ar9003_eeprom.c 139 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944
  1. /*
  2. * Copyright (c) 2010 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "hw.h"
  17. #include "ar9003_phy.h"
  18. #include "ar9003_eeprom.h"
  19. #define COMP_HDR_LEN 4
  20. #define COMP_CKSUM_LEN 2
  21. #define AR_CH0_TOP (0x00016288)
  22. #define AR_CH0_TOP_XPABIASLVL (0x300)
  23. #define AR_CH0_TOP_XPABIASLVL_S (8)
  24. #define AR_CH0_THERM (0x00016290)
  25. #define AR_CH0_THERM_XPABIASLVL_MSB 0x3
  26. #define AR_CH0_THERM_XPABIASLVL_MSB_S 0
  27. #define AR_CH0_THERM_XPASHORT2GND 0x4
  28. #define AR_CH0_THERM_XPASHORT2GND_S 2
  29. #define AR_SWITCH_TABLE_COM_ALL (0xffff)
  30. #define AR_SWITCH_TABLE_COM_ALL_S (0)
  31. #define AR_SWITCH_TABLE_COM2_ALL (0xffffff)
  32. #define AR_SWITCH_TABLE_COM2_ALL_S (0)
  33. #define AR_SWITCH_TABLE_ALL (0xfff)
  34. #define AR_SWITCH_TABLE_ALL_S (0)
  35. #define LE16(x) __constant_cpu_to_le16(x)
  36. #define LE32(x) __constant_cpu_to_le32(x)
  37. /* Local defines to distinguish between extension and control CTL's */
  38. #define EXT_ADDITIVE (0x8000)
  39. #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
  40. #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
  41. #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
  42. #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
  43. #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 9 /* 10*log10(3)*2 */
  44. #define PWRINCR_3_TO_1_CHAIN 9 /* 10*log(3)*2 */
  45. #define PWRINCR_3_TO_2_CHAIN 3 /* floor(10*log(3/2)*2) */
  46. #define PWRINCR_2_TO_1_CHAIN 6 /* 10*log(2)*2 */
  47. #define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */
  48. #define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
  49. #define CTL(_tpower, _flag) ((_tpower) | ((_flag) << 6))
  50. #define EEPROM_DATA_LEN_9485 1088
  51. static int ar9003_hw_power_interpolate(int32_t x,
  52. int32_t *px, int32_t *py, u_int16_t np);
  53. static const struct ar9300_eeprom ar9300_default = {
  54. .eepromVersion = 2,
  55. .templateVersion = 2,
  56. .macAddr = {1, 2, 3, 4, 5, 6},
  57. .custData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  58. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
  59. .baseEepHeader = {
  60. .regDmn = { LE16(0), LE16(0x1f) },
  61. .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
  62. .opCapFlags = {
  63. .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
  64. .eepMisc = 0,
  65. },
  66. .rfSilent = 0,
  67. .blueToothOptions = 0,
  68. .deviceCap = 0,
  69. .deviceType = 5, /* takes lower byte in eeprom location */
  70. .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
  71. .params_for_tuning_caps = {0, 0},
  72. .featureEnable = 0x0c,
  73. /*
  74. * bit0 - enable tx temp comp - disabled
  75. * bit1 - enable tx volt comp - disabled
  76. * bit2 - enable fastClock - enabled
  77. * bit3 - enable doubling - enabled
  78. * bit4 - enable internal regulator - disabled
  79. * bit5 - enable pa predistortion - disabled
  80. */
  81. .miscConfiguration = 0, /* bit0 - turn down drivestrength */
  82. .eepromWriteEnableGpio = 3,
  83. .wlanDisableGpio = 0,
  84. .wlanLedGpio = 8,
  85. .rxBandSelectGpio = 0xff,
  86. .txrxgain = 0,
  87. .swreg = 0,
  88. },
  89. .modalHeader2G = {
  90. /* ar9300_modal_eep_header 2g */
  91. /* 4 idle,t1,t2,b(4 bits per setting) */
  92. .antCtrlCommon = LE32(0x110),
  93. /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
  94. .antCtrlCommon2 = LE32(0x22222),
  95. /*
  96. * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
  97. * rx1, rx12, b (2 bits each)
  98. */
  99. .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
  100. /*
  101. * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
  102. * for ar9280 (0xa20c/b20c 5:0)
  103. */
  104. .xatten1DB = {0, 0, 0},
  105. /*
  106. * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
  107. * for ar9280 (0xa20c/b20c 16:12
  108. */
  109. .xatten1Margin = {0, 0, 0},
  110. .tempSlope = 36,
  111. .voltSlope = 0,
  112. /*
  113. * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
  114. * channels in usual fbin coding format
  115. */
  116. .spurChans = {0, 0, 0, 0, 0},
  117. /*
  118. * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
  119. * if the register is per chain
  120. */
  121. .noiseFloorThreshCh = {-1, 0, 0},
  122. .ob = {1, 1, 1},/* 3 chain */
  123. .db_stage2 = {1, 1, 1}, /* 3 chain */
  124. .db_stage3 = {0, 0, 0},
  125. .db_stage4 = {0, 0, 0},
  126. .xpaBiasLvl = 0,
  127. .txFrameToDataStart = 0x0e,
  128. .txFrameToPaOn = 0x0e,
  129. .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
  130. .antennaGain = 0,
  131. .switchSettling = 0x2c,
  132. .adcDesiredSize = -30,
  133. .txEndToXpaOff = 0,
  134. .txEndToRxOn = 0x2,
  135. .txFrameToXpaOn = 0xe,
  136. .thresh62 = 28,
  137. .papdRateMaskHt20 = LE32(0x0cf0e0e0),
  138. .papdRateMaskHt40 = LE32(0x6cf0e0e0),
  139. .futureModal = {
  140. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  141. },
  142. },
  143. .base_ext1 = {
  144. .ant_div_control = 0,
  145. .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
  146. },
  147. .calFreqPier2G = {
  148. FREQ2FBIN(2412, 1),
  149. FREQ2FBIN(2437, 1),
  150. FREQ2FBIN(2472, 1),
  151. },
  152. /* ar9300_cal_data_per_freq_op_loop 2g */
  153. .calPierData2G = {
  154. { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
  155. { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
  156. { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
  157. },
  158. .calTarget_freqbin_Cck = {
  159. FREQ2FBIN(2412, 1),
  160. FREQ2FBIN(2484, 1),
  161. },
  162. .calTarget_freqbin_2G = {
  163. FREQ2FBIN(2412, 1),
  164. FREQ2FBIN(2437, 1),
  165. FREQ2FBIN(2472, 1)
  166. },
  167. .calTarget_freqbin_2GHT20 = {
  168. FREQ2FBIN(2412, 1),
  169. FREQ2FBIN(2437, 1),
  170. FREQ2FBIN(2472, 1)
  171. },
  172. .calTarget_freqbin_2GHT40 = {
  173. FREQ2FBIN(2412, 1),
  174. FREQ2FBIN(2437, 1),
  175. FREQ2FBIN(2472, 1)
  176. },
  177. .calTargetPowerCck = {
  178. /* 1L-5L,5S,11L,11S */
  179. { {36, 36, 36, 36} },
  180. { {36, 36, 36, 36} },
  181. },
  182. .calTargetPower2G = {
  183. /* 6-24,36,48,54 */
  184. { {32, 32, 28, 24} },
  185. { {32, 32, 28, 24} },
  186. { {32, 32, 28, 24} },
  187. },
  188. .calTargetPower2GHT20 = {
  189. { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
  190. { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
  191. { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
  192. },
  193. .calTargetPower2GHT40 = {
  194. { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
  195. { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
  196. { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
  197. },
  198. .ctlIndex_2G = {
  199. 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
  200. 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
  201. },
  202. .ctl_freqbin_2G = {
  203. {
  204. FREQ2FBIN(2412, 1),
  205. FREQ2FBIN(2417, 1),
  206. FREQ2FBIN(2457, 1),
  207. FREQ2FBIN(2462, 1)
  208. },
  209. {
  210. FREQ2FBIN(2412, 1),
  211. FREQ2FBIN(2417, 1),
  212. FREQ2FBIN(2462, 1),
  213. 0xFF,
  214. },
  215. {
  216. FREQ2FBIN(2412, 1),
  217. FREQ2FBIN(2417, 1),
  218. FREQ2FBIN(2462, 1),
  219. 0xFF,
  220. },
  221. {
  222. FREQ2FBIN(2422, 1),
  223. FREQ2FBIN(2427, 1),
  224. FREQ2FBIN(2447, 1),
  225. FREQ2FBIN(2452, 1)
  226. },
  227. {
  228. /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
  229. /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
  230. /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
  231. /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
  232. },
  233. {
  234. /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
  235. /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
  236. /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
  237. 0,
  238. },
  239. {
  240. /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
  241. /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
  242. FREQ2FBIN(2472, 1),
  243. 0,
  244. },
  245. {
  246. /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
  247. /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
  248. /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
  249. /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
  250. },
  251. {
  252. /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
  253. /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
  254. /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
  255. },
  256. {
  257. /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
  258. /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
  259. /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
  260. 0
  261. },
  262. {
  263. /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
  264. /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
  265. /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
  266. 0
  267. },
  268. {
  269. /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
  270. /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
  271. /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
  272. /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
  273. }
  274. },
  275. .ctlPowerData_2G = {
  276. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  277. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  278. { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
  279. { { CTL(60, 1), CTL(60, 0), CTL(0, 0), CTL(0, 0) } },
  280. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  281. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  282. { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
  283. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  284. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  285. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  286. { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
  287. { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
  288. },
  289. .modalHeader5G = {
  290. /* 4 idle,t1,t2,b (4 bits per setting) */
  291. .antCtrlCommon = LE32(0x110),
  292. /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
  293. .antCtrlCommon2 = LE32(0x22222),
  294. /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
  295. .antCtrlChain = {
  296. LE16(0x000), LE16(0x000), LE16(0x000),
  297. },
  298. /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
  299. .xatten1DB = {0, 0, 0},
  300. /*
  301. * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
  302. * for merlin (0xa20c/b20c 16:12
  303. */
  304. .xatten1Margin = {0, 0, 0},
  305. .tempSlope = 68,
  306. .voltSlope = 0,
  307. /* spurChans spur channels in usual fbin coding format */
  308. .spurChans = {0, 0, 0, 0, 0},
  309. /* noiseFloorThreshCh Check if the register is per chain */
  310. .noiseFloorThreshCh = {-1, 0, 0},
  311. .ob = {3, 3, 3}, /* 3 chain */
  312. .db_stage2 = {3, 3, 3}, /* 3 chain */
  313. .db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
  314. .db_stage4 = {3, 3, 3}, /* don't exist for 2G */
  315. .xpaBiasLvl = 0,
  316. .txFrameToDataStart = 0x0e,
  317. .txFrameToPaOn = 0x0e,
  318. .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
  319. .antennaGain = 0,
  320. .switchSettling = 0x2d,
  321. .adcDesiredSize = -30,
  322. .txEndToXpaOff = 0,
  323. .txEndToRxOn = 0x2,
  324. .txFrameToXpaOn = 0xe,
  325. .thresh62 = 28,
  326. .papdRateMaskHt20 = LE32(0x0c80c080),
  327. .papdRateMaskHt40 = LE32(0x0080c080),
  328. .futureModal = {
  329. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  330. },
  331. },
  332. .base_ext2 = {
  333. .tempSlopeLow = 0,
  334. .tempSlopeHigh = 0,
  335. .xatten1DBLow = {0, 0, 0},
  336. .xatten1MarginLow = {0, 0, 0},
  337. .xatten1DBHigh = {0, 0, 0},
  338. .xatten1MarginHigh = {0, 0, 0}
  339. },
  340. .calFreqPier5G = {
  341. FREQ2FBIN(5180, 0),
  342. FREQ2FBIN(5220, 0),
  343. FREQ2FBIN(5320, 0),
  344. FREQ2FBIN(5400, 0),
  345. FREQ2FBIN(5500, 0),
  346. FREQ2FBIN(5600, 0),
  347. FREQ2FBIN(5725, 0),
  348. FREQ2FBIN(5825, 0)
  349. },
  350. .calPierData5G = {
  351. {
  352. {0, 0, 0, 0, 0},
  353. {0, 0, 0, 0, 0},
  354. {0, 0, 0, 0, 0},
  355. {0, 0, 0, 0, 0},
  356. {0, 0, 0, 0, 0},
  357. {0, 0, 0, 0, 0},
  358. {0, 0, 0, 0, 0},
  359. {0, 0, 0, 0, 0},
  360. },
  361. {
  362. {0, 0, 0, 0, 0},
  363. {0, 0, 0, 0, 0},
  364. {0, 0, 0, 0, 0},
  365. {0, 0, 0, 0, 0},
  366. {0, 0, 0, 0, 0},
  367. {0, 0, 0, 0, 0},
  368. {0, 0, 0, 0, 0},
  369. {0, 0, 0, 0, 0},
  370. },
  371. {
  372. {0, 0, 0, 0, 0},
  373. {0, 0, 0, 0, 0},
  374. {0, 0, 0, 0, 0},
  375. {0, 0, 0, 0, 0},
  376. {0, 0, 0, 0, 0},
  377. {0, 0, 0, 0, 0},
  378. {0, 0, 0, 0, 0},
  379. {0, 0, 0, 0, 0},
  380. },
  381. },
  382. .calTarget_freqbin_5G = {
  383. FREQ2FBIN(5180, 0),
  384. FREQ2FBIN(5220, 0),
  385. FREQ2FBIN(5320, 0),
  386. FREQ2FBIN(5400, 0),
  387. FREQ2FBIN(5500, 0),
  388. FREQ2FBIN(5600, 0),
  389. FREQ2FBIN(5725, 0),
  390. FREQ2FBIN(5825, 0)
  391. },
  392. .calTarget_freqbin_5GHT20 = {
  393. FREQ2FBIN(5180, 0),
  394. FREQ2FBIN(5240, 0),
  395. FREQ2FBIN(5320, 0),
  396. FREQ2FBIN(5500, 0),
  397. FREQ2FBIN(5700, 0),
  398. FREQ2FBIN(5745, 0),
  399. FREQ2FBIN(5725, 0),
  400. FREQ2FBIN(5825, 0)
  401. },
  402. .calTarget_freqbin_5GHT40 = {
  403. FREQ2FBIN(5180, 0),
  404. FREQ2FBIN(5240, 0),
  405. FREQ2FBIN(5320, 0),
  406. FREQ2FBIN(5500, 0),
  407. FREQ2FBIN(5700, 0),
  408. FREQ2FBIN(5745, 0),
  409. FREQ2FBIN(5725, 0),
  410. FREQ2FBIN(5825, 0)
  411. },
  412. .calTargetPower5G = {
  413. /* 6-24,36,48,54 */
  414. { {20, 20, 20, 10} },
  415. { {20, 20, 20, 10} },
  416. { {20, 20, 20, 10} },
  417. { {20, 20, 20, 10} },
  418. { {20, 20, 20, 10} },
  419. { {20, 20, 20, 10} },
  420. { {20, 20, 20, 10} },
  421. { {20, 20, 20, 10} },
  422. },
  423. .calTargetPower5GHT20 = {
  424. /*
  425. * 0_8_16,1-3_9-11_17-19,
  426. * 4,5,6,7,12,13,14,15,20,21,22,23
  427. */
  428. { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
  429. { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
  430. { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
  431. { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
  432. { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
  433. { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
  434. { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
  435. { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
  436. },
  437. .calTargetPower5GHT40 = {
  438. /*
  439. * 0_8_16,1-3_9-11_17-19,
  440. * 4,5,6,7,12,13,14,15,20,21,22,23
  441. */
  442. { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
  443. { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
  444. { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
  445. { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
  446. { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
  447. { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
  448. { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
  449. { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
  450. },
  451. .ctlIndex_5G = {
  452. 0x10, 0x16, 0x18, 0x40, 0x46,
  453. 0x48, 0x30, 0x36, 0x38
  454. },
  455. .ctl_freqbin_5G = {
  456. {
  457. /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
  458. /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
  459. /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
  460. /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
  461. /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
  462. /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
  463. /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
  464. /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
  465. },
  466. {
  467. /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
  468. /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
  469. /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
  470. /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
  471. /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
  472. /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
  473. /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
  474. /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
  475. },
  476. {
  477. /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
  478. /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
  479. /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
  480. /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
  481. /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
  482. /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
  483. /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
  484. /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
  485. },
  486. {
  487. /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
  488. /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
  489. /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
  490. /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
  491. /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
  492. /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
  493. /* Data[3].ctlEdges[6].bChannel */ 0xFF,
  494. /* Data[3].ctlEdges[7].bChannel */ 0xFF,
  495. },
  496. {
  497. /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
  498. /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
  499. /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
  500. /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
  501. /* Data[4].ctlEdges[4].bChannel */ 0xFF,
  502. /* Data[4].ctlEdges[5].bChannel */ 0xFF,
  503. /* Data[4].ctlEdges[6].bChannel */ 0xFF,
  504. /* Data[4].ctlEdges[7].bChannel */ 0xFF,
  505. },
  506. {
  507. /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
  508. /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
  509. /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
  510. /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
  511. /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
  512. /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
  513. /* Data[5].ctlEdges[6].bChannel */ 0xFF,
  514. /* Data[5].ctlEdges[7].bChannel */ 0xFF
  515. },
  516. {
  517. /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
  518. /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
  519. /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
  520. /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
  521. /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
  522. /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
  523. /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
  524. /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
  525. },
  526. {
  527. /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
  528. /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
  529. /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
  530. /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
  531. /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
  532. /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
  533. /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
  534. /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
  535. },
  536. {
  537. /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
  538. /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
  539. /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
  540. /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
  541. /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
  542. /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
  543. /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
  544. /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
  545. }
  546. },
  547. .ctlPowerData_5G = {
  548. {
  549. {
  550. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
  551. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
  552. }
  553. },
  554. {
  555. {
  556. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
  557. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
  558. }
  559. },
  560. {
  561. {
  562. CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
  563. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
  564. }
  565. },
  566. {
  567. {
  568. CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
  569. CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
  570. }
  571. },
  572. {
  573. {
  574. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
  575. CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
  576. }
  577. },
  578. {
  579. {
  580. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
  581. CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
  582. }
  583. },
  584. {
  585. {
  586. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
  587. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
  588. }
  589. },
  590. {
  591. {
  592. CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
  593. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
  594. }
  595. },
  596. {
  597. {
  598. CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
  599. CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
  600. }
  601. },
  602. }
  603. };
  604. static const struct ar9300_eeprom ar9300_x113 = {
  605. .eepromVersion = 2,
  606. .templateVersion = 6,
  607. .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
  608. .custData = {"x113-023-f0000"},
  609. .baseEepHeader = {
  610. .regDmn = { LE16(0), LE16(0x1f) },
  611. .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
  612. .opCapFlags = {
  613. .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
  614. .eepMisc = 0,
  615. },
  616. .rfSilent = 0,
  617. .blueToothOptions = 0,
  618. .deviceCap = 0,
  619. .deviceType = 5, /* takes lower byte in eeprom location */
  620. .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
  621. .params_for_tuning_caps = {0, 0},
  622. .featureEnable = 0x0d,
  623. /*
  624. * bit0 - enable tx temp comp - disabled
  625. * bit1 - enable tx volt comp - disabled
  626. * bit2 - enable fastClock - enabled
  627. * bit3 - enable doubling - enabled
  628. * bit4 - enable internal regulator - disabled
  629. * bit5 - enable pa predistortion - disabled
  630. */
  631. .miscConfiguration = 0, /* bit0 - turn down drivestrength */
  632. .eepromWriteEnableGpio = 6,
  633. .wlanDisableGpio = 0,
  634. .wlanLedGpio = 8,
  635. .rxBandSelectGpio = 0xff,
  636. .txrxgain = 0x21,
  637. .swreg = 0,
  638. },
  639. .modalHeader2G = {
  640. /* ar9300_modal_eep_header 2g */
  641. /* 4 idle,t1,t2,b(4 bits per setting) */
  642. .antCtrlCommon = LE32(0x110),
  643. /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
  644. .antCtrlCommon2 = LE32(0x44444),
  645. /*
  646. * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
