ar9003_phy.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312
  1. /*
  2. * Copyright (c) 2010 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "hw.h"
  17. #include "ar9003_phy.h"
  18. static const int firstep_table[] =
  19. /* level: 0 1 2 3 4 5 6 7 8 */
  20. { -4, -2, 0, 2, 4, 6, 8, 10, 12 }; /* lvl 0-8, default 2 */
  21. static const int cycpwrThr1_table[] =
  22. /* level: 0 1 2 3 4 5 6 7 8 */
  23. { -6, -4, -2, 0, 2, 4, 6, 8 }; /* lvl 0-7, default 3 */
  24. /*
  25. * register values to turn OFDM weak signal detection OFF
  26. */
  27. static const int m1ThreshLow_off = 127;
  28. static const int m2ThreshLow_off = 127;
  29. static const int m1Thresh_off = 127;
  30. static const int m2Thresh_off = 127;
  31. static const int m2CountThr_off = 31;
  32. static const int m2CountThrLow_off = 63;
  33. static const int m1ThreshLowExt_off = 127;
  34. static const int m2ThreshLowExt_off = 127;
  35. static const int m1ThreshExt_off = 127;
  36. static const int m2ThreshExt_off = 127;
  37. /**
  38. * ar9003_hw_set_channel - set channel on single-chip device
  39. * @ah: atheros hardware structure
  40. * @chan:
  41. *
  42. * This is the function to change channel on single-chip devices, that is
  43. * all devices after ar9280.
  44. *
  45. * This function takes the channel value in MHz and sets
  46. * hardware channel value. Assumes writes have been enabled to analog bus.
  47. *
  48. * Actual Expression,
  49. *
  50. * For 2GHz channel,
  51. * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
  52. * (freq_ref = 40MHz)
  53. *
  54. * For 5GHz channel,
  55. * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
  56. * (freq_ref = 40MHz/(24>>amodeRefSel))
  57. *
  58. * For 5GHz channels which are 5MHz spaced,
  59. * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
  60. * (freq_ref = 40MHz)
  61. */
  62. static int ar9003_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
  63. {
  64. u16 bMode, fracMode = 0, aModeRefSel = 0;
  65. u32 freq, channelSel = 0, reg32 = 0;
  66. struct chan_centers centers;
  67. int loadSynthChannel;
  68. ath9k_hw_get_channel_centers(ah, chan, &centers);
  69. freq = centers.synth_center;
  70. if (freq < 4800) { /* 2 GHz, fractional mode */
  71. if (AR_SREV_9485(ah))
  72. channelSel = CHANSEL_2G_9485(freq);
  73. else
  74. channelSel = CHANSEL_2G(freq);
  75. /* Set to 2G mode */
  76. bMode = 1;
  77. } else {
  78. channelSel = CHANSEL_5G(freq);
  79. /* Doubler is ON, so, divide channelSel by 2. */
  80. channelSel >>= 1;
  81. /* Set to 5G mode */
  82. bMode = 0;
  83. }
  84. /* Enable fractional mode for all channels */
  85. fracMode = 1;
  86. aModeRefSel = 0;
  87. loadSynthChannel = 0;
  88. reg32 = (bMode << 29);
  89. REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
  90. /* Enable Long shift Select for Synthesizer */
  91. REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_SYNTH4,
  92. AR_PHY_SYNTH4_LONG_SHIFT_SELECT, 1);
  93. /* Program Synth. setting */
  94. reg32 = (channelSel << 2) | (fracMode << 30) |
  95. (aModeRefSel << 28) | (loadSynthChannel << 31);
  96. REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32);
  97. /* Toggle Load Synth channel bit */
  98. loadSynthChannel = 1;
  99. reg32 = (channelSel << 2) | (fracMode << 30) |
  100. (aModeRefSel << 28) | (loadSynthChannel << 31);
  101. REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32);
  102. ah->curchan = chan;
  103. ah->curchan_rad_index = -1;
  104. return 0;
  105. }
  106. /**
  107. * ar9003_hw_spur_mitigate_mrc_cck - convert baseband spur frequency
  108. * @ah: atheros hardware structure
  109. * @chan:
  110. *
  111. * For single-chip solutions. Converts to baseband spur frequency given the
  112. * input channel frequency and compute register settings below.
  113. *
  114. * Spur mitigation for MRC CCK
  115. */
  116. static void ar9003_hw_spur_mitigate_mrc_cck(struct ath_hw *ah,
  117. struct ath9k_channel *chan)
  118. {
  119. static const u32 spur_freq[4] = { 2420, 2440, 2464, 2480 };
  120. int cur_bb_spur, negative = 0, cck_spur_freq;
  121. int i;
  122. int range, max_spur_cnts, synth_freq;
  123. u8 *spur_fbin_ptr = NULL;
  124. /*
  125. * Need to verify range +/- 10 MHz in control channel, otherwise spur
  126. * is out-of-band and can be ignored.
