130. { .throughput = 5 * 1024, .blink_time = 220 },
  131. { .throughput = 10 * 1024, .blink_time = 190 },
  132. { .throughput = 20 * 1024, .blink_time = 170 },
  133. { .throughput = 50 * 1024, .blink_time = 150 },
  134. { .throughput = 70 * 1024, .blink_time = 130 },
  135. { .throughput = 100 * 1024, .blink_time = 110 },
  136. { .throughput = 200 * 1024, .blink_time = 80 },
  137. { .throughput = 300 * 1024, .blink_time = 50 },
  138. };
  139. #endif
  140. static void ath9k_deinit_softc(struct ath_softc *sc);
  141. /*
  142. * Read and write, they both share the same lock. We do this to serialize
  143. * reads and writes on Atheros 802.11n PCI devices only. This is required
  144. * as the FIFO on these devices can only accept sanely 2 requests.
  145. */
  146. static void ath9k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
  147. {
  148. struct ath_hw *ah = (struct ath_hw *) hw_priv;
  149. struct ath_common *common = ath9k_hw_common(ah);
  150. struct ath_softc *sc = (struct ath_softc *) common->priv;
  151. if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
  152. unsigned long flags;
  153. spin_lock_irqsave(&sc->sc_serial_rw, flags);
  154. iowrite32(val, sc->mem + reg_offset);
  155. spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
  156. } else
  157. iowrite32(val, sc->mem + reg_offset);
  158. }
  159. static unsigned int ath9k_ioread32(void *hw_priv, u32 reg_offset)
  160. {
  161. struct ath_hw *ah = (struct ath_hw *) hw_priv;
  162. struct ath_common *common = ath9k_hw_common(ah);
  163. struct ath_softc *sc = (struct ath_softc *) common->priv;
  164. u32 val;
  165. if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
  166. unsigned long flags;
  167. spin_lock_irqsave(&sc->sc_serial_rw, flags);
  168. val = ioread32(sc->mem + reg_offset);
  169. spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
  170. } else
  171. val = ioread32(sc->mem + reg_offset);
  172. return val;
  173. }
  174. static const struct ath_ops ath9k_common_ops = {
  175. .read = ath9k_ioread32,
  176. .write = ath9k_iowrite32,
  177. };
  178. /**************************/
  179. /* Initialization */
  180. /**************************/
  181. static void setup_ht_cap(struct ath_softc *sc,
  182. struct ieee80211_sta_ht_cap *ht_info)
  183. {
  184. struct ath_hw *ah = sc->sc_ah;
  185. struct ath_common *common = ath9k_hw_common(ah);
  186. u8 tx_streams, rx_streams;
  187. int i, max_streams;
  188. ht_info->ht_supported = true;
  189. ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
  190. IEEE80211_HT_CAP_SM_PS |
  191. IEEE80211_HT_CAP_SGI_40 |
  192. IEEE80211_HT_CAP_DSSSCCK40;
  193. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_LDPC)
  194. ht_info->cap |= IEEE80211_HT_CAP_LDPC_CODING;
  195. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_SGI_20)
  196. ht_info->cap |= IEEE80211_HT_CAP_SGI_20;
  197. ht_info->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
  198. ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
  199. if (AR_SREV_9485(ah))
  200. max_streams = 1;
  201. else if (AR_SREV_9300_20_OR_LATER(ah))
  202. max_streams = 3;
  203. else
  204. max_streams = 2;
  205. if (AR_SREV_9280_20_OR_LATER(ah)) {
  206. if (max_streams >= 2)
  207. ht_info->cap |= IEEE80211_HT_CAP_TX_STBC;
  208. ht_info->cap |= (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
  209. }
  210. /* set up supported mcs set */
  211. memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
  212. tx_streams = ath9k_cmn_count_streams(common->tx_chainmask, max_streams);
  213. rx_streams = ath9k_cmn_count_streams(common->rx_chainmask, max_streams);
  214. ath_dbg(common, ATH_DBG_CONFIG,
  215. "TX streams %d, RX streams: %d\n",
  216. tx_streams, rx_streams);
  217. if (tx_streams != rx_streams) {
  218. ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
  219. ht_info->mcs.tx_params |= ((tx_streams - 1) <<
  220. IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
  221. }
  222. for (i = 0; i < rx_streams; i++)
  223. ht_info->mcs.rx_mask[i] = 0xff;
  224. ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
  225. }
  226. static int ath9k_reg_notifier(struct wiphy *wiphy,
  227. struct regulatory_request *request)
  228. {
  229. struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
  230. struct ath_softc *sc = hw->priv;
  231. struct ath_regulatory *reg = ath9k_hw_regulatory(sc->sc_ah);
  232. return ath_reg_notifier_apply(wiphy, request, reg);
  233. }
  234. /*
  235. * This function will allocate both the DMA descriptor structure, and the
  236. * buffers it contains. These are used to contain the descriptors used
  237. * by the system.