  647. * rx1, rx12, b (2 bits each)
  648. */
  649. .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
  650. /*
  651. * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
  652. * for ar9280 (0xa20c/b20c 5:0)
  653. */
  654. .xatten1DB = {0, 0, 0},
  655. /*
  656. * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
  657. * for ar9280 (0xa20c/b20c 16:12
  658. */
  659. .xatten1Margin = {0, 0, 0},
  660. .tempSlope = 25,
  661. .voltSlope = 0,
  662. /*
  663. * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
  664. * channels in usual fbin coding format
  665. */
  666. .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
  667. /*
  668. * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
  669. * if the register is per chain
  670. */
  671. .noiseFloorThreshCh = {-1, 0, 0},
  672. .ob = {1, 1, 1},/* 3 chain */
  673. .db_stage2 = {1, 1, 1}, /* 3 chain */
  674. .db_stage3 = {0, 0, 0},
  675. .db_stage4 = {0, 0, 0},
  676. .xpaBiasLvl = 0,
  677. .txFrameToDataStart = 0x0e,
  678. .txFrameToPaOn = 0x0e,
  679. .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
  680. .antennaGain = 0,
  681. .switchSettling = 0x2c,
  682. .adcDesiredSize = -30,
  683. .txEndToXpaOff = 0,
  684. .txEndToRxOn = 0x2,
  685. .txFrameToXpaOn = 0xe,
  686. .thresh62 = 28,
  687. .papdRateMaskHt20 = LE32(0x0c80c080),
  688. .papdRateMaskHt40 = LE32(0x0080c080),
  689. .futureModal = {
  690. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  691. },
  692. },
  693. .base_ext1 = {
  694. .ant_div_control = 0,
  695. .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
  696. },
  697. .calFreqPier2G = {
  698. FREQ2FBIN(2412, 1),
  699. FREQ2FBIN(2437, 1),
  700. FREQ2FBIN(2472, 1),
  701. },
  702. /* ar9300_cal_data_per_freq_op_loop 2g */
  703. .calPierData2G = {
  704. { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
  705. { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
  706. { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
  707. },
  708. .calTarget_freqbin_Cck = {
  709. FREQ2FBIN(2412, 1),
  710. FREQ2FBIN(2472, 1),
  711. },
  712. .calTarget_freqbin_2G = {
  713. FREQ2FBIN(2412, 1),
  714. FREQ2FBIN(2437, 1),
  715. FREQ2FBIN(2472, 1)
  716. },
  717. .calTarget_freqbin_2GHT20 = {
  718. FREQ2FBIN(2412, 1),
  719. FREQ2FBIN(2437, 1),
  720. FREQ2FBIN(2472, 1)
  721. },
  722. .calTarget_freqbin_2GHT40 = {
  723. FREQ2FBIN(2412, 1),
  724. FREQ2FBIN(2437, 1),
  725. FREQ2FBIN(2472, 1)
  726. },
  727. .calTargetPowerCck = {
  728. /* 1L-5L,5S,11L,11S */
  729. { {34, 34, 34, 34} },
  730. { {34, 34, 34, 34} },
  731. },
  732. .calTargetPower2G = {
  733. /* 6-24,36,48,54 */
  734. { {34, 34, 32, 32} },
  735. { {34, 34, 32, 32} },
  736. { {34, 34, 32, 32} },
  737. },
  738. .calTargetPower2GHT20 = {
  739. { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
  740. { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
  741. { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
  742. },
  743. .calTargetPower2GHT40 = {
  744. { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
  745. { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
  746. { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
  747. },
  748. .ctlIndex_2G = {
  749. 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
  750. 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
  751. },
  752. .ctl_freqbin_2G = {
  753. {
  754. FREQ2FBIN(2412, 1),
  755. FREQ2FBIN(2417, 1),
  756. FREQ2FBIN(2457, 1),
  757. FREQ2FBIN(2462, 1)
  758. },
  759. {
  760. FREQ2FBIN(2412, 1),
  761. FREQ2FBIN(2417, 1),
  762. FREQ2FBIN(2462, 1),
  763. 0xFF,
  764. },
  765. {
  766. FREQ2FBIN(2412, 1),
  767. FREQ2FBIN(2417, 1),
  768. FREQ2FBIN(2462, 1),
  769. 0xFF,
  770. },
  771. {
  772. FREQ2FBIN(2422, 1),
  773. FREQ2FBIN(2427, 1),
  774. FREQ2FBIN(2447, 1),
  775. FREQ2FBIN(2452, 1)
  776. },
  777. {
  778. /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
  779. /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
  780. /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
  781. /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
  782. },
  783. {
  784. /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
  785. /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
  786. /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
  787. 0,
  788. },
  789. {
  790. /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
  791. /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
  792. FREQ2FBIN(2472, 1),
  793. 0,
  794. },
  795. {
  796. /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
  797. /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
  798. /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
  799. /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
  800. },
  801. {
  802. /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
  803. /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
  804. /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
  805. },
  806. {
  807. /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
  808. /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
  809. /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
  810. 0
  811. },
  812. {
  813. /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
  814. /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
  815. /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
  816. 0
  817. },
  818. {
  819. /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
  820. /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
  821. /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
  822. /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
  823. }
  824. },
  825. .ctlPowerData_2G = {
  826. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  827. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  828. { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
  829. { { CTL(60, 1), CTL(60, 0), CTL(0, 0), CTL(0, 0) } },
  830. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  831. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  832. { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
  833. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  834. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  835. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  836. { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
  837. { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
  838. },
  839. .modalHeader5G = {
  840. /* 4 idle,t1,t2,b (4 bits per setting) */
  841. .antCtrlCommon = LE32(0x220),
  842. /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
  843. .antCtrlCommon2 = LE32(0x11111),
  844. /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
  845. .antCtrlChain = {
  846. LE16(0x150), LE16(0x150), LE16(0x150),
  847. },
  848. /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
  849. .xatten1DB = {0, 0, 0},
  850. /*
  851. * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
  852. * for merlin (0xa20c/b20c 16:12
  853. */
  854. .xatten1Margin = {0, 0, 0},
  855. .tempSlope = 68,
  856. .voltSlope = 0,
  857. /* spurChans spur channels in usual fbin coding format */
  858. .spurChans = {FREQ2FBIN(5500, 0), 0, 0, 0, 0},
  859. /* noiseFloorThreshCh Check if the register is per chain */
  860. .noiseFloorThreshCh = {-1, 0, 0},
  861. .ob = {3, 3, 3}, /* 3 chain */
  862. .db_stage2 = {3, 3, 3}, /* 3 chain */
  863. .db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
  864. .db_stage4 = {3, 3, 3}, /* don't exist for 2G */
  865. .xpaBiasLvl = 0,
  866. .txFrameToDataStart = 0x0e,
  867. .txFrameToPaOn = 0x0e,
  868. .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
  869. .antennaGain = 0,
  870. .switchSettling = 0x2d,
  871. .adcDesiredSize = -30,
  872. .txEndToXpaOff = 0,
  873. .txEndToRxOn = 0x2,
  874. .txFrameToXpaOn = 0xe,
  875. .thresh62 = 28,
  876. .papdRateMaskHt20 = LE32(0x0cf0e0e0),
  877. .papdRateMaskHt40 = LE32(0x6cf0e0e0),
  878. .futureModal = {
  879. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  880. },
  881. },
  882. .base_ext2 = {
  883. .tempSlopeLow = 72,
  884. .tempSlopeHigh = 105,
  885. .xatten1DBLow = {0, 0, 0},
  886. .xatten1MarginLow = {0, 0, 0},
  887. .xatten1DBHigh = {0, 0, 0},
  888. .xatten1MarginHigh = {0, 0, 0}
  889. },
  890. .calFreqPier5G = {
  891. FREQ2FBIN(5180, 0),
  892. FREQ2FBIN(5240, 0),
  893. FREQ2FBIN(5320, 0),
  894. FREQ2FBIN(5400, 0),
  895. FREQ2FBIN(5500, 0),
  896. FREQ2FBIN(5600, 0),
  897. FREQ2FBIN(5745, 0),
  898. FREQ2FBIN(5785, 0)
  899. },
  900. .calPierData5G = {
  901. {
  902. {0, 0, 0, 0, 0},
  903. {0, 0, 0, 0, 0},
  904. {0, 0, 0, 0, 0},
  905. {0, 0, 0, 0, 0},
  906. {0, 0, 0, 0, 0},
  907. {0, 0, 0, 0, 0},
  908. {0, 0, 0, 0, 0},
  909. {0, 0, 0, 0, 0},
  910. },
  911. {
  912. {0, 0, 0, 0, 0},
  913. {0, 0, 0, 0, 0},
  914. {0, 0, 0, 0, 0},
  915. {0, 0, 0, 0, 0},
  916. {0, 0, 0, 0, 0},
  917. {0, 0, 0, 0, 0},
  918. {0, 0, 0, 0, 0},
  919. {0, 0, 0, 0, 0},
  920. },
  921. {
  922. {0, 0, 0, 0, 0},
  923. {0, 0, 0, 0, 0},
  924. {0, 0, 0, 0, 0},
  925. {0, 0, 0, 0, 0},
  926. {0, 0, 0, 0, 0},
  927. {0, 0, 0, 0, 0},
  928. {0, 0, 0, 0, 0},
  929. {0, 0, 0, 0, 0},
  930. },
  931. },
  932. .calTarget_freqbin_5G = {
  933. FREQ2FBIN(5180, 0),
  934. FREQ2FBIN(5220, 0),
  935. FREQ2FBIN(5320, 0),
  936. FREQ2FBIN(5400, 0),
  937. FREQ2FBIN(5500, 0),
  938. FREQ2FBIN(5600, 0),
  939. FREQ2FBIN(5745, 0),
  940. FREQ2FBIN(5785, 0)
  941. },
  942. .calTarget_freqbin_5GHT20 = {
  943. FREQ2FBIN(5180, 0),
  944. FREQ2FBIN(5240, 0),
  945. FREQ2FBIN(5320, 0),
  946. FREQ2FBIN(5400, 0),
  947. FREQ2FBIN(5500, 0),
  948. FREQ2FBIN(5700, 0),
  949. FREQ2FBIN(5745, 0),
  950. FREQ2FBIN(5825, 0)
  951. },
  952. .calTarget_freqbin_5GHT40 = {
  953. FREQ2FBIN(5190, 0),
  954. FREQ2FBIN(5230, 0),
  955. FREQ2FBIN(5320, 0),
  956. FREQ2FBIN(5410, 0),
  957. FREQ2FBIN(5510, 0),
  958. FREQ2FBIN(5670, 0),
  959. FREQ2FBIN(5755, 0),
  960. FREQ2FBIN(5825, 0)
  961. },
  962. .calTargetPower5G = {
  963. /* 6-24,36,48,54 */
  964. { {42, 40, 40, 34} },
  965. { {42, 40, 40, 34} },
  966. { {42, 40, 40, 34} },
  967. { {42, 40, 40, 34} },
  968. { {42, 40, 40, 34} },
  969. { {42, 40, 40, 34} },
  970. { {42, 40, 40, 34} },
  971. { {42, 40, 40, 34} },
  972. },
  973. .calTargetPower5GHT20 = {
  974. /*
  975. * 0_8_16,1-3_9-11_17-19,
  976. * 4,5,6,7,12,13,14,15,20,21,22,23
  977. */
  978. { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
  979. { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
  980. { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
  981. { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
  982. { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
  983. { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
  984. { {38, 38, 38, 38, 32, 28, 38, 38, 32, 28, 38, 38, 32, 26} },
  985. { {36, 36, 36, 36, 32, 28, 36, 36, 32, 28, 36, 36, 32, 26} },
  986. },
  987. .calTargetPower5GHT40 = {
  988. /*
  989. * 0_8_16,1-3_9-11_17-19,
  990. * 4,5,6,7,12,13,14,15,20,21,22,23
  991. */
  992. { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
  993. { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
  994. { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
  995. { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
  996. { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
  997. { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
  998. { {36, 36, 36, 36, 30, 26, 36, 36, 30, 26, 36, 36, 30, 24} },
  999. { {34, 34, 34, 34, 30, 26, 34, 34, 30, 26, 34, 34, 30, 24} },
  1000. },
  1001. .ctlIndex_5G = {
  1002. 0x10, 0x16, 0x18, 0x40, 0x46,
  1003. 0x48, 0x30, 0x36, 0x38
  1004. },
  1005. .ctl_freqbin_5G = {
  1006. {
  1007. /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
  1008. /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
  1009. /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
  1010. /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
  1011. /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
  1012. /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
  1013. /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
  1014. /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
  1015. },
  1016. {
  1017. /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
  1018. /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
  1019. /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
  1020. /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
  1021. /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
  1022. /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
  1023. /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
  1024. /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
  1025. },
  1026. {
  1027. /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
  1028. /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
  1029. /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
  1030. /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
  1031. /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
  1032. /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
  1033. /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
  1034. /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
  1035. },
  1036. {
  1037. /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
  1038. /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
  1039. /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
  1040. /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
  1041. /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
  1042. /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
  1043. /* Data[3].ctlEdges[6].bChannel */ 0xFF,
  1044. /* Data[3].ctlEdges[7].bChannel */ 0xFF,
  1045. },
  1046. {
  1047. /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
  1048. /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
  1049. /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
  1050. /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
  1051. /* Data[4].ctlEdges[4].bChannel */ 0xFF,
  1052. /* Data[4].ctlEdges[5].bChannel */ 0xFF,
  1053. /* Data[4].ctlEdges[6].bChannel */ 0xFF,
  1054. /* Data[4].ctlEdges[7].bChannel */ 0xFF,
  1055. },
  1056. {
  1057. /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
  1058. /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
  1059. /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
  1060. /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
  1061. /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
  1062. /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
  1063. /* Data[5].ctlEdges[6].bChannel */ 0xFF,
  1064. /* Data[5].ctlEdges[7].bChannel */ 0xFF
  1065. },
  1066. {
  1067. /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
  1068. /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
  1069. /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
  1070. /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
  1071. /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
  1072. /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
  1073. /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
  1074. /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
  1075. },
  1076. {
  1077. /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
  1078. /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
  1079. /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
  1080. /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
  1081. /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
  1082. /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
  1083. /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
  1084. /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
  1085. },
  1086. {
  1087. /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
  1088. /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
  1089. /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
  1090. /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
  1091. /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
  1092. /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
  1093. /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
  1094. /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
  1095. }
  1096. },
  1097. .ctlPowerData_5G = {
  1098. {
  1099. {
  1100. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
  1101. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
  1102. }
  1103. },
  1104. {
  1105. {
  1106. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
  1107. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
  1108. }
  1109. },
  1110. {
  1111. {
  1112. CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
  1113. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
  1114. }
  1115. },
  1116. {
  1117. {
  1118. CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
  1119. CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
  1120. }
  1121. },
  1122. {
  1123. {
  1124. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
  1125. CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
  1126. }
  1127. },
  1128. {
  1129. {
  1130. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
  1131. CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
  1132. }
  1133. },
  1134. {
  1135. {
  1136. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
  1137. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
  1138. }
  1139. },
  1140. {
  1141. {
  1142. CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
  1143. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
  1144. }
  1145. },
  1146. {
  1147. {
  1148. CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
  1149. CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
  1150. }
  1151. },
  1152. }
  1153. };
  1154. static const struct ar9300_eeprom ar9300_h112 = {
  1155. .eepromVersion = 2,
  1156. .templateVersion = 3,
  1157. .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
  1158. .custData = {"h112-241-f0000"},
  1159. .baseEepHeader = {
  1160. .regDmn = { LE16(0), LE16(0x1f) },
  1161. .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
  1162. .opCapFlags = {
  1163. .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
  1164. .eepMisc = 0,
  1165. },
  1166. .rfSilent = 0,
  1167. .blueToothOptions = 0,
  1168. .deviceCap = 0,
  1169. .deviceType = 5, /* takes lower byte in eeprom location */
  1170. .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
  1171. .params_for_tuning_caps = {0, 0},
  1172. .featureEnable = 0x0d,
  1173. /*
  1174. * bit0 - enable tx temp comp - disabled
  1175. * bit1 - enable tx volt comp - disabled
  1176. * bit2 - enable fastClock - enabled
  1177. * bit3 - enable doubling - enabled
  1178. * bit4 - enable internal regulator - disabled
  1179. * bit5 - enable pa predistortion - disabled
  1180. */
  1181. .miscConfiguration = 0, /* bit0 - turn down drivestrength */
  1182. .eepromWriteEnableGpio = 6,
  1183. .wlanDisableGpio = 0,
  1184. .wlanLedGpio = 8,
  1185. .rxBandSelectGpio = 0xff,
  1186. .txrxgain = 0x10,
  1187. .swreg = 0,
  1188. },
  1189. .modalHeader2G = {
  1190. /* ar9300_modal_eep_header 2g */
  1191. /* 4 idle,t1,t2,b(4 bits per setting) */
  1192. .antCtrlCommon = LE32(0x110),
  1193. /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
  1194. .antCtrlCommon2 = LE32(0x44444),
  1195. /*
  1196. * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
  1197. * rx1, rx12, b (2 bits each)
  1198. */
  1199. .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
  1200. /*
  1201. * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
  1202. * for ar9280 (0xa20c/b20c 5:0)
  1203. */
  1204. .xatten1DB = {0, 0, 0},
  1205. /*
  1206. * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
  1207. * for ar9280 (0xa20c/b20c 16:12
  1208. */
  1209. .xatten1Margin = {0, 0, 0},
  1210. .tempSlope = 25,
  1211. .voltSlope = 0,
  1212. /*
  1213. * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
  1214. * channels in usual fbin coding format
  1215. */
  1216. .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
  1217. /*
  1218. * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
  1219. * if the register is per chain
  1220. */
  1221. .noiseFloorThreshCh = {-1, 0, 0},
  1222. .ob = {1, 1, 1},/* 3 chain */
  1223. .db_stage2 = {1, 1, 1}, /* 3 chain */
  1224. .db_stage3 = {0, 0, 0},
  1225. .db_stage4 = {0, 0, 0},
  1226. .xpaBiasLvl = 0,
  1227. .txFrameToDataStart = 0x0e,
  1228. .txFrameToPaOn = 0x0e,
  1229. .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
  1230. .antennaGain = 0,
  1231. .switchSettling = 0x2c,
  1232. .adcDesiredSize = -30,
  1233. .txEndToXpaOff = 0,
  1234. .txEndToRxOn = 0x2,
  1235. .txFrameToXpaOn = 0xe,
  1236. .thresh62 = 28,
  1237. .papdRateMaskHt20 = LE32(0x80c080),
  1238. .papdRateMaskHt40 = LE32(0x80c080),
  1239. .futureModal = {
  1240. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  1241. },
  1242. },
  1243. .base_ext1 = {
  1244. .ant_div_control = 0,
  1245. .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
  1246. },
  1247. .calFreqPier2G = {
  1248. FREQ2FBIN(2412, 1),
  1249. FREQ2FBIN(2437, 1),
  1250. FREQ2FBIN(2472, 1),
  1251. },
  1252. /* ar9300_cal_data_per_freq_op_loop 2g */
  1253. .calPierData2G = {
  1254. { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
  1255. { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
  1256. { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
  1257. },
  1258. .calTarget_freqbin_Cck = {
  1259. FREQ2FBIN(2412, 1),
  1260. FREQ2FBIN(2484, 1),
  1261. },
  1262. .calTarget_freqbin_2G = {
  1263. FREQ2FBIN(2412, 1),
  1264. FREQ2FBIN(2437, 1),
  1265. FREQ2FBIN(2472, 1)
  1266. },
  1267. .calTarget_freqbin_2GHT20 = {
  1268. FREQ2FBIN(2412, 1),
  1269. FREQ2FBIN(2437, 1),
  1270. FREQ2FBIN(2472, 1)
  1271. },
  1272. .calTarget_freqbin_2GHT40 = {
  1273. FREQ2FBIN(2412, 1),
  1274. FREQ2FBIN(2437, 1),
  1275. FREQ2FBIN(2472, 1)
  1276. },
  1277. .calTargetPowerCck = {
  1278. /* 1L-5L,5S,11L,11S */
  1279. { {34, 34, 34, 34} },
  1280. { {34, 34, 34, 34} },
  1281. },
  1282. .calTargetPower2G = {
  1283. /* 6-24,36,48,54 */
  1284. { {34, 34, 32, 32} },
  1285. { {34, 34, 32, 32} },
  1286. { {34, 34, 32, 32} },
  1287. },
  1288. .calTargetPower2GHT20 = {
  1289. { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
  1290. { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
  1291. { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
  1292. },
  1293. .calTargetPower2GHT40 = {
  1294. { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
  1295. { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
  1296. { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