  127. */
  128. if (AR_SREV_9485(ah)) {
  129. spur_fbin_ptr = ar9003_get_spur_chan_ptr(ah,
  130. IS_CHAN_2GHZ(chan));
  131. if (spur_fbin_ptr[0] == 0) /* No spur */
  132. return;
  133. max_spur_cnts = 5;
  134. if (IS_CHAN_HT40(chan)) {
  135. range = 19;
  136. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  137. AR_PHY_GC_DYN2040_PRI_CH) == 0)
  138. synth_freq = chan->channel + 10;
  139. else
  140. synth_freq = chan->channel - 10;
  141. } else {
  142. range = 10;
  143. synth_freq = chan->channel;
  144. }
  145. } else {
  146. range = 10;
  147. max_spur_cnts = 4;
  148. synth_freq = chan->channel;
  149. }
  150. for (i = 0; i < max_spur_cnts; i++) {
  151. negative = 0;
  152. if (AR_SREV_9485(ah))
  153. cur_bb_spur = FBIN2FREQ(spur_fbin_ptr[i],
  154. IS_CHAN_2GHZ(chan)) - synth_freq;
  155. else
  156. cur_bb_spur = spur_freq[i] - synth_freq;
  157. if (cur_bb_spur < 0) {
  158. negative = 1;
  159. cur_bb_spur = -cur_bb_spur;
  160. }
  161. if (cur_bb_spur < range) {
  162. cck_spur_freq = (int)((cur_bb_spur << 19) / 11);
  163. if (negative == 1)
  164. cck_spur_freq = -cck_spur_freq;
  165. cck_spur_freq = cck_spur_freq & 0xfffff;
  166. REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL,
  167. AR_PHY_AGC_CONTROL_YCOK_MAX, 0x7);
  168. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  169. AR_PHY_CCK_SPUR_MIT_SPUR_RSSI_THR, 0x7f);
  170. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  171. AR_PHY_CCK_SPUR_MIT_SPUR_FILTER_TYPE,
  172. 0x2);
  173. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  174. AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT,
  175. 0x1);
  176. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  177. AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ,
  178. cck_spur_freq);
  179. return;
  180. }
  181. }
  182. REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL,
  183. AR_PHY_AGC_CONTROL_YCOK_MAX, 0x5);
  184. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  185. AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT, 0x0);
  186. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  187. AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, 0x0);
  188. }
  189. /* Clean all spur register fields */
  190. static void ar9003_hw_spur_ofdm_clear(struct ath_hw *ah)
  191. {
  192. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  193. AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0);
  194. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  195. AR_PHY_TIMING11_SPUR_FREQ_SD, 0);
  196. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  197. AR_PHY_TIMING11_SPUR_DELTA_PHASE, 0);
  198. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  199. AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, 0);
  200. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  201. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0);
  202. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  203. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0);
  204. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  205. AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0);
  206. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  207. AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 0);
  208. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  209. AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 0);
  210. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  211. AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0);
  212. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  213. AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0);
  214. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  215. AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0);
  216. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  217. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, 0);
  218. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  219. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, 0);
  220. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  221. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, 0);
  222. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  223. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0);
  224. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  225. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0);
  226. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  227. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0);
  228. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  229. AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0);
  230. }
  231. static void ar9003_hw_spur_ofdm(struct ath_hw *ah,
  232. int freq_offset,
  233. int spur_freq_sd,
  234. int spur_delta_phase,
  235. int spur_subchannel_sd)
  236. {
  237. int mask_index = 0;
  238. /* OFDM Spur mitigation */
  239. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  240. AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0x1);
  241. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  242. AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd);
  243. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  244. AR_PHY_TIMING11_SPUR_DELTA_PHASE, spur_delta_phase);
  245. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  246. AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, spur_subchannel_sd);
  247. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  248. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0x1);
  249. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  250. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0x1);
  251. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  252. AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0x1);
  253. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  254. AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, 34);
  255. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  256. AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 1);
  257. if (REG_READ_FIELD(ah, AR_PHY_MODE,
  258. AR_PHY_MODE_DYNAMIC) == 0x1)
  259. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  260. AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 1);
  261. mask_index = (freq_offset << 4) / 5;
  262. if (mask_index < 0)
  263. mask_index = mask_index - 1;
  264. mask_index = mask_index & 0x7f;
  265. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  266. AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0x1);
  267. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  268. AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0x1);
  269. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  270. AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0x1);
  271. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  272. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, mask_index);
  273. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  274. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, mask_index);
  275. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  276. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, mask_index);
  277. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  278. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0xc);
  279. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  280. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0xc);
  281. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  282. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0xa0);
  283. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  284. AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0xff);
  285. }
