sh_eth.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957
  1. /*
  2. * SuperH Ethernet device driver
  3. *
  4. * Copyright (C) 2006-2008 Nobuhiro Iwamatsu
  5. * Copyright (C) 2008-2009 Renesas Solutions Corp.
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. *
  19. * The full GNU General Public License is included in this distribution in
  20. * the file called "COPYING".
  21. */
  22. #include <linux/init.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/delay.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/mdio-bitbang.h>
  28. #include <linux/netdevice.h>
  29. #include <linux/phy.h>
  30. #include <linux/cache.h>
  31. #include <linux/io.h>
  32. #include <linux/pm_runtime.h>
  33. #include <linux/slab.h>
  34. #include <linux/ethtool.h>
  35. #include <asm/cacheflush.h>
  36. #include "sh_eth.h"
  37. #define SH_ETH_DEF_MSG_ENABLE \
  38. (NETIF_MSG_LINK | \
  39. NETIF_MSG_TIMER | \
  40. NETIF_MSG_RX_ERR| \
  41. NETIF_MSG_TX_ERR)
  42. /* There is CPU dependent code */
  43. #if defined(CONFIG_CPU_SUBTYPE_SH7724)
  44. #define SH_ETH_RESET_DEFAULT 1
  45. static void sh_eth_set_duplex(struct net_device *ndev)
  46. {
  47. struct sh_eth_private *mdp = netdev_priv(ndev);
  48. if (mdp->duplex) /* Full */
  49. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  50. else /* Half */
  51. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  52. }
  53. static void sh_eth_set_rate(struct net_device *ndev)
  54. {
  55. struct sh_eth_private *mdp = netdev_priv(ndev);
  56. switch (mdp->speed) {
  57. case 10: /* 10BASE */
  58. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
  59. break;
  60. case 100:/* 100BASE */
  61. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
  62. break;
  63. default:
  64. break;
  65. }
  66. }
  67. /* SH7724 */
  68. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  69. .set_duplex = sh_eth_set_duplex,
  70. .set_rate = sh_eth_set_rate,
  71. .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
  72. .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
  73. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
  74. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  75. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  76. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  77. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  78. .apr = 1,
  79. .mpr = 1,
  80. .tpauser = 1,
  81. .hw_swap = 1,
  82. .rpadir = 1,
  83. .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
  84. };
  85. #elif defined(CONFIG_CPU_SUBTYPE_SH7757)
  86. #define SH_ETH_HAS_BOTH_MODULES 1
  87. #define SH_ETH_HAS_TSU 1
  88. static void sh_eth_set_duplex(struct net_device *ndev)
  89. {
  90. struct sh_eth_private *mdp = netdev_priv(ndev);
  91. if (mdp->duplex) /* Full */
  92. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  93. else /* Half */
  94. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  95. }
  96. static void sh_eth_set_rate(struct net_device *ndev)
  97. {
  98. struct sh_eth_private *mdp = netdev_priv(ndev);
  99. switch (mdp->speed) {
  100. case 10: /* 10BASE */
  101. sh_eth_write(ndev, 0, RTRATE);
  102. break;
  103. case 100:/* 100BASE */
  104. sh_eth_write(ndev, 1, RTRATE);
  105. break;
  106. default:
  107. break;
  108. }
  109. }
  110. /* SH7757 */
  111. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  112. .set_duplex = sh_eth_set_duplex,
  113. .set_rate = sh_eth_set_rate,
  114. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  115. .rmcr_value = 0x00000001,
  116. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  117. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  118. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  119. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  120. .apr = 1,
  121. .mpr = 1,
  122. .tpauser = 1,
  123. .hw_swap = 1,
  124. .no_ade = 1,
  125. };
  126. #define SH_GIGA_ETH_BASE 0xfee00000
  127. #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
  128. #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
  129. static void sh_eth_chip_reset_giga(struct net_device *ndev)
  130. {
  131. int i;
  132. unsigned long mahr[2], malr[2];
  133. /* save MAHR and MALR */
  134. for (i = 0; i < 2; i++) {
  135. malr[i] = readl(GIGA_MALR(i));
  136. mahr[i] = readl(GIGA_MAHR(i));
  137. }
  138. /* reset device */
  139. writel(ARSTR_ARSTR, SH_GIGA_ETH_BASE + 0x1800);
  140. mdelay(1);
  141. /* restore MAHR and MALR */
  142. for (i = 0; i < 2; i++) {
  143. writel(malr[i], GIGA_MALR(i));
  144. writel(mahr[i], GIGA_MAHR(i));
  145. }
  146. }
  147. static int sh_eth_is_gether(struct sh_eth_private *mdp);
  148. static void sh_eth_reset(struct net_device *ndev)
  149. {
  150. struct sh_eth_private *mdp = netdev_priv(ndev);
  151. int cnt = 100;
  152. if (sh_eth_is_gether(mdp)) {
  153. sh_eth_write(ndev, 0x03, EDSR);
  154. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
  155. EDMR);
  156. while (cnt > 0) {
  157. if (!(sh_eth_read(ndev, EDMR) & 0x3))
  158. break;
  159. mdelay(1);
  160. cnt--;
  161. }
  162. if (cnt < 0)
  163. printk(KERN_ERR "Device reset fail\n");
  164. /* Table Init */
  165. sh_eth_write(ndev, 0x0, TDLAR);
  166. sh_eth_write(ndev, 0x0, TDFAR);
  167. sh_eth_write(ndev, 0x0, TDFXR);
  168. sh_eth_write(ndev, 0x0, TDFFR);
  169. sh_eth_write(ndev, 0x0, RDLAR);
  170. sh_eth_write(ndev, 0x0, RDFAR);
  171. sh_eth_write(ndev, 0x0, RDFXR);
  172. sh_eth_write(ndev, 0x0, RDFFR);
  173. } else {
  174. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
  175. EDMR);
  176. mdelay(3);
  177. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
  178. EDMR);
  179. }
  180. }
  181. static void sh_eth_set_duplex_giga(struct net_device *ndev)
  182. {
  183. struct sh_eth_private *mdp = netdev_priv(ndev);
  184. if (mdp->duplex) /* Full */
  185. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  186. else /* Half */
  187. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  188. }
  189. static void sh_eth_set_rate_giga(struct net_device *ndev)
  190. {
  191. struct sh_eth_private *mdp = netdev_priv(ndev);
  192. switch (mdp->speed) {
  193. case 10: /* 10BASE */
  194. sh_eth_write(ndev, 0x00000000, GECMR);
  195. break;
  196. case 100:/* 100BASE */
  197. sh_eth_write(ndev, 0x00000010, GECMR);
  198. break;
  199. case 1000: /* 1000BASE */
  200. sh_eth_write(ndev, 0x00000020, GECMR);
  201. break;
  202. default:
  203. break;
  204. }
  205. }
  206. /* SH7757(GETHERC) */
  207. static struct sh_eth_cpu_data sh_eth_my_cpu_data_giga = {
  208. .chip_reset = sh_eth_chip_reset_giga,
  209. .set_duplex = sh_eth_set_duplex_giga,
  210. .set_rate = sh_eth_set_rate_giga,
  211. .ecsr_value = ECSR_ICD | ECSR_MPD,