  238. */
  239. int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
  240. struct list_head *head, const char *name,
  241. int nbuf, int ndesc, bool is_tx)
  242. {
  243. #define DS2PHYS(_dd, _ds) \
  244. ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
  245. #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
  246. #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
  247. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  248. u8 *ds;
  249. struct ath_buf *bf;
  250. int i, bsize, error, desc_len;
  251. ath_dbg(common, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
  252. name, nbuf, ndesc);
  253. INIT_LIST_HEAD(head);
  254. if (is_tx)
  255. desc_len = sc->sc_ah->caps.tx_desc_len;
  256. else
  257. desc_len = sizeof(struct ath_desc);
  258. /* ath_desc must be a multiple of DWORDs */
  259. if ((desc_len % 4) != 0) {
  260. ath_err(common, "ath_desc not DWORD aligned\n");
  261. BUG_ON((desc_len % 4) != 0);
  262. error = -ENOMEM;
  263. goto fail;
  264. }
  265. dd->dd_desc_len = desc_len * nbuf * ndesc;
  266. /*
  267. * Need additional DMA memory because we can't use
  268. * descriptors that cross the 4K page boundary. Assume
  269. * one skipped descriptor per 4K page.
  270. */
  271. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
  272. u32 ndesc_skipped =
  273. ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
  274. u32 dma_len;
  275. while (ndesc_skipped) {
  276. dma_len = ndesc_skipped * desc_len;
  277. dd->dd_desc_len += dma_len;
  278. ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
  279. }
  280. }
  281. /* allocate descriptors */
  282. dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
  283. &dd->dd_desc_paddr, GFP_KERNEL);
  284. if (dd->dd_desc == NULL) {
  285. error = -ENOMEM;
  286. goto fail;
  287. }
  288. ds = (u8 *) dd->dd_desc;
  289. ath_dbg(common, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
  290. name, ds, (u32) dd->dd_desc_len,
  291. ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
  292. /* allocate buffers */
  293. bsize = sizeof(struct ath_buf) * nbuf;
  294. bf = kzalloc(bsize, GFP_KERNEL);
  295. if (bf == NULL) {
  296. error = -ENOMEM;
  297. goto fail2;
  298. }
  299. dd->dd_bufptr = bf;
  300. for (i = 0; i < nbuf; i++, bf++, ds += (desc_len * ndesc)) {
  301. bf->bf_desc = ds;
  302. bf->bf_daddr = DS2PHYS(dd, ds);
  303. if (!(sc->sc_ah->caps.hw_caps &
  304. ATH9K_HW_CAP_4KB_SPLITTRANS)) {
  305. /*
  306. * Skip descriptor addresses which can cause 4KB
  307. * boundary crossing (addr + length) with a 32 dword
  308. * descriptor fetch.
  309. */
  310. while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
  311. BUG_ON((caddr_t) bf->bf_desc >=
  312. ((caddr_t) dd->dd_desc +
  313. dd->dd_desc_len));
  314. ds += (desc_len * ndesc);
  315. bf->bf_desc = ds;
  316. bf->bf_daddr = DS2PHYS(dd, ds);
  317. }
  318. }
  319. list_add_tail(&bf->list, head);
  320. }
  321. return 0;
  322. fail2:
  323. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  324. dd->dd_desc_paddr);
  325. fail:
  326. memset(dd, 0, sizeof(*dd));
  327. return error;
  328. #undef ATH_DESC_4KB_BOUND_CHECK
  329. #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
  330. #undef DS2PHYS
  331. }
  332. void ath9k_init_crypto(struct ath_softc *sc)
  333. {
  334. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  335. int i = 0;
  336. /* Get the hardware key cache size. */
  337. common->keymax = sc->sc_ah->caps.keycache_size;
  338. if (common->keymax > ATH_KEYMAX) {
  339. ath_dbg(common, ATH_DBG_ANY,
  340. "Warning, using only %u entries in %u key cache\n",
  341. ATH_KEYMAX, common->keymax);
  342. common->keymax = ATH_KEYMAX;
  343. }
  344. /*
  345. * Reset the key cache since some parts do not
  346. * reset the contents on initial power up.