  286. static void ar9003_hw_spur_ofdm_work(struct ath_hw *ah,
  287. struct ath9k_channel *chan,
  288. int freq_offset)
  289. {
  290. int spur_freq_sd = 0;
  291. int spur_subchannel_sd = 0;
  292. int spur_delta_phase = 0;
  293. if (IS_CHAN_HT40(chan)) {
  294. if (freq_offset < 0) {
  295. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  296. AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
  297. spur_subchannel_sd = 1;
  298. else
  299. spur_subchannel_sd = 0;
  300. spur_freq_sd = ((freq_offset + 10) << 9) / 11;
  301. } else {
  302. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  303. AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
  304. spur_subchannel_sd = 0;
  305. else
  306. spur_subchannel_sd = 1;
  307. spur_freq_sd = ((freq_offset - 10) << 9) / 11;
  308. }
  309. spur_delta_phase = (freq_offset << 17) / 5;
  310. } else {
  311. spur_subchannel_sd = 0;
  312. spur_freq_sd = (freq_offset << 9) /11;
  313. spur_delta_phase = (freq_offset << 18) / 5;
  314. }
  315. spur_freq_sd = spur_freq_sd & 0x3ff;
  316. spur_delta_phase = spur_delta_phase & 0xfffff;
  317. ar9003_hw_spur_ofdm(ah,
  318. freq_offset,
  319. spur_freq_sd,
  320. spur_delta_phase,
  321. spur_subchannel_sd);
  322. }
  323. /* Spur mitigation for OFDM */
  324. static void ar9003_hw_spur_mitigate_ofdm(struct ath_hw *ah,
  325. struct ath9k_channel *chan)
  326. {
  327. int synth_freq;
  328. int range = 10;
  329. int freq_offset = 0;
  330. int mode;
  331. u8* spurChansPtr;
  332. unsigned int i;
  333. struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
  334. if (IS_CHAN_5GHZ(chan)) {
  335. spurChansPtr = &(eep->modalHeader5G.spurChans[0]);
  336. mode = 0;
  337. }
  338. else {
  339. spurChansPtr = &(eep->modalHeader2G.spurChans[0]);
  340. mode = 1;
  341. }
  342. if (spurChansPtr[0] == 0)
  343. return; /* No spur in the mode */
  344. if (IS_CHAN_HT40(chan)) {
  345. range = 19;
  346. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  347. AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
  348. synth_freq = chan->channel - 10;
  349. else
  350. synth_freq = chan->channel + 10;
  351. } else {
  352. range = 10;
  353. synth_freq = chan->channel;
  354. }
  355. ar9003_hw_spur_ofdm_clear(ah);
  356. for (i = 0; spurChansPtr[i] && i < 5; i++) {
  357. freq_offset = FBIN2FREQ(spurChansPtr[i], mode) - synth_freq;
  358. if (abs(freq_offset) < range) {
  359. ar9003_hw_spur_ofdm_work(ah, chan, freq_offset);
  360. break;
  361. }
  362. }
  363. }
  364. static void ar9003_hw_spur_mitigate(struct ath_hw *ah,
  365. struct ath9k_channel *chan)
  366. {
  367. ar9003_hw_spur_mitigate_mrc_cck(ah, chan);
  368. ar9003_hw_spur_mitigate_ofdm(ah, chan);
  369. }
  370. static u32 ar9003_hw_compute_pll_control(struct ath_hw *ah,
  371. struct ath9k_channel *chan)
  372. {
  373. u32 pll;
  374. pll = SM(0x5, AR_RTC_9300_PLL_REFDIV);
  375. if (chan && IS_CHAN_HALF_RATE(chan))
  376. pll |= SM(0x1, AR_RTC_9300_PLL_CLKSEL);
  377. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  378. pll |= SM(0x2, AR_RTC_9300_PLL_CLKSEL);
  379. pll |= SM(0x2c, AR_RTC_9300_PLL_DIV);
  380. return pll;
  381. }
  382. static void ar9003_hw_set_channel_regs(struct ath_hw *ah,
  383. struct ath9k_channel *chan)
  384. {
  385. u32 phymode;
  386. u32 enableDacFifo = 0;
  387. enableDacFifo =
  388. (REG_READ(ah, AR_PHY_GEN_CTRL) & AR_PHY_GC_ENABLE_DAC_FIFO);
  389. /* Enable 11n HT, 20 MHz */
  390. phymode = AR_PHY_GC_HT_EN | AR_PHY_GC_SINGLE_HT_LTF1 | AR_PHY_GC_WALSH |
  391. AR_PHY_GC_SHORT_GI_40 | enableDacFifo;
  392. /* Configure baseband for dynamic 20/40 operation */
  393. if (IS_CHAN_HT40(chan)) {
  394. phymode |= AR_PHY_GC_DYN2040_EN;
  395. /* Configure control (primary) channel at +-10MHz */
  396. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  397. (chan->chanmode == CHANNEL_G_HT40PLUS))
  398. phymode |= AR_PHY_GC_DYN2040_PRI_CH;
  399. }
  400. /* make sure we preserve INI settings */
  401. phymode |= REG_READ(ah, AR_PHY_GEN_CTRL);
  402. /* turn off Green Field detection for STA for now */
  403. phymode &= ~AR_PHY_GC_GF_DETECT_EN;
  404. REG_WRITE(ah, AR_PHY_GEN_CTRL, phymode);
  405. /* Configure MAC for 20/40 operation */
  406. ath9k_hw_set11nmac2040(ah);
  407. /* global transmit timeout (25 TUs default)*/
  408. REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
  409. /* carrier sense timeout */
  410. REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
  411. }
  412. static void ar9003_hw_init_bb(struct ath_hw *ah,
  413. struct ath9k_channel *chan)
  414. {
  415. u32 synthDelay;
  416. /*
  417. * Wait for the frequency synth to settle (synth goes on
  418. * via AR_PHY_ACTIVE_EN). Read the phy active delay register.
  419. * Value is in 100ns increments.
  420. */
  421. synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  422. if (IS_CHAN_B(chan))
  423. synthDelay = (4 * synthDelay) / 22;
  424. else
  425. synthDelay /= 10;
  426. /* Activate the PHY (includes baseband activate + synthesizer on) */
  427. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
  428. /*
  429. * There is an issue if the AP starts the calibration before
  430. * the base band timeout completes. This could result in the
  431. * rx_clear false triggering. As a workaround we add delay an
  432. * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
  433. * does not happen.
  434. */
  435. udelay(synthDelay + BASE_ACTIVATE_DELAY);
  436. }
  437. void ar9003_hw_set_chain_masks(struct ath_hw *ah, u8 rx, u8 tx)
  438. {
  439. switch (rx) {
  440. case 0x5:
  441. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  442. AR_PHY_SWAP_ALT_CHAIN);
  443. case 0x3:
  444. case 0x1:
  445. case 0x2:
  446. case 0x7:
  447. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx);
  448. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx);
  449. break;
  450. default:
  451. break;
  452. }
  453. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && (tx == 0x7))
  454. REG_WRITE(ah, AR_SELFGEN_MASK, 0x3);
  455. else
  456. REG_WRITE(ah, AR_SELFGEN_MASK, tx);
  457. if (tx == 0x5) {
  458. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  459. AR_PHY_SWAP_ALT_CHAIN);
  460. }
  461. }
  462. /*
  463. * Override INI values with chip specific configuration.
  464. */
  465. static void ar9003_hw_override_ini(struct ath_hw *ah)
  466. {
  467. u32 val;
  468. /*
  469. * Set the RX_ABORT and RX_DIS and clear it only after
  470. * RXE is set for MAC. This prevents frames with
  471. * corrupted descriptor status.
  472. */
  473. REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
  474. /*
  475. * For AR9280 and above, there is a new feature that allows
  476. * Multicast search based on both MAC Address and Key ID. By default,
  477. * this feature is enabled. But since the driver is not using this
  478. * feature, we switch it off; otherwise multicast search based on
  479. * MAC addr only will fail.
  480. */
  481. val = REG_READ(ah, AR_PCU_MISC_MODE2) & (~AR_ADHOC_MCAST_KEYID_ENABLE);
  482. REG_WRITE(ah, AR_PCU_MISC_MODE2,
  483. val | AR_AGG_WEP_ENABLE_FIX | AR_AGG_WEP_ENABLE);
  484. }
  485. static void ar9003_hw_prog_ini(struct ath_hw *ah,
  486. struct ar5416IniArray *iniArr,
  487. int column)
  488. {
  489. unsigned int i, regWrites = 0;
  490. /* New INI format: Array may be undefined (pre, core, post arrays) */
  491. if (!iniArr->ia_array)
  492. return;
  493. /*
  494. * New INI format: Pre, core, and post arrays for a given subsystem
  495. * may be modal (> 2 columns) or non-modal (2 columns). Determine if
  496. * the array is non-modal and force the column to 1.