  212. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  213. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  214. .tx_check = EESR_TC1 | EESR_FTC,
  215. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  216. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  217. EESR_ECI,
  218. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  219. EESR_TFE,
  220. .fdr_value = 0x0000072f,
  221. .rmcr_value = 0x00000001,
  222. .apr = 1,
  223. .mpr = 1,
  224. .tpauser = 1,
  225. .bculr = 1,
  226. .hw_swap = 1,
  227. .rpadir = 1,
  228. .rpadir_value = 2 << 16,
  229. .no_trimd = 1,
  230. .no_ade = 1,
  231. };
  232. static struct sh_eth_cpu_data *sh_eth_get_cpu_data(struct sh_eth_private *mdp)
  233. {
  234. if (sh_eth_is_gether(mdp))
  235. return &sh_eth_my_cpu_data_giga;
  236. else
  237. return &sh_eth_my_cpu_data;
  238. }
  239. #elif defined(CONFIG_CPU_SUBTYPE_SH7763)
  240. #define SH_ETH_HAS_TSU 1
  241. static void sh_eth_chip_reset(struct net_device *ndev)
  242. {
  243. struct sh_eth_private *mdp = netdev_priv(ndev);
  244. /* reset device */
  245. sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
  246. mdelay(1);
  247. }
  248. static void sh_eth_reset(struct net_device *ndev)
  249. {
  250. int cnt = 100;
  251. sh_eth_write(ndev, EDSR_ENALL, EDSR);
  252. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
  253. while (cnt > 0) {
  254. if (!(sh_eth_read(ndev, EDMR) & 0x3))
  255. break;
  256. mdelay(1);
  257. cnt--;
  258. }
  259. if (cnt == 0)
  260. printk(KERN_ERR "Device reset fail\n");
  261. /* Table Init */
  262. sh_eth_write(ndev, 0x0, TDLAR);
  263. sh_eth_write(ndev, 0x0, TDFAR);
  264. sh_eth_write(ndev, 0x0, TDFXR);
  265. sh_eth_write(ndev, 0x0, TDFFR);
  266. sh_eth_write(ndev, 0x0, RDLAR);
  267. sh_eth_write(ndev, 0x0, RDFAR);
  268. sh_eth_write(ndev, 0x0, RDFXR);
  269. sh_eth_write(ndev, 0x0, RDFFR);
  270. }
  271. static void sh_eth_set_duplex(struct net_device *ndev)
  272. {
  273. struct sh_eth_private *mdp = netdev_priv(ndev);
  274. if (mdp->duplex) /* Full */
  275. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  276. else /* Half */
  277. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  278. }
  279. static void sh_eth_set_rate(struct net_device *ndev)
  280. {
  281. struct sh_eth_private *mdp = netdev_priv(ndev);
  282. switch (mdp->speed) {
  283. case 10: /* 10BASE */
  284. sh_eth_write(ndev, GECMR_10, GECMR);
  285. break;
  286. case 100:/* 100BASE */
  287. sh_eth_write(ndev, GECMR_100, GECMR);
  288. break;
  289. case 1000: /* 1000BASE */
  290. sh_eth_write(ndev, GECMR_1000, GECMR);
  291. break;
  292. default:
  293. break;
  294. }
  295. }
  296. /* sh7763 */
  297. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  298. .chip_reset = sh_eth_chip_reset,
  299. .set_duplex = sh_eth_set_duplex,
  300. .set_rate = sh_eth_set_rate,
  301. .ecsr_value = ECSR_ICD | ECSR_MPD,
  302. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  303. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  304. .tx_check = EESR_TC1 | EESR_FTC,
  305. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  306. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  307. EESR_ECI,
  308. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  309. EESR_TFE,
  310. .apr = 1,
  311. .mpr = 1,
  312. .tpauser = 1,
  313. .bculr = 1,
  314. .hw_swap = 1,
  315. .no_trimd = 1,
  316. .no_ade = 1,
  317. .tsu = 1,
  318. };
  319. #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
  320. #define SH_ETH_RESET_DEFAULT 1
  321. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  322. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  323. .apr = 1,
  324. .mpr = 1,
  325. .tpauser = 1,
  326. .hw_swap = 1,
  327. };
  328. #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
  329. #define SH_ETH_RESET_DEFAULT 1
  330. #define SH_ETH_HAS_TSU 1
  331. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  332. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  333. .tsu = 1,
  334. };
  335. #endif
  336. static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
  337. {
  338. if (!cd->ecsr_value)
  339. cd->ecsr_value = DEFAULT_ECSR_INIT;
  340. if (!cd->ecsipr_value)
  341. cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
  342. if (!cd->fcftr_value)
  343. cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
  344. DEFAULT_FIFO_F_D_RFD;
  345. if (!cd->fdr_value)
  346. cd->fdr_value = DEFAULT_FDR_INIT;
  347. if (!cd->rmcr_value)
  348. cd->rmcr_value = DEFAULT_RMCR_VALUE;
  349. if (!cd->tx_check)
  350. cd->tx_check = DEFAULT_TX_CHECK;
  351. if (!cd->eesr_err_check)
  352. cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
  353. if (!cd->tx_error_check)
  354. cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
  355. }
  356. #if defined(SH_ETH_RESET_DEFAULT)
  357. /* Chip Reset */
  358. static void sh_eth_reset(struct net_device *ndev)
  359. {
  360. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR);
  361. mdelay(3);
  362. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR);
  363. }
  364. #endif
  365. #if defined(CONFIG_CPU_SH4)
  366. static void sh_eth_set_receive_align(struct sk_buff *skb)
  367. {
  368. int reserve;
  369. reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
  370. if (reserve)
  371. skb_reserve(skb, reserve);
  372. }
  373. #else
  374. static void sh_eth_set_receive_align(struct sk_buff *skb)
  375. {
  376. skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
  377. }
  378. #endif
  379. /* CPU <-> EDMAC endian convert */
  380. static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
  381. {
  382. switch (mdp->edmac_endian) {
  383. case EDMAC_LITTLE_ENDIAN:
  384. return cpu_to_le32(x);
  385. case EDMAC_BIG_ENDIAN:
  386. return cpu_to_be32(x);
  387. }
  388. return x;
  389. }
  390. static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
  391. {
  392. switch (mdp->edmac_endian) {
  393. case EDMAC_LITTLE_ENDIAN:
  394. return le32_to_cpu(x);
  395. case EDMAC_BIG_ENDIAN:
  396. return be32_to_cpu(x);
  397. }
  398. return x;
  399. }
  400. /*
  401. * Program the hardware MAC address from dev->dev_addr.
  402. */
  403. static void update_mac_address(struct net_device *ndev)
  404. {
  405. sh_eth_write(ndev,
  406. (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  407. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
  408. sh_eth_write(ndev,
  409. (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
  410. }
  411. /*
  412. * Get MAC address from SuperH MAC address register
  413. *
  414. * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
  415. * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
  416. * When you want use this device, you must set MAC address in bootloader.