  347. */
  348. for (i = 0; i < common->keymax; i++)
  349. ath_hw_keyreset(common, (u16) i);
  350. /*
  351. * Check whether the separate key cache entries
  352. * are required to handle both tx+rx MIC keys.
  353. * With split mic keys the number of stations is limited
  354. * to 27 otherwise 59.
  355. */
  356. if (sc->sc_ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA)
  357. common->crypt_caps |= ATH_CRYPT_CAP_MIC_COMBINED;
  358. }
  359. static int ath9k_init_btcoex(struct ath_softc *sc)
  360. {
  361. struct ath_txq *txq;
  362. int r;
  363. switch (sc->sc_ah->btcoex_hw.scheme) {
  364. case ATH_BTCOEX_CFG_NONE:
  365. break;
  366. case ATH_BTCOEX_CFG_2WIRE:
  367. ath9k_hw_btcoex_init_2wire(sc->sc_ah);
  368. break;
  369. case ATH_BTCOEX_CFG_3WIRE:
  370. ath9k_hw_btcoex_init_3wire(sc->sc_ah);
  371. r = ath_init_btcoex_timer(sc);
  372. if (r)
  373. return -1;
  374. txq = sc->tx.txq_map[WME_AC_BE];
  375. ath9k_hw_init_btcoex_hw(sc->sc_ah, txq->axq_qnum);
  376. sc->btcoex.bt_stomp_type = ATH_BTCOEX_STOMP_LOW;
  377. break;
  378. default:
  379. WARN_ON(1);
  380. break;
  381. }
  382. return 0;
  383. }
  384. static int ath9k_init_queues(struct ath_softc *sc)
  385. {
  386. int i = 0;
  387. sc->beacon.beaconq = ath9k_hw_beaconq_setup(sc->sc_ah);
  388. sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
  389. sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
  390. ath_cabq_update(sc);
  391. for (i = 0; i < WME_NUM_AC; i++) {
  392. sc->tx.txq_map[i] = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, i);
  393. sc->tx.txq_map[i]->mac80211_qnum = i;
  394. }
  395. return 0;
  396. }
  397. static int ath9k_init_channels_rates(struct ath_softc *sc)
  398. {
  399. void *channels;
  400. BUILD_BUG_ON(ARRAY_SIZE(ath9k_2ghz_chantable) +
  401. ARRAY_SIZE(ath9k_5ghz_chantable) !=
  402. ATH9K_NUM_CHANNELS);
  403. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ) {
  404. channels = kmemdup(ath9k_2ghz_chantable,
  405. sizeof(ath9k_2ghz_chantable), GFP_KERNEL);
  406. if (!channels)
  407. return -ENOMEM;
  408. sc->sbands[IEEE80211_BAND_2GHZ].channels = channels;
  409. sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
  410. sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
  411. ARRAY_SIZE(ath9k_2ghz_chantable);
  412. sc->sbands[IEEE80211_BAND_2GHZ].bitrates = ath9k_legacy_rates;
  413. sc->sbands[IEEE80211_BAND_2GHZ].n_bitrates =
  414. ARRAY_SIZE(ath9k_legacy_rates);
  415. }
  416. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ) {
  417. channels = kmemdup(ath9k_5ghz_chantable,
  418. sizeof(ath9k_5ghz_chantable), GFP_KERNEL);
  419. if (!channels) {
  420. if (sc->sbands[IEEE80211_BAND_2GHZ].channels)
  421. kfree(sc->sbands[IEEE80211_BAND_2GHZ].channels);
  422. return -ENOMEM;
  423. }
  424. sc->sbands[IEEE80211_BAND_5GHZ].channels = channels;
  425. sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
  426. sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
  427. ARRAY_SIZE(ath9k_5ghz_chantable);
  428. sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
  429. ath9k_legacy_rates + 4;
  430. sc->sbands[IEEE80211_BAND_5GHZ].n_bitrates =
  431. ARRAY_SIZE(ath9k_legacy_rates) - 4;
  432. }
  433. return 0;
  434. }
  435. static void ath9k_init_misc(struct ath_softc *sc)
  436. {
  437. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  438. int i = 0;
  439. setup_timer(&common->ani.timer, ath_ani_calibrate, (unsigned long)sc);
  440. sc->config.txpowlimit = ATH_TXPOWER_MAX;
  441. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
  442. sc->sc_flags |= SC_OP_TXAGGR;
  443. sc->sc_flags |= SC_OP_RXAGGR;
  444. }