  1297. },
  1298. .ctlIndex_2G = {
  1299. 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
  1300. 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
  1301. },
  1302. .ctl_freqbin_2G = {
  1303. {
  1304. FREQ2FBIN(2412, 1),
  1305. FREQ2FBIN(2417, 1),
  1306. FREQ2FBIN(2457, 1),
  1307. FREQ2FBIN(2462, 1)
  1308. },
  1309. {
  1310. FREQ2FBIN(2412, 1),
  1311. FREQ2FBIN(2417, 1),
  1312. FREQ2FBIN(2462, 1),
  1313. 0xFF,
  1314. },
  1315. {
  1316. FREQ2FBIN(2412, 1),
  1317. FREQ2FBIN(2417, 1),
  1318. FREQ2FBIN(2462, 1),
  1319. 0xFF,
  1320. },
  1321. {
  1322. FREQ2FBIN(2422, 1),
  1323. FREQ2FBIN(2427, 1),
  1324. FREQ2FBIN(2447, 1),
  1325. FREQ2FBIN(2452, 1)
  1326. },
  1327. {
  1328. /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
  1329. /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
  1330. /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
  1331. /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
  1332. },
  1333. {
  1334. /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
  1335. /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
  1336. /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
  1337. 0,
  1338. },
  1339. {
  1340. /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
  1341. /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
  1342. FREQ2FBIN(2472, 1),
  1343. 0,
  1344. },
  1345. {
  1346. /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
  1347. /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
  1348. /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
  1349. /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
  1350. },
  1351. {
  1352. /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
  1353. /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
  1354. /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
  1355. },
  1356. {
  1357. /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
  1358. /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
  1359. /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
  1360. 0
  1361. },
  1362. {
  1363. /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
  1364. /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
  1365. /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
  1366. 0
  1367. },
  1368. {
  1369. /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
  1370. /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
  1371. /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
  1372. /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
  1373. }
  1374. },
  1375. .ctlPowerData_2G = {
  1376. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  1377. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  1378. { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
  1379. { { CTL(60, 1), CTL(60, 0), CTL(0, 0), CTL(0, 0) } },
  1380. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  1381. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  1382. { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
  1383. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  1384. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  1385. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  1386. { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
  1387. { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
  1388. },
  1389. .modalHeader5G = {
  1390. /* 4 idle,t1,t2,b (4 bits per setting) */
  1391. .antCtrlCommon = LE32(0x220),
  1392. /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
  1393. .antCtrlCommon2 = LE32(0x44444),
  1394. /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
  1395. .antCtrlChain = {
  1396. LE16(0x150), LE16(0x150), LE16(0x150),
  1397. },
  1398. /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
  1399. .xatten1DB = {0, 0, 0},
  1400. /*
  1401. * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
  1402. * for merlin (0xa20c/b20c 16:12
  1403. */
  1404. .xatten1Margin = {0, 0, 0},
  1405. .tempSlope = 45,
  1406. .voltSlope = 0,
  1407. /* spurChans spur channels in usual fbin coding format */
  1408. .spurChans = {0, 0, 0, 0, 0},
  1409. /* noiseFloorThreshCh Check if the register is per chain */
  1410. .noiseFloorThreshCh = {-1, 0, 0},
  1411. .ob = {3, 3, 3}, /* 3 chain */
  1412. .db_stage2 = {3, 3, 3}, /* 3 chain */
  1413. .db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
  1414. .db_stage4 = {3, 3, 3}, /* don't exist for 2G */
  1415. .xpaBiasLvl = 0,
  1416. .txFrameToDataStart = 0x0e,
  1417. .txFrameToPaOn = 0x0e,
  1418. .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
  1419. .antennaGain = 0,
  1420. .switchSettling = 0x2d,
  1421. .adcDesiredSize = -30,
  1422. .txEndToXpaOff = 0,
  1423. .txEndToRxOn = 0x2,
  1424. .txFrameToXpaOn = 0xe,
  1425. .thresh62 = 28,
  1426. .papdRateMaskHt20 = LE32(0x0cf0e0e0),
  1427. .papdRateMaskHt40 = LE32(0x6cf0e0e0),
  1428. .futureModal = {
  1429. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  1430. },
  1431. },
  1432. .base_ext2 = {
  1433. .tempSlopeLow = 40,
  1434. .tempSlopeHigh = 50,
  1435. .xatten1DBLow = {0, 0, 0},
  1436. .xatten1MarginLow = {0, 0, 0},
  1437. .xatten1DBHigh = {0, 0, 0},
  1438. .xatten1MarginHigh = {0, 0, 0}
  1439. },
  1440. .calFreqPier5G = {
  1441. FREQ2FBIN(5180, 0),
  1442. FREQ2FBIN(5220, 0),
  1443. FREQ2FBIN(5320, 0),
  1444. FREQ2FBIN(5400, 0),
  1445. FREQ2FBIN(5500, 0),
  1446. FREQ2FBIN(5600, 0),
  1447. FREQ2FBIN(5700, 0),
  1448. FREQ2FBIN(5825, 0)
  1449. },
  1450. .calPierData5G = {
  1451. {
  1452. {0, 0, 0, 0, 0},
  1453. {0, 0, 0, 0, 0},
  1454. {0, 0, 0, 0, 0},
  1455. {0, 0, 0, 0, 0},
  1456. {0, 0, 0, 0, 0},
  1457. {0, 0, 0, 0, 0},
  1458. {0, 0, 0, 0, 0},
  1459. {0, 0, 0, 0, 0},
  1460. },
  1461. {
  1462. {0, 0, 0, 0, 0},
  1463. {0, 0, 0, 0, 0},
  1464. {0, 0, 0, 0, 0},
  1465. {0, 0, 0, 0, 0},
  1466. {0, 0, 0, 0, 0},
  1467. {0, 0, 0, 0, 0},
  1468. {0, 0, 0, 0, 0},
  1469. {0, 0, 0, 0, 0},
  1470. },
  1471. {
  1472. {0, 0, 0, 0, 0},
  1473. {0, 0, 0, 0, 0},
  1474. {0, 0, 0, 0, 0},
  1475. {0, 0, 0, 0, 0},
  1476. {0, 0, 0, 0, 0},
  1477. {0, 0, 0, 0, 0},
  1478. {0, 0, 0, 0, 0},
  1479. {0, 0, 0, 0, 0},
  1480. },
  1481. },
  1482. .calTarget_freqbin_5G = {
  1483. FREQ2FBIN(5180, 0),
  1484. FREQ2FBIN(5240, 0),
  1485. FREQ2FBIN(5320, 0),
  1486. FREQ2FBIN(5400, 0),
  1487. FREQ2FBIN(5500, 0),
  1488. FREQ2FBIN(5600, 0),
  1489. FREQ2FBIN(5700, 0),
  1490. FREQ2FBIN(5825, 0)
  1491. },
  1492. .calTarget_freqbin_5GHT20 = {
  1493. FREQ2FBIN(5180, 0),
  1494. FREQ2FBIN(5240, 0),
  1495. FREQ2FBIN(5320, 0),
  1496. FREQ2FBIN(5400, 0),
  1497. FREQ2FBIN(5500, 0),
  1498. FREQ2FBIN(5700, 0),
  1499. FREQ2FBIN(5745, 0),
  1500. FREQ2FBIN(5825, 0)
  1501. },
  1502. .calTarget_freqbin_5GHT40 = {
  1503. FREQ2FBIN(5180, 0),
  1504. FREQ2FBIN(5240, 0),
  1505. FREQ2FBIN(5320, 0),
  1506. FREQ2FBIN(5400, 0),
  1507. FREQ2FBIN(5500, 0),
  1508. FREQ2FBIN(5700, 0),
  1509. FREQ2FBIN(5745, 0),
  1510. FREQ2FBIN(5825, 0)
  1511. },
  1512. .calTargetPower5G = {
  1513. /* 6-24,36,48,54 */
  1514. { {30, 30, 28, 24} },
  1515. { {30, 30, 28, 24} },
  1516. { {30, 30, 28, 24} },
  1517. { {30, 30, 28, 24} },
  1518. { {30, 30, 28, 24} },
  1519. { {30, 30, 28, 24} },
  1520. { {30, 30, 28, 24} },
  1521. { {30, 30, 28, 24} },
  1522. },
  1523. .calTargetPower5GHT20 = {
  1524. /*
  1525. * 0_8_16,1-3_9-11_17-19,
  1526. * 4,5,6,7,12,13,14,15,20,21,22,23
  1527. */
  1528. { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
  1529. { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
  1530. { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
  1531. { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
  1532. { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
  1533. { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
  1534. { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
  1535. { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
  1536. },
  1537. .calTargetPower5GHT40 = {
  1538. /*
  1539. * 0_8_16,1-3_9-11_17-19,
  1540. * 4,5,6,7,12,13,14,15,20,21,22,23
  1541. */
  1542. { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
  1543. { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
  1544. { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
  1545. { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
  1546. { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
  1547. { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
  1548. { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
  1549. { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
  1550. },
  1551. .ctlIndex_5G = {
  1552. 0x10, 0x16, 0x18, 0x40, 0x46,
  1553. 0x48, 0x30, 0x36, 0x38
  1554. },
  1555. .ctl_freqbin_5G = {
  1556. {
  1557. /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
  1558. /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
  1559. /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
  1560. /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
  1561. /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
  1562. /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
  1563. /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
  1564. /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
  1565. },
  1566. {
  1567. /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
  1568. /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
  1569. /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
  1570. /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
  1571. /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
  1572. /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
  1573. /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
  1574. /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
  1575. },
  1576. {
  1577. /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
  1578. /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
  1579. /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
  1580. /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
  1581. /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
  1582. /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
  1583. /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
  1584. /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
  1585. },
  1586. {
  1587. /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
  1588. /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
  1589. /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
  1590. /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
  1591. /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
  1592. /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
  1593. /* Data[3].ctlEdges[6].bChannel */ 0xFF,
  1594. /* Data[3].ctlEdges[7].bChannel */ 0xFF,
  1595. },
  1596. {
  1597. /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
  1598. /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
  1599. /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
  1600. /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
  1601. /* Data[4].ctlEdges[4].bChannel */ 0xFF,
  1602. /* Data[4].ctlEdges[5].bChannel */ 0xFF,
  1603. /* Data[4].ctlEdges[6].bChannel */ 0xFF,
  1604. /* Data[4].ctlEdges[7].bChannel */ 0xFF,
  1605. },
  1606. {
  1607. /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
  1608. /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
  1609. /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
  1610. /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
  1611. /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
  1612. /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
  1613. /* Data[5].ctlEdges[6].bChannel */ 0xFF,
  1614. /* Data[5].ctlEdges[7].bChannel */ 0xFF
  1615. },
  1616. {
  1617. /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
  1618. /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
  1619. /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
  1620. /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
  1621. /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
  1622. /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
  1623. /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
  1624. /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
  1625. },
  1626. {
  1627. /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
  1628. /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
  1629. /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
  1630. /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
  1631. /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
  1632. /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
  1633. /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
  1634. /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
  1635. },
  1636. {
  1637. /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
  1638. /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
  1639. /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
  1640. /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
  1641. /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
  1642. /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
  1643. /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
  1644. /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
  1645. }
  1646. },
  1647. .ctlPowerData_5G = {
  1648. {
  1649. {
  1650. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
  1651. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
  1652. }
  1653. },
  1654. {
  1655. {
  1656. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
  1657. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
  1658. }
  1659. },
  1660. {
  1661. {
  1662. CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
  1663. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
  1664. }
  1665. },
  1666. {
  1667. {
  1668. CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
  1669. CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
  1670. }
  1671. },
  1672. {
  1673. {
  1674. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
  1675. CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
  1676. }
  1677. },
  1678. {
  1679. {
  1680. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
  1681. CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
  1682. }
  1683. },
  1684. {
  1685. {
  1686. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
  1687. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
  1688. }
  1689. },
  1690. {
  1691. {
  1692. CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
  1693. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
  1694. }
  1695. },
  1696. {
  1697. {
  1698. CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
  1699. CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
  1700. }
  1701. },
  1702. }
  1703. };
  1704. static const struct ar9300_eeprom ar9300_x112 = {
  1705. .eepromVersion = 2,
  1706. .templateVersion = 5,
  1707. .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
  1708. .custData = {"x112-041-f0000"},
  1709. .baseEepHeader = {
  1710. .regDmn = { LE16(0), LE16(0x1f) },
  1711. .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
  1712. .opCapFlags = {
  1713. .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
  1714. .eepMisc = 0,
  1715. },
  1716. .rfSilent = 0,
  1717. .blueToothOptions = 0,
  1718. .deviceCap = 0,
  1719. .deviceType = 5, /* takes lower byte in eeprom location */
  1720. .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
  1721. .params_for_tuning_caps = {0, 0},
  1722. .featureEnable = 0x0d,
  1723. /*
  1724. * bit0 - enable tx temp comp - disabled
  1725. * bit1 - enable tx volt comp - disabled
  1726. * bit2 - enable fastclock - enabled
  1727. * bit3 - enable doubling - enabled
  1728. * bit4 - enable internal regulator - disabled
  1729. * bit5 - enable pa predistortion - disabled
  1730. */
  1731. .miscConfiguration = 0, /* bit0 - turn down drivestrength */
  1732. .eepromWriteEnableGpio = 6,
  1733. .wlanDisableGpio = 0,
  1734. .wlanLedGpio = 8,
  1735. .rxBandSelectGpio = 0xff,
  1736. .txrxgain = 0x0,
  1737. .swreg = 0,
  1738. },
  1739. .modalHeader2G = {
  1740. /* ar9300_modal_eep_header 2g */
  1741. /* 4 idle,t1,t2,b(4 bits per setting) */
  1742. .antCtrlCommon = LE32(0x110),
  1743. /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
  1744. .antCtrlCommon2 = LE32(0x22222),
  1745. /*
  1746. * antCtrlChain[ar9300_max_chains]; 6 idle, t, r,
  1747. * rx1, rx12, b (2 bits each)
  1748. */
  1749. .antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
  1750. /*
  1751. * xatten1DB[AR9300_max_chains]; 3 xatten1_db
  1752. * for ar9280 (0xa20c/b20c 5:0)
  1753. */
  1754. .xatten1DB = {0x1b, 0x1b, 0x1b},
  1755. /*
  1756. * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
  1757. * for ar9280 (0xa20c/b20c 16:12
  1758. */
  1759. .xatten1Margin = {0x15, 0x15, 0x15},
  1760. .tempSlope = 50,
  1761. .voltSlope = 0,
  1762. /*
  1763. * spurChans[OSPrey_eeprom_modal_sPURS]; spur
  1764. * channels in usual fbin coding format
  1765. */
  1766. .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
  1767. /*
  1768. * noiseFloorThreshch[ar9300_max_cHAINS]; 3 Check
  1769. * if the register is per chain
  1770. */
  1771. .noiseFloorThreshCh = {-1, 0, 0},
  1772. .ob = {1, 1, 1},/* 3 chain */
  1773. .db_stage2 = {1, 1, 1}, /* 3 chain */
  1774. .db_stage3 = {0, 0, 0},
  1775. .db_stage4 = {0, 0, 0},
  1776. .xpaBiasLvl = 0,
  1777. .txFrameToDataStart = 0x0e,
  1778. .txFrameToPaOn = 0x0e,
  1779. .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
  1780. .antennaGain = 0,
  1781. .switchSettling = 0x2c,
  1782. .adcDesiredSize = -30,
  1783. .txEndToXpaOff = 0,
  1784. .txEndToRxOn = 0x2,
  1785. .txFrameToXpaOn = 0xe,
  1786. .thresh62 = 28,
  1787. .papdRateMaskHt20 = LE32(0x0c80c080),
  1788. .papdRateMaskHt40 = LE32(0x0080c080),
  1789. .futureModal = {
  1790. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  1791. },
  1792. },
  1793. .base_ext1 = {
  1794. .ant_div_control = 0,
  1795. .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
  1796. },
  1797. .calFreqPier2G = {
  1798. FREQ2FBIN(2412, 1),
  1799. FREQ2FBIN(2437, 1),
  1800. FREQ2FBIN(2472, 1),
  1801. },
  1802. /* ar9300_cal_data_per_freq_op_loop 2g */
  1803. .calPierData2G = {
  1804. { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
  1805. { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
  1806. { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
  1807. },
  1808. .calTarget_freqbin_Cck = {
  1809. FREQ2FBIN(2412, 1),
  1810. FREQ2FBIN(2472, 1),
  1811. },
  1812. .calTarget_freqbin_2G = {
  1813. FREQ2FBIN(2412, 1),
  1814. FREQ2FBIN(2437, 1),
  1815. FREQ2FBIN(2472, 1)
  1816. },
  1817. .calTarget_freqbin_2GHT20 = {
  1818. FREQ2FBIN(2412, 1),
  1819. FREQ2FBIN(2437, 1),
  1820. FREQ2FBIN(2472, 1)
  1821. },
  1822. .calTarget_freqbin_2GHT40 = {
  1823. FREQ2FBIN(2412, 1),
  1824. FREQ2FBIN(2437, 1),
  1825. FREQ2FBIN(2472, 1)
  1826. },
  1827. .calTargetPowerCck = {
  1828. /* 1L-5L,5S,11L,11s */
  1829. { {38, 38, 38, 38} },
  1830. { {38, 38, 38, 38} },
  1831. },
  1832. .calTargetPower2G = {
  1833. /* 6-24,36,48,54 */
  1834. { {38, 38, 36, 34} },
  1835. { {38, 38, 36, 34} },
  1836. { {38, 38, 34, 32} },
  1837. },
  1838. .calTargetPower2GHT20 = {
  1839. { {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
  1840. { {36, 36, 36, 36, 36, 34, 36, 34, 32, 30, 30, 30, 28, 26} },
  1841. { {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
  1842. },
  1843. .calTargetPower2GHT40 = {
  1844. { {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
  1845. { {36, 36, 36, 36, 34, 32, 34, 32, 30, 28, 28, 28, 28, 24} },
  1846. { {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
  1847. },
  1848. .ctlIndex_2G = {
  1849. 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
  1850. 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
  1851. },
  1852. .ctl_freqbin_2G = {
  1853. {
  1854. FREQ2FBIN(2412, 1),
  1855. FREQ2FBIN(2417, 1),
  1856. FREQ2FBIN(2457, 1),
  1857. FREQ2FBIN(2462, 1)
  1858. },
  1859. {
  1860. FREQ2FBIN(2412, 1),
  1861. FREQ2FBIN(2417, 1),
  1862. FREQ2FBIN(2462, 1),
  1863. 0xFF,
  1864. },
  1865. {
  1866. FREQ2FBIN(2412, 1),
  1867. FREQ2FBIN(2417, 1),
  1868. FREQ2FBIN(2462, 1),
  1869. 0xFF,
  1870. },
  1871. {
  1872. FREQ2FBIN(2422, 1),
  1873. FREQ2FBIN(2427, 1),
  1874. FREQ2FBIN(2447, 1),
  1875. FREQ2FBIN(2452, 1)
  1876. },
  1877. {
  1878. /* Data[4].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
  1879. /* Data[4].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
  1880. /* Data[4].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
  1881. /* Data[4].ctledges[3].bchannel */ FREQ2FBIN(2484, 1),
  1882. },
  1883. {
  1884. /* Data[5].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
  1885. /* Data[5].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
  1886. /* Data[5].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
  1887. 0,
  1888. },
  1889. {
  1890. /* Data[6].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
  1891. /* Data[6].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
  1892. FREQ2FBIN(2472, 1),
  1893. 0,
  1894. },
  1895. {
  1896. /* Data[7].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
  1897. /* Data[7].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
  1898. /* Data[7].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
  1899. /* Data[7].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
  1900. },
  1901. {
  1902. /* Data[8].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
  1903. /* Data[8].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
  1904. /* Data[8].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
  1905. },
  1906. {
  1907. /* Data[9].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
  1908. /* Data[9].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
  1909. /* Data[9].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
  1910. 0
  1911. },
  1912. {
  1913. /* Data[10].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
  1914. /* Data[10].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
  1915. /* Data[10].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
  1916. 0
  1917. },
  1918. {
  1919. /* Data[11].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
  1920. /* Data[11].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
  1921. /* Data[11].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
  1922. /* Data[11].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
  1923. }
  1924. },
  1925. .ctlPowerData_2G = {
  1926. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  1927. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  1928. { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