  417. *
  418. */
  419. static void read_mac_address(struct net_device *ndev, unsigned char *mac)
  420. {
  421. if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
  422. memcpy(ndev->dev_addr, mac, 6);
  423. } else {
  424. ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
  425. ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
  426. ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
  427. ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
  428. ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
  429. ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
  430. }
  431. }
  432. static int sh_eth_is_gether(struct sh_eth_private *mdp)
  433. {
  434. if (mdp->reg_offset == sh_eth_offset_gigabit)
  435. return 1;
  436. else
  437. return 0;
  438. }
  439. static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
  440. {
  441. if (sh_eth_is_gether(mdp))
  442. return EDTRR_TRNS_GETHER;
  443. else
  444. return EDTRR_TRNS_ETHER;
  445. }
  446. struct bb_info {
  447. void (*set_gate)(unsigned long addr);
  448. struct mdiobb_ctrl ctrl;
  449. u32 addr;
  450. u32 mmd_msk;/* MMD */
  451. u32 mdo_msk;
  452. u32 mdi_msk;
  453. u32 mdc_msk;
  454. };
  455. /* PHY bit set */
  456. static void bb_set(u32 addr, u32 msk)
  457. {
  458. writel(readl(addr) | msk, addr);
  459. }
  460. /* PHY bit clear */
  461. static void bb_clr(u32 addr, u32 msk)
  462. {
  463. writel((readl(addr) & ~msk), addr);
  464. }
  465. /* PHY bit read */
  466. static int bb_read(u32 addr, u32 msk)
  467. {
  468. return (readl(addr) & msk) != 0;
  469. }
  470. /* Data I/O pin control */
  471. static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  472. {
  473. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  474. if (bitbang->set_gate)
  475. bitbang->set_gate(bitbang->addr);
  476. if (bit)
  477. bb_set(bitbang->addr, bitbang->mmd_msk);
  478. else
  479. bb_clr(bitbang->addr, bitbang->mmd_msk);
  480. }
  481. /* Set bit data*/
  482. static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
  483. {
  484. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  485. if (bitbang->set_gate)
  486. bitbang->set_gate(bitbang->addr);
  487. if (bit)
  488. bb_set(bitbang->addr, bitbang->mdo_msk);
  489. else
  490. bb_clr(bitbang->addr, bitbang->mdo_msk);
  491. }
  492. /* Get bit data*/
  493. static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
  494. {
  495. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  496. if (bitbang->set_gate)
  497. bitbang->set_gate(bitbang->addr);
  498. return bb_read(bitbang->addr, bitbang->mdi_msk);
  499. }
  500. /* MDC pin control */
  501. static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  502. {
  503. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  504. if (bitbang->set_gate)
  505. bitbang->set_gate(bitbang->addr);
  506. if (bit)
  507. bb_set(bitbang->addr, bitbang->mdc_msk);
  508. else
  509. bb_clr(bitbang->addr, bitbang->mdc_msk);
  510. }
  511. /* mdio bus control struct */
  512. static struct mdiobb_ops bb_ops = {
  513. .owner = THIS_MODULE,
  514. .set_mdc = sh_mdc_ctrl,
  515. .set_mdio_dir = sh_mmd_ctrl,
  516. .set_mdio_data = sh_set_mdio,
  517. .get_mdio_data = sh_get_mdio,
  518. };
  519. /* free skb and descriptor buffer */
  520. static void sh_eth_ring_free(struct net_device *ndev)
  521. {
  522. struct sh_eth_private *mdp = netdev_priv(ndev);
  523. int i;
  524. /* Free Rx skb ringbuffer */
  525. if (mdp->rx_skbuff) {
  526. for (i = 0; i < RX_RING_SIZE; i++) {
  527. if (mdp->rx_skbuff[i])
  528. dev_kfree_skb(mdp->rx_skbuff[i]);
  529. }
  530. }
  531. kfree(mdp->rx_skbuff);
  532. /* Free Tx skb ringbuffer */
  533. if (mdp->tx_skbuff) {
  534. for (i = 0; i < TX_RING_SIZE; i++) {
  535. if (mdp->tx_skbuff[i])
  536. dev_kfree_skb(mdp->tx_skbuff[i]);
  537. }
  538. }
  539. kfree(mdp->tx_skbuff);
  540. }
  541. /* format skb and descriptor buffer */
  542. static void sh_eth_ring_format(struct net_device *ndev)
  543. {
  544. struct sh_eth_private *mdp = netdev_priv(ndev);
  545. int i;
  546. struct sk_buff *skb;
  547. struct sh_eth_rxdesc *rxdesc = NULL;
  548. struct sh_eth_txdesc *txdesc = NULL;
  549. int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
  550. int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;
  551. mdp->cur_rx = mdp->cur_tx = 0;
  552. mdp->dirty_rx = mdp->dirty_tx = 0;
  553. memset(mdp->rx_ring, 0, rx_ringsize);
  554. /* build Rx ring buffer */
  555. for (i = 0; i < RX_RING_SIZE; i++) {
  556. /* skb */
  557. mdp->rx_skbuff[i] = NULL;
  558. skb = dev_alloc_skb(mdp->rx_buf_sz);
  559. mdp->rx_skbuff[i] = skb;
  560. if (skb == NULL)
  561. break;
  562. dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
  563. DMA_FROM_DEVICE);
  564. skb->dev = ndev; /* Mark as being used by this device. */
  565. sh_eth_set_receive_align(skb);
  566. /* RX descriptor */
  567. rxdesc = &mdp->rx_ring[i];
  568. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  569. rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  570. /* The size of the buffer is 16 byte boundary. */
  571. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  572. /* Rx descriptor address set */
  573. if (i == 0) {
  574. sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
  575. if (sh_eth_is_gether(mdp))
  576. sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
  577. }
  578. }
  579. mdp->dirty_rx = (u32) (i - RX_RING_SIZE);
  580. /* Mark the last entry as wrapping the ring. */
  581. rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
  582. memset(mdp->tx_ring, 0, tx_ringsize);
  583. /* build Tx ring buffer */
  584. for (i = 0; i < TX_RING_SIZE; i++) {
  585. mdp->tx_skbuff[i] = NULL;
  586. txdesc = &mdp->tx_ring[i];
  587. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  588. txdesc->buffer_length = 0;
  589. if (i == 0) {
  590. /* Tx descriptor address set */
  591. sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
  592. if (sh_eth_is_gether(mdp))
  593. sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
  594. }
  595. }
  596. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  597. }
  598. /* Get skb and descriptor buffer */
  599. static int sh_eth_ring_init(struct net_device *ndev)
  600. {
  601. struct sh_eth_private *mdp = netdev_priv(ndev);
  602. int rx_ringsize, tx_ringsize, ret = 0;
  603. /*
  604. * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
  605. * card needs room to do 8 byte alignment, +2 so we can reserve
  606. * the first 2 bytes, and +16 gets room for the status word from the
  607. * card.
  608. */
  609. mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
  610. (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
  611. if (mdp->cd->rpadir)
  612. mdp->rx_buf_sz += NET_IP_ALIGN;
  613. /* Allocate RX and TX skb rings */
  614. mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
  615. GFP_KERNEL);
  616. if (!mdp->rx_skbuff) {
  617. dev_err(&ndev->dev, "Cannot allocate Rx skb\n");
  618. ret = -ENOMEM;
  619. return ret;
  620. }
  621. mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
  622. GFP_KERNEL);
  623. if (!mdp->tx_skbuff) {
  624. dev_err(&ndev->dev, "Cannot allocate Tx skb\n");
  625. ret = -ENOMEM;
  626. goto skb_ring_free;
  627. }