  497. */
  498. if (column >= iniArr->ia_columns)
  499. column = 1;
  500. for (i = 0; i < iniArr->ia_rows; i++) {
  501. u32 reg = INI_RA(iniArr, i, 0);
  502. u32 val = INI_RA(iniArr, i, column);
  503. REG_WRITE(ah, reg, val);
  504. DO_DELAY(regWrites);
  505. }
  506. }
  507. static int ar9003_hw_process_ini(struct ath_hw *ah,
  508. struct ath9k_channel *chan)
  509. {
  510. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  511. unsigned int regWrites = 0, i;
  512. struct ieee80211_channel *channel = chan->chan;
  513. u32 modesIndex, freqIndex;
  514. switch (chan->chanmode) {
  515. case CHANNEL_A:
  516. case CHANNEL_A_HT20:
  517. modesIndex = 1;
  518. freqIndex = 1;
  519. break;
  520. case CHANNEL_A_HT40PLUS:
  521. case CHANNEL_A_HT40MINUS:
  522. modesIndex = 2;
  523. freqIndex = 1;
  524. break;
  525. case CHANNEL_G:
  526. case CHANNEL_G_HT20:
  527. case CHANNEL_B:
  528. modesIndex = 4;
  529. freqIndex = 2;
  530. break;
  531. case CHANNEL_G_HT40PLUS:
  532. case CHANNEL_G_HT40MINUS:
  533. modesIndex = 3;
  534. freqIndex = 2;
  535. break;
  536. default:
  537. return -EINVAL;
  538. }
  539. for (i = 0; i < ATH_INI_NUM_SPLIT; i++) {
  540. ar9003_hw_prog_ini(ah, &ah->iniSOC[i], modesIndex);
  541. ar9003_hw_prog_ini(ah, &ah->iniMac[i], modesIndex);
  542. ar9003_hw_prog_ini(ah, &ah->iniBB[i], modesIndex);
  543. ar9003_hw_prog_ini(ah, &ah->iniRadio[i], modesIndex);
  544. }
  545. REG_WRITE_ARRAY(&ah->iniModesRxGain, 1, regWrites);
  546. REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
  547. /*
  548. * For 5GHz channels requiring Fast Clock, apply
  549. * different modal values.
  550. */
  551. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  552. REG_WRITE_ARRAY(&ah->iniModesAdditional,
  553. modesIndex, regWrites);
  554. ar9003_hw_override_ini(ah);
  555. ar9003_hw_set_channel_regs(ah, chan);
  556. ar9003_hw_set_chain_masks(ah, ah->rxchainmask, ah->txchainmask);
  557. /* Set TX power */
  558. ah->eep_ops->set_txpower(ah, chan,
  559. ath9k_regd_get_ctl(regulatory, chan),
  560. channel->max_antenna_gain * 2,
  561. channel->max_power * 2,
  562. min((u32) MAX_RATE_POWER,
  563. (u32) regulatory->power_limit), false);
  564. return 0;
  565. }
  566. static void ar9003_hw_set_rfmode(struct ath_hw *ah,
  567. struct ath9k_channel *chan)
  568. {
  569. u32 rfMode = 0;
  570. if (chan == NULL)
  571. return;
  572. rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
  573. ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
  574. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  575. rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
  576. REG_WRITE(ah, AR_PHY_MODE, rfMode);
  577. }
  578. static void ar9003_hw_mark_phy_inactive(struct ath_hw *ah)
  579. {
  580. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
  581. }
  582. static void ar9003_hw_set_delta_slope(struct ath_hw *ah,
  583. struct ath9k_channel *chan)
  584. {
  585. u32 coef_scaled, ds_coef_exp, ds_coef_man;
  586. u32 clockMhzScaled = 0x64000000;
  587. struct chan_centers centers;
  588. /*
  589. * half and quarter rate can divide the scaled clock by 2 or 4
  590. * scale for selected channel bandwidth
  591. */
  592. if (IS_CHAN_HALF_RATE(chan))
  593. clockMhzScaled = clockMhzScaled >> 1;
  594. else if (IS_CHAN_QUARTER_RATE(chan))
  595. clockMhzScaled = clockMhzScaled >> 2;
  596. /*
  597. * ALGO -> coef = 1e8/fcarrier*fclock/40;
  598. * scaled coef to provide precision for this floating calculation
  599. */
  600. ath9k_hw_get_channel_centers(ah, chan, &centers);
  601. coef_scaled = clockMhzScaled / centers.synth_center;
  602. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  603. &ds_coef_exp);
  604. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  605. AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
  606. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  607. AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
  608. /*
  609. * For Short GI,
  610. * scaled coeff is 9/10 that of normal coeff
  611. */
  612. coef_scaled = (9 * coef_scaled) / 10;
  613. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  614. &ds_coef_exp);
  615. /* for short gi */
  616. REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA,
  617. AR_PHY_SGI_DSC_MAN, ds_coef_man);
  618. REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA,
  619. AR_PHY_SGI_DSC_EXP, ds_coef_exp);
  620. }
  621. static bool ar9003_hw_rfbus_req(struct ath_hw *ah)
  622. {
  623. REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
  624. return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
  625. AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT);
  626. }
  627. /*
  628. * Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN).
  629. * Read the phy active delay register. Value is in 100ns increments.
  630. */
  631. static void ar9003_hw_rfbus_done(struct ath_hw *ah)
  632. {
  633. u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  634. if (IS_CHAN_B(ah->curchan))
  635. synthDelay = (4 * synthDelay) / 22;
  636. else
  637. synthDelay /= 10;
  638. udelay(synthDelay + BASE_ACTIVATE_DELAY);
  639. REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
  640. }
  641. static void ar9003_hw_set_diversity(struct ath_hw *ah, bool value)
  642. {
  643. u32 v = REG_READ(ah, AR_PHY_CCK_DETECT);
  644. if (value)
  645. v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
  646. else
  647. v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
  648. REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
  649. }
  650. static bool ar9003_hw_ani_control(struct ath_hw *ah,
  651. enum ath9k_ani_cmd cmd, int param)
  652. {
  653. struct ath_common *common = ath9k_hw_common(ah);
  654. struct ath9k_channel *chan = ah->curchan;
  655. struct ar5416AniState *aniState = &chan->ani;
  656. s32 value, value2;
  657. switch (cmd & ah->ani_function) {
  658. case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
  659. /*
  660. * on == 1 means ofdm weak signal detection is ON
  661. * on == 1 is the default, for less noise immunity
  662. *
  663. * on == 0 means ofdm weak signal detection is OFF
  664. * on == 0 means more noise imm
  665. */
  666. u32 on = param ? 1 : 0;
  667. /*
  668. * make register setting for default
  669. * (weak sig detect ON) come from INI file
  670. */
  671. int m1ThreshLow = on ?