  445. common->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
  446. common->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
  447. ath9k_hw_set_diversity(sc->sc_ah, true);
  448. sc->rx.defant = ath9k_hw_getdefantenna(sc->sc_ah);
  449. memcpy(common->bssidmask, ath_bcast_mac, ETH_ALEN);
  450. sc->beacon.slottime = ATH9K_SLOT_TIME_9;
  451. for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++)
  452. sc->beacon.bslot[i] = NULL;
  453. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB)
  454. sc->ant_comb.count = ATH_ANT_DIV_COMB_INIT_COUNT;
  455. }
  456. static int ath9k_init_softc(u16 devid, struct ath_softc *sc, u16 subsysid,
  457. const struct ath_bus_ops *bus_ops)
  458. {
  459. struct ath_hw *ah = NULL;
  460. struct ath_common *common;
  461. int ret = 0, i;
  462. int csz = 0;
  463. ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
  464. if (!ah)
  465. return -ENOMEM;
  466. ah->hw = sc->hw;
  467. ah->hw_version.devid = devid;
  468. ah->hw_version.subsysid = subsysid;
  469. sc->sc_ah = ah;
  470. if (!sc->dev->platform_data)
  471. ah->ah_flags |= AH_USE_EEPROM;
  472. common = ath9k_hw_common(ah);
  473. common->ops = &ath9k_common_ops;
  474. common->bus_ops = bus_ops;
  475. common->ah = ah;
  476. common->hw = sc->hw;
  477. common->priv = sc;
  478. common->debug_mask = ath9k_debug;
  479. common->btcoex_enabled = ath9k_btcoex_enable == 1;
  480. spin_lock_init(&common->cc_lock);
  481. spin_lock_init(&sc->sc_serial_rw);
  482. spin_lock_init(&sc->sc_pm_lock);
  483. mutex_init(&sc->mutex);
  484. #ifdef CONFIG_ATH9K_DEBUGFS
  485. spin_lock_init(&sc->nodes_lock);
  486. INIT_LIST_HEAD(&sc->nodes);
  487. #endif
  488. tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
  489. tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
  490. (unsigned long)sc);
  491. /*
  492. * Cache line size is used to size and align various
  493. * structures used to communicate with the hardware.
  494. */
  495. ath_read_cachesize(common, &csz);
  496. common->cachelsz = csz << 2; /* convert to bytes */
  497. /* Initializes the hardware for all supported chipsets */
  498. ret = ath9k_hw_init(ah);
  499. if (ret)
  500. goto err_hw;
  501. ret = ath9k_init_queues(sc);
  502. if (ret)
  503. goto err_queues;
  504. ret = ath9k_init_btcoex(sc);
  505. if (ret)
  506. goto err_btcoex;
  507. ret = ath9k_init_channels_rates(sc);
  508. if (ret)
  509. goto err_btcoex;
  510. ath9k_init_crypto(sc);
  511. ath9k_init_misc(sc);
  512. return 0;
  513. err_btcoex:
  514. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  515. if (ATH_TXQ_SETUP(sc, i))
  516. ath_tx_cleanupq(sc, &sc->tx.txq[i]);
  517. err_queues:
  518. ath9k_hw_deinit(ah);
  519. err_hw:
  520. kfree(ah);
  521. sc->sc_ah = NULL;
  522. return ret;
  523. }
  524. static void ath9k_init_band_txpower(struct ath_softc *sc, int band)
  525. {
  526. struct ieee80211_supported_band *sband;
  527. struct ieee80211_channel *chan;
  528. struct ath_hw *ah = sc->sc_ah;
  529. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  530. int i;
  531. sband = &sc->sbands[band];
  532. for (i = 0; i < sband->n_channels; i++) {
  533. chan = &sband->channels[i];
  534. ah->curchan = &ah->channels[chan->hw_value];
  535. ath9k_cmn_update_ichannel(ah->curchan, chan, NL80211_CHAN_HT20);
  536. ath9k_hw_set_txpowerlimit(ah, MAX_RATE_POWER, true);
  537. chan->max_power = reg->max_power_level / 2;
  538. }
  539. }
  540. static void ath9k_init_txpower_limits(struct ath_softc *sc)
  541. {
  542. struct ath_hw *ah = sc->sc_ah;
  543. struct ath9k_channel *curchan = ah->curchan;
  544. if (ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ)