  628. /* Allocate all Rx descriptors. */
  629. rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  630. mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
  631. GFP_KERNEL);
  632. if (!mdp->rx_ring) {
  633. dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
  634. rx_ringsize);
  635. ret = -ENOMEM;
  636. goto desc_ring_free;
  637. }
  638. mdp->dirty_rx = 0;
  639. /* Allocate all Tx descriptors. */
  640. tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  641. mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
  642. GFP_KERNEL);
  643. if (!mdp->tx_ring) {
  644. dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
  645. tx_ringsize);
  646. ret = -ENOMEM;
  647. goto desc_ring_free;
  648. }
  649. return ret;
  650. desc_ring_free:
  651. /* free DMA buffer */
  652. dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  653. skb_ring_free:
  654. /* Free Rx and Tx skb ring buffer */
  655. sh_eth_ring_free(ndev);
  656. return ret;
  657. }
  658. static int sh_eth_dev_init(struct net_device *ndev)
  659. {
  660. int ret = 0;
  661. struct sh_eth_private *mdp = netdev_priv(ndev);
  662. u_int32_t rx_int_var, tx_int_var;
  663. u32 val;
  664. /* Soft Reset */
  665. sh_eth_reset(ndev);
  666. /* Descriptor format */
  667. sh_eth_ring_format(ndev);
  668. if (mdp->cd->rpadir)
  669. sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
  670. /* all sh_eth int mask */
  671. sh_eth_write(ndev, 0, EESIPR);
  672. #if defined(__LITTLE_ENDIAN__)
  673. if (mdp->cd->hw_swap)
  674. sh_eth_write(ndev, EDMR_EL, EDMR);
  675. else
  676. #endif
  677. sh_eth_write(ndev, 0, EDMR);
  678. /* FIFO size set */
  679. sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
  680. sh_eth_write(ndev, 0, TFTR);
  681. /* Frame recv control */
  682. sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
  683. rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5;
  684. tx_int_var = mdp->tx_int_var = DESC_I_TINT2;
  685. sh_eth_write(ndev, rx_int_var | tx_int_var, TRSCER);
  686. if (mdp->cd->bculr)
  687. sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */
  688. sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
  689. if (!mdp->cd->no_trimd)
  690. sh_eth_write(ndev, 0, TRIMD);
  691. /* Recv frame limit set register */
  692. sh_eth_write(ndev, RFLR_VALUE, RFLR);
  693. sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
  694. sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
  695. /* PAUSE Prohibition */
  696. val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
  697. ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
  698. sh_eth_write(ndev, val, ECMR);
  699. if (mdp->cd->set_rate)
  700. mdp->cd->set_rate(ndev);
  701. /* E-MAC Status Register clear */
  702. sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
  703. /* E-MAC Interrupt Enable register */
  704. sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
  705. /* Set MAC address */
  706. update_mac_address(ndev);
  707. /* mask reset */
  708. if (mdp->cd->apr)
  709. sh_eth_write(ndev, APR_AP, APR);
  710. if (mdp->cd->mpr)
  711. sh_eth_write(ndev, MPR_MP, MPR);
  712. if (mdp->cd->tpauser)
  713. sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
  714. /* Setting the Rx mode will start the Rx process. */
  715. sh_eth_write(ndev, EDRRR_R, EDRRR);
  716. netif_start_queue(ndev);
  717. return ret;
  718. }
  719. /* free Tx skb function */
  720. static int sh_eth_txfree(struct net_device *ndev)
  721. {
  722. struct sh_eth_private *mdp = netdev_priv(ndev);
  723. struct sh_eth_txdesc *txdesc;
  724. int freeNum = 0;
  725. int entry = 0;
  726. for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
  727. entry = mdp->dirty_tx % TX_RING_SIZE;
  728. txdesc = &mdp->tx_ring[entry];
  729. if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
  730. break;
  731. /* Free the original skb. */
  732. if (mdp->tx_skbuff[entry]) {
  733. dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
  734. mdp->tx_skbuff[entry] = NULL;
  735. freeNum++;
  736. }
  737. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  738. if (entry >= TX_RING_SIZE - 1)
  739. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  740. mdp->stats.tx_packets++;
  741. mdp->stats.tx_bytes += txdesc->buffer_length;
  742. }
  743. return freeNum;
  744. }
  745. /* Packet receive function */
  746. static int sh_eth_rx(struct net_device *ndev)
  747. {
  748. struct sh_eth_private *mdp = netdev_priv(ndev);
  749. struct sh_eth_rxdesc *rxdesc;
  750. int entry = mdp->cur_rx % RX_RING_SIZE;
  751. int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
  752. struct sk_buff *skb;
  753. u16 pkt_len = 0;
  754. u32 desc_status;
  755. rxdesc = &mdp->rx_ring[entry];
  756. while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
  757. desc_status = edmac_to_cpu(mdp, rxdesc->status);
  758. pkt_len = rxdesc->frame_length;
  759. if (--boguscnt < 0)
  760. break;
  761. if (!(desc_status & RDFEND))
  762. mdp->stats.rx_length_errors++;
  763. if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
  764. RD_RFS5 | RD_RFS6 | RD_RFS10)) {
  765. mdp->stats.rx_errors++;
  766. if (desc_status & RD_RFS1)
  767. mdp->stats.rx_crc_errors++;
  768. if (desc_status & RD_RFS2)
  769. mdp->stats.rx_frame_errors++;
  770. if (desc_status & RD_RFS3)
  771. mdp->stats.rx_length_errors++;
  772. if (desc_status & RD_RFS4)
  773. mdp->stats.rx_length_errors++;
  774. if (desc_status & RD_RFS6)
  775. mdp->stats.rx_missed_errors++;
  776. if (desc_status & RD_RFS10)
  777. mdp->stats.rx_over_errors++;
  778. } else {
  779. if (!mdp->cd->hw_swap)
  780. sh_eth_soft_swap(
  781. phys_to_virt(ALIGN(rxdesc->addr, 4)),
  782. pkt_len + 2);
  783. skb = mdp->rx_skbuff[entry];
  784. mdp->rx_skbuff[entry] = NULL;
  785. if (mdp->cd->rpadir)
  786. skb_reserve(skb, NET_IP_ALIGN);
  787. skb_put(skb, pkt_len);
  788. skb->protocol = eth_type_trans(skb, ndev);
  789. netif_rx(skb);
  790. mdp->stats.rx_packets++;
  791. mdp->stats.rx_bytes += pkt_len;
  792. }
  793. rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
  794. entry = (++mdp->cur_rx) % RX_RING_SIZE;
  795. rxdesc = &mdp->rx_ring[entry];
  796. }
  797. /* Refill the Rx ring buffers. */
  798. for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
  799. entry = mdp->dirty_rx % RX_RING_SIZE;
  800. rxdesc = &mdp->rx_ring[entry];
  801. /* The size of the buffer is 16 byte boundary. */
  802. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  803. if (mdp->rx_skbuff[entry] == NULL) {
  804. skb = dev_alloc_skb(mdp->rx_buf_sz);
  805. mdp->rx_skbuff[entry] = skb;
  806. if (skb == NULL)
  807. break; /* Better luck next round. */
  808. dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
  809. DMA_FROM_DEVICE);
  810. skb->dev = ndev;
  811. sh_eth_set_receive_align(skb);
  812. skb_checksum_none_assert(skb);
  813. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  814. }
  815. if (entry >= RX_RING_SIZE - 1)
  816. rxdesc->status |=
  817. cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
  818. else
  819. rxdesc->status |=
  820. cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  821. }
  822. /* Restart Rx engine if stopped. */
  823. /* If we don't need to check status, don't. -KDU */