  672. aniState->iniDef.m1ThreshLow : m1ThreshLow_off;
  673. int m2ThreshLow = on ?
  674. aniState->iniDef.m2ThreshLow : m2ThreshLow_off;
  675. int m1Thresh = on ?
  676. aniState->iniDef.m1Thresh : m1Thresh_off;
  677. int m2Thresh = on ?
  678. aniState->iniDef.m2Thresh : m2Thresh_off;
  679. int m2CountThr = on ?
  680. aniState->iniDef.m2CountThr : m2CountThr_off;
  681. int m2CountThrLow = on ?
  682. aniState->iniDef.m2CountThrLow : m2CountThrLow_off;
  683. int m1ThreshLowExt = on ?
  684. aniState->iniDef.m1ThreshLowExt : m1ThreshLowExt_off;
  685. int m2ThreshLowExt = on ?
  686. aniState->iniDef.m2ThreshLowExt : m2ThreshLowExt_off;
  687. int m1ThreshExt = on ?
  688. aniState->iniDef.m1ThreshExt : m1ThreshExt_off;
  689. int m2ThreshExt = on ?
  690. aniState->iniDef.m2ThreshExt : m2ThreshExt_off;
  691. REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
  692. AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
  693. m1ThreshLow);
  694. REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
  695. AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
  696. m2ThreshLow);
  697. REG_RMW_FIELD(ah, AR_PHY_SFCORR,
  698. AR_PHY_SFCORR_M1_THRESH, m1Thresh);
  699. REG_RMW_FIELD(ah, AR_PHY_SFCORR,
  700. AR_PHY_SFCORR_M2_THRESH, m2Thresh);
  701. REG_RMW_FIELD(ah, AR_PHY_SFCORR,
  702. AR_PHY_SFCORR_M2COUNT_THR, m2CountThr);
  703. REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
  704. AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
  705. m2CountThrLow);
  706. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  707. AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLowExt);
  708. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  709. AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLowExt);
  710. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  711. AR_PHY_SFCORR_EXT_M1_THRESH, m1ThreshExt);
  712. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  713. AR_PHY_SFCORR_EXT_M2_THRESH, m2ThreshExt);
  714. if (on)
  715. REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
  716. AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
  717. else
  718. REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
  719. AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
  720. if (!on != aniState->ofdmWeakSigDetectOff) {
  721. ath_dbg(common, ATH_DBG_ANI,
  722. "** ch %d: ofdm weak signal: %s=>%s\n",
  723. chan->channel,
  724. !aniState->ofdmWeakSigDetectOff ?
  725. "on" : "off",
  726. on ? "on" : "off");
  727. if (on)
  728. ah->stats.ast_ani_ofdmon++;
  729. else
  730. ah->stats.ast_ani_ofdmoff++;
  731. aniState->ofdmWeakSigDetectOff = !on;
  732. }
  733. break;
  734. }
  735. case ATH9K_ANI_FIRSTEP_LEVEL:{
  736. u32 level = param;
  737. if (level >= ARRAY_SIZE(firstep_table)) {
  738. ath_dbg(common, ATH_DBG_ANI,
  739. "ATH9K_ANI_FIRSTEP_LEVEL: level out of range (%u > %zu)\n",
  740. level, ARRAY_SIZE(firstep_table));
  741. return false;
  742. }
  743. /*
  744. * make register setting relative to default
  745. * from INI file & cap value
  746. */
  747. value = firstep_table[level] -
  748. firstep_table[ATH9K_ANI_FIRSTEP_LVL_NEW] +
  749. aniState->iniDef.firstep;
  750. if (value < ATH9K_SIG_FIRSTEP_SETTING_MIN)
  751. value = ATH9K_SIG_FIRSTEP_SETTING_MIN;
  752. if (value > ATH9K_SIG_FIRSTEP_SETTING_MAX)
  753. value = ATH9K_SIG_FIRSTEP_SETTING_MAX;
  754. REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
  755. AR_PHY_FIND_SIG_FIRSTEP,
  756. value);
  757. /*
  758. * we need to set first step low register too
  759. * make register setting relative to default
  760. * from INI file & cap value
  761. */
  762. value2 = firstep_table[level] -
  763. firstep_table[ATH9K_ANI_FIRSTEP_LVL_NEW] +
  764. aniState->iniDef.firstepLow;
  765. if (value2 < ATH9K_SIG_FIRSTEP_SETTING_MIN)
  766. value2 = ATH9K_SIG_FIRSTEP_SETTING_MIN;
  767. if (value2 > ATH9K_SIG_FIRSTEP_SETTING_MAX)
  768. value2 = ATH9K_SIG_FIRSTEP_SETTING_MAX;
  769. REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW,
  770. AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW, value2);
  771. if (level != aniState->firstepLevel) {
  772. ath_dbg(common, ATH_DBG_ANI,
  773. "** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n",
  774. chan->channel,
  775. aniState->firstepLevel,
  776. level,
  777. ATH9K_ANI_FIRSTEP_LVL_NEW,
  778. value,
  779. aniState->iniDef.firstep);
  780. ath_dbg(common, ATH_DBG_ANI,
  781. "** ch %d: level %d=>%d[def:%d] firstep_low[level]=%d ini=%d\n",
  782. chan->channel,
  783. aniState->firstepLevel,
  784. level,
  785. ATH9K_ANI_FIRSTEP_LVL_NEW,
  786. value2,
  787. aniState->iniDef.firstepLow);
  788. if (level > aniState->firstepLevel)
  789. ah->stats.ast_ani_stepup++;
  790. else if (level < aniState->firstepLevel)
  791. ah->stats.ast_ani_stepdown++;
  792. aniState->firstepLevel = level;
  793. }
  794. break;
  795. }
  796. case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
  797. u32 level = param;
  798. if (level >= ARRAY_SIZE(cycpwrThr1_table)) {
  799. ath_dbg(common, ATH_DBG_ANI,