  1929. { { CTL(60, 1), CTL(60, 0), CTL(0, 0), CTL(0, 0) } },
  1930. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  1931. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  1932. { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
  1933. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  1934. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  1935. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  1936. { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
  1937. { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
  1938. },
  1939. .modalHeader5G = {
  1940. /* 4 idle,t1,t2,b (4 bits per setting) */
  1941. .antCtrlCommon = LE32(0x110),
  1942. /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
  1943. .antCtrlCommon2 = LE32(0x22222),
  1944. /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
  1945. .antCtrlChain = {
  1946. LE16(0x0), LE16(0x0), LE16(0x0),
  1947. },
  1948. /* xatten1DB 3 xatten1_db for ar9280 (0xa20c/b20c 5:0) */
  1949. .xatten1DB = {0x13, 0x19, 0x17},
  1950. /*
  1951. * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
  1952. * for merlin (0xa20c/b20c 16:12
  1953. */
  1954. .xatten1Margin = {0x19, 0x19, 0x19},
  1955. .tempSlope = 70,
  1956. .voltSlope = 15,
  1957. /* spurChans spur channels in usual fbin coding format */
  1958. .spurChans = {0, 0, 0, 0, 0},
  1959. /* noiseFloorThreshch check if the register is per chain */
  1960. .noiseFloorThreshCh = {-1, 0, 0},
  1961. .ob = {3, 3, 3}, /* 3 chain */
  1962. .db_stage2 = {3, 3, 3}, /* 3 chain */
  1963. .db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
  1964. .db_stage4 = {3, 3, 3}, /* don't exist for 2G */
  1965. .xpaBiasLvl = 0,
  1966. .txFrameToDataStart = 0x0e,
  1967. .txFrameToPaOn = 0x0e,
  1968. .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
  1969. .antennaGain = 0,
  1970. .switchSettling = 0x2d,
  1971. .adcDesiredSize = -30,
  1972. .txEndToXpaOff = 0,
  1973. .txEndToRxOn = 0x2,
  1974. .txFrameToXpaOn = 0xe,
  1975. .thresh62 = 28,
  1976. .papdRateMaskHt20 = LE32(0x0cf0e0e0),
  1977. .papdRateMaskHt40 = LE32(0x6cf0e0e0),
  1978. .futureModal = {
  1979. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  1980. },
  1981. },
  1982. .base_ext2 = {
  1983. .tempSlopeLow = 72,
  1984. .tempSlopeHigh = 105,
  1985. .xatten1DBLow = {0x10, 0x14, 0x10},
  1986. .xatten1MarginLow = {0x19, 0x19 , 0x19},
  1987. .xatten1DBHigh = {0x1d, 0x20, 0x24},
  1988. .xatten1MarginHigh = {0x10, 0x10, 0x10}
  1989. },
  1990. .calFreqPier5G = {
  1991. FREQ2FBIN(5180, 0),
  1992. FREQ2FBIN(5220, 0),
  1993. FREQ2FBIN(5320, 0),
  1994. FREQ2FBIN(5400, 0),
  1995. FREQ2FBIN(5500, 0),
  1996. FREQ2FBIN(5600, 0),
  1997. FREQ2FBIN(5700, 0),
  1998. FREQ2FBIN(5785, 0)
  1999. },
  2000. .calPierData5G = {
  2001. {
  2002. {0, 0, 0, 0, 0},
  2003. {0, 0, 0, 0, 0},
  2004. {0, 0, 0, 0, 0},
  2005. {0, 0, 0, 0, 0},
  2006. {0, 0, 0, 0, 0},
  2007. {0, 0, 0, 0, 0},
  2008. {0, 0, 0, 0, 0},
  2009. {0, 0, 0, 0, 0},
  2010. },
  2011. {
  2012. {0, 0, 0, 0, 0},
  2013. {0, 0, 0, 0, 0},
  2014. {0, 0, 0, 0, 0},
  2015. {0, 0, 0, 0, 0},
  2016. {0, 0, 0, 0, 0},
  2017. {0, 0, 0, 0, 0},
  2018. {0, 0, 0, 0, 0},
  2019. {0, 0, 0, 0, 0},
  2020. },
  2021. {
  2022. {0, 0, 0, 0, 0},
  2023. {0, 0, 0, 0, 0},
  2024. {0, 0, 0, 0, 0},
  2025. {0, 0, 0, 0, 0},
  2026. {0, 0, 0, 0, 0},
  2027. {0, 0, 0, 0, 0},
  2028. {0, 0, 0, 0, 0},
  2029. {0, 0, 0, 0, 0},
  2030. },
  2031. },
  2032. .calTarget_freqbin_5G = {
  2033. FREQ2FBIN(5180, 0),
  2034. FREQ2FBIN(5220, 0),
  2035. FREQ2FBIN(5320, 0),
  2036. FREQ2FBIN(5400, 0),
  2037. FREQ2FBIN(5500, 0),
  2038. FREQ2FBIN(5600, 0),
  2039. FREQ2FBIN(5725, 0),
  2040. FREQ2FBIN(5825, 0)
  2041. },
  2042. .calTarget_freqbin_5GHT20 = {
  2043. FREQ2FBIN(5180, 0),
  2044. FREQ2FBIN(5220, 0),
  2045. FREQ2FBIN(5320, 0),
  2046. FREQ2FBIN(5400, 0),
  2047. FREQ2FBIN(5500, 0),
  2048. FREQ2FBIN(5600, 0),
  2049. FREQ2FBIN(5725, 0),
  2050. FREQ2FBIN(5825, 0)
  2051. },
  2052. .calTarget_freqbin_5GHT40 = {
  2053. FREQ2FBIN(5180, 0),
  2054. FREQ2FBIN(5220, 0),
  2055. FREQ2FBIN(5320, 0),
  2056. FREQ2FBIN(5400, 0),
  2057. FREQ2FBIN(5500, 0),
  2058. FREQ2FBIN(5600, 0),
  2059. FREQ2FBIN(5725, 0),
  2060. FREQ2FBIN(5825, 0)
  2061. },
  2062. .calTargetPower5G = {
  2063. /* 6-24,36,48,54 */
  2064. { {32, 32, 28, 26} },
  2065. { {32, 32, 28, 26} },
  2066. { {32, 32, 28, 26} },
  2067. { {32, 32, 26, 24} },
  2068. { {32, 32, 26, 24} },
  2069. { {32, 32, 24, 22} },
  2070. { {30, 30, 24, 22} },
  2071. { {30, 30, 24, 22} },
  2072. },
  2073. .calTargetPower5GHT20 = {
  2074. /*
  2075. * 0_8_16,1-3_9-11_17-19,
  2076. * 4,5,6,7,12,13,14,15,20,21,22,23
  2077. */
  2078. { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
  2079. { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
  2080. { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
  2081. { {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 22, 22, 20, 20} },
  2082. { {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 20, 18, 16, 16} },
  2083. { {32, 32, 32, 32, 28, 26, 32, 24, 20, 16, 18, 16, 14, 14} },
  2084. { {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
  2085. { {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
  2086. },
  2087. .calTargetPower5GHT40 = {
  2088. /*
  2089. * 0_8_16,1-3_9-11_17-19,
  2090. * 4,5,6,7,12,13,14,15,20,21,22,23
  2091. */
  2092. { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
  2093. { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
  2094. { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
  2095. { {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 22, 22, 20, 20} },
  2096. { {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 20, 18, 16, 16} },
  2097. { {32, 32, 32, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
  2098. { {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
  2099. { {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
  2100. },
  2101. .ctlIndex_5G = {
  2102. 0x10, 0x16, 0x18, 0x40, 0x46,
  2103. 0x48, 0x30, 0x36, 0x38
  2104. },
  2105. .ctl_freqbin_5G = {
  2106. {
  2107. /* Data[0].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
  2108. /* Data[0].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
  2109. /* Data[0].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
  2110. /* Data[0].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
  2111. /* Data[0].ctledges[4].bchannel */ FREQ2FBIN(5600, 0),
  2112. /* Data[0].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
  2113. /* Data[0].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
  2114. /* Data[0].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
  2115. },
  2116. {
  2117. /* Data[1].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
  2118. /* Data[1].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
  2119. /* Data[1].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
  2120. /* Data[1].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
  2121. /* Data[1].ctledges[4].bchannel */ FREQ2FBIN(5520, 0),
  2122. /* Data[1].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
  2123. /* Data[1].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
  2124. /* Data[1].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
  2125. },
  2126. {
  2127. /* Data[2].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
  2128. /* Data[2].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
  2129. /* Data[2].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
  2130. /* Data[2].ctledges[3].bchannel */ FREQ2FBIN(5310, 0),
  2131. /* Data[2].ctledges[4].bchannel */ FREQ2FBIN(5510, 0),
  2132. /* Data[2].ctledges[5].bchannel */ FREQ2FBIN(5550, 0),
  2133. /* Data[2].ctledges[6].bchannel */ FREQ2FBIN(5670, 0),
  2134. /* Data[2].ctledges[7].bchannel */ FREQ2FBIN(5755, 0)
  2135. },
  2136. {
  2137. /* Data[3].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
  2138. /* Data[3].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
  2139. /* Data[3].ctledges[2].bchannel */ FREQ2FBIN(5260, 0),
  2140. /* Data[3].ctledges[3].bchannel */ FREQ2FBIN(5320, 0),
  2141. /* Data[3].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
  2142. /* Data[3].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
  2143. /* Data[3].ctledges[6].bchannel */ 0xFF,
  2144. /* Data[3].ctledges[7].bchannel */ 0xFF,
  2145. },
  2146. {
  2147. /* Data[4].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
  2148. /* Data[4].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
  2149. /* Data[4].ctledges[2].bchannel */ FREQ2FBIN(5500, 0),
  2150. /* Data[4].ctledges[3].bchannel */ FREQ2FBIN(5700, 0),
  2151. /* Data[4].ctledges[4].bchannel */ 0xFF,
  2152. /* Data[4].ctledges[5].bchannel */ 0xFF,
  2153. /* Data[4].ctledges[6].bchannel */ 0xFF,
  2154. /* Data[4].ctledges[7].bchannel */ 0xFF,
  2155. },
  2156. {
  2157. /* Data[5].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
  2158. /* Data[5].ctledges[1].bchannel */ FREQ2FBIN(5270, 0),
  2159. /* Data[5].ctledges[2].bchannel */ FREQ2FBIN(5310, 0),
  2160. /* Data[5].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
  2161. /* Data[5].ctledges[4].bchannel */ FREQ2FBIN(5590, 0),
  2162. /* Data[5].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
  2163. /* Data[5].ctledges[6].bchannel */ 0xFF,
  2164. /* Data[5].ctledges[7].bchannel */ 0xFF
  2165. },
  2166. {
  2167. /* Data[6].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
  2168. /* Data[6].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
  2169. /* Data[6].ctledges[2].bchannel */ FREQ2FBIN(5220, 0),
  2170. /* Data[6].ctledges[3].bchannel */ FREQ2FBIN(5260, 0),
  2171. /* Data[6].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
  2172. /* Data[6].ctledges[5].bchannel */ FREQ2FBIN(5600, 0),
  2173. /* Data[6].ctledges[6].bchannel */ FREQ2FBIN(5700, 0),
  2174. /* Data[6].ctledges[7].bchannel */ FREQ2FBIN(5745, 0)
  2175. },
  2176. {
  2177. /* Data[7].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
  2178. /* Data[7].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
  2179. /* Data[7].ctledges[2].bchannel */ FREQ2FBIN(5320, 0),
  2180. /* Data[7].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
  2181. /* Data[7].ctledges[4].bchannel */ FREQ2FBIN(5560, 0),
  2182. /* Data[7].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
  2183. /* Data[7].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
  2184. /* Data[7].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
  2185. },
  2186. {
  2187. /* Data[8].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
  2188. /* Data[8].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
  2189. /* Data[8].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
  2190. /* Data[8].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
  2191. /* Data[8].ctledges[4].bchannel */ FREQ2FBIN(5550, 0),
  2192. /* Data[8].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
  2193. /* Data[8].ctledges[6].bchannel */ FREQ2FBIN(5755, 0),
  2194. /* Data[8].ctledges[7].bchannel */ FREQ2FBIN(5795, 0)
  2195. }
  2196. },
  2197. .ctlPowerData_5G = {
  2198. {
  2199. {
  2200. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
  2201. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
  2202. }
  2203. },
  2204. {
  2205. {
  2206. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
  2207. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
  2208. }
  2209. },
  2210. {
  2211. {
  2212. CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
  2213. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
  2214. }
  2215. },
  2216. {
  2217. {
  2218. CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
  2219. CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
  2220. }
  2221. },
  2222. {
  2223. {
  2224. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
  2225. CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
  2226. }
  2227. },
  2228. {
  2229. {
  2230. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
  2231. CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
  2232. }
  2233. },
  2234. {
  2235. {
  2236. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
  2237. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
  2238. }
  2239. },
  2240. {
  2241. {
  2242. CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
  2243. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
  2244. }
  2245. },
  2246. {
  2247. {
  2248. CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
  2249. CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
  2250. }
  2251. },
  2252. }
  2253. };
  2254. static const struct ar9300_eeprom ar9300_h116 = {
  2255. .eepromVersion = 2,
  2256. .templateVersion = 4,
  2257. .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
  2258. .custData = {"h116-041-f0000"},
  2259. .baseEepHeader = {
  2260. .regDmn = { LE16(0), LE16(0x1f) },
  2261. .txrxMask = 0x33, /* 4 bits tx and 4 bits rx */
  2262. .opCapFlags = {
  2263. .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
  2264. .eepMisc = 0,
  2265. },
  2266. .rfSilent = 0,
  2267. .blueToothOptions = 0,
  2268. .deviceCap = 0,
  2269. .deviceType = 5, /* takes lower byte in eeprom location */
  2270. .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
  2271. .params_for_tuning_caps = {0, 0},
  2272. .featureEnable = 0x0d,
  2273. /*
  2274. * bit0 - enable tx temp comp - disabled
  2275. * bit1 - enable tx volt comp - disabled
  2276. * bit2 - enable fastClock - enabled
  2277. * bit3 - enable doubling - enabled
  2278. * bit4 - enable internal regulator - disabled
  2279. * bit5 - enable pa predistortion - disabled
  2280. */
  2281. .miscConfiguration = 0, /* bit0 - turn down drivestrength */
  2282. .eepromWriteEnableGpio = 6,
  2283. .wlanDisableGpio = 0,
  2284. .wlanLedGpio = 8,
  2285. .rxBandSelectGpio = 0xff,
  2286. .txrxgain = 0x10,
  2287. .swreg = 0,
  2288. },
  2289. .modalHeader2G = {
  2290. /* ar9300_modal_eep_header 2g */
  2291. /* 4 idle,t1,t2,b(4 bits per setting) */
  2292. .antCtrlCommon = LE32(0x110),
  2293. /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
  2294. .antCtrlCommon2 = LE32(0x44444),
  2295. /*
  2296. * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
  2297. * rx1, rx12, b (2 bits each)
  2298. */
  2299. .antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
  2300. /*
  2301. * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
  2302. * for ar9280 (0xa20c/b20c 5:0)
  2303. */
  2304. .xatten1DB = {0x1f, 0x1f, 0x1f},
  2305. /*
  2306. * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
  2307. * for ar9280 (0xa20c/b20c 16:12
  2308. */
  2309. .xatten1Margin = {0x12, 0x12, 0x12},
  2310. .tempSlope = 25,
  2311. .voltSlope = 0,
  2312. /*
  2313. * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
  2314. * channels in usual fbin coding format
  2315. */
  2316. .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
  2317. /*
  2318. * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
  2319. * if the register is per chain
  2320. */
  2321. .noiseFloorThreshCh = {-1, 0, 0},
  2322. .ob = {1, 1, 1},/* 3 chain */
  2323. .db_stage2 = {1, 1, 1}, /* 3 chain */
  2324. .db_stage3 = {0, 0, 0},
  2325. .db_stage4 = {0, 0, 0},
  2326. .xpaBiasLvl = 0,
  2327. .txFrameToDataStart = 0x0e,
  2328. .txFrameToPaOn = 0x0e,
  2329. .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
  2330. .antennaGain = 0,
  2331. .switchSettling = 0x2c,
  2332. .adcDesiredSize = -30,
  2333. .txEndToXpaOff = 0,
  2334. .txEndToRxOn = 0x2,
  2335. .txFrameToXpaOn = 0xe,
  2336. .thresh62 = 28,
  2337. .papdRateMaskHt20 = LE32(0x0c80C080),
  2338. .papdRateMaskHt40 = LE32(0x0080C080),
  2339. .futureModal = {
  2340. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  2341. },
  2342. },
  2343. .base_ext1 = {
  2344. .ant_div_control = 0,
  2345. .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
  2346. },
  2347. .calFreqPier2G = {
  2348. FREQ2FBIN(2412, 1),
  2349. FREQ2FBIN(2437, 1),
  2350. FREQ2FBIN(2472, 1),
  2351. },
  2352. /* ar9300_cal_data_per_freq_op_loop 2g */
  2353. .calPierData2G = {
  2354. { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
  2355. { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
  2356. { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
  2357. },
  2358. .calTarget_freqbin_Cck = {
  2359. FREQ2FBIN(2412, 1),
  2360. FREQ2FBIN(2472, 1),
  2361. },
  2362. .calTarget_freqbin_2G = {
  2363. FREQ2FBIN(2412, 1),
  2364. FREQ2FBIN(2437, 1),
  2365. FREQ2FBIN(2472, 1)
  2366. },
  2367. .calTarget_freqbin_2GHT20 = {
  2368. FREQ2FBIN(2412, 1),
  2369. FREQ2FBIN(2437, 1),
  2370. FREQ2FBIN(2472, 1)
  2371. },
  2372. .calTarget_freqbin_2GHT40 = {
  2373. FREQ2FBIN(2412, 1),
  2374. FREQ2FBIN(2437, 1),
  2375. FREQ2FBIN(2472, 1)
  2376. },
  2377. .calTargetPowerCck = {
  2378. /* 1L-5L,5S,11L,11S */
  2379. { {34, 34, 34, 34} },
  2380. { {34, 34, 34, 34} },
  2381. },
  2382. .calTargetPower2G = {
  2383. /* 6-24,36,48,54 */
  2384. { {34, 34, 32, 32} },
  2385. { {34, 34, 32, 32} },
  2386. { {34, 34, 32, 32} },
  2387. },
  2388. .calTargetPower2GHT20 = {
  2389. { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
  2390. { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
  2391. { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
  2392. },
  2393. .calTargetPower2GHT40 = {
  2394. { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
  2395. { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
  2396. { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
  2397. },
  2398. .ctlIndex_2G = {
  2399. 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
  2400. 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
  2401. },
  2402. .ctl_freqbin_2G = {
  2403. {
  2404. FREQ2FBIN(2412, 1),
  2405. FREQ2FBIN(2417, 1),
  2406. FREQ2FBIN(2457, 1),
  2407. FREQ2FBIN(2462, 1)
  2408. },
  2409. {
  2410. FREQ2FBIN(2412, 1),
  2411. FREQ2FBIN(2417, 1),
  2412. FREQ2FBIN(2462, 1),
  2413. 0xFF,
  2414. },
  2415. {
  2416. FREQ2FBIN(2412, 1),
  2417. FREQ2FBIN(2417, 1),
  2418. FREQ2FBIN(2462, 1),
  2419. 0xFF,
  2420. },
  2421. {
  2422. FREQ2FBIN(2422, 1),
  2423. FREQ2FBIN(2427, 1),
  2424. FREQ2FBIN(2447, 1),
  2425. FREQ2FBIN(2452, 1)
  2426. },
  2427. {
  2428. /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
  2429. /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
  2430. /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
  2431. /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
  2432. },
  2433. {
  2434. /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
  2435. /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
  2436. /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
  2437. 0,
  2438. },
  2439. {
  2440. /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
  2441. /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
  2442. FREQ2FBIN(2472, 1),
  2443. 0,
  2444. },
  2445. {
  2446. /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
  2447. /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
  2448. /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
  2449. /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
  2450. },
  2451. {
  2452. /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
  2453. /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
  2454. /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
  2455. },
  2456. {
  2457. /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
  2458. /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
  2459. /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
  2460. 0
  2461. },
  2462. {
  2463. /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
  2464. /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
  2465. /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
  2466. 0
  2467. },
  2468. {
  2469. /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
  2470. /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
  2471. /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
  2472. /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
  2473. }
  2474. },
  2475. .ctlPowerData_2G = {
  2476. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  2477. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  2478. { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
  2479. { { CTL(60, 1), CTL(60, 0), CTL(0, 0), CTL(0, 0) } },
  2480. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  2481. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  2482. { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
  2483. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  2484. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  2485. { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
  2486. { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
  2487. { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
  2488. },
  2489. .modalHeader5G = {
  2490. /* 4 idle,t1,t2,b (4 bits per setting) */
  2491. .antCtrlCommon = LE32(0x220),
  2492. /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
  2493. .antCtrlCommon2 = LE32(0x44444),
  2494. /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
  2495. .antCtrlChain = {
  2496. LE16(0x150), LE16(0x150), LE16(0x150),
  2497. },
  2498. /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
  2499. .xatten1DB = {0x19, 0x19, 0x19},
  2500. /*
  2501. * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
  2502. * for merlin (0xa20c/b20c 16:12
  2503. */
  2504. .xatten1Margin = {0x14, 0x14, 0x14},
  2505. .tempSlope = 70,
  2506. .voltSlope = 0,
  2507. /* spurChans spur channels in usual fbin coding format */
  2508. .spurChans = {0, 0, 0, 0, 0},
  2509. /* noiseFloorThreshCh Check if the register is per chain */
  2510. .noiseFloorThreshCh = {-1, 0, 0},
  2511. .ob = {3, 3, 3}, /* 3 chain */
  2512. .db_stage2 = {3, 3, 3}, /* 3 chain */
  2513. .db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
  2514. .db_stage4 = {3, 3, 3}, /* don't exist for 2G */
  2515. .xpaBiasLvl = 0,
  2516. .txFrameToDataStart = 0x0e,
  2517. .txFrameToPaOn = 0x0e,
  2518. .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
  2519. .antennaGain = 0,
  2520. .switchSettling = 0x2d,
  2521. .adcDesiredSize = -30,
  2522. .txEndToXpaOff = 0,
  2523. .txEndToRxOn = 0x2,
  2524. .txFrameToXpaOn = 0xe,
  2525. .thresh62 = 28,
  2526. .papdRateMaskHt20 = LE32(0x0cf0e0e0),
  2527. .papdRateMaskHt40 = LE32(0x6cf0e0e0),
  2528. .futureModal = {
  2529. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  2530. },
  2531. },
  2532. .base_ext2 = {
  2533. .tempSlopeLow = 35,
  2534. .tempSlopeHigh = 50,
  2535. .xatten1DBLow = {0, 0, 0},
