qlge_main.c 134 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/sched.h>
  17. #include <linux/slab.h>
  18. #include <linux/dmapool.h>
  19. #include <linux/mempool.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/kthread.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/in.h>
  26. #include <linux/ip.h>
  27. #include <linux/ipv6.h>
  28. #include <net/ipv6.h>
  29. #include <linux/tcp.h>
  30. #include <linux/udp.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/if_ether.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/etherdevice.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/if_vlan.h>
  38. #include <linux/delay.h>
  39. #include <linux/mm.h>
  40. #include <linux/vmalloc.h>
  41. #include <net/ip6_checksum.h>
  42. #include "qlge.h"
  43. char qlge_driver_name[] = DRV_NAME;
  44. const char qlge_driver_version[] = DRV_VERSION;
  45. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  46. MODULE_DESCRIPTION(DRV_STRING " ");
  47. MODULE_LICENSE("GPL");
  48. MODULE_VERSION(DRV_VERSION);
  49. static const u32 default_msg =
  50. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  51. /* NETIF_MSG_TIMER | */
  52. NETIF_MSG_IFDOWN |
  53. NETIF_MSG_IFUP |
  54. NETIF_MSG_RX_ERR |
  55. NETIF_MSG_TX_ERR |
  56. /* NETIF_MSG_TX_QUEUED | */
  57. /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
  58. /* NETIF_MSG_PKTDATA | */
  59. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  60. static int debug = -1; /* defaults above */
  61. module_param(debug, int, 0664);
  62. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  63. #define MSIX_IRQ 0
  64. #define MSI_IRQ 1
  65. #define LEG_IRQ 2
  66. static int qlge_irq_type = MSIX_IRQ;
  67. module_param(qlge_irq_type, int, 0664);
  68. MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  69. static int qlge_mpi_coredump;
  70. module_param(qlge_mpi_coredump, int, 0);
  71. MODULE_PARM_DESC(qlge_mpi_coredump,
  72. "Option to enable MPI firmware dump. "
  73. "Default is OFF - Do Not allocate memory. ");
  74. static int qlge_force_coredump;
  75. module_param(qlge_force_coredump, int, 0);
  76. MODULE_PARM_DESC(qlge_force_coredump,
  77. "Option to allow force of firmware core dump. "
  78. "Default is OFF - Do not allow.");
  79. static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
  80. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
  81. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
  82. /* required last entry */
  83. {0,}
  84. };
  85. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  86. static int ql_wol(struct ql_adapter *qdev);
  87. static void qlge_set_multicast_list(struct net_device *ndev);
  88. /* This hardware semaphore causes exclusive access to
  89. * resources shared between the NIC driver, MPI firmware,
  90. * FCOE firmware and the FC driver.
  91. */
  92. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  93. {
  94. u32 sem_bits = 0;
  95. switch (sem_mask) {
  96. case SEM_XGMAC0_MASK:
  97. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  98. break;
  99. case SEM_XGMAC1_MASK:
  100. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  101. break;
  102. case SEM_ICB_MASK:
  103. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  104. break;
  105. case SEM_MAC_ADDR_MASK:
  106. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  107. break;
  108. case SEM_FLASH_MASK:
  109. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  110. break;
  111. case SEM_PROBE_MASK:
  112. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  113. break;
  114. case SEM_RT_IDX_MASK:
  115. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  116. break;
  117. case SEM_PROC_REG_MASK:
  118. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  119. break;
  120. default:
  121. netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
  122. return -EINVAL;
  123. }
  124. ql_write32(qdev, SEM, sem_bits | sem_mask);
  125. return !(ql_read32(qdev, SEM) & sem_bits);
  126. }
  127. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  128. {
  129. unsigned int wait_count = 30;
  130. do {
  131. if (!ql_sem_trylock(qdev, sem_mask))
  132. return 0;
  133. udelay(100);
  134. } while (--wait_count);
  135. return -ETIMEDOUT;
  136. }
  137. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  138. {
  139. ql_write32(qdev, SEM, sem_mask);
  140. ql_read32(qdev, SEM); /* flush */
  141. }
  142. /* This function waits for a specific bit to come ready
  143. * in a given register. It is used mostly by the initialize
  144. * process, but is also used in kernel thread API such as
  145. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  146. */
  147. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  148. {
  149. u32 temp;
  150. int count = UDELAY_COUNT;
  151. while (count) {
  152. temp = ql_read32(qdev, reg);
  153. /* check for errors */
  154. if (temp & err_bit) {
  155. netif_alert(qdev, probe, qdev->ndev,
  156. "register 0x%.08x access error, value = 0x%.08x!.\n",
  157. reg, temp);
  158. return -EIO;
  159. } else if (temp & bit)
  160. return 0;
  161. udelay(UDELAY_DELAY);
  162. count--;
  163. }
  164. netif_alert(qdev, probe, qdev->ndev,
  165. "Timed out waiting for reg %x to come ready.\n", reg);
  166. return -ETIMEDOUT;
  167. }
  168. /* The CFG register is used to download TX and RX control blocks
  169. * to the chip. This function waits for an operation to complete.
  170. */
  171. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  172. {
  173. int count = UDELAY_COUNT;
  174. u32 temp;
  175. while (count) {
  176. temp = ql_read32(qdev, CFG);
  177. if (temp & CFG_LE)
  178. return -EIO;
  179. if (!(temp & bit))
  180. return 0;
  181. udelay(UDELAY_DELAY);
  182. count--;
  183. }
  184. return -ETIMEDOUT;
  185. }
  186. /* Used to issue init control blocks to hw. Maps control block,
  187. * sets address, triggers download, waits for completion.