  800. "ATH9K_ANI_SPUR_IMMUNITY_LEVEL: level out of range (%u > %zu)\n",
  801. level, ARRAY_SIZE(cycpwrThr1_table));
  802. return false;
  803. }
  804. /*
  805. * make register setting relative to default
  806. * from INI file & cap value
  807. */
  808. value = cycpwrThr1_table[level] -
  809. cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL_NEW] +
  810. aniState->iniDef.cycpwrThr1;
  811. if (value < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
  812. value = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
  813. if (value > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
  814. value = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
  815. REG_RMW_FIELD(ah, AR_PHY_TIMING5,
  816. AR_PHY_TIMING5_CYCPWR_THR1,
  817. value);
  818. /*
  819. * set AR_PHY_EXT_CCA for extension channel
  820. * make register setting relative to default
  821. * from INI file & cap value
  822. */
  823. value2 = cycpwrThr1_table[level] -
  824. cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL_NEW] +
  825. aniState->iniDef.cycpwrThr1Ext;
  826. if (value2 < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
  827. value2 = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
  828. if (value2 > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
  829. value2 = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
  830. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
  831. AR_PHY_EXT_CYCPWR_THR1, value2);
  832. if (level != aniState->spurImmunityLevel) {
  833. ath_dbg(common, ATH_DBG_ANI,
  834. "** ch %d: level %d=>%d[def:%d] cycpwrThr1[level]=%d ini=%d\n",
  835. chan->channel,
  836. aniState->spurImmunityLevel,
  837. level,
  838. ATH9K_ANI_SPUR_IMMUNE_LVL_NEW,
  839. value,
  840. aniState->iniDef.cycpwrThr1);
  841. ath_dbg(common, ATH_DBG_ANI,
  842. "** ch %d: level %d=>%d[def:%d] cycpwrThr1Ext[level]=%d ini=%d\n",
  843. chan->channel,
  844. aniState->spurImmunityLevel,
  845. level,
  846. ATH9K_ANI_SPUR_IMMUNE_LVL_NEW,
  847. value2,
  848. aniState->iniDef.cycpwrThr1Ext);
  849. if (level > aniState->spurImmunityLevel)
  850. ah->stats.ast_ani_spurup++;
  851. else if (level < aniState->spurImmunityLevel)
  852. ah->stats.ast_ani_spurdown++;
  853. aniState->spurImmunityLevel = level;
  854. }
  855. break;
  856. }
  857. case ATH9K_ANI_MRC_CCK:{
  858. /*
  859. * is_on == 1 means MRC CCK ON (default, less noise imm)
  860. * is_on == 0 means MRC CCK is OFF (more noise imm)
  861. */
  862. bool is_on = param ? 1 : 0;
  863. REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL,
  864. AR_PHY_MRC_CCK_ENABLE, is_on);
  865. REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL,
  866. AR_PHY_MRC_CCK_MUX_REG, is_on);
  867. if (!is_on != aniState->mrcCCKOff) {
  868. ath_dbg(common, ATH_DBG_ANI,
  869. "** ch %d: MRC CCK: %s=>%s\n",
  870. chan->channel,
  871. !aniState->mrcCCKOff ? "on" : "off",
  872. is_on ? "on" : "off");
  873. if (is_on)
  874. ah->stats.ast_ani_ccklow++;
  875. else
  876. ah->stats.ast_ani_cckhigh++;
  877. aniState->mrcCCKOff = !is_on;
  878. }
  879. break;
  880. }
  881. case ATH9K_ANI_PRESENT:
  882. break;
  883. default:
  884. ath_dbg(common, ATH_DBG_ANI, "invalid cmd %u\n", cmd);
  885. return false;
  886. }
  887. ath_dbg(common, ATH_DBG_ANI,
  888. "ANI parameters: SI=%d, ofdmWS=%s FS=%d MRCcck=%s listenTime=%d ofdmErrs=%d cckErrs=%d\n",
  889. aniState->spurImmunityLevel,
  890. !aniState->ofdmWeakSigDetectOff ? "on" : "off",
  891. aniState->firstepLevel,
  892. !aniState->mrcCCKOff ? "on" : "off",
  893. aniState->listenTime,
  894. aniState->ofdmPhyErrCount,
  895. aniState->cckPhyErrCount);
  896. return true;
  897. }
  898. static void ar9003_hw_do_getnf(struct ath_hw *ah,
  899. int16_t nfarray[NUM_NF_READINGS])
  900. {
  901. #define AR_PHY_CH_MINCCA_PWR 0x1FF00000
  902. #define AR_PHY_CH_MINCCA_PWR_S 20
  903. #define AR_PHY_CH_EXT_MINCCA_PWR 0x01FF0000
  904. #define AR_PHY_CH_EXT_MINCCA_PWR_S 16
  905. int16_t nf;
  906. int i;
  907. for (i = 0; i < AR9300_MAX_CHAINS; i++) {
  908. if (ah->rxchainmask & BIT(i)) {
  909. nf = MS(REG_READ(ah, ah->nf_regs[i]),
  910. AR_PHY_CH_MINCCA_PWR);
  911. nfarray[i] = sign_extend32(nf, 8);
  912. if (IS_CHAN_HT40(ah->curchan)) {
  913. u8 ext_idx = AR9300_MAX_CHAINS + i;
  914. nf = MS(REG_READ(ah, ah->nf_regs[ext_idx]),
  915. AR_PHY_CH_EXT_MINCCA_PWR);
  916. nfarray[ext_idx] = sign_extend32(nf, 8);
  917. }
  918. }
  919. }
  920. }
  921. static void ar9003_hw_set_nf_limits(struct ath_hw *ah)
  922. {
  923. ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_2GHZ;
  924. ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_2GHZ;
  925. ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9300_2GHZ;
  926. ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_5GHZ;
  927. ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_5GHZ;
  928. ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9300_5GHZ;
  929. }
  930. /*
  931. * Initialize the ANI register values with default (ini) values.
  932. * This routine is called during a (full) hardware reset after
  933. * all the registers are initialised from the INI.