  545. ath9k_init_band_txpower(sc, IEEE80211_BAND_2GHZ);
  546. if (ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ)
  547. ath9k_init_band_txpower(sc, IEEE80211_BAND_5GHZ);
  548. ah->curchan = curchan;
  549. }
  550. void ath9k_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
  551. {
  552. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  553. hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
  554. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  555. IEEE80211_HW_SIGNAL_DBM |
  556. IEEE80211_HW_SUPPORTS_PS |
  557. IEEE80211_HW_PS_NULLFUNC_STACK |
  558. IEEE80211_HW_SPECTRUM_MGMT |
  559. IEEE80211_HW_REPORTS_TX_ACK_STATUS;
  560. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
  561. hw->flags |= IEEE80211_HW_AMPDU_AGGREGATION;
  562. if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || ath9k_modparam_nohwcrypt)
  563. hw->flags |= IEEE80211_HW_MFP_CAPABLE;
  564. hw->wiphy->interface_modes =
  565. BIT(NL80211_IFTYPE_P2P_GO) |
  566. BIT(NL80211_IFTYPE_P2P_CLIENT) |
  567. BIT(NL80211_IFTYPE_AP) |
  568. BIT(NL80211_IFTYPE_WDS) |
  569. BIT(NL80211_IFTYPE_STATION) |
  570. BIT(NL80211_IFTYPE_ADHOC) |
  571. BIT(NL80211_IFTYPE_MESH_POINT);
  572. if (AR_SREV_5416(sc->sc_ah))
  573. hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
  574. hw->queues = 4;
  575. hw->max_rates = 4;
  576. hw->channel_change_time = 5000;
  577. hw->max_listen_interval = 10;
  578. hw->max_rate_tries = 10;
  579. hw->sta_data_size = sizeof(struct ath_node);
  580. hw->vif_data_size = sizeof(struct ath_vif);
  581. #ifdef CONFIG_ATH9K_RATE_CONTROL
  582. hw->rate_control_algorithm = "ath9k_rate_control";
  583. #endif
  584. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ)
  585. hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
  586. &sc->sbands[IEEE80211_BAND_2GHZ];
  587. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ)
  588. hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
  589. &sc->sbands[IEEE80211_BAND_5GHZ];
  590. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
  591. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ)
  592. setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
  593. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ)
  594. setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
  595. }
  596. SET_IEEE80211_PERM_ADDR(hw, common->macaddr);
  597. }
  598. int ath9k_init_device(u16 devid, struct ath_softc *sc, u16 subsysid,
  599. const struct ath_bus_ops *bus_ops)
  600. {
  601. struct ieee80211_hw *hw = sc->hw;
  602. struct ath_common *common;
  603. struct ath_hw *ah;
  604. int error = 0;
  605. struct ath_regulatory *reg;
  606. /* Bring up device */
  607. error = ath9k_init_softc(devid, sc, subsysid, bus_ops);
  608. if (error != 0)
  609. goto error_init;
  610. ah = sc->sc_ah;
  611. common = ath9k_hw_common(ah);
  612. ath9k_set_hw_capab(sc, hw);
  613. /* Initialize regulatory */
  614. error = ath_regd_init(&common->regulatory, sc->hw->wiphy,
  615. ath9k_reg_notifier);
  616. if (error)
  617. goto error_regd;
  618. reg = &common->regulatory;
  619. /* Setup TX DMA */
  620. error = ath_tx_init(sc, ATH_TXBUF);
  621. if (error != 0)
  622. goto error_tx;
  623. /* Setup RX DMA */
  624. error = ath_rx_init(sc, ATH_RXBUF);
  625. if (error != 0)
  626. goto error_rx;
  627. ath9k_init_txpower_limits(sc);
  628. #ifdef CONFIG_MAC80211_LEDS
  629. /* must be initialized before ieee80211_register_hw */
  630. sc->led_cdev.default_trigger = ieee80211_create_tpt_led_trigger(sc->hw,
  631. IEEE80211_TPT_LEDTRIG_FL_RADIO, ath9k_tpt_blink,
  632. ARRAY_SIZE(ath9k_tpt_blink));
  633. #endif
  634. /* Register with mac80211 */