  2536. .xatten1MarginLow = {0, 0, 0},
  2537. .xatten1DBHigh = {0, 0, 0},
  2538. .xatten1MarginHigh = {0, 0, 0}
  2539. },
  2540. .calFreqPier5G = {
  2541. FREQ2FBIN(5180, 0),
  2542. FREQ2FBIN(5220, 0),
  2543. FREQ2FBIN(5320, 0),
  2544. FREQ2FBIN(5400, 0),
  2545. FREQ2FBIN(5500, 0),
  2546. FREQ2FBIN(5600, 0),
  2547. FREQ2FBIN(5700, 0),
  2548. FREQ2FBIN(5785, 0)
  2549. },
  2550. .calPierData5G = {
  2551. {
  2552. {0, 0, 0, 0, 0},
  2553. {0, 0, 0, 0, 0},
  2554. {0, 0, 0, 0, 0},
  2555. {0, 0, 0, 0, 0},
  2556. {0, 0, 0, 0, 0},
  2557. {0, 0, 0, 0, 0},
  2558. {0, 0, 0, 0, 0},
  2559. {0, 0, 0, 0, 0},
  2560. },
  2561. {
  2562. {0, 0, 0, 0, 0},
  2563. {0, 0, 0, 0, 0},
  2564. {0, 0, 0, 0, 0},
  2565. {0, 0, 0, 0, 0},
  2566. {0, 0, 0, 0, 0},
  2567. {0, 0, 0, 0, 0},
  2568. {0, 0, 0, 0, 0},
  2569. {0, 0, 0, 0, 0},
  2570. },
  2571. {
  2572. {0, 0, 0, 0, 0},
  2573. {0, 0, 0, 0, 0},
  2574. {0, 0, 0, 0, 0},
  2575. {0, 0, 0, 0, 0},
  2576. {0, 0, 0, 0, 0},
  2577. {0, 0, 0, 0, 0},
  2578. {0, 0, 0, 0, 0},
  2579. {0, 0, 0, 0, 0},
  2580. },
  2581. },
  2582. .calTarget_freqbin_5G = {
  2583. FREQ2FBIN(5180, 0),
  2584. FREQ2FBIN(5240, 0),
  2585. FREQ2FBIN(5320, 0),
  2586. FREQ2FBIN(5400, 0),
  2587. FREQ2FBIN(5500, 0),
  2588. FREQ2FBIN(5600, 0),
  2589. FREQ2FBIN(5700, 0),
  2590. FREQ2FBIN(5825, 0)
  2591. },
  2592. .calTarget_freqbin_5GHT20 = {
  2593. FREQ2FBIN(5180, 0),
  2594. FREQ2FBIN(5240, 0),
  2595. FREQ2FBIN(5320, 0),
  2596. FREQ2FBIN(5400, 0),
  2597. FREQ2FBIN(5500, 0),
  2598. FREQ2FBIN(5700, 0),
  2599. FREQ2FBIN(5745, 0),
  2600. FREQ2FBIN(5825, 0)
  2601. },
  2602. .calTarget_freqbin_5GHT40 = {
  2603. FREQ2FBIN(5180, 0),
  2604. FREQ2FBIN(5240, 0),
  2605. FREQ2FBIN(5320, 0),
  2606. FREQ2FBIN(5400, 0),
  2607. FREQ2FBIN(5500, 0),
  2608. FREQ2FBIN(5700, 0),
  2609. FREQ2FBIN(5745, 0),
  2610. FREQ2FBIN(5825, 0)
  2611. },
  2612. .calTargetPower5G = {
  2613. /* 6-24,36,48,54 */
  2614. { {30, 30, 28, 24} },
  2615. { {30, 30, 28, 24} },
  2616. { {30, 30, 28, 24} },
  2617. { {30, 30, 28, 24} },
  2618. { {30, 30, 28, 24} },
  2619. { {30, 30, 28, 24} },
  2620. { {30, 30, 28, 24} },
  2621. { {30, 30, 28, 24} },
  2622. },
  2623. .calTargetPower5GHT20 = {
  2624. /*
  2625. * 0_8_16,1-3_9-11_17-19,
  2626. * 4,5,6,7,12,13,14,15,20,21,22,23
  2627. */
  2628. { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
  2629. { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
  2630. { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
  2631. { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
  2632. { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
  2633. { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
  2634. { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
  2635. { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
  2636. },
  2637. .calTargetPower5GHT40 = {
  2638. /*
  2639. * 0_8_16,1-3_9-11_17-19,
  2640. * 4,5,6,7,12,13,14,15,20,21,22,23
  2641. */
  2642. { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
  2643. { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
  2644. { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
  2645. { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
  2646. { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
  2647. { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
  2648. { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
  2649. { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
  2650. },
  2651. .ctlIndex_5G = {
  2652. 0x10, 0x16, 0x18, 0x40, 0x46,
  2653. 0x48, 0x30, 0x36, 0x38
  2654. },
  2655. .ctl_freqbin_5G = {
  2656. {
  2657. /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
  2658. /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
  2659. /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
  2660. /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
  2661. /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
  2662. /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
  2663. /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
  2664. /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
  2665. },
  2666. {
  2667. /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
  2668. /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
  2669. /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
  2670. /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
  2671. /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
  2672. /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
  2673. /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
  2674. /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
  2675. },
  2676. {
  2677. /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
  2678. /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
  2679. /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
  2680. /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
  2681. /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
  2682. /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
  2683. /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
  2684. /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
  2685. },
  2686. {
  2687. /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
  2688. /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
  2689. /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
  2690. /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
  2691. /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
  2692. /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
  2693. /* Data[3].ctlEdges[6].bChannel */ 0xFF,
  2694. /* Data[3].ctlEdges[7].bChannel */ 0xFF,
  2695. },
  2696. {
  2697. /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
  2698. /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
  2699. /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
  2700. /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
  2701. /* Data[4].ctlEdges[4].bChannel */ 0xFF,
  2702. /* Data[4].ctlEdges[5].bChannel */ 0xFF,
  2703. /* Data[4].ctlEdges[6].bChannel */ 0xFF,
  2704. /* Data[4].ctlEdges[7].bChannel */ 0xFF,
  2705. },
  2706. {
  2707. /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
  2708. /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
  2709. /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
  2710. /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
  2711. /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
  2712. /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
  2713. /* Data[5].ctlEdges[6].bChannel */ 0xFF,
  2714. /* Data[5].ctlEdges[7].bChannel */ 0xFF
  2715. },
  2716. {
  2717. /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
  2718. /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
  2719. /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
  2720. /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
  2721. /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
  2722. /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
  2723. /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
  2724. /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
  2725. },
  2726. {
  2727. /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
  2728. /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
  2729. /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
  2730. /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
  2731. /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
  2732. /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
  2733. /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
  2734. /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
  2735. },
  2736. {
  2737. /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
  2738. /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
  2739. /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
  2740. /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
  2741. /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
  2742. /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
  2743. /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
  2744. /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
  2745. }
  2746. },
  2747. .ctlPowerData_5G = {
  2748. {
  2749. {
  2750. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
  2751. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
  2752. }
  2753. },
  2754. {
  2755. {
  2756. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
  2757. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
  2758. }
  2759. },
  2760. {
  2761. {
  2762. CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
  2763. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
  2764. }
  2765. },
  2766. {
  2767. {
  2768. CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
  2769. CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
  2770. }
  2771. },
  2772. {
  2773. {
  2774. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
  2775. CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
  2776. }
  2777. },
  2778. {
  2779. {
  2780. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
  2781. CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
  2782. }
  2783. },
  2784. {
  2785. {
  2786. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
  2787. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
  2788. }
  2789. },
  2790. {
  2791. {
  2792. CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
  2793. CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
  2794. }
  2795. },
  2796. {
  2797. {
  2798. CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
  2799. CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
  2800. }
  2801. },
  2802. }
  2803. };
  2804. static const struct ar9300_eeprom *ar9300_eep_templates[] = {
  2805. &ar9300_default,
  2806. &ar9300_x112,
  2807. &ar9300_h116,
  2808. &ar9300_h112,
  2809. &ar9300_x113,
  2810. };
  2811. static const struct ar9300_eeprom *ar9003_eeprom_struct_find_by_id(int id)
  2812. {
  2813. #define N_LOOP (sizeof(ar9300_eep_templates) / sizeof(ar9300_eep_templates[0]))
  2814. int it;
  2815. for (it = 0; it < N_LOOP; it++)
  2816. if (ar9300_eep_templates[it]->templateVersion == id)
  2817. return ar9300_eep_templates[it];
  2818. return NULL;
  2819. #undef N_LOOP
  2820. }
  2821. static u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
  2822. {
  2823. if (fbin == AR5416_BCHAN_UNUSED)
  2824. return fbin;
  2825. return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
  2826. }
  2827. static int ath9k_hw_ar9300_check_eeprom(struct ath_hw *ah)
  2828. {
  2829. return 0;
  2830. }
  2831. static int interpolate(int x, int xa, int xb, int ya, int yb)
  2832. {
  2833. int bf, factor, plus;
  2834. bf = 2 * (yb - ya) * (x - xa) / (xb - xa);
  2835. factor = bf / 2;
  2836. plus = bf % 2;
  2837. return ya + factor + plus;
  2838. }
  2839. static u32 ath9k_hw_ar9300_get_eeprom(struct ath_hw *ah,
  2840. enum eeprom_param param)
  2841. {
  2842. struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
  2843. struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
  2844. switch (param) {
  2845. case EEP_MAC_LSW:
  2846. return eep->macAddr[0] << 8 | eep->macAddr[1];
  2847. case EEP_MAC_MID:
  2848. return eep->macAddr[2] << 8 | eep->macAddr[3];
  2849. case EEP_MAC_MSW:
  2850. return eep->macAddr[4] << 8 | eep->macAddr[5];
  2851. case EEP_REG_0:
  2852. return le16_to_cpu(pBase->regDmn[0]);
  2853. case EEP_REG_1:
  2854. return le16_to_cpu(pBase->regDmn[1]);
  2855. case EEP_OP_CAP:
  2856. return pBase->deviceCap;
  2857. case EEP_OP_MODE:
  2858. return pBase->opCapFlags.opFlags;
  2859. case EEP_RF_SILENT:
  2860. return pBase->rfSilent;
  2861. case EEP_TX_MASK:
  2862. return (pBase->txrxMask >> 4) & 0xf;
  2863. case EEP_RX_MASK:
  2864. return pBase->txrxMask & 0xf;
  2865. case EEP_DRIVE_STRENGTH:
  2866. #define AR9300_EEP_BASE_DRIV_STRENGTH 0x1
  2867. return pBase->miscConfiguration & AR9300_EEP_BASE_DRIV_STRENGTH;
  2868. case EEP_INTERNAL_REGULATOR:
  2869. /* Bit 4 is internal regulator flag */
  2870. return (pBase->featureEnable & 0x10) >> 4;
  2871. case EEP_SWREG:
  2872. return le32_to_cpu(pBase->swreg);
  2873. case EEP_PAPRD:
  2874. return !!(pBase->featureEnable & BIT(5));
  2875. case EEP_CHAIN_MASK_REDUCE:
  2876. return (pBase->miscConfiguration >> 0x3) & 0x1;
  2877. case EEP_ANT_DIV_CTL1:
  2878. return le32_to_cpu(eep->base_ext1.ant_div_control);
  2879. default:
  2880. return 0;
  2881. }
  2882. }
  2883. static bool ar9300_eeprom_read_byte(struct ath_common *common, int address,
  2884. u8 *buffer)
  2885. {
  2886. u16 val;
  2887. if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
  2888. return false;
  2889. *buffer = (val >> (8 * (address % 2))) & 0xff;
  2890. return true;
  2891. }
  2892. static bool ar9300_eeprom_read_word(struct ath_common *common, int address,
  2893. u8 *buffer)
  2894. {
  2895. u16 val;
  2896. if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
  2897. return false;
  2898. buffer[0] = val >> 8;
  2899. buffer[1] = val & 0xff;
  2900. return true;
  2901. }
  2902. static bool ar9300_read_eeprom(struct ath_hw *ah, int address, u8 *buffer,
  2903. int count)
  2904. {
  2905. struct ath_common *common = ath9k_hw_common(ah);
  2906. int i;
  2907. if ((address < 0) || ((address + count) / 2 > AR9300_EEPROM_SIZE - 1)) {
  2908. ath_dbg(common, ATH_DBG_EEPROM,
  2909. "eeprom address not in range\n");
  2910. return false;
  2911. }
  2912. /*
  2913. * Since we're reading the bytes in reverse order from a little-endian
  2914. * word stream, an even address means we only use the lower half of
  2915. * the 16-bit word at that address
  2916. */
  2917. if (address % 2 == 0) {
  2918. if (!ar9300_eeprom_read_byte(common, address--, buffer++))
  2919. goto error;
  2920. count--;
  2921. }
  2922. for (i = 0; i < count / 2; i++) {
  2923. if (!ar9300_eeprom_read_word(common, address, buffer))
  2924. goto error;
  2925. address -= 2;
  2926. buffer += 2;
  2927. }
  2928. if (count % 2)
  2929. if (!ar9300_eeprom_read_byte(common, address, buffer))
  2930. goto error;
  2931. return true;
  2932. error:
  2933. ath_dbg(common, ATH_DBG_EEPROM,
  2934. "unable to read eeprom region at offset %d\n", address);
  2935. return false;
  2936. }
  2937. static bool ar9300_otp_read_word(struct ath_hw *ah, int addr, u32 *data)
  2938. {
  2939. REG_READ(ah, AR9300_OTP_BASE + (4 * addr));
  2940. if (!ath9k_hw_wait(ah, AR9300_OTP_STATUS, AR9300_OTP_STATUS_TYPE,
  2941. AR9300_OTP_STATUS_VALID, 1000))
  2942. return false;
  2943. *data = REG_READ(ah, AR9300_OTP_READ_DATA);
  2944. return true;
  2945. }
  2946. static bool ar9300_read_otp(struct ath_hw *ah, int address, u8 *buffer,
  2947. int count)
  2948. {
  2949. u32 data;
  2950. int i;
  2951. for (i = 0; i < count; i++) {
  2952. int offset = 8 * ((address - i) % 4);
  2953. if (!ar9300_otp_read_word(ah, (address - i) / 4, &data))
  2954. return false;
  2955. buffer[i] = (data >> offset) & 0xff;
  2956. }
  2957. return true;
  2958. }
  2959. static void ar9300_comp_hdr_unpack(u8 *best, int *code, int *reference,
  2960. int *length, int *major, int *minor)
  2961. {
  2962. unsigned long value[4];
  2963. value[0] = best[0];
  2964. value[1] = best[1];
  2965. value[2] = best[2];
  2966. value[3] = best[3];
  2967. *code = ((value[0] >> 5) & 0x0007);
  2968. *reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
  2969. *length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
  2970. *major = (value[2] & 0x000f);
  2971. *minor = (value[3] & 0x00ff);
  2972. }
  2973. static u16 ar9300_comp_cksum(u8 *data, int dsize)
  2974. {
  2975. int it, checksum = 0;
  2976. for (it = 0; it < dsize; it++) {
  2977. checksum += data[it];
  2978. checksum &= 0xffff;
  2979. }
  2980. return checksum;
  2981. }
  2982. static bool ar9300_uncompress_block(struct ath_hw *ah,
  2983. u8 *mptr,
  2984. int mdataSize,
  2985. u8 *block,
  2986. int size)
  2987. {
  2988. int it;
  2989. int spot;
  2990. int offset;
  2991. int length;
  2992. struct ath_common *common = ath9k_hw_common(ah);
  2993. spot = 0;
  2994. for (it = 0; it < size; it += (length+2)) {
  2995. offset = block[it];
  2996. offset &= 0xff;
  2997. spot += offset;
  2998. length = block[it+1];
  2999. length &= 0xff;
  3000. if (length > 0 && spot >= 0 && spot+length <= mdataSize) {
  3001. ath_dbg(common, ATH_DBG_EEPROM,
  3002. "Restore at %d: spot=%d offset=%d length=%d\n",
  3003. it, spot, offset, length);
  3004. memcpy(&mptr[spot], &block[it+2], length);
  3005. spot += length;
  3006. } else if (length > 0) {
  3007. ath_dbg(common, ATH_DBG_EEPROM,
  3008. "Bad restore at %d: spot=%d offset=%d length=%d\n",
  3009. it, spot, offset, length);
  3010. return false;
  3011. }
  3012. }
  3013. return true;
  3014. }
  3015. static int ar9300_compress_decision(struct ath_hw *ah,
  3016. int it,
  3017. int code,
  3018. int reference,
  3019. u8 *mptr,
  3020. u8 *word, int length, int mdata_size)
  3021. {
  3022. struct ath_common *common = ath9k_hw_common(ah);
  3023. u8 *dptr;
  3024. const struct ar9300_eeprom *eep = NULL;
  3025. switch (code) {
  3026. case _CompressNone:
  3027. if (length != mdata_size) {
  3028. ath_dbg(common, ATH_DBG_EEPROM,
  3029. "EEPROM structure size mismatch memory=%d eeprom=%d\n",
  3030. mdata_size, length);
  3031. return -1;
  3032. }
  3033. memcpy(mptr, (u8 *) (word + COMP_HDR_LEN), length);
  3034. ath_dbg(common, ATH_DBG_EEPROM,
  3035. "restored eeprom %d: uncompressed, length %d\n",
  3036. it, length);
  3037. break;
  3038. case _CompressBlock:
  3039. if (reference == 0) {
  3040. dptr = mptr;
  3041. } else {
  3042. eep = ar9003_eeprom_struct_find_by_id(reference);
  3043. if (eep == NULL) {
  3044. ath_dbg(common, ATH_DBG_EEPROM,
  3045. "cant find reference eeprom struct %d\n",
  3046. reference);
  3047. return -1;
  3048. }
  3049. memcpy(mptr, eep, mdata_size);
  3050. }
  3051. ath_dbg(common, ATH_DBG_EEPROM,
  3052. "restore eeprom %d: block, reference %d, length %d\n",
  3053. it, reference, length);
  3054. ar9300_uncompress_block(ah, mptr, mdata_size,
  3055. (u8 *) (word + COMP_HDR_LEN), length);
  3056. break;
  3057. default:
  3058. ath_dbg(common, ATH_DBG_EEPROM,
  3059. "unknown compression code %d\n", code);
  3060. return -1;
  3061. }
  3062. return 0;
  3063. }
  3064. typedef bool (*eeprom_read_op)(struct ath_hw *ah, int address, u8 *buffer,
  3065. int count);
  3066. static bool ar9300_check_header(void *data)
  3067. {
  3068. u32 *word = data;
  3069. return !(*word == 0 || *word == ~0);
  3070. }
  3071. static bool ar9300_check_eeprom_header(struct ath_hw *ah, eeprom_read_op read,
  3072. int base_addr)
  3073. {
  3074. u8 header[4];
  3075. if (!read(ah, base_addr, header, 4))
  3076. return false;
  3077. return ar9300_check_header(header);
  3078. }
  3079. static int ar9300_eeprom_restore_flash(struct ath_hw *ah, u8 *mptr,
  3080. int mdata_size)
  3081. {
  3082. struct ath_common *common = ath9k_hw_common(ah);
  3083. u16 *data = (u16 *) mptr;
  3084. int i;
  3085. for (i = 0; i < mdata_size / 2; i++, data++)
  3086. ath9k_hw_nvram_read(common, i, data);
  3087. return 0;
  3088. }
  3089. /*
  3090. * Read the configuration data from the eeprom.
  3091. * The data can be put in any specified memory buffer.
  3092. *
  3093. * Returns -1 on error.
  3094. * Returns address of next memory location on success.
  3095. */
  3096. static int ar9300_eeprom_restore_internal(struct ath_hw *ah,
  3097. u8 *mptr, int mdata_size)
  3098. {
  3099. #define MDEFAULT 15
  3100. #define MSTATE 100
  3101. int cptr;
  3102. u8 *word;
  3103. int code;
  3104. int reference, length, major, minor;
  3105. int osize;
  3106. int it;
  3107. u16 checksum, mchecksum;
  3108. struct ath_common *common = ath9k_hw_common(ah);
  3109. eeprom_read_op read;
  3110. if (ath9k_hw_use_flash(ah))
  3111. return ar9300_eeprom_restore_flash(ah, mptr, mdata_size);
  3112. word = kzalloc(2048, GFP_KERNEL);
  3113. if (!word)
  3114. return -1;
  3115. memcpy(mptr, &ar9300_default, mdata_size);
  3116. read = ar9300_read_eeprom;
  3117. if (AR_SREV_9485(ah))
  3118. cptr = AR9300_BASE_ADDR_4K;
  3119. else
  3120. cptr = AR9300_BASE_ADDR;
  3121. ath_dbg(common, ATH_DBG_EEPROM,
  3122. "Trying EEPROM accesss at Address 0x%04x\n", cptr);
  3123. if (ar9300_check_eeprom_header(ah, read, cptr))
  3124. goto found;
  3125. cptr = AR9300_BASE_ADDR_512;
  3126. ath_dbg(common, ATH_DBG_EEPROM,
  3127. "Trying EEPROM accesss at Address 0x%04x\n", cptr);
  3128. if (ar9300_check_eeprom_header(ah, read, cptr))
  3129. goto found;
  3130. read = ar9300_read_otp;
  3131. cptr = AR9300_BASE_ADDR;
  3132. ath_dbg(common, ATH_DBG_EEPROM,
  3133. "Trying OTP accesss at Address 0x%04x\n", cptr);
  3134. if (ar9300_check_eeprom_header(ah, read, cptr))
  3135. goto found;
  3136. cptr = AR9300_BASE_ADDR_512;
  3137. ath_dbg(common, ATH_DBG_EEPROM,
  3138. "Trying OTP accesss at Address 0x%04x\n", cptr);
  3139. if (ar9300_check_eeprom_header(ah, read, cptr))
  3140. goto found;
  3141. goto fail;
  3142. found:
  3143. ath_dbg(common, ATH_DBG_EEPROM, "Found valid EEPROM data\n");
  3144. for (it = 0; it < MSTATE; it++) {
  3145. if (!read(ah, cptr, word, COMP_HDR_LEN))
  3146. goto fail;
  3147. if (!ar9300_check_header(word))
  3148. break;
  3149. ar9300_comp_hdr_unpack(word, &code, &reference,
  3150. &length, &major, &minor);
  3151. ath_dbg(common, ATH_DBG_EEPROM,
  3152. "Found block at %x: code=%d ref=%d length=%d major=%d minor=%d\n",
  3153. cptr, code, reference, length, major, minor);
  3154. if ((!AR_SREV_9485(ah) && length >= 1024) ||
  3155. (AR_SREV_9485(ah) && length > EEPROM_DATA_LEN_9485)) {
  3156. ath_dbg(common, ATH_DBG_EEPROM,
  3157. "Skipping bad header\n");
  3158. cptr -= COMP_HDR_LEN;
  3159. continue;
  3160. }
  3161. osize = length;
  3162. read(ah, cptr, word, COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
  3163. checksum = ar9300_comp_cksum(&word[COMP_HDR_LEN], length);
  3164. mchecksum = word[COMP_HDR_LEN + osize] |
  3165. (word[COMP_HDR_LEN + osize + 1] << 8);
  3166. ath_dbg(common, ATH_DBG_EEPROM,
  3167. "checksum %x %x\n", checksum, mchecksum);
  3168. if (checksum == mchecksum) {
  3169. ar9300_compress_decision(ah, it, code, reference, mptr,
  3170. word, length, mdata_size);
  3171. } else {
  3172. ath_dbg(common, ATH_DBG_EEPROM,
  3173. "skipping block with bad checksum\n");
  3174. }
  3175. cptr -= (COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
  3176. }
  3177. kfree(word);
  3178. return cptr;
  3179. fail:
  3180. kfree(word);
  3181. return -1;
  3182. }
  3183. /*
  3184. * Restore the configuration structure by reading the eeprom.