  934. */
  935. static void ar9003_hw_ani_cache_ini_regs(struct ath_hw *ah)
  936. {
  937. struct ar5416AniState *aniState;
  938. struct ath_common *common = ath9k_hw_common(ah);
  939. struct ath9k_channel *chan = ah->curchan;
  940. struct ath9k_ani_default *iniDef;
  941. u32 val;
  942. aniState = &ah->curchan->ani;
  943. iniDef = &aniState->iniDef;
  944. ath_dbg(common, ATH_DBG_ANI,
  945. "ver %d.%d opmode %u chan %d Mhz/0x%x\n",
  946. ah->hw_version.macVersion,
  947. ah->hw_version.macRev,
  948. ah->opmode,
  949. chan->channel,
  950. chan->channelFlags);
  951. val = REG_READ(ah, AR_PHY_SFCORR);
  952. iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH);
  953. iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH);
  954. iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR);
  955. val = REG_READ(ah, AR_PHY_SFCORR_LOW);
  956. iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW);
  957. iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW);
  958. iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW);
  959. val = REG_READ(ah, AR_PHY_SFCORR_EXT);
  960. iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH);
  961. iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH);
  962. iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW);
  963. iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW);
  964. iniDef->firstep = REG_READ_FIELD(ah,
  965. AR_PHY_FIND_SIG,
  966. AR_PHY_FIND_SIG_FIRSTEP);
  967. iniDef->firstepLow = REG_READ_FIELD(ah,
  968. AR_PHY_FIND_SIG_LOW,
  969. AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW);
  970. iniDef->cycpwrThr1 = REG_READ_FIELD(ah,
  971. AR_PHY_TIMING5,
  972. AR_PHY_TIMING5_CYCPWR_THR1);
  973. iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah,
  974. AR_PHY_EXT_CCA,
  975. AR_PHY_EXT_CYCPWR_THR1);
  976. /* these levels just got reset to defaults by the INI */
  977. aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL_NEW;
  978. aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL_NEW;
  979. aniState->ofdmWeakSigDetectOff = !ATH9K_ANI_USE_OFDM_WEAK_SIG;
  980. aniState->mrcCCKOff = !ATH9K_ANI_ENABLE_MRC_CCK;
  981. }
  982. static void ar9003_hw_set_radar_params(struct ath_hw *ah,
  983. struct ath_hw_radar_conf *conf)
  984. {
  985. u32 radar_0 = 0, radar_1 = 0;
  986. if (!conf) {
  987. REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);
  988. return;
  989. }
  990. radar_0 |= AR_PHY_RADAR_0_ENA | AR_PHY_RADAR_0_FFT_ENA;
  991. radar_0 |= SM(conf->fir_power, AR_PHY_RADAR_0_FIRPWR);
  992. radar_0 |= SM(conf->radar_rssi, AR_PHY_RADAR_0_RRSSI);
  993. radar_0 |= SM(conf->pulse_height, AR_PHY_RADAR_0_HEIGHT);
  994. radar_0 |= SM(conf->pulse_rssi, AR_PHY_RADAR_0_PRSSI);
  995. radar_0 |= SM(conf->pulse_inband, AR_PHY_RADAR_0_INBAND);
  996. radar_1 |= AR_PHY_RADAR_1_MAX_RRSSI;
  997. radar_1 |= AR_PHY_RADAR_1_BLOCK_CHECK;
  998. radar_1 |= SM(conf->pulse_maxlen, AR_PHY_RADAR_1_MAXLEN);
  999. radar_1 |= SM(conf->pulse_inband_step, AR_PHY_RADAR_1_RELSTEP_THRESH);
  1000. radar_1 |= SM(conf->radar_inband, AR_PHY_RADAR_1_RELPWR_THRESH);
  1001. REG_WRITE(ah, AR_PHY_RADAR_0, radar_0);
  1002. REG_WRITE(ah, AR_PHY_RADAR_1, radar_1);
  1003. if (conf->ext_channel)
  1004. REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
  1005. else
  1006. REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
  1007. }
  1008. static void ar9003_hw_set_radar_conf(struct ath_hw *ah)
  1009. {
  1010. struct ath_hw_radar_conf *conf = &ah->radar_conf;
  1011. conf->fir_power = -28;
  1012. conf->radar_rssi = 0;
  1013. conf->pulse_height = 10;
  1014. conf->pulse_rssi = 24;
  1015. conf->pulse_inband = 8;
  1016. conf->pulse_maxlen = 255;
  1017. conf->pulse_inband_step = 12;
  1018. conf->radar_inband = 8;
  1019. }
  1020. void ar9003_hw_attach_phy_ops(struct ath_hw *ah)
  1021. {
  1022. struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
  1023. static const u32 ar9300_cca_regs[6] = {
  1024. AR_PHY_CCA_0,
  1025. AR_PHY_CCA_1,
  1026. AR_PHY_CCA_2,
  1027. AR_PHY_EXT_CCA,
  1028. AR_PHY_EXT_CCA_1,
  1029. AR_PHY_EXT_CCA_2,
  1030. };
  1031. priv_ops->rf_set_freq = ar9003_hw_set_channel;
  1032. priv_ops->spur_mitigate_freq = ar9003_hw_spur_mitigate;
  1033. priv_ops->compute_pll_control = ar9003_hw_compute_pll_control;
  1034. priv_ops->set_channel_regs = ar9003_hw_set_channel_regs;
  1035. priv_ops->init_bb = ar9003_hw_init_bb;
  1036. priv_ops->process_ini = ar9003_hw_process_ini;
  1037. priv_ops->set_rfmode = ar9003_hw_set_rfmode;
  1038. priv_ops->mark_phy_inactive = ar9003_hw_mark_phy_inactive;
  1039. priv_ops->set_delta_slope = ar9003_hw_set_delta_slope;
  1040. priv_ops->rfbus_req = ar9003_hw_rfbus_req;
  1041. priv_ops->rfbus_done = ar9003_hw_rfbus_done;
  1042. priv_ops->set_diversity = ar9003_hw_set_diversity;
  1043. priv_ops->ani_control = ar9003_hw_ani_control;
  1044. priv_ops->do_getnf = ar9003_hw_do_getnf;
  1045. priv_ops->ani_cache_ini_regs = ar9003_hw_ani_cache_ini_regs;
  1046. priv_ops->set_radar_params = ar9003_hw_set_radar_params;
  1047. ar9003_hw_set_nf_limits(ah);
  1048. ar9003_hw_set_radar_conf(ah);
  1049. memcpy(ah->nf_regs, ar9300_cca_regs, sizeof(ah->nf_regs));
  1050. }
  1051. void ar9003_hw_bb_watchdog_config(struct ath_hw *ah)
  1052. {
  1053. struct ath_common *common = ath9k_hw_common(ah);
  1054. u32 idle_tmo_ms = ah->bb_watchdog_timeout_ms;
  1055. u32 val, idle_count;
  1056. if (!idle_tmo_ms) {
  1057. /* disable IRQ, disable chip-reset for BB panic */
  1058. REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_2,
  1059. REG_READ(ah, AR_PHY_WATCHDOG_CTL_2) &
  1060. ~(AR_PHY_WATCHDOG_RST_ENABLE |
  1061. AR_PHY_WATCHDOG_IRQ_ENABLE));
  1062. /* disable watchdog in non-IDLE mode, disable in IDLE mode */
  1063. REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_1,
  1064. REG_READ(ah, AR_PHY_WATCHDOG_CTL_1) &
  1065. ~(AR_PHY_WATCHDOG_NON_IDLE_ENABLE |
  1066. AR_PHY_WATCHDOG_IDLE_ENABLE));
  1067. ath_dbg(common, ATH_DBG_RESET, "Disabled BB Watchdog\n");
  1068. return;
  1069. }
  1070. /* enable IRQ, disable chip-reset for BB watchdog */
  1071. val = REG_READ(ah, AR_PHY_WATCHDOG_CTL_2) & AR_PHY_WATCHDOG_CNTL2_MASK;
  1072. REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_2,
  1073. (val | AR_PHY_WATCHDOG_IRQ_ENABLE) &
  1074. ~AR_PHY_WATCHDOG_RST_ENABLE);
  1075. /* bound limit to 10 secs */
  1076. if (idle_tmo_ms > 10000)
  1077. idle_tmo_ms = 10000;
  1078. /*
  1079. * The time unit for watchdog event is 2^15 44/88MHz cycles.