  635. error = ieee80211_register_hw(hw);
  636. if (error)
  637. goto error_register;
  638. error = ath9k_init_debug(ah);
  639. if (error) {
  640. ath_err(common, "Unable to create debugfs files\n");
  641. goto error_world;
  642. }
  643. /* Handle world regulatory */
  644. if (!ath_is_world_regd(reg)) {
  645. error = regulatory_hint(hw->wiphy, reg->alpha2);
  646. if (error)
  647. goto error_world;
  648. }
  649. INIT_WORK(&sc->hw_check_work, ath_hw_check);
  650. INIT_WORK(&sc->paprd_work, ath_paprd_calibrate);
  651. sc->last_rssi = ATH_RSSI_DUMMY_MARKER;
  652. ath_init_leds(sc);
  653. ath_start_rfkill_poll(sc);
  654. return 0;
  655. error_world:
  656. ieee80211_unregister_hw(hw);
  657. error_register:
  658. ath_rx_cleanup(sc);
  659. error_rx:
  660. ath_tx_cleanup(sc);
  661. error_tx:
  662. /* Nothing */
  663. error_regd:
  664. ath9k_deinit_softc(sc);
  665. error_init:
  666. return error;
  667. }
  668. /*****************************/
  669. /* De-Initialization */
  670. /*****************************/
  671. static void ath9k_deinit_softc(struct ath_softc *sc)
  672. {
  673. int i = 0;
  674. if (sc->sbands[IEEE80211_BAND_2GHZ].channels)
  675. kfree(sc->sbands[IEEE80211_BAND_2GHZ].channels);
  676. if (sc->sbands[IEEE80211_BAND_5GHZ].channels)
  677. kfree(sc->sbands[IEEE80211_BAND_5GHZ].channels);
  678. if ((sc->btcoex.no_stomp_timer) &&
  679. sc->sc_ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
  680. ath_gen_timer_free(sc->sc_ah, sc->btcoex.no_stomp_timer);
  681. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  682. if (ATH_TXQ_SETUP(sc, i))
  683. ath_tx_cleanupq(sc, &sc->tx.txq[i]);
  684. ath9k_hw_deinit(sc->sc_ah);
  685. kfree(sc->sc_ah);
  686. sc->sc_ah = NULL;
  687. }
  688. void ath9k_deinit_device(struct ath_softc *sc)
  689. {
  690. struct ieee80211_hw *hw = sc->hw;
  691. ath9k_ps_wakeup(sc);
  692. wiphy_rfkill_stop_polling(sc->hw->wiphy);
  693. ath_deinit_leds(sc);
  694. ath9k_ps_restore(sc);
  695. ieee80211_unregister_hw(hw);
  696. ath_rx_cleanup(sc);
  697. ath_tx_cleanup(sc);
  698. ath9k_deinit_softc(sc);
  699. }
  700. void ath_descdma_cleanup(struct ath_softc *sc,
  701. struct ath_descdma *dd,
  702. struct list_head *head)
  703. {
  704. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  705. dd->dd_desc_paddr);
  706. INIT_LIST_HEAD(head);
  707. kfree(dd->dd_bufptr);
  708. memset(dd, 0, sizeof(*dd));
  709. }
  710. /************************/
  711. /* Module Hooks */
  712. /************************/
  713. static int __init ath9k_init(void)
  714. {
  715. int error;
  716. /* Register rate control algorithm */
  717. error = ath_rate_control_register();
  718. if (error != 0) {
  719. printk(KERN_ERR
  720. "ath9k: Unable to register rate control "
  721. "algorithm: %d\n",
  722. error);
  723. goto err_out;
  724. }
  725. error = ath_pci_init();
  726. if (error < 0) {
  727. printk(KERN_ERR
  728. "ath9k: No PCI devices found, driver not installed.\n");
  729. error = -ENODEV;
  730. goto err_rate_unregister;
  731. }
  732. error = ath_ahb_init();
  733. if (error < 0) {
  734. error = -ENODEV;
  735. goto err_pci_exit;
  736. }
  737. return 0;
  738. err_pci_exit:
  739. ath_pci_exit();
  740. err_rate_unregister:
  741. ath_rate_control_unregister();
  742. err_out:
  743. return error;
  744. }
  745. module_init(ath9k_init);
  746. static void __exit ath9k_exit(void)
  747. {
  748. is_ath9k_unloaded = true;
  749. ath_ahb_exit();
  750. ath_pci_exit();
  751. ath_rate_control_unregister();
  752. printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
  753. }
  754. module_exit(ath9k_exit);