  3185. * This function destroys any existing in-memory structure
  3186. * content.
  3187. */
  3188. static bool ath9k_hw_ar9300_fill_eeprom(struct ath_hw *ah)
  3189. {
  3190. u8 *mptr = (u8 *) &ah->eeprom.ar9300_eep;
  3191. if (ar9300_eeprom_restore_internal(ah, mptr,
  3192. sizeof(struct ar9300_eeprom)) < 0)
  3193. return false;
  3194. return true;
  3195. }
  3196. /* XXX: review hardware docs */
  3197. static int ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw *ah)
  3198. {
  3199. return ah->eeprom.ar9300_eep.eepromVersion;
  3200. }
  3201. /* XXX: could be read from the eepromVersion, not sure yet */
  3202. static int ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw *ah)
  3203. {
  3204. return 0;
  3205. }
  3206. static s32 ar9003_hw_xpa_bias_level_get(struct ath_hw *ah, bool is2ghz)
  3207. {
  3208. struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
  3209. if (is2ghz)
  3210. return eep->modalHeader2G.xpaBiasLvl;
  3211. else
  3212. return eep->modalHeader5G.xpaBiasLvl;
  3213. }
  3214. static void ar9003_hw_xpa_bias_level_apply(struct ath_hw *ah, bool is2ghz)
  3215. {
  3216. int bias = ar9003_hw_xpa_bias_level_get(ah, is2ghz);
  3217. if (AR_SREV_9485(ah))
  3218. REG_RMW_FIELD(ah, AR_CH0_TOP2, AR_CH0_TOP2_XPABIASLVL, bias);
  3219. else {
  3220. REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
  3221. REG_RMW_FIELD(ah, AR_CH0_THERM, AR_CH0_THERM_XPABIASLVL_MSB,
  3222. bias >> 2);
  3223. REG_RMW_FIELD(ah, AR_CH0_THERM, AR_CH0_THERM_XPASHORT2GND, 1);
  3224. }
  3225. }
  3226. static u32 ar9003_hw_ant_ctrl_common_get(struct ath_hw *ah, bool is2ghz)
  3227. {
  3228. struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
  3229. __le32 val;
  3230. if (is2ghz)
  3231. val = eep->modalHeader2G.antCtrlCommon;
  3232. else
  3233. val = eep->modalHeader5G.antCtrlCommon;
  3234. return le32_to_cpu(val);
  3235. }
  3236. static u32 ar9003_hw_ant_ctrl_common_2_get(struct ath_hw *ah, bool is2ghz)
  3237. {
  3238. struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
  3239. __le32 val;
  3240. if (is2ghz)
  3241. val = eep->modalHeader2G.antCtrlCommon2;
  3242. else
  3243. val = eep->modalHeader5G.antCtrlCommon2;
  3244. return le32_to_cpu(val);
  3245. }
  3246. static u16 ar9003_hw_ant_ctrl_chain_get(struct ath_hw *ah,
  3247. int chain,
  3248. bool is2ghz)
  3249. {
  3250. struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
  3251. __le16 val = 0;
  3252. if (chain >= 0 && chain < AR9300_MAX_CHAINS) {
  3253. if (is2ghz)
  3254. val = eep->modalHeader2G.antCtrlChain[chain];
  3255. else
  3256. val = eep->modalHeader5G.antCtrlChain[chain];
  3257. }
  3258. return le16_to_cpu(val);
  3259. }
  3260. static void ar9003_hw_ant_ctrl_apply(struct ath_hw *ah, bool is2ghz)
  3261. {
  3262. u32 value = ar9003_hw_ant_ctrl_common_get(ah, is2ghz);
  3263. REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM, AR_SWITCH_TABLE_COM_ALL, value);
  3264. value = ar9003_hw_ant_ctrl_common_2_get(ah, is2ghz);
  3265. REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
  3266. value = ar9003_hw_ant_ctrl_chain_get(ah, 0, is2ghz);
  3267. REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_0, AR_SWITCH_TABLE_ALL, value);
  3268. if (!AR_SREV_9485(ah)) {
  3269. value = ar9003_hw_ant_ctrl_chain_get(ah, 1, is2ghz);
  3270. REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_1, AR_SWITCH_TABLE_ALL,
  3271. value);
  3272. value = ar9003_hw_ant_ctrl_chain_get(ah, 2, is2ghz);
  3273. REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_2, AR_SWITCH_TABLE_ALL,
  3274. value);
  3275. }
  3276. if (AR_SREV_9485(ah)) {
  3277. value = ath9k_hw_ar9300_get_eeprom(ah, EEP_ANT_DIV_CTL1);
  3278. REG_RMW_FIELD(ah, AR_PHY_MC_GAIN_CTRL, AR_ANT_DIV_CTRL_ALL,
  3279. value);
  3280. REG_RMW_FIELD(ah, AR_PHY_MC_GAIN_CTRL, AR_ANT_DIV_ENABLE,
  3281. value >> 6);
  3282. REG_RMW_FIELD(ah, AR_PHY_CCK_DETECT, AR_FAST_DIV_ENABLE,
  3283. value >> 7);
  3284. }
  3285. }
  3286. static void ar9003_hw_drive_strength_apply(struct ath_hw *ah)
  3287. {
  3288. int drive_strength;
  3289. unsigned long reg;
  3290. drive_strength = ath9k_hw_ar9300_get_eeprom(ah, EEP_DRIVE_STRENGTH);
  3291. if (!drive_strength)
  3292. return;
  3293. reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
  3294. reg &= ~0x00ffffc0;
  3295. reg |= 0x5 << 21;
  3296. reg |= 0x5 << 18;
  3297. reg |= 0x5 << 15;
  3298. reg |= 0x5 << 12;
  3299. reg |= 0x5 << 9;
  3300. reg |= 0x5 << 6;
  3301. REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
  3302. reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
  3303. reg &= ~0xffffffe0;
  3304. reg |= 0x5 << 29;
  3305. reg |= 0x5 << 26;
  3306. reg |= 0x5 << 23;
  3307. reg |= 0x5 << 20;
  3308. reg |= 0x5 << 17;
  3309. reg |= 0x5 << 14;
  3310. reg |= 0x5 << 11;
  3311. reg |= 0x5 << 8;
  3312. reg |= 0x5 << 5;
  3313. REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
  3314. reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
  3315. reg &= ~0xff800000;
  3316. reg |= 0x5 << 29;
  3317. reg |= 0x5 << 26;
  3318. reg |= 0x5 << 23;
  3319. REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
  3320. }
  3321. static u16 ar9003_hw_atten_chain_get(struct ath_hw *ah, int chain,
  3322. struct ath9k_channel *chan)
  3323. {
  3324. int f[3], t[3];
  3325. u16 value;
  3326. struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
  3327. if (chain >= 0 && chain < 3) {
  3328. if (IS_CHAN_2GHZ(chan))
  3329. return eep->modalHeader2G.xatten1DB[chain];
  3330. else if (eep->base_ext2.xatten1DBLow[chain] != 0) {
  3331. t[0] = eep->base_ext2.xatten1DBLow[chain];
  3332. f[0] = 5180;
  3333. t[1] = eep->modalHeader5G.xatten1DB[chain];
  3334. f[1] = 5500;
  3335. t[2] = eep->base_ext2.xatten1DBHigh[chain];
  3336. f[2] = 5785;
  3337. value = ar9003_hw_power_interpolate((s32) chan->channel,
  3338. f, t, 3);
  3339. return value;
  3340. } else
  3341. return eep->modalHeader5G.xatten1DB[chain];
  3342. }
  3343. return 0;
  3344. }
  3345. static u16 ar9003_hw_atten_chain_get_margin(struct ath_hw *ah, int chain,
  3346. struct ath9k_channel *chan)
  3347. {
  3348. int f[3], t[3];
  3349. u16 value;
  3350. struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
  3351. if (chain >= 0 && chain < 3) {
  3352. if (IS_CHAN_2GHZ(chan))
  3353. return eep->modalHeader2G.xatten1Margin[chain];
  3354. else if (eep->base_ext2.xatten1MarginLow[chain] != 0) {
  3355. t[0] = eep->base_ext2.xatten1MarginLow[chain];
  3356. f[0] = 5180;
  3357. t[1] = eep->modalHeader5G.xatten1Margin[chain];
  3358. f[1] = 5500;
  3359. t[2] = eep->base_ext2.xatten1MarginHigh[chain];
  3360. f[2] = 5785;
  3361. value = ar9003_hw_power_interpolate((s32) chan->channel,
  3362. f, t, 3);
  3363. return value;
  3364. } else
  3365. return eep->modalHeader5G.xatten1Margin[chain];
  3366. }
  3367. return 0;
  3368. }
  3369. static void ar9003_hw_atten_apply(struct ath_hw *ah, struct ath9k_channel *chan)
  3370. {
  3371. int i;
  3372. u16 value;
  3373. unsigned long ext_atten_reg[3] = {AR_PHY_EXT_ATTEN_CTL_0,
  3374. AR_PHY_EXT_ATTEN_CTL_1,
  3375. AR_PHY_EXT_ATTEN_CTL_2,
  3376. };
  3377. /* Test value. if 0 then attenuation is unused. Don't load anything. */
  3378. for (i = 0; i < 3; i++) {
  3379. value = ar9003_hw_atten_chain_get(ah, i, chan);
  3380. REG_RMW_FIELD(ah, ext_atten_reg[i],
  3381. AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
  3382. value = ar9003_hw_atten_chain_get_margin(ah, i, chan);
  3383. REG_RMW_FIELD(ah, ext_atten_reg[i],
  3384. AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN, value);
  3385. }
  3386. }
  3387. static bool is_pmu_set(struct ath_hw *ah, u32 pmu_reg, int pmu_set)
  3388. {
  3389. int timeout = 100;
  3390. while (pmu_set != REG_READ(ah, pmu_reg)) {
  3391. if (timeout-- == 0)
  3392. return false;
  3393. REG_WRITE(ah, pmu_reg, pmu_set);
  3394. udelay(10);
  3395. }
  3396. return true;
  3397. }
  3398. static void ar9003_hw_internal_regulator_apply(struct ath_hw *ah)
  3399. {
  3400. int internal_regulator =
  3401. ath9k_hw_ar9300_get_eeprom(ah, EEP_INTERNAL_REGULATOR);
  3402. if (internal_regulator) {
  3403. if (AR_SREV_9485(ah)) {
  3404. int reg_pmu_set;
  3405. reg_pmu_set = REG_READ(ah, AR_PHY_PMU2) & ~AR_PHY_PMU2_PGM;
  3406. REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
  3407. if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
  3408. return;
  3409. reg_pmu_set = (5 << 1) | (7 << 4) | (1 << 8) |
  3410. (2 << 14) | (6 << 17) | (1 << 20) |
  3411. (3 << 24) | (1 << 28);
  3412. REG_WRITE(ah, AR_PHY_PMU1, reg_pmu_set);
  3413. if (!is_pmu_set(ah, AR_PHY_PMU1, reg_pmu_set))
  3414. return;
  3415. reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0xFFC00000)
  3416. | (4 << 26);
  3417. REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
  3418. if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
  3419. return;
  3420. reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0x00200000)
  3421. | (1 << 21);
  3422. REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
  3423. if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
  3424. return;
  3425. } else {
  3426. /* Internal regulator is ON. Write swreg register. */
  3427. int swreg = ath9k_hw_ar9300_get_eeprom(ah, EEP_SWREG);
  3428. REG_WRITE(ah, AR_RTC_REG_CONTROL1,
  3429. REG_READ(ah, AR_RTC_REG_CONTROL1) &
  3430. (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
  3431. REG_WRITE(ah, AR_RTC_REG_CONTROL0, swreg);
  3432. /* Set REG_CONTROL1.SWREG_PROGRAM */
  3433. REG_WRITE(ah, AR_RTC_REG_CONTROL1,
  3434. REG_READ(ah,
  3435. AR_RTC_REG_CONTROL1) |
  3436. AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
  3437. }
  3438. } else {
  3439. if (AR_SREV_9485(ah)) {
  3440. REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0);
  3441. while (REG_READ_FIELD(ah, AR_PHY_PMU2,
  3442. AR_PHY_PMU2_PGM))
  3443. udelay(10);
  3444. REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
  3445. while (!REG_READ_FIELD(ah, AR_PHY_PMU1,
  3446. AR_PHY_PMU1_PWD))
  3447. udelay(10);
  3448. REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0x1);
  3449. while (!REG_READ_FIELD(ah, AR_PHY_PMU2,
  3450. AR_PHY_PMU2_PGM))
  3451. udelay(10);
  3452. } else
  3453. REG_WRITE(ah, AR_RTC_SLEEP_CLK,
  3454. (REG_READ(ah,
  3455. AR_RTC_SLEEP_CLK) |
  3456. AR_RTC_FORCE_SWREG_PRD));
  3457. }
  3458. }
  3459. static void ar9003_hw_apply_tuning_caps(struct ath_hw *ah)
  3460. {
  3461. struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
  3462. u8 tuning_caps_param = eep->baseEepHeader.params_for_tuning_caps[0];
  3463. if (eep->baseEepHeader.featureEnable & 0x40) {
  3464. tuning_caps_param &= 0x7f;
  3465. REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPINDAC,
  3466. tuning_caps_param);
  3467. REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPOUTDAC,
  3468. tuning_caps_param);
  3469. }
  3470. }
  3471. static void ath9k_hw_ar9300_set_board_values(struct ath_hw *ah,
  3472. struct ath9k_channel *chan)
  3473. {
  3474. ar9003_hw_xpa_bias_level_apply(ah, IS_CHAN_2GHZ(chan));
  3475. ar9003_hw_ant_ctrl_apply(ah, IS_CHAN_2GHZ(chan));
  3476. ar9003_hw_drive_strength_apply(ah);
  3477. ar9003_hw_atten_apply(ah, chan);
  3478. ar9003_hw_internal_regulator_apply(ah);
  3479. if (AR_SREV_9485(ah))
  3480. ar9003_hw_apply_tuning_caps(ah);
  3481. }
  3482. static void ath9k_hw_ar9300_set_addac(struct ath_hw *ah,
  3483. struct ath9k_channel *chan)
  3484. {
  3485. }
  3486. /*
  3487. * Returns the interpolated y value corresponding to the specified x value
  3488. * from the np ordered pairs of data (px,py).
  3489. * The pairs do not have to be in any order.
  3490. * If the specified x value is less than any of the px,
  3491. * the returned y value is equal to the py for the lowest px.
  3492. * If the specified x value is greater than any of the px,
  3493. * the returned y value is equal to the py for the highest px.