  824. if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R))
  825. sh_eth_write(ndev, EDRRR_R, EDRRR);
  826. return 0;
  827. }
  828. static void sh_eth_rcv_snd_disable(struct net_device *ndev)
  829. {
  830. /* disable tx and rx */
  831. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
  832. ~(ECMR_RE | ECMR_TE), ECMR);
  833. }
  834. static void sh_eth_rcv_snd_enable(struct net_device *ndev)
  835. {
  836. /* enable tx and rx */
  837. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
  838. (ECMR_RE | ECMR_TE), ECMR);
  839. }
  840. /* error control function */
  841. static void sh_eth_error(struct net_device *ndev, int intr_status)
  842. {
  843. struct sh_eth_private *mdp = netdev_priv(ndev);
  844. u32 felic_stat;
  845. u32 link_stat;
  846. u32 mask;
  847. if (intr_status & EESR_ECI) {
  848. felic_stat = sh_eth_read(ndev, ECSR);
  849. sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
  850. if (felic_stat & ECSR_ICD)
  851. mdp->stats.tx_carrier_errors++;
  852. if (felic_stat & ECSR_LCHNG) {
  853. /* Link Changed */
  854. if (mdp->cd->no_psr || mdp->no_ether_link) {
  855. if (mdp->link == PHY_DOWN)
  856. link_stat = 0;
  857. else
  858. link_stat = PHY_ST_LINK;
  859. } else {
  860. link_stat = (sh_eth_read(ndev, PSR));
  861. if (mdp->ether_link_active_low)
  862. link_stat = ~link_stat;
  863. }
  864. if (!(link_stat & PHY_ST_LINK))
  865. sh_eth_rcv_snd_disable(ndev);
  866. else {
  867. /* Link Up */
  868. sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
  869. ~DMAC_M_ECI, EESIPR);
  870. /*clear int */
  871. sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
  872. ECSR);
  873. sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
  874. DMAC_M_ECI, EESIPR);
  875. /* enable tx and rx */
  876. sh_eth_rcv_snd_enable(ndev);
  877. }
  878. }
  879. }
  880. if (intr_status & EESR_TWB) {
  881. /* Write buck end. unused write back interrupt */
  882. if (intr_status & EESR_TABT) /* Transmit Abort int */
  883. mdp->stats.tx_aborted_errors++;
  884. if (netif_msg_tx_err(mdp))
  885. dev_err(&ndev->dev, "Transmit Abort\n");
  886. }
  887. if (intr_status & EESR_RABT) {
  888. /* Receive Abort int */
  889. if (intr_status & EESR_RFRMER) {
  890. /* Receive Frame Overflow int */
  891. mdp->stats.rx_frame_errors++;
  892. if (netif_msg_rx_err(mdp))
  893. dev_err(&ndev->dev, "Receive Abort\n");
  894. }
  895. }
  896. if (intr_status & EESR_TDE) {
  897. /* Transmit Descriptor Empty int */
  898. mdp->stats.tx_fifo_errors++;
  899. if (netif_msg_tx_err(mdp))
  900. dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
  901. }
  902. if (intr_status & EESR_TFE) {
  903. /* FIFO under flow */
  904. mdp->stats.tx_fifo_errors++;
  905. if (netif_msg_tx_err(mdp))
  906. dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
  907. }
  908. if (intr_status & EESR_RDE) {
  909. /* Receive Descriptor Empty int */
  910. mdp->stats.rx_over_errors++;
  911. if (sh_eth_read(ndev, EDRRR) ^ EDRRR_R)
  912. sh_eth_write(ndev, EDRRR_R, EDRRR);
  913. if (netif_msg_rx_err(mdp))
  914. dev_err(&ndev->dev, "Receive Descriptor Empty\n");
  915. }
  916. if (intr_status & EESR_RFE) {
  917. /* Receive FIFO Overflow int */
  918. mdp->stats.rx_fifo_errors++;
  919. if (netif_msg_rx_err(mdp))
  920. dev_err(&ndev->dev, "Receive FIFO Overflow\n");
  921. }
  922. if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
  923. /* Address Error */
  924. mdp->stats.tx_fifo_errors++;
  925. if (netif_msg_tx_err(mdp))
  926. dev_err(&ndev->dev, "Address Error\n");
  927. }
  928. mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
  929. if (mdp->cd->no_ade)
  930. mask &= ~EESR_ADE;
  931. if (intr_status & mask) {
  932. /* Tx error */
  933. u32 edtrr = sh_eth_read(ndev, EDTRR);
  934. /* dmesg */
  935. dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
  936. intr_status, mdp->cur_tx);
  937. dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
  938. mdp->dirty_tx, (u32) ndev->state, edtrr);
  939. /* dirty buffer free */
  940. sh_eth_txfree(ndev);
  941. /* SH7712 BUG */
  942. if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
  943. /* tx dma start */
  944. sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
  945. }
  946. /* wakeup */
  947. netif_wake_queue(ndev);
  948. }
  949. }
  950. static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
  951. {
  952. struct net_device *ndev = netdev;
  953. struct sh_eth_private *mdp = netdev_priv(ndev);
  954. struct sh_eth_cpu_data *cd = mdp->cd;
  955. irqreturn_t ret = IRQ_NONE;
  956. u32 intr_status = 0;
  957. spin_lock(&mdp->lock);
  958. /* Get interrpt stat */
  959. intr_status = sh_eth_read(ndev, EESR);
  960. /* Clear interrupt */
  961. if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
  962. EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
  963. cd->tx_check | cd->eesr_err_check)) {
  964. sh_eth_write(ndev, intr_status, EESR);
  965. ret = IRQ_HANDLED;
  966. } else
  967. goto other_irq;
  968. if (intr_status & (EESR_FRC | /* Frame recv*/
  969. EESR_RMAF | /* Multi cast address recv*/
  970. EESR_RRF | /* Bit frame recv */
  971. EESR_RTLF | /* Long frame recv*/
  972. EESR_RTSF | /* short frame recv */
  973. EESR_PRE | /* PHY-LSI recv error */
  974. EESR_CERF)){ /* recv frame CRC error */
  975. sh_eth_rx(ndev);
  976. }
  977. /* Tx Check */
  978. if (intr_status & cd->tx_check) {
  979. sh_eth_txfree(ndev);
  980. netif_wake_queue(ndev);
  981. }
  982. if (intr_status & cd->eesr_err_check)
  983. sh_eth_error(ndev, intr_status);
  984. other_irq:
  985. spin_unlock(&mdp->lock);
  986. return ret;
  987. }
  988. static void sh_eth_timer(unsigned long data)
  989. {
  990. struct net_device *ndev = (struct net_device *)data;
  991. struct sh_eth_private *mdp = netdev_priv(ndev);
  992. mod_timer(&mdp->timer, jiffies + (10 * HZ));
  993. }
  994. /* PHY state control function */
  995. static void sh_eth_adjust_link(struct net_device *ndev)
  996. {
  997. struct sh_eth_private *mdp = netdev_priv(ndev);
  998. struct phy_device *phydev = mdp->phydev;
  999. int new_state = 0;
  1000. if (phydev->link != PHY_DOWN) {
  1001. if (phydev->duplex != mdp->duplex) {
  1002. new_state = 1;
  1003. mdp->duplex = phydev->duplex;
  1004. if (mdp->cd->set_duplex)
  1005. mdp->cd->set_duplex(ndev);
  1006. }
  1007. if (phydev->speed != mdp->speed) {
  1008. new_state = 1;
  1009. mdp->speed = phydev->speed;
  1010. if (mdp->cd->set_rate)
  1011. mdp->cd->set_rate(ndev);
  1012. }
  1013. if (mdp->link == PHY_DOWN) {
  1014. sh_eth_write(ndev, (sh_eth_read(ndev, ECMR) & ~ECMR_TXF)
  1015. | ECMR_DM, ECMR);
  1016. new_state = 1;
  1017. mdp->link = phydev->link;
  1018. }
  1019. } else if (mdp->link) {
  1020. new_state = 1;
  1021. mdp->link = PHY_DOWN;
  1022. mdp->speed = 0;
  1023. mdp->duplex = -1;
  1024. }
  1025. if (new_state && netif_msg_link(mdp))
  1026. phy_print_status(phydev);
  1027. }
  1028. /* PHY init function */
  1029. static int sh_eth_phy_init(struct net_device *ndev)
  1030. {
  1031. struct sh_eth_private *mdp = netdev_priv(ndev);
  1032. char phy_id[MII_BUS_ID_SIZE + 3];
  1033. struct phy_device *phydev = NULL;
  1034. snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
  1035. mdp->mii_bus->id , mdp->phy_id);
  1036. mdp->link = PHY_DOWN;