  1080. *
  1081. * For HT20 we have a time unit of 2^15/44 MHz = .74 ms per tick
  1082. * For HT40 we have a time unit of 2^15/88 MHz = .37 ms per tick
  1083. *
  1084. * Given we use fast clock now in 5 GHz, these time units should
  1085. * be common for both 2 GHz and 5 GHz.
  1086. */
  1087. idle_count = (100 * idle_tmo_ms) / 74;
  1088. if (ah->curchan && IS_CHAN_HT40(ah->curchan))
  1089. idle_count = (100 * idle_tmo_ms) / 37;
  1090. /*
  1091. * enable watchdog in non-IDLE mode, disable in IDLE mode,
  1092. * set idle time-out.
  1093. */
  1094. REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_1,
  1095. AR_PHY_WATCHDOG_NON_IDLE_ENABLE |
  1096. AR_PHY_WATCHDOG_IDLE_MASK |
  1097. (AR_PHY_WATCHDOG_NON_IDLE_MASK & (idle_count << 2)));
  1098. ath_dbg(common, ATH_DBG_RESET,
  1099. "Enabled BB Watchdog timeout (%u ms)\n",
  1100. idle_tmo_ms);
  1101. }
  1102. void ar9003_hw_bb_watchdog_read(struct ath_hw *ah)
  1103. {
  1104. /*
  1105. * we want to avoid printing in ISR context so we save the
  1106. * watchdog status to be printed later in bottom half context.
  1107. */
  1108. ah->bb_watchdog_last_status = REG_READ(ah, AR_PHY_WATCHDOG_STATUS);
  1109. /*
  1110. * the watchdog timer should reset on status read but to be sure
  1111. * sure we write 0 to the watchdog status bit.
  1112. */
  1113. REG_WRITE(ah, AR_PHY_WATCHDOG_STATUS,
  1114. ah->bb_watchdog_last_status & ~AR_PHY_WATCHDOG_STATUS_CLR);
  1115. }
  1116. void ar9003_hw_bb_watchdog_dbg_info(struct ath_hw *ah)
  1117. {
  1118. struct ath_common *common = ath9k_hw_common(ah);
  1119. u32 status;
  1120. if (likely(!(common->debug_mask & ATH_DBG_RESET)))
  1121. return;
  1122. status = ah->bb_watchdog_last_status;
  1123. ath_dbg(common, ATH_DBG_RESET,
  1124. "\n==== BB update: BB status=0x%08x ====\n", status);
  1125. ath_dbg(common, ATH_DBG_RESET,
  1126. "** BB state: wd=%u det=%u rdar=%u rOFDM=%d rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n",
  1127. MS(status, AR_PHY_WATCHDOG_INFO),
  1128. MS(status, AR_PHY_WATCHDOG_DET_HANG),
  1129. MS(status, AR_PHY_WATCHDOG_RADAR_SM),
  1130. MS(status, AR_PHY_WATCHDOG_RX_OFDM_SM),
  1131. MS(status, AR_PHY_WATCHDOG_RX_CCK_SM),
  1132. MS(status, AR_PHY_WATCHDOG_TX_OFDM_SM),
  1133. MS(status, AR_PHY_WATCHDOG_TX_CCK_SM),
  1134. MS(status, AR_PHY_WATCHDOG_AGC_SM),
  1135. MS(status, AR_PHY_WATCHDOG_SRCH_SM));
  1136. ath_dbg(common, ATH_DBG_RESET,
  1137. "** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n",
  1138. REG_READ(ah, AR_PHY_WATCHDOG_CTL_1),
  1139. REG_READ(ah, AR_PHY_WATCHDOG_CTL_2));
  1140. ath_dbg(common, ATH_DBG_RESET,
  1141. "** BB mode: BB_gen_controls=0x%08x **\n",
  1142. REG_READ(ah, AR_PHY_GEN_CTRL));
  1143. #define PCT(_field) (common->cc_survey._field * 100 / common->cc_survey.cycles)
  1144. if (common->cc_survey.cycles)
  1145. ath_dbg(common, ATH_DBG_RESET,
  1146. "** BB busy times: rx_clear=%d%%, rx_frame=%d%%, tx_frame=%d%% **\n",
  1147. PCT(rx_busy), PCT(rx_frame), PCT(tx_frame));
  1148. ath_dbg(common, ATH_DBG_RESET,
  1149. "==== BB update: done ====\n\n");
  1150. }
  1151. EXPORT_SYMBOL(ar9003_hw_bb_watchdog_dbg_info);