  3494. */
  3495. static int ar9003_hw_power_interpolate(int32_t x,
  3496. int32_t *px, int32_t *py, u_int16_t np)
  3497. {
  3498. int ip = 0;
  3499. int lx = 0, ly = 0, lhave = 0;
  3500. int hx = 0, hy = 0, hhave = 0;
  3501. int dx = 0;
  3502. int y = 0;
  3503. lhave = 0;
  3504. hhave = 0;
  3505. /* identify best lower and higher x calibration measurement */
  3506. for (ip = 0; ip < np; ip++) {
  3507. dx = x - px[ip];
  3508. /* this measurement is higher than our desired x */
  3509. if (dx <= 0) {
  3510. if (!hhave || dx > (x - hx)) {
  3511. /* new best higher x measurement */
  3512. hx = px[ip];
  3513. hy = py[ip];
  3514. hhave = 1;
  3515. }
  3516. }
  3517. /* this measurement is lower than our desired x */
  3518. if (dx >= 0) {
  3519. if (!lhave || dx < (x - lx)) {
  3520. /* new best lower x measurement */
  3521. lx = px[ip];
  3522. ly = py[ip];
  3523. lhave = 1;
  3524. }
  3525. }
  3526. }
  3527. /* the low x is good */
  3528. if (lhave) {
  3529. /* so is the high x */
  3530. if (hhave) {
  3531. /* they're the same, so just pick one */
  3532. if (hx == lx)
  3533. y = ly;
  3534. else /* interpolate */
  3535. y = interpolate(x, lx, hx, ly, hy);
  3536. } else /* only low is good, use it */
  3537. y = ly;
  3538. } else if (hhave) /* only high is good, use it */
  3539. y = hy;
  3540. else /* nothing is good,this should never happen unless np=0, ???? */
  3541. y = -(1 << 30);
  3542. return y;
  3543. }
  3544. static u8 ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw *ah,
  3545. u16 rateIndex, u16 freq, bool is2GHz)
  3546. {
  3547. u16 numPiers, i;
  3548. s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
  3549. s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
  3550. struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
  3551. struct cal_tgt_pow_legacy *pEepromTargetPwr;
  3552. u8 *pFreqBin;
  3553. if (is2GHz) {
  3554. numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
  3555. pEepromTargetPwr = eep->calTargetPower2G;
  3556. pFreqBin = eep->calTarget_freqbin_2G;
  3557. } else {
  3558. numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
  3559. pEepromTargetPwr = eep->calTargetPower5G;
  3560. pFreqBin = eep->calTarget_freqbin_5G;
  3561. }
  3562. /*
  3563. * create array of channels and targetpower from
  3564. * targetpower piers stored on eeprom
  3565. */
  3566. for (i = 0; i < numPiers; i++) {
  3567. freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
  3568. targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
  3569. }
  3570. /* interpolate to get target power for given frequency */
  3571. return (u8) ar9003_hw_power_interpolate((s32) freq,
  3572. freqArray,
  3573. targetPowerArray, numPiers);
  3574. }
  3575. static u8 ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw *ah,
  3576. u16 rateIndex,
  3577. u16 freq, bool is2GHz)
  3578. {
  3579. u16 numPiers, i;
  3580. s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
  3581. s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
  3582. struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
  3583. struct cal_tgt_pow_ht *pEepromTargetPwr;
  3584. u8 *pFreqBin;
  3585. if (is2GHz) {
  3586. numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
  3587. pEepromTargetPwr = eep->calTargetPower2GHT20;
  3588. pFreqBin = eep->calTarget_freqbin_2GHT20;
  3589. } else {
  3590. numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
  3591. pEepromTargetPwr = eep->calTargetPower5GHT20;
  3592. pFreqBin = eep->calTarget_freqbin_5GHT20;
  3593. }
  3594. /*
  3595. * create array of channels and targetpower
  3596. * from targetpower piers stored on eeprom
  3597. */
  3598. for (i = 0; i < numPiers; i++) {
  3599. freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
  3600. targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
  3601. }
  3602. /* interpolate to get target power for given frequency */
  3603. return (u8) ar9003_hw_power_interpolate((s32) freq,
  3604. freqArray,
  3605. targetPowerArray, numPiers);
  3606. }
  3607. static u8 ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw *ah,
  3608. u16 rateIndex,
  3609. u16 freq, bool is2GHz)
  3610. {
  3611. u16 numPiers, i;
  3612. s32 targetPowerArray[AR9300_NUM_5G_40_TARGET_POWERS];
  3613. s32 freqArray[AR9300_NUM_5G_40_TARGET_POWERS];
  3614. struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
  3615. struct cal_tgt_pow_ht *pEepromTargetPwr;
  3616. u8 *pFreqBin;
  3617. if (is2GHz) {
  3618. numPiers = AR9300_NUM_2G_40_TARGET_POWERS;
  3619. pEepromTargetPwr = eep->calTargetPower2GHT40;
  3620. pFreqBin = eep->calTarget_freqbin_2GHT40;
  3621. } else {
  3622. numPiers = AR9300_NUM_5G_40_TARGET_POWERS;
  3623. pEepromTargetPwr = eep->calTargetPower5GHT40;
  3624. pFreqBin = eep->calTarget_freqbin_5GHT40;
  3625. }
  3626. /*
  3627. * create array of channels and targetpower from
  3628. * targetpower piers stored on eeprom
  3629. */
  3630. for (i = 0; i < numPiers; i++) {
  3631. freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
  3632. targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
  3633. }
  3634. /* interpolate to get target power for given frequency */
  3635. return (u8) ar9003_hw_power_interpolate((s32) freq,
  3636. freqArray,
  3637. targetPowerArray, numPiers);
  3638. }
  3639. static u8 ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw *ah,
  3640. u16 rateIndex, u16 freq)
  3641. {
  3642. u16 numPiers = AR9300_NUM_2G_CCK_TARGET_POWERS, i;
  3643. s32 targetPowerArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
  3644. s32 freqArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
  3645. struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
  3646. struct cal_tgt_pow_legacy *pEepromTargetPwr = eep->calTargetPowerCck;
  3647. u8 *pFreqBin = eep->calTarget_freqbin_Cck;
  3648. /*
  3649. * create array of channels and targetpower from
  3650. * targetpower piers stored on eeprom
  3651. */
  3652. for (i = 0; i < numPiers; i++) {
  3653. freqArray[i] = FBIN2FREQ(pFreqBin[i], 1);
  3654. targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
  3655. }
  3656. /* interpolate to get target power for given frequency */
  3657. return (u8) ar9003_hw_power_interpolate((s32) freq,
  3658. freqArray,
  3659. targetPowerArray, numPiers);
  3660. }
  3661. /* Set tx power registers to array of values passed in */
  3662. static int ar9003_hw_tx_power_regwrite(struct ath_hw *ah, u8 * pPwrArray)
  3663. {
  3664. #define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
  3665. /* make sure forced gain is not set */
  3666. REG_WRITE(ah, AR_PHY_TX_FORCED_GAIN, 0);
  3667. /* Write the OFDM power per rate set */
  3668. /* 6 (LSB), 9, 12, 18 (MSB) */
  3669. REG_WRITE(ah, AR_PHY_POWER_TX_RATE(0),
  3670. POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
  3671. POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 16) |
  3672. POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
  3673. POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
  3674. /* 24 (LSB), 36, 48, 54 (MSB) */
  3675. REG_WRITE(ah, AR_PHY_POWER_TX_RATE(1),
  3676. POW_SM(pPwrArray[ALL_TARGET_LEGACY_54], 24) |
  3677. POW_SM(pPwrArray[ALL_TARGET_LEGACY_48], 16) |
  3678. POW_SM(pPwrArray[ALL_TARGET_LEGACY_36], 8) |
  3679. POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
  3680. /* Write the CCK power per rate set */
  3681. /* 1L (LSB), reserved, 2L, 2S (MSB) */
  3682. REG_WRITE(ah, AR_PHY_POWER_TX_RATE(2),
  3683. POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 24) |
  3684. POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
  3685. /* POW_SM(txPowerTimes2, 8) | this is reserved for AR9003 */
  3686. POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0));
  3687. /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
  3688. REG_WRITE(ah, AR_PHY_POWER_TX_RATE(3),
  3689. POW_SM(pPwrArray[ALL_TARGET_LEGACY_11S], 24) |
  3690. POW_SM(pPwrArray[ALL_TARGET_LEGACY_11L], 16) |
  3691. POW_SM(pPwrArray[ALL_TARGET_LEGACY_5S], 8) |
  3692. POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
  3693. );
  3694. /* Write the HT20 power per rate set */
  3695. /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
  3696. REG_WRITE(ah, AR_PHY_POWER_TX_RATE(4),
  3697. POW_SM(pPwrArray[ALL_TARGET_HT20_5], 24) |
  3698. POW_SM(pPwrArray[ALL_TARGET_HT20_4], 16) |
  3699. POW_SM(pPwrArray[ALL_TARGET_HT20_1_3_9_11_17_19], 8) |
  3700. POW_SM(pPwrArray[ALL_TARGET_HT20_0_8_16], 0)
  3701. );
  3702. /* 6 (LSB), 7, 12, 13 (MSB) */
  3703. REG_WRITE(ah, AR_PHY_POWER_TX_RATE(5),
  3704. POW_SM(pPwrArray[ALL_TARGET_HT20_13], 24) |
  3705. POW_SM(pPwrArray[ALL_TARGET_HT20_12], 16) |
  3706. POW_SM(pPwrArray[ALL_TARGET_HT20_7], 8) |
  3707. POW_SM(pPwrArray[ALL_TARGET_HT20_6], 0)
  3708. );
  3709. /* 14 (LSB), 15, 20, 21 */
  3710. REG_WRITE(ah, AR_PHY_POWER_TX_RATE(9),
  3711. POW_SM(pPwrArray[ALL_TARGET_HT20_21], 24) |
  3712. POW_SM(pPwrArray[ALL_TARGET_HT20_20], 16) |
  3713. POW_SM(pPwrArray[ALL_TARGET_HT20_15], 8) |
  3714. POW_SM(pPwrArray[ALL_TARGET_HT20_14], 0)
  3715. );
  3716. /* Mixed HT20 and HT40 rates */
  3717. /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
  3718. REG_WRITE(ah, AR_PHY_POWER_TX_RATE(10),
  3719. POW_SM(pPwrArray[ALL_TARGET_HT40_23], 24) |
  3720. POW_SM(pPwrArray[ALL_TARGET_HT40_22], 16) |
  3721. POW_SM(pPwrArray[ALL_TARGET_HT20_23], 8) |
  3722. POW_SM(pPwrArray[ALL_TARGET_HT20_22], 0)
  3723. );
  3724. /*
  3725. * Write the HT40 power per rate set
  3726. * correct PAR difference between HT40 and HT20/LEGACY
  3727. * 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB)
  3728. */
  3729. REG_WRITE(ah, AR_PHY_POWER_TX_RATE(6),
  3730. POW_SM(pPwrArray[ALL_TARGET_HT40_5], 24) |
  3731. POW_SM(pPwrArray[ALL_TARGET_HT40_4], 16) |
  3732. POW_SM(pPwrArray[ALL_TARGET_HT40_1_3_9_11_17_19], 8) |
  3733. POW_SM(pPwrArray[ALL_TARGET_HT40_0_8_16], 0)
  3734. );
  3735. /* 6 (LSB), 7, 12, 13 (MSB) */
  3736. REG_WRITE(ah, AR_PHY_POWER_TX_RATE(7),
  3737. POW_SM(pPwrArray[ALL_TARGET_HT40_13], 24) |
  3738. POW_SM(pPwrArray[ALL_TARGET_HT40_12], 16) |
  3739. POW_SM(pPwrArray[ALL_TARGET_HT40_7], 8) |
  3740. POW_SM(pPwrArray[ALL_TARGET_HT40_6], 0)
  3741. );
  3742. /* 14 (LSB), 15, 20, 21 */
  3743. REG_WRITE(ah, AR_PHY_POWER_TX_RATE(11),
  3744. POW_SM(pPwrArray[ALL_TARGET_HT40_21], 24) |
  3745. POW_SM(pPwrArray[ALL_TARGET_HT40_20], 16) |
  3746. POW_SM(pPwrArray[ALL_TARGET_HT40_15], 8) |
  3747. POW_SM(pPwrArray[ALL_TARGET_HT40_14], 0)
  3748. );
  3749. return 0;
  3750. #undef POW_SM
  3751. }
  3752. static void ar9003_hw_set_target_power_eeprom(struct ath_hw *ah, u16 freq,
  3753. u8 *targetPowerValT2)
  3754. {
  3755. /* XXX: hard code for now, need to get from eeprom struct */
  3756. u8 ht40PowerIncForPdadc = 0;
  3757. bool is2GHz = false;
  3758. unsigned int i = 0;
  3759. struct ath_common *common = ath9k_hw_common(ah);
  3760. if (freq < 4000)
  3761. is2GHz = true;
  3762. targetPowerValT2[ALL_TARGET_LEGACY_6_24] =
  3763. ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_6_24, freq,
  3764. is2GHz);
  3765. targetPowerValT2[ALL_TARGET_LEGACY_36] =
  3766. ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_36, freq,
  3767. is2GHz);
  3768. targetPowerValT2[ALL_TARGET_LEGACY_48] =
  3769. ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_48, freq,
  3770. is2GHz);
  3771. targetPowerValT2[ALL_TARGET_LEGACY_54] =
  3772. ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_54, freq,
  3773. is2GHz);
  3774. targetPowerValT2[ALL_TARGET_LEGACY_1L_5L] =
  3775. ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_1L_5L,
  3776. freq);
  3777. targetPowerValT2[ALL_TARGET_LEGACY_5S] =
  3778. ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_5S, freq);
  3779. targetPowerValT2[ALL_TARGET_LEGACY_11L] =
  3780. ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11L, freq);
  3781. targetPowerValT2[ALL_TARGET_LEGACY_11S] =
  3782. ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11S, freq);
  3783. targetPowerValT2[ALL_TARGET_HT20_0_8_16] =
  3784. ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
  3785. is2GHz);
  3786. targetPowerValT2[ALL_TARGET_HT20_1_3_9_11_17_19] =
  3787. ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
  3788. freq, is2GHz);
  3789. targetPowerValT2[ALL_TARGET_HT20_4] =
  3790. ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
  3791. is2GHz);
  3792. targetPowerValT2[ALL_TARGET_HT20_5] =
  3793. ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
  3794. is2GHz);
  3795. targetPowerValT2[ALL_TARGET_HT20_6] =
  3796. ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
  3797. is2GHz);
  3798. targetPowerValT2[ALL_TARGET_HT20_7] =
  3799. ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
  3800. is2GHz);
  3801. targetPowerValT2[ALL_TARGET_HT20_12] =
  3802. ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
  3803. is2GHz);
  3804. targetPowerValT2[ALL_TARGET_HT20_13] =
  3805. ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
  3806. is2GHz);
  3807. targetPowerValT2[ALL_TARGET_HT20_14] =
  3808. ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
  3809. is2GHz);
  3810. targetPowerValT2[ALL_TARGET_HT20_15] =
  3811. ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
  3812. is2GHz);
  3813. targetPowerValT2[ALL_TARGET_HT20_20] =
  3814. ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
  3815. is2GHz);
  3816. targetPowerValT2[ALL_TARGET_HT20_21] =
  3817. ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
  3818. is2GHz);
  3819. targetPowerValT2[ALL_TARGET_HT20_22] =
  3820. ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
  3821. is2GHz);
  3822. targetPowerValT2[ALL_TARGET_HT20_23] =
  3823. ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
  3824. is2GHz);
  3825. targetPowerValT2[ALL_TARGET_HT40_0_8_16] =
  3826. ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
  3827. is2GHz) + ht40PowerIncForPdadc;
  3828. targetPowerValT2[ALL_TARGET_HT40_1_3_9_11_17_19] =
  3829. ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
  3830. freq,
  3831. is2GHz) + ht40PowerIncForPdadc;
  3832. targetPowerValT2[ALL_TARGET_HT40_4] =
  3833. ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
  3834. is2GHz) + ht40PowerIncForPdadc;
  3835. targetPowerValT2[ALL_TARGET_HT40_5] =
  3836. ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
  3837. is2GHz) + ht40PowerIncForPdadc;
  3838. targetPowerValT2[ALL_TARGET_HT40_6] =
  3839. ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
  3840. is2GHz) + ht40PowerIncForPdadc;
  3841. targetPowerValT2[ALL_TARGET_HT40_7] =
  3842. ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
  3843. is2GHz) + ht40PowerIncForPdadc;
  3844. targetPowerValT2[ALL_TARGET_HT40_12] =
  3845. ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
  3846. is2GHz) + ht40PowerIncForPdadc;
  3847. targetPowerValT2[ALL_TARGET_HT40_13] =
  3848. ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
  3849. is2GHz) + ht40PowerIncForPdadc;
  3850. targetPowerValT2[ALL_TARGET_HT40_14] =
  3851. ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
  3852. is2GHz) + ht40PowerIncForPdadc;
  3853. targetPowerValT2[ALL_TARGET_HT40_15] =
  3854. ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
  3855. is2GHz) + ht40PowerIncForPdadc;
  3856. targetPowerValT2[ALL_TARGET_HT40_20] =
  3857. ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
  3858. is2GHz) + ht40PowerIncForPdadc;
  3859. targetPowerValT2[ALL_TARGET_HT40_21] =
  3860. ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
  3861. is2GHz) + ht40PowerIncForPdadc;
  3862. targetPowerValT2[ALL_TARGET_HT40_22] =
  3863. ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
  3864. is2GHz) + ht40PowerIncForPdadc;
  3865. targetPowerValT2[ALL_TARGET_HT40_23] =
  3866. ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
  3867. is2GHz) + ht40PowerIncForPdadc;
  3868. for (i = 0; i < ar9300RateSize; i++) {
  3869. ath_dbg(common, ATH_DBG_EEPROM,
  3870. "TPC[%02d] 0x%08x\n", i, targetPowerValT2[i]);
  3871. }
  3872. }
  3873. static int ar9003_hw_cal_pier_get(struct ath_hw *ah,
  3874. int mode,
  3875. int ipier,
  3876. int ichain,
  3877. int *pfrequency,
  3878. int *pcorrection,
  3879. int *ptemperature, int *pvoltage)
  3880. {
  3881. u8 *pCalPier;
  3882. struct ar9300_cal_data_per_freq_op_loop *pCalPierStruct;
  3883. int is2GHz;
  3884. struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
  3885. struct ath_common *common = ath9k_hw_common(ah);
  3886. if (ichain >= AR9300_MAX_CHAINS) {
  3887. ath_dbg(common, ATH_DBG_EEPROM,
  3888. "Invalid chain index, must be less than %d\n",
  3889. AR9300_MAX_CHAINS);
  3890. return -1;
  3891. }
  3892. if (mode) { /* 5GHz */
  3893. if (ipier >= AR9300_NUM_5G_CAL_PIERS) {
  3894. ath_dbg(common, ATH_DBG_EEPROM,
  3895. "Invalid 5GHz cal pier index, must be less than %d\n",
  3896. AR9300_NUM_5G_CAL_PIERS);
  3897. return -1;
  3898. }
  3899. pCalPier = &(eep->calFreqPier5G[ipier]);
  3900. pCalPierStruct = &(eep->calPierData5G[ichain][ipier]);
  3901. is2GHz = 0;
  3902. } else {
  3903. if (ipier >= AR9300_NUM_2G_CAL_PIERS) {
  3904. ath_dbg(common, ATH_DBG_EEPROM,
  3905. "Invalid 2GHz cal pier index, must be less than %d\n",
  3906. AR9300_NUM_2G_CAL_PIERS);
  3907. return -1;
  3908. }
  3909. pCalPier = &(eep->calFreqPier2G[ipier]);
  3910. pCalPierStruct = &(eep->calPierData2G[ichain][ipier]);
  3911. is2GHz = 1;
  3912. }
  3913. *pfrequency = FBIN2FREQ(*pCalPier, is2GHz);
  3914. *pcorrection = pCalPierStruct->refPower;
  3915. *ptemperature = pCalPierStruct->tempMeas;
  3916. *pvoltage = pCalPierStruct->voltMeas;
  3917. return 0;
  3918. }
  3919. static int ar9003_hw_power_control_override(struct ath_hw *ah,
  3920. int frequency,
  3921. int *correction,
  3922. int *voltage, int *temperature)
  3923. {
  3924. int tempSlope = 0;
  3925. struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
  3926. int f[3], t[3];
  3927. REG_RMW(ah, AR_PHY_TPC_11_B0,
  3928. (correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
  3929. AR_PHY_TPC_OLPC_GAIN_DELTA);
  3930. if (ah->caps.tx_chainmask & BIT(1))
  3931. REG_RMW(ah, AR_PHY_TPC_11_B1,
  3932. (correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
  3933. AR_PHY_TPC_OLPC_GAIN_DELTA);
  3934. if (ah->caps.tx_chainmask & BIT(2))
  3935. REG_RMW(ah, AR_PHY_TPC_11_B2,
  3936. (correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
  3937. AR_PHY_TPC_OLPC_GAIN_DELTA);
  3938. /* enable open loop power control on chip */
  3939. REG_RMW(ah, AR_PHY_TPC_6_B0,
  3940. (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
  3941. AR_PHY_TPC_6_ERROR_EST_MODE);
  3942. if (ah->caps.tx_chainmask & BIT(1))
  3943. REG_RMW(ah, AR_PHY_TPC_6_B1,
  3944. (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
  3945. AR_PHY_TPC_6_ERROR_EST_MODE);
  3946. if (ah->caps.tx_chainmask & BIT(2))
  3947. REG_RMW(ah, AR_PHY_TPC_6_B2,
  3948. (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
  3949. AR_PHY_TPC_6_ERROR_EST_MODE);
  3950. /*
  3951. * enable temperature compensation
  3952. * Need to use register names
  3953. */
  3954. if (frequency < 4000)
  3955. tempSlope = eep->modalHeader2G.tempSlope;
  3956. else if (eep->base_ext2.tempSlopeLow != 0) {
  3957. t[0] = eep->base_ext2.tempSlopeLow;
  3958. f[0] = 5180;
  3959. t[1] = eep->modalHeader5G.tempSlope;
  3960. f[1] = 5500;
  3961. t[2] = eep->base_ext2.tempSlopeHigh;
  3962. f[2] = 5785;
  3963. tempSlope = ar9003_hw_power_interpolate((s32) frequency,
  3964. f, t, 3);
  3965. } else
  3966. tempSlope = eep->modalHeader5G.tempSlope;
  3967. REG_RMW_FIELD(ah, AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, tempSlope);
  3968. REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE,
  3969. temperature[0]);
  3970. return 0;
  3971. }
  3972. /* Apply the recorded correction values. */
  3973. static int ar9003_hw_calibration_apply(struct ath_hw *ah, int frequency)
  3974. {
  3975. int ichain, ipier, npier;
  3976. int mode;
  3977. int lfrequency[AR9300_MAX_CHAINS],
  3978. lcorrection[AR9300_MAX_CHAINS],
  3979. ltemperature[AR9300_MAX_CHAINS], lvoltage[AR9300_MAX_CHAINS];
  3980. int hfrequency[AR9300_MAX_CHAINS],
  3981. hcorrection[AR9300_MAX_CHAINS],
  3982. htemperature[AR9300_MAX_CHAINS], hvoltage[AR9300_MAX_CHAINS];
  3983. int fdiff;
  3984. int correction[AR9300_MAX_CHAINS],
  3985. voltage[AR9300_MAX_CHAINS], temperature[AR9300_MAX_CHAINS];
  3986. int pfrequency, pcorrection, ptemperature, pvoltage;
  3987. struct ath_common *common = ath9k_hw_common(ah);
  3988. mode = (frequency >= 4000);
  3989. if (mode)
  3990. npier = AR9300_NUM_5G_CAL_PIERS;
  3991. else
  3992. npier = AR9300_NUM_2G_CAL_PIERS;
  3993. for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
  3994. lfrequency[ichain] = 0;
  3995. hfrequency[ichain] = 100000;
  3996. }
  3997. /* identify best lower and higher frequency calibration measurement */
  3998. for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
  3999. for (ipier = 0; ipier < npier; ipier++) {
  4000. if (!ar9003_hw_cal_pier_get(ah, mode, ipier, ichain,
  4001. &pfrequency, &pcorrection,
  4002. &ptemperature, &pvoltage)) {
  4003. fdiff = frequency - pfrequency;
  4004. /*
  4005. * this measurement is higher than
  4006. * our desired frequency
  4007. */
  4008. if (fdiff <= 0) {
  4009. if (hfrequency[ichain] <= 0 ||
  4010. hfrequency[ichain] >= 100000 ||
  4011. fdiff >
  4012. (frequency - hfrequency[ichain])) {
  4013. /*
  4014. * new best higher
  4015. * frequency measurement
  4016. */
  4017. hfrequency[ichain] = pfrequency;
  4018. hcorrection[ichain] =
  4019. pcorrection;
  4020. htemperature[ichain] =
  4021. ptemperature;
  4022. hvoltage[ichain] = pvoltage;
  4023. }
  4024. }
  4025. if (fdiff >= 0) {
  4026. if (lfrequency[ichain] <= 0
  4027. || fdiff <
  4028. (frequency - lfrequency[ichain])) {
  4029. /*
  4030. * new best lower
  4031. * frequency measurement
  4032. */
  4033. lfrequency[ichain] = pfrequency;
  4034. lcorrection[ichain] =
  4035. pcorrection;
  4036. ltemperature[ichain] =
  4037. ptemperature;
  4038. lvoltage[ichain] = pvoltage;
  4039. }
  4040. }
  4041. }
  4042. }
  4043. }
  4044. /* interpolate */
  4045. for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
  4046. ath_dbg(common, ATH_DBG_EEPROM,
  4047. "ch=%d f=%d low=%d %d h=%d %d\n",
  4048. ichain, frequency, lfrequency[ichain],
  4049. lcorrection[ichain], hfrequency[ichain],
  4050. hcorrection[ichain]);
  4051. /* they're the same, so just pick one */
  4052. if (hfrequency[ichain] == lfrequency[ichain]) {
  4053. correction[ichain] = lcorrection[ichain];
  4054. voltage[ichain] = lvoltage[ichain];
  4055. temperature[ichain] = ltemperature[ichain];
  4056. }
  4057. /* the low frequency is good */
  4058. else if (frequency - lfrequency[ichain] < 1000) {
  4059. /* so is the high frequency, interpolate */
  4060. if (hfrequency[ichain] - frequency < 1000) {
  4061. correction[ichain] = interpolate(frequency,
  4062. lfrequency[ichain],
  4063. hfrequency[ichain],
  4064. lcorrection[ichain],
  4065. hcorrection[ichain]);
  4066. temperature[ichain] = interpolate(frequency,
  4067. lfrequency[ichain],
  4068. hfrequency[ichain],
  4069. ltemperature[ichain],
  4070. htemperature[ichain]);
  4071. voltage[ichain] = interpolate(frequency,
  4072. lfrequency[ichain],
  4073. hfrequency[ichain],
  4074. lvoltage[ichain],
  4075. hvoltage[ichain]);
  4076. }
  4077. /* only low is good, use it */
  4078. else {
  4079. correction[ichain] = lcorrection[ichain];
  4080. temperature[ichain] = ltemperature[ichain];
  4081. voltage[ichain] = lvoltage[ichain];
  4082. }
  4083. }
  4084. /* only high is good, use it */
  4085. else if (hfrequency[ichain] - frequency < 1000) {
  4086. correction[ichain] = hcorrection[ichain];
  4087. temperature[ichain] = htemperature[ichain];
  4088. voltage[ichain] = hvoltage[ichain];
  4089. } else { /* nothing is good, presume 0???? */
  4090. correction[ichain] = 0;
  4091. temperature[ichain] = 0;
  4092. voltage[ichain] = 0;
  4093. }
  4094. }
  4095. ar9003_hw_power_control_override(ah, frequency, correction, voltage,
  4096. temperature);
  4097. ath_dbg(common, ATH_DBG_EEPROM,
  4098. "for frequency=%d, calibration correction = %d %d %d\n",
  4099. frequency, correction[0], correction[1], correction[2]);
  4100. return 0;
  4101. }
  4102. static u16 ar9003_hw_get_direct_edge_power(struct ar9300_eeprom *eep,
  4103. int idx,
  4104. int edge,
  4105. bool is2GHz)
  4106. {
  4107. struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
  4108. struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
  4109. if (is2GHz)
  4110. return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge]);
  4111. else
  4112. return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge]);
  4113. }
  4114. static u16 ar9003_hw_get_indirect_edge_power(struct ar9300_eeprom *eep,
  4115. int idx,
  4116. unsigned int edge,
  4117. u16 freq,
  4118. bool is2GHz)
  4119. {
  4120. struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
  4121. struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
  4122. u8 *ctl_freqbin = is2GHz ?