  1037. mdp->speed = 0;
  1038. mdp->duplex = -1;
  1039. /* Try connect to PHY */
  1040. phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
  1041. 0, mdp->phy_interface);
  1042. if (IS_ERR(phydev)) {
  1043. dev_err(&ndev->dev, "phy_connect failed\n");
  1044. return PTR_ERR(phydev);
  1045. }
  1046. dev_info(&ndev->dev, "attached phy %i to driver %s\n",
  1047. phydev->addr, phydev->drv->name);
  1048. mdp->phydev = phydev;
  1049. return 0;
  1050. }
  1051. /* PHY control start function */
  1052. static int sh_eth_phy_start(struct net_device *ndev)
  1053. {
  1054. struct sh_eth_private *mdp = netdev_priv(ndev);
  1055. int ret;
  1056. ret = sh_eth_phy_init(ndev);
  1057. if (ret)
  1058. return ret;
  1059. /* reset phy - this also wakes it from PDOWN */
  1060. phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
  1061. phy_start(mdp->phydev);
  1062. return 0;
  1063. }
  1064. static int sh_eth_get_settings(struct net_device *ndev,
  1065. struct ethtool_cmd *ecmd)
  1066. {
  1067. struct sh_eth_private *mdp = netdev_priv(ndev);
  1068. unsigned long flags;
  1069. int ret;
  1070. spin_lock_irqsave(&mdp->lock, flags);
  1071. ret = phy_ethtool_gset(mdp->phydev, ecmd);
  1072. spin_unlock_irqrestore(&mdp->lock, flags);
  1073. return ret;
  1074. }
  1075. static int sh_eth_set_settings(struct net_device *ndev,
  1076. struct ethtool_cmd *ecmd)
  1077. {
  1078. struct sh_eth_private *mdp = netdev_priv(ndev);
  1079. unsigned long flags;
  1080. int ret;
  1081. spin_lock_irqsave(&mdp->lock, flags);
  1082. /* disable tx and rx */
  1083. sh_eth_rcv_snd_disable(ndev);
  1084. ret = phy_ethtool_sset(mdp->phydev, ecmd);
  1085. if (ret)
  1086. goto error_exit;
  1087. if (ecmd->duplex == DUPLEX_FULL)
  1088. mdp->duplex = 1;
  1089. else
  1090. mdp->duplex = 0;
  1091. if (mdp->cd->set_duplex)
  1092. mdp->cd->set_duplex(ndev);
  1093. error_exit:
  1094. mdelay(1);
  1095. /* enable tx and rx */
  1096. sh_eth_rcv_snd_enable(ndev);
  1097. spin_unlock_irqrestore(&mdp->lock, flags);
  1098. return ret;
  1099. }
  1100. static int sh_eth_nway_reset(struct net_device *ndev)
  1101. {
  1102. struct sh_eth_private *mdp = netdev_priv(ndev);
  1103. unsigned long flags;
  1104. int ret;
  1105. spin_lock_irqsave(&mdp->lock, flags);
  1106. ret = phy_start_aneg(mdp->phydev);
  1107. spin_unlock_irqrestore(&mdp->lock, flags);
  1108. return ret;
  1109. }
  1110. static u32 sh_eth_get_msglevel(struct net_device *ndev)
  1111. {
  1112. struct sh_eth_private *mdp = netdev_priv(ndev);
  1113. return mdp->msg_enable;
  1114. }
  1115. static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
  1116. {
  1117. struct sh_eth_private *mdp = netdev_priv(ndev);
  1118. mdp->msg_enable = value;
  1119. }
  1120. static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
  1121. "rx_current", "tx_current",
  1122. "rx_dirty", "tx_dirty",
  1123. };
  1124. #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
  1125. static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
  1126. {
  1127. switch (sset) {
  1128. case ETH_SS_STATS:
  1129. return SH_ETH_STATS_LEN;
  1130. default:
  1131. return -EOPNOTSUPP;
  1132. }
  1133. }
  1134. static void sh_eth_get_ethtool_stats(struct net_device *ndev,
  1135. struct ethtool_stats *stats, u64 *data)
  1136. {
  1137. struct sh_eth_private *mdp = netdev_priv(ndev);
  1138. int i = 0;
  1139. /* device-specific stats */
  1140. data[i++] = mdp->cur_rx;
  1141. data[i++] = mdp->cur_tx;
  1142. data[i++] = mdp->dirty_rx;
  1143. data[i++] = mdp->dirty_tx;
  1144. }
  1145. static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
  1146. {
  1147. switch (stringset) {
  1148. case ETH_SS_STATS:
  1149. memcpy(data, *sh_eth_gstrings_stats,
  1150. sizeof(sh_eth_gstrings_stats));
  1151. break;
  1152. }
  1153. }
  1154. static struct ethtool_ops sh_eth_ethtool_ops = {
  1155. .get_settings = sh_eth_get_settings,
  1156. .set_settings = sh_eth_set_settings,
  1157. .nway_reset = sh_eth_nway_reset,
  1158. .get_msglevel = sh_eth_get_msglevel,
  1159. .set_msglevel = sh_eth_set_msglevel,
  1160. .get_link = ethtool_op_get_link,
  1161. .get_strings = sh_eth_get_strings,
  1162. .get_ethtool_stats = sh_eth_get_ethtool_stats,
  1163. .get_sset_count = sh_eth_get_sset_count,
  1164. };
  1165. /* network device open function */
  1166. static int sh_eth_open(struct net_device *ndev)
  1167. {
  1168. int ret = 0;
  1169. struct sh_eth_private *mdp = netdev_priv(ndev);
  1170. pm_runtime_get_sync(&mdp->pdev->dev);
  1171. ret = request_irq(ndev->irq, sh_eth_interrupt,
  1172. #if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
  1173. defined(CONFIG_CPU_SUBTYPE_SH7764) || \
  1174. defined(CONFIG_CPU_SUBTYPE_SH7757)
  1175. IRQF_SHARED,
  1176. #else
  1177. 0,
  1178. #endif
  1179. ndev->name, ndev);
  1180. if (ret) {
  1181. dev_err(&ndev->dev, "Can not assign IRQ number\n");
  1182. return ret;
  1183. }
  1184. /* Descriptor set */
  1185. ret = sh_eth_ring_init(ndev);
  1186. if (ret)
  1187. goto out_free_irq;
  1188. /* device init */
  1189. ret = sh_eth_dev_init(ndev);
  1190. if (ret)
  1191. goto out_free_irq;
  1192. /* PHY control start*/
  1193. ret = sh_eth_phy_start(ndev);
  1194. if (ret)
  1195. goto out_free_irq;
  1196. /* Set the timer to check for link beat. */
  1197. init_timer(&mdp->timer);
  1198. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  1199. setup_timer(&mdp->timer, sh_eth_timer, (unsigned long)ndev);
  1200. return ret;
  1201. out_free_irq:
  1202. free_irq(ndev->irq, ndev);
  1203. pm_runtime_put_sync(&mdp->pdev->dev);
  1204. return ret;
  1205. }
  1206. /* Timeout function */
  1207. static void sh_eth_tx_timeout(struct net_device *ndev)
  1208. {
  1209. struct sh_eth_private *mdp = netdev_priv(ndev);
  1210. struct sh_eth_rxdesc *rxdesc;
  1211. int i;
  1212. netif_stop_queue(ndev);
  1213. if (netif_msg_timer(mdp))
  1214. dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
  1215. " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
  1216. /* tx_errors count up */
  1217. mdp->stats.tx_errors++;
  1218. /* timer off */
  1219. del_timer_sync(&mdp->timer);
  1220. /* Free all the skbuffs in the Rx queue. */
  1221. for (i = 0; i < RX_RING_SIZE; i++) {
  1222. rxdesc = &mdp->rx_ring[i];
  1223. rxdesc->status = 0;
  1224. rxdesc->addr = 0xBADF00D0;
  1225. if (mdp->rx_skbuff[i])
  1226. dev_kfree_skb(mdp->rx_skbuff[i]);
  1227. mdp->rx_skbuff[i] = NULL;
  1228. }
  1229. for (i = 0; i < TX_RING_SIZE; i++) {
  1230. if (mdp->tx_skbuff[i])
  1231. dev_kfree_skb(mdp->tx_skbuff[i]);
  1232. mdp->tx_skbuff[i] = NULL;
  1233. }
  1234. /* device init */
  1235. sh_eth_dev_init(ndev);
  1236. /* timer on */
  1237. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  1238. add_timer(&mdp->timer);
  1239. }
  1240. /* Packet transmit function */
  1241. static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  1242. {
  1243. struct sh_eth_private *mdp = netdev_priv(ndev);
  1244. struct sh_eth_txdesc *txdesc;
  1245. u32 entry;
  1246. unsigned long flags;
  1247. spin_lock_irqsave(&mdp->lock, flags);
  1248. if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
  1249. if (!sh_eth_txfree(ndev)) {
  1250. if (netif_msg_tx_queued(mdp))
  1251. dev_warn(&ndev->dev, "TxFD exhausted.\n");
  1252. netif_stop_queue(ndev);
  1253. spin_unlock_irqrestore(&mdp->lock, flags);
  1254. return NETDEV_TX_BUSY;
  1255. }
  1256. }
  1257. spin_unlock_irqrestore(&mdp->lock, flags);
  1258. entry = mdp->cur_tx % TX_RING_SIZE;
  1259. mdp->tx_skbuff[entry] = skb;
  1260. txdesc = &mdp->tx_ring[entry];
  1261. txdesc->addr = virt_to_phys(skb->data);
  1262. /* soft swap. */
  1263. if (!mdp->cd->hw_swap)
  1264. sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
  1265. skb->len + 2);
  1266. /* write back */
  1267. __flush_purge_region(skb->data, skb->len);
  1268. if (skb->len < ETHERSMALL)
  1269. txdesc->buffer_length = ETHERSMALL;
  1270. else
  1271. txdesc->buffer_length = skb->len;
  1272. if (entry >= TX_RING_SIZE - 1)
  1273. txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
  1274. else
  1275. txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
  1276. mdp->cur_tx++;
  1277. if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
  1278. sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
  1279. return NETDEV_TX_OK;
  1280. }
  1281. /* device close function */
  1282. static int sh_eth_close(struct net_device *ndev)
  1283. {
  1284. struct sh_eth_private *mdp = netdev_priv(ndev);
  1285. int ringsize;
  1286. netif_stop_queue(ndev);
  1287. /* Disable interrupts by clearing the interrupt mask. */
  1288. sh_eth_write(ndev, 0x0000, EESIPR);
  1289. /* Stop the chip's Tx and Rx processes. */
  1290. sh_eth_write(ndev, 0, EDTRR);
  1291. sh_eth_write(ndev, 0, EDRRR);
  1292. /* PHY Disconnect */
  1293. if (mdp->phydev) {
  1294. phy_stop(mdp->phydev);
  1295. phy_disconnect(mdp->phydev);
  1296. }
  1297. free_irq(ndev->irq, ndev);
  1298. del_timer_sync(&mdp->timer);
  1299. /* Free all the skbuffs in the Rx queue. */
  1300. sh_eth_ring_free(ndev);
  1301. /* free DMA buffer */
  1302. ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  1303. dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  1304. /* free DMA buffer */
  1305. ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  1306. dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma);
  1307. pm_runtime_put_sync(&mdp->pdev->dev);
  1308. return 0;
  1309. }
  1310. static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
  1311. {
  1312. struct sh_eth_private *mdp = netdev_priv(ndev);
  1313. pm_runtime_get_sync(&mdp->pdev->dev);
  1314. mdp->stats.tx_dropped += sh_eth_read(ndev, TROCR);
  1315. sh_eth_write(ndev, 0, TROCR); /* (write clear) */
  1316. mdp->stats.collisions += sh_eth_read(ndev, CDCR);
  1317. sh_eth_write(ndev, 0, CDCR); /* (write clear) */
  1318. mdp->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
  1319. sh_eth_write(ndev, 0, LCCR); /* (write clear) */
  1320. if (sh_eth_is_gether(mdp)) {
  1321. mdp->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
  1322. sh_eth_write(ndev, 0, CERCR); /* (write clear) */
  1323. mdp->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
  1324. sh_eth_write(ndev, 0, CEECR); /* (write clear) */
  1325. } else {
  1326. mdp->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
  1327. sh_eth_write(ndev, 0, CNDCR); /* (write clear) */
  1328. }
  1329. pm_runtime_put_sync(&mdp->pdev->dev);
  1330. return &mdp->stats;
  1331. }
  1332. /* ioctl to device funciotn*/
  1333. static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
  1334. int cmd)
  1335. {
  1336. struct sh_eth_private *mdp = netdev_priv(ndev);
  1337. struct phy_device *phydev = mdp->phydev;
  1338. if (!netif_running(ndev))
  1339. return -EINVAL;
  1340. if (!phydev)
  1341. return -ENODEV;
  1342. return phy_mii_ioctl(phydev, rq, cmd);
  1343. }
  1344. #if defined(SH_ETH_HAS_TSU)
  1345. /* Multicast reception directions set */
  1346. static void sh_eth_set_multicast_list(struct net_device *ndev)
  1347. {
  1348. if (ndev->flags & IFF_PROMISC) {
  1349. /* Set promiscuous. */
  1350. sh_eth_write(ndev, (sh_eth_read(ndev, ECMR) & ~ECMR_MCT) |
  1351. ECMR_PRM, ECMR);
  1352. } else {
  1353. /* Normal, unicast/broadcast-only mode. */
  1354. sh_eth_write(ndev, (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) |
  1355. ECMR_MCT, ECMR);
  1356. }
  1357. }
  1358. #endif /* SH_ETH_HAS_TSU */
  1359. /* SuperH's TSU register init function */
  1360. static void sh_eth_tsu_init(struct sh_eth_private *mdp)
  1361. {
  1362. sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
  1363. sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
  1364. sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
  1365. sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
  1366. sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
  1367. sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
  1368. sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
  1369. sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
  1370. sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
  1371. sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
  1372. if (sh_eth_is_gether(mdp)) {
  1373. sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */
  1374. sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */
  1375. } else {
  1376. sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
  1377. sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
  1378. }
  1379. sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
  1380. sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
  1381. sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
  1382. sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
  1383. sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
  1384. sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
  1385. sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
  1386. }
  1387. /* MDIO bus release function */
  1388. static int sh_mdio_release(struct net_device *ndev)
  1389. {
  1390. struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
  1391. /* unregister mdio bus */
  1392. mdiobus_unregister(bus);
  1393. /* remove mdio bus info from net_device */
  1394. dev_set_drvdata(&ndev->dev, NULL);
  1395. /* free interrupts memory */
  1396. kfree(bus->irq);
  1397. /* free bitbang info */
  1398. free_mdio_bitbang(bus);
  1399. return 0;
  1400. }
  1401. /* MDIO bus init function */
  1402. static int sh_mdio_init(struct net_device *ndev, int id,
  1403. struct sh_eth_plat_data *pd)
  1404. {
  1405. int ret, i;
  1406. struct bb_info *bitbang;
  1407. struct sh_eth_private *mdp = netdev_priv(ndev);
  1408. /* create bit control struct for PHY */
  1409. bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
  1410. if (!bitbang) {
  1411. ret = -ENOMEM;
  1412. goto out;
  1413. }
  1414. /* bitbang init */
  1415. bitbang->addr = ndev->base_addr + mdp->reg_offset[PIR];
  1416. bitbang->set_gate = pd->set_mdio_gate;
  1417. bitbang->mdi_msk = 0x08;
  1418. bitbang->mdo_msk = 0x04;
  1419. bitbang->mmd_msk = 0x02;/* MMD */
  1420. bitbang->mdc_msk = 0x01;
  1421. bitbang->ctrl.ops = &bb_ops;
  1422. /* MII controller setting */
  1423. mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
  1424. if (!mdp->mii_bus) {
  1425. ret = -ENOMEM;
  1426. goto out_free_bitbang;
  1427. }
  1428. /* Hook up MII support for ethtool */
  1429. mdp->mii_bus->name = "sh_mii";
  1430. mdp->mii_bus->parent = &ndev->dev;