  4123. &eep->ctl_freqbin_2G[idx][0] :
  4124. &eep->ctl_freqbin_5G[idx][0];
  4125. if (is2GHz) {
  4126. if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 1) < freq &&
  4127. CTL_EDGE_FLAGS(ctl_2g[idx].ctlEdges[edge - 1]))
  4128. return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge - 1]);
  4129. } else {
  4130. if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 0) < freq &&
  4131. CTL_EDGE_FLAGS(ctl_5g[idx].ctlEdges[edge - 1]))
  4132. return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge - 1]);
  4133. }
  4134. return MAX_RATE_POWER;
  4135. }
  4136. /*
  4137. * Find the maximum conformance test limit for the given channel and CTL info
  4138. */
  4139. static u16 ar9003_hw_get_max_edge_power(struct ar9300_eeprom *eep,
  4140. u16 freq, int idx, bool is2GHz)
  4141. {
  4142. u16 twiceMaxEdgePower = MAX_RATE_POWER;
  4143. u8 *ctl_freqbin = is2GHz ?
  4144. &eep->ctl_freqbin_2G[idx][0] :
  4145. &eep->ctl_freqbin_5G[idx][0];
  4146. u16 num_edges = is2GHz ?
  4147. AR9300_NUM_BAND_EDGES_2G : AR9300_NUM_BAND_EDGES_5G;
  4148. unsigned int edge;
  4149. /* Get the edge power */
  4150. for (edge = 0;
  4151. (edge < num_edges) && (ctl_freqbin[edge] != AR5416_BCHAN_UNUSED);
  4152. edge++) {
  4153. /*
  4154. * If there's an exact channel match or an inband flag set
  4155. * on the lower channel use the given rdEdgePower
  4156. */
  4157. if (freq == ath9k_hw_fbin2freq(ctl_freqbin[edge], is2GHz)) {
  4158. twiceMaxEdgePower =
  4159. ar9003_hw_get_direct_edge_power(eep, idx,
  4160. edge, is2GHz);
  4161. break;
  4162. } else if ((edge > 0) &&
  4163. (freq < ath9k_hw_fbin2freq(ctl_freqbin[edge],
  4164. is2GHz))) {
  4165. twiceMaxEdgePower =
  4166. ar9003_hw_get_indirect_edge_power(eep, idx,
  4167. edge, freq,
  4168. is2GHz);
  4169. /*
  4170. * Leave loop - no more affecting edges possible in
  4171. * this monotonic increasing list
  4172. */
  4173. break;
  4174. }
  4175. }
  4176. return twiceMaxEdgePower;
  4177. }
  4178. static void ar9003_hw_set_power_per_rate_table(struct ath_hw *ah,
  4179. struct ath9k_channel *chan,
  4180. u8 *pPwrArray, u16 cfgCtl,
  4181. u8 twiceAntennaReduction,
  4182. u8 twiceMaxRegulatoryPower,
  4183. u16 powerLimit)
  4184. {
  4185. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  4186. struct ath_common *common = ath9k_hw_common(ah);
  4187. struct ar9300_eeprom *pEepData = &ah->eeprom.ar9300_eep;
  4188. u16 twiceMaxEdgePower = MAX_RATE_POWER;
  4189. static const u16 tpScaleReductionTable[5] = {
  4190. 0, 3, 6, 9, MAX_RATE_POWER
  4191. };
  4192. int i;
  4193. int16_t twiceLargestAntenna;
  4194. u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
  4195. static const u16 ctlModesFor11a[] = {
  4196. CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
  4197. };
  4198. static const u16 ctlModesFor11g[] = {
  4199. CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT,
  4200. CTL_11G_EXT, CTL_2GHT40
  4201. };
  4202. u16 numCtlModes;
  4203. const u16 *pCtlMode;
  4204. u16 ctlMode, freq;
  4205. struct chan_centers centers;
  4206. u8 *ctlIndex;
  4207. u8 ctlNum;
  4208. u16 twiceMinEdgePower;
  4209. bool is2ghz = IS_CHAN_2GHZ(chan);
  4210. ath9k_hw_get_channel_centers(ah, chan, &centers);
  4211. /* Compute TxPower reduction due to Antenna Gain */
  4212. if (is2ghz)
  4213. twiceLargestAntenna = pEepData->modalHeader2G.antennaGain;
  4214. else
  4215. twiceLargestAntenna = pEepData->modalHeader5G.antennaGain;
  4216. twiceLargestAntenna = (int16_t)min((twiceAntennaReduction) -
  4217. twiceLargestAntenna, 0);
  4218. /*
  4219. * scaledPower is the minimum of the user input power level
  4220. * and the regulatory allowed power level
  4221. */
  4222. maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
  4223. if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
  4224. maxRegAllowedPower -=
  4225. (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
  4226. }
  4227. scaledPower = min(powerLimit, maxRegAllowedPower);
  4228. /*
  4229. * Reduce scaled Power by number of chains active to get
  4230. * to per chain tx power level
  4231. */
  4232. switch (ar5416_get_ntxchains(ah->txchainmask)) {
  4233. case 1:
  4234. break;
  4235. case 2:
  4236. scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
  4237. break;
  4238. case 3:
  4239. scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
  4240. break;
  4241. }
  4242. scaledPower = max((u16)0, scaledPower);
  4243. /*
  4244. * Get target powers from EEPROM - our baseline for TX Power
  4245. */
  4246. if (is2ghz) {
  4247. /* Setup for CTL modes */
  4248. /* CTL_11B, CTL_11G, CTL_2GHT20 */
  4249. numCtlModes =
  4250. ARRAY_SIZE(ctlModesFor11g) -
  4251. SUB_NUM_CTL_MODES_AT_2G_40;
  4252. pCtlMode = ctlModesFor11g;
  4253. if (IS_CHAN_HT40(chan))
  4254. /* All 2G CTL's */
  4255. numCtlModes = ARRAY_SIZE(ctlModesFor11g);
  4256. } else {
  4257. /* Setup for CTL modes */
  4258. /* CTL_11A, CTL_5GHT20 */
  4259. numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
  4260. SUB_NUM_CTL_MODES_AT_5G_40;
  4261. pCtlMode = ctlModesFor11a;
  4262. if (IS_CHAN_HT40(chan))
  4263. /* All 5G CTL's */
  4264. numCtlModes = ARRAY_SIZE(ctlModesFor11a);
  4265. }
  4266. /*
  4267. * For MIMO, need to apply regulatory caps individually across
  4268. * dynamically running modes: CCK, OFDM, HT20, HT40
  4269. *
  4270. * The outer loop walks through each possible applicable runtime mode.
  4271. * The inner loop walks through each ctlIndex entry in EEPROM.
  4272. * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
  4273. */
  4274. for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
  4275. bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
  4276. (pCtlMode[ctlMode] == CTL_2GHT40);
  4277. if (isHt40CtlMode)
  4278. freq = centers.synth_center;
  4279. else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
  4280. freq = centers.ext_center;
  4281. else
  4282. freq = centers.ctl_center;
  4283. ath_dbg(common, ATH_DBG_REGULATORY,
  4284. "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, EXT_ADDITIVE %d\n",
  4285. ctlMode, numCtlModes, isHt40CtlMode,
  4286. (pCtlMode[ctlMode] & EXT_ADDITIVE));
  4287. /* walk through each CTL index stored in EEPROM */
  4288. if (is2ghz) {
  4289. ctlIndex = pEepData->ctlIndex_2G;
  4290. ctlNum = AR9300_NUM_CTLS_2G;
  4291. } else {
  4292. ctlIndex = pEepData->ctlIndex_5G;
  4293. ctlNum = AR9300_NUM_CTLS_5G;
  4294. }
  4295. for (i = 0; (i < ctlNum) && ctlIndex[i]; i++) {
  4296. ath_dbg(common, ATH_DBG_REGULATORY,
  4297. "LOOP-Ctlidx %d: cfgCtl 0x%2.2x pCtlMode 0x%2.2x ctlIndex 0x%2.2x chan %d\n",
  4298. i, cfgCtl, pCtlMode[ctlMode], ctlIndex[i],
  4299. chan->channel);
  4300. /*
  4301. * compare test group from regulatory
  4302. * channel list with test mode from pCtlMode
  4303. * list
  4304. */
  4305. if ((((cfgCtl & ~CTL_MODE_M) |
  4306. (pCtlMode[ctlMode] & CTL_MODE_M)) ==
  4307. ctlIndex[i]) ||
  4308. (((cfgCtl & ~CTL_MODE_M) |
  4309. (pCtlMode[ctlMode] & CTL_MODE_M)) ==
  4310. ((ctlIndex[i] & CTL_MODE_M) |
  4311. SD_NO_CTL))) {
  4312. twiceMinEdgePower =
  4313. ar9003_hw_get_max_edge_power(pEepData,
  4314. freq, i,
  4315. is2ghz);
  4316. if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL)
  4317. /*
  4318. * Find the minimum of all CTL
  4319. * edge powers that apply to
  4320. * this channel
  4321. */
  4322. twiceMaxEdgePower =
  4323. min(twiceMaxEdgePower,
  4324. twiceMinEdgePower);
  4325. else {
  4326. /* specific */
  4327. twiceMaxEdgePower =
  4328. twiceMinEdgePower;
  4329. break;
  4330. }
  4331. }
  4332. }
  4333. minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
  4334. ath_dbg(common, ATH_DBG_REGULATORY,
  4335. "SEL-Min ctlMode %d pCtlMode %d 2xMaxEdge %d sP %d minCtlPwr %d\n",
  4336. ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
  4337. scaledPower, minCtlPower);
  4338. /* Apply ctl mode to correct target power set */
  4339. switch (pCtlMode[ctlMode]) {
  4340. case CTL_11B:
  4341. for (i = ALL_TARGET_LEGACY_1L_5L;
  4342. i <= ALL_TARGET_LEGACY_11S; i++)
  4343. pPwrArray[i] =
  4344. (u8)min((u16)pPwrArray[i],
  4345. minCtlPower);
  4346. break;
  4347. case CTL_11A:
  4348. case CTL_11G:
  4349. for (i = ALL_TARGET_LEGACY_6_24;
  4350. i <= ALL_TARGET_LEGACY_54; i++)
  4351. pPwrArray[i] =
  4352. (u8)min((u16)pPwrArray[i],
  4353. minCtlPower);
  4354. break;
  4355. case CTL_5GHT20:
  4356. case CTL_2GHT20:
  4357. for (i = ALL_TARGET_HT20_0_8_16;
  4358. i <= ALL_TARGET_HT20_21; i++)
  4359. pPwrArray[i] =
  4360. (u8)min((u16)pPwrArray[i],
  4361. minCtlPower);
  4362. pPwrArray[ALL_TARGET_HT20_22] =
  4363. (u8)min((u16)pPwrArray[ALL_TARGET_HT20_22],
  4364. minCtlPower);
  4365. pPwrArray[ALL_TARGET_HT20_23] =
  4366. (u8)min((u16)pPwrArray[ALL_TARGET_HT20_23],
  4367. minCtlPower);
  4368. break;
  4369. case CTL_5GHT40:
  4370. case CTL_2GHT40:
  4371. for (i = ALL_TARGET_HT40_0_8_16;
  4372. i <= ALL_TARGET_HT40_23; i++)
  4373. pPwrArray[i] =
  4374. (u8)min((u16)pPwrArray[i],
  4375. minCtlPower);
  4376. break;
  4377. default:
  4378. break;
  4379. }
  4380. } /* end ctl mode checking */
  4381. }
  4382. static inline u8 mcsidx_to_tgtpwridx(unsigned int mcs_idx, u8 base_pwridx)
  4383. {
  4384. u8 mod_idx = mcs_idx % 8;
  4385. if (mod_idx <= 3)
  4386. return mod_idx ? (base_pwridx + 1) : base_pwridx;
  4387. else
  4388. return base_pwridx + 4 * (mcs_idx / 8) + mod_idx - 2;
  4389. }
  4390. static void ath9k_hw_ar9300_set_txpower(struct ath_hw *ah,
  4391. struct ath9k_channel *chan, u16 cfgCtl,
  4392. u8 twiceAntennaReduction,
  4393. u8 twiceMaxRegulatoryPower,
  4394. u8 powerLimit, bool test)
  4395. {
  4396. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  4397. struct ath_common *common = ath9k_hw_common(ah);
  4398. struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
  4399. struct ar9300_modal_eep_header *modal_hdr;
  4400. u8 targetPowerValT2[ar9300RateSize];
  4401. u8 target_power_val_t2_eep[ar9300RateSize];
  4402. unsigned int i = 0, paprd_scale_factor = 0;
  4403. u8 pwr_idx, min_pwridx = 0;
  4404. ar9003_hw_set_target_power_eeprom(ah, chan->channel, targetPowerValT2);
  4405. if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) {
  4406. if (IS_CHAN_2GHZ(chan))
  4407. modal_hdr = &eep->modalHeader2G;
  4408. else
  4409. modal_hdr = &eep->modalHeader5G;
  4410. ah->paprd_ratemask =
  4411. le32_to_cpu(modal_hdr->papdRateMaskHt20) &
  4412. AR9300_PAPRD_RATE_MASK;
  4413. ah->paprd_ratemask_ht40 =
  4414. le32_to_cpu(modal_hdr->papdRateMaskHt40) &
  4415. AR9300_PAPRD_RATE_MASK;
  4416. paprd_scale_factor = ar9003_get_paprd_scale_factor(ah, chan);
  4417. min_pwridx = IS_CHAN_HT40(chan) ? ALL_TARGET_HT40_0_8_16 :
  4418. ALL_TARGET_HT20_0_8_16;
  4419. if (!ah->paprd_table_write_done) {
  4420. memcpy(target_power_val_t2_eep, targetPowerValT2,
  4421. sizeof(targetPowerValT2));
  4422. for (i = 0; i < 24; i++) {
  4423. pwr_idx = mcsidx_to_tgtpwridx(i, min_pwridx);
  4424. if (ah->paprd_ratemask & (1 << i)) {
  4425. if (targetPowerValT2[pwr_idx] &&
  4426. targetPowerValT2[pwr_idx] ==
  4427. target_power_val_t2_eep[pwr_idx])
  4428. targetPowerValT2[pwr_idx] -=
  4429. paprd_scale_factor;
  4430. }
  4431. }
  4432. }
  4433. memcpy(target_power_val_t2_eep, targetPowerValT2,
  4434. sizeof(targetPowerValT2));
  4435. }
  4436. ar9003_hw_set_power_per_rate_table(ah, chan,
  4437. targetPowerValT2, cfgCtl,
  4438. twiceAntennaReduction,
  4439. twiceMaxRegulatoryPower,
  4440. powerLimit);
  4441. if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) {
  4442. for (i = 0; i < ar9300RateSize; i++) {
  4443. if ((ah->paprd_ratemask & (1 << i)) &&
  4444. (abs(targetPowerValT2[i] -
  4445. target_power_val_t2_eep[i]) >
  4446. paprd_scale_factor)) {
  4447. ah->paprd_ratemask &= ~(1 << i);
  4448. ath_dbg(common, ATH_DBG_EEPROM,
  4449. "paprd disabled for mcs %d\n", i);
  4450. }
  4451. }
  4452. }
  4453. regulatory->max_power_level = 0;
  4454. for (i = 0; i < ar9300RateSize; i++) {
  4455. if (targetPowerValT2[i] > regulatory->max_power_level)
  4456. regulatory->max_power_level = targetPowerValT2[i];
  4457. }
  4458. if (test)
  4459. return;
  4460. for (i = 0; i < ar9300RateSize; i++) {
  4461. ath_dbg(common, ATH_DBG_EEPROM,
  4462. "TPC[%02d] 0x%08x\n", i, targetPowerValT2[i]);
  4463. }
  4464. /*
  4465. * This is the TX power we send back to driver core,
  4466. * and it can use to pass to userspace to display our
  4467. * currently configured TX power setting.
  4468. *
  4469. * Since power is rate dependent, use one of the indices
  4470. * from the AR9300_Rates enum to select an entry from
  4471. * targetPowerValT2[] to report. Currently returns the
  4472. * power for HT40 MCS 0, HT20 MCS 0, or OFDM 6 Mbps
  4473. * as CCK power is less interesting (?).
  4474. */
  4475. i = ALL_TARGET_LEGACY_6_24; /* legacy */
  4476. if (IS_CHAN_HT40(chan))
  4477. i = ALL_TARGET_HT40_0_8_16; /* ht40 */
  4478. else if (IS_CHAN_HT20(chan))
  4479. i = ALL_TARGET_HT20_0_8_16; /* ht20 */
  4480. ah->txpower_limit = targetPowerValT2[i];
  4481. regulatory->max_power_level = targetPowerValT2[i];
  4482. /* Write target power array to registers */
  4483. ar9003_hw_tx_power_regwrite(ah, targetPowerValT2);
  4484. ar9003_hw_calibration_apply(ah, chan->channel);
  4485. if (IS_CHAN_2GHZ(chan)) {
  4486. if (IS_CHAN_HT40(chan))
  4487. i = ALL_TARGET_HT40_0_8_16;
  4488. else
  4489. i = ALL_TARGET_HT20_0_8_16;
  4490. } else {
  4491. if (IS_CHAN_HT40(chan))
  4492. i = ALL_TARGET_HT40_7;
  4493. else
  4494. i = ALL_TARGET_HT20_7;
  4495. }
  4496. ah->paprd_target_power = targetPowerValT2[i];
  4497. }
  4498. static u16 ath9k_hw_ar9300_get_spur_channel(struct ath_hw *ah,
  4499. u16 i, bool is2GHz)
  4500. {
  4501. return AR_NO_SPUR;
  4502. }
  4503. s32 ar9003_hw_get_tx_gain_idx(struct ath_hw *ah)
  4504. {
  4505. struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
  4506. return (eep->baseEepHeader.txrxgain >> 4) & 0xf; /* bits 7:4 */
  4507. }
  4508. s32 ar9003_hw_get_rx_gain_idx(struct ath_hw *ah)
  4509. {
  4510. struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
  4511. return (eep->baseEepHeader.txrxgain) & 0xf; /* bits 3:0 */
  4512. }
  4513. u8 *ar9003_get_spur_chan_ptr(struct ath_hw *ah, bool is_2ghz)
  4514. {
  4515. struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
  4516. if (is_2ghz)
  4517. return eep->modalHeader2G.spurChans;
  4518. else
  4519. return eep->modalHeader5G.spurChans;
  4520. }
  4521. unsigned int ar9003_get_paprd_scale_factor(struct ath_hw *ah,
  4522. struct ath9k_channel *chan)
  4523. {
  4524. struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
  4525. if (IS_CHAN_2GHZ(chan))
  4526. return MS(le32_to_cpu(eep->modalHeader2G.papdRateMaskHt20),
  4527. AR9300_PAPRD_SCALE_1);
  4528. else {
  4529. if (chan->channel >= 5700)
  4530. return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20),
  4531. AR9300_PAPRD_SCALE_1);
  4532. else if (chan->channel >= 5400)
  4533. return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
  4534. AR9300_PAPRD_SCALE_2);
  4535. else
  4536. return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
  4537. AR9300_PAPRD_SCALE_1);
  4538. }
  4539. }
  4540. const struct eeprom_ops eep_ar9300_ops = {
  4541. .check_eeprom = ath9k_hw_ar9300_check_eeprom,
  4542. .get_eeprom = ath9k_hw_ar9300_get_eeprom,
  4543. .fill_eeprom = ath9k_hw_ar9300_fill_eeprom,
  4544. .get_eeprom_ver = ath9k_hw_ar9300_get_eeprom_ver,
  4545. .get_eeprom_rev = ath9k_hw_ar9300_get_eeprom_rev,
  4546. .set_board_values = ath9k_hw_ar9300_set_board_values,
  4547. .set_addac = ath9k_hw_ar9300_set_addac,
  4548. .set_txpower = ath9k_hw_ar9300_set_txpower,
  4549. .get_spur_channel = ath9k_hw_ar9300_get_spur_channel
  4550. };