  1431. snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%x", id);
  1432. /* PHY IRQ */
  1433. mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
  1434. if (!mdp->mii_bus->irq) {
  1435. ret = -ENOMEM;
  1436. goto out_free_bus;
  1437. }
  1438. for (i = 0; i < PHY_MAX_ADDR; i++)
  1439. mdp->mii_bus->irq[i] = PHY_POLL;
  1440. /* regist mdio bus */
  1441. ret = mdiobus_register(mdp->mii_bus);
  1442. if (ret)
  1443. goto out_free_irq;
  1444. dev_set_drvdata(&ndev->dev, mdp->mii_bus);
  1445. return 0;
  1446. out_free_irq:
  1447. kfree(mdp->mii_bus->irq);
  1448. out_free_bus:
  1449. free_mdio_bitbang(mdp->mii_bus);
  1450. out_free_bitbang:
  1451. kfree(bitbang);
  1452. out:
  1453. return ret;
  1454. }
  1455. static const u16 *sh_eth_get_register_offset(int register_type)
  1456. {
  1457. const u16 *reg_offset = NULL;
  1458. switch (register_type) {
  1459. case SH_ETH_REG_GIGABIT:
  1460. reg_offset = sh_eth_offset_gigabit;
  1461. break;
  1462. case SH_ETH_REG_FAST_SH4:
  1463. reg_offset = sh_eth_offset_fast_sh4;
  1464. break;
  1465. case SH_ETH_REG_FAST_SH3_SH2:
  1466. reg_offset = sh_eth_offset_fast_sh3_sh2;
  1467. break;
  1468. default:
  1469. printk(KERN_ERR "Unknown register type (%d)\n", register_type);
  1470. break;
  1471. }
  1472. return reg_offset;
  1473. }
  1474. static const struct net_device_ops sh_eth_netdev_ops = {
  1475. .ndo_open = sh_eth_open,
  1476. .ndo_stop = sh_eth_close,
  1477. .ndo_start_xmit = sh_eth_start_xmit,
  1478. .ndo_get_stats = sh_eth_get_stats,
  1479. #if defined(SH_ETH_HAS_TSU)
  1480. .ndo_set_multicast_list = sh_eth_set_multicast_list,
  1481. #endif
  1482. .ndo_tx_timeout = sh_eth_tx_timeout,
  1483. .ndo_do_ioctl = sh_eth_do_ioctl,
  1484. .ndo_validate_addr = eth_validate_addr,
  1485. .ndo_set_mac_address = eth_mac_addr,
  1486. .ndo_change_mtu = eth_change_mtu,
  1487. };
  1488. static int sh_eth_drv_probe(struct platform_device *pdev)
  1489. {
  1490. int ret, devno = 0;
  1491. struct resource *res;
  1492. struct net_device *ndev = NULL;
  1493. struct sh_eth_private *mdp;
  1494. struct sh_eth_plat_data *pd;
  1495. /* get base addr */
  1496. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1497. if (unlikely(res == NULL)) {
  1498. dev_err(&pdev->dev, "invalid resource\n");
  1499. ret = -EINVAL;
  1500. goto out;
  1501. }
  1502. ndev = alloc_etherdev(sizeof(struct sh_eth_private));
  1503. if (!ndev) {
  1504. dev_err(&pdev->dev, "Could not allocate device.\n");
  1505. ret = -ENOMEM;
  1506. goto out;
  1507. }
  1508. /* The sh Ether-specific entries in the device structure. */
  1509. ndev->base_addr = res->start;
  1510. devno = pdev->id;
  1511. if (devno < 0)
  1512. devno = 0;
  1513. ndev->dma = -1;
  1514. ret = platform_get_irq(pdev, 0);
  1515. if (ret < 0) {
  1516. ret = -ENODEV;
  1517. goto out_release;
  1518. }
  1519. ndev->irq = ret;
  1520. SET_NETDEV_DEV(ndev, &pdev->dev);
  1521. /* Fill in the fields of the device structure with ethernet values. */
  1522. ether_setup(ndev);
  1523. mdp = netdev_priv(ndev);
  1524. spin_lock_init(&mdp->lock);
  1525. mdp->pdev = pdev;
  1526. pm_runtime_enable(&pdev->dev);
  1527. pm_runtime_resume(&pdev->dev);
  1528. pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
  1529. /* get PHY ID */
  1530. mdp->phy_id = pd->phy;
  1531. mdp->phy_interface = pd->phy_interface;
  1532. /* EDMAC endian */
  1533. mdp->edmac_endian = pd->edmac_endian;
  1534. mdp->no_ether_link = pd->no_ether_link;
  1535. mdp->ether_link_active_low = pd->ether_link_active_low;
  1536. mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
  1537. /* set cpu data */
  1538. #if defined(SH_ETH_HAS_BOTH_MODULES)
  1539. mdp->cd = sh_eth_get_cpu_data(mdp);
  1540. #else
  1541. mdp->cd = &sh_eth_my_cpu_data;
  1542. #endif
  1543. sh_eth_set_default_cpu_data(mdp->cd);
  1544. /* set function */
  1545. ndev->netdev_ops = &sh_eth_netdev_ops;
  1546. SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
  1547. ndev->watchdog_timeo = TX_TIMEOUT;
  1548. /* debug message level */
  1549. mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
  1550. mdp->post_rx = POST_RX >> (devno << 1);
  1551. mdp->post_fw = POST_FW >> (devno << 1);
  1552. /* read and set MAC address */
  1553. read_mac_address(ndev, pd->mac_addr);
  1554. /* First device only init */
  1555. if (!devno) {
  1556. if (mdp->cd->tsu) {
  1557. struct resource *rtsu;
  1558. rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1559. if (!rtsu) {
  1560. dev_err(&pdev->dev, "Not found TSU resource\n");
  1561. goto out_release;
  1562. }
  1563. mdp->tsu_addr = ioremap(rtsu->start,
  1564. resource_size(rtsu));
  1565. }
  1566. if (mdp->cd->chip_reset)
  1567. mdp->cd->chip_reset(ndev);
  1568. if (mdp->cd->tsu) {
  1569. /* TSU init (Init only)*/
  1570. sh_eth_tsu_init(mdp);
  1571. }
  1572. }
  1573. /* network device register */
  1574. ret = register_netdev(ndev);
  1575. if (ret)
  1576. goto out_release;
  1577. /* mdio bus init */
  1578. ret = sh_mdio_init(ndev, pdev->id, pd);
  1579. if (ret)
  1580. goto out_unregister;
  1581. /* print device infomation */
  1582. pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
  1583. (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
  1584. platform_set_drvdata(pdev, ndev);
  1585. return ret;
  1586. out_unregister:
  1587. unregister_netdev(ndev);
  1588. out_release:
  1589. /* net_dev free */
  1590. if (mdp->tsu_addr)
  1591. iounmap(mdp->tsu_addr);
  1592. if (ndev)
  1593. free_netdev(ndev);
  1594. out:
  1595. return ret;
  1596. }
  1597. static int sh_eth_drv_remove(struct platform_device *pdev)
  1598. {
  1599. struct net_device *ndev = platform_get_drvdata(pdev);
  1600. struct sh_eth_private *mdp = netdev_priv(ndev);
  1601. iounmap(mdp->tsu_addr);
  1602. sh_mdio_release(ndev);
  1603. unregister_netdev(ndev);
  1604. pm_runtime_disable(&pdev->dev);
  1605. free_netdev(ndev);
  1606. platform_set_drvdata(pdev, NULL);
  1607. return 0;
  1608. }
  1609. static int sh_eth_runtime_nop(struct device *dev)
  1610. {
  1611. /*
  1612. * Runtime PM callback shared between ->runtime_suspend()
  1613. * and ->runtime_resume(). Simply returns success.
  1614. *
  1615. * This driver re-initializes all registers after
  1616. * pm_runtime_get_sync() anyway so there is no need
  1617. * to save and restore registers here.
  1618. */
  1619. return 0;
  1620. }
  1621. static struct dev_pm_ops sh_eth_dev_pm_ops = {
  1622. .runtime_suspend = sh_eth_runtime_nop,
  1623. .runtime_resume = sh_eth_runtime_nop,
  1624. };
  1625. static struct platform_driver sh_eth_driver = {
  1626. .probe = sh_eth_drv_probe,
  1627. .remove = sh_eth_drv_remove,
  1628. .driver = {
  1629. .name = CARDNAME,
  1630. .pm = &sh_eth_dev_pm_ops,
  1631. },
  1632. };
  1633. static int __init sh_eth_init(void)
  1634. {
  1635. return platform_driver_register(&sh_eth_driver);
  1636. }
  1637. static void __exit sh_eth_cleanup(void)
  1638. {
  1639. platform_driver_unregister(&sh_eth_driver);
  1640. }
  1641. module_init(sh_eth_init);
  1642. module_exit(sh_eth_cleanup);
  1643. MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
  1644. MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
  1645. MODULE_LICENSE("GPL v2");