  188. */
  189. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  190. u16 q_id)
  191. {
  192. u64 map;
  193. int status = 0;
  194. int direction;
  195. u32 mask;
  196. u32 value;
  197. direction =
  198. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  199. PCI_DMA_FROMDEVICE;
  200. map = pci_map_single(qdev->pdev, ptr, size, direction);
  201. if (pci_dma_mapping_error(qdev->pdev, map)) {
  202. netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
  203. return -ENOMEM;
  204. }
  205. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  206. if (status)
  207. return status;
  208. status = ql_wait_cfg(qdev, bit);
  209. if (status) {
  210. netif_err(qdev, ifup, qdev->ndev,
  211. "Timed out waiting for CFG to come ready.\n");
  212. goto exit;
  213. }
  214. ql_write32(qdev, ICB_L, (u32) map);
  215. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  216. mask = CFG_Q_MASK | (bit << 16);
  217. value = bit | (q_id << CFG_Q_SHIFT);
  218. ql_write32(qdev, CFG, (mask | value));
  219. /*
  220. * Wait for the bit to clear after signaling hw.
  221. */
  222. status = ql_wait_cfg(qdev, bit);
  223. exit:
  224. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  225. pci_unmap_single(qdev->pdev, map, size, direction);
  226. return status;
  227. }
  228. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  229. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  230. u32 *value)
  231. {
  232. u32 offset = 0;
  233. int status;
  234. switch (type) {
  235. case MAC_ADDR_TYPE_MULTI_MAC:
  236. case MAC_ADDR_TYPE_CAM_MAC:
  237. {
  238. status =
  239. ql_wait_reg_rdy(qdev,
  240. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  241. if (status)
  242. goto exit;
  243. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  244. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  245. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  246. status =
  247. ql_wait_reg_rdy(qdev,
  248. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  249. if (status)
  250. goto exit;
  251. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  252. status =
  253. ql_wait_reg_rdy(qdev,
  254. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  255. if (status)
  256. goto exit;
  257. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  258. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  259. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  260. status =
  261. ql_wait_reg_rdy(qdev,
  262. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  263. if (status)
  264. goto exit;
  265. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  266. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  267. status =
  268. ql_wait_reg_rdy(qdev,
  269. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  270. if (status)
  271. goto exit;
  272. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  273. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  274. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  275. status =
  276. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  277. MAC_ADDR_MR, 0);
  278. if (status)
  279. goto exit;
  280. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  281. }
  282. break;
  283. }
  284. case MAC_ADDR_TYPE_VLAN:
  285. case MAC_ADDR_TYPE_MULTI_FLTR:
  286. default:
  287. netif_crit(qdev, ifup, qdev->ndev,
  288. "Address type %d not yet supported.\n", type);
  289. status = -EPERM;
  290. }
  291. exit:
  292. return status;
  293. }
  294. /* Set up a MAC, multicast or VLAN address for the
  295. * inbound frame matching.
  296. */
  297. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  298. u16 index)
  299. {
  300. u32 offset = 0;
  301. int status = 0;
  302. switch (type) {
  303. case MAC_ADDR_TYPE_MULTI_MAC:
  304. {
  305. u32 upper = (addr[0] << 8) | addr[1];
  306. u32 lower = (addr[2] << 24) | (addr[3] << 16) |
  307. (addr[4] << 8) | (addr[5]);
  308. status =
  309. ql_wait_reg_rdy(qdev,
  310. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  311. if (status)
  312. goto exit;
  313. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  314. (index << MAC_ADDR_IDX_SHIFT) |
  315. type | MAC_ADDR_E);
  316. ql_write32(qdev, MAC_ADDR_DATA, lower);
  317. status =
  318. ql_wait_reg_rdy(qdev,
  319. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  320. if (status)
  321. goto exit;
  322. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  323. (index << MAC_ADDR_IDX_SHIFT) |
  324. type | MAC_ADDR_E);
  325. ql_write32(qdev, MAC_ADDR_DATA, upper);
  326. status =
  327. ql_wait_reg_rdy(qdev,
  328. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  329. if (status)
  330. goto exit;
  331. break;
  332. }
  333. case MAC_ADDR_TYPE_CAM_MAC:
  334. {
  335. u32 cam_output;
  336. u32 upper = (addr[0] << 8) | addr[1];
  337. u32 lower =
  338. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  339. (addr[5]);
  340. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  341. "Adding %s address %pM at index %d in the CAM.\n",
  342. type == MAC_ADDR_TYPE_MULTI_MAC ?
  343. "MULTICAST" : "UNICAST",
  344. addr, index);
  345. status =
  346. ql_wait_reg_rdy(qdev,
  347. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  348. if (status)
  349. goto exit;
  350. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  351. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  352. type); /* type */
  353. ql_write32(qdev, MAC_ADDR_DATA, lower);
  354. status =
  355. ql_wait_reg_rdy(qdev,
  356. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  357. if (status)
  358. goto exit;
  359. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  360. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  361. type); /* type */
  362. ql_write32(qdev, MAC_ADDR_DATA, upper);
  363. status =
  364. ql_wait_reg_rdy(qdev,
  365. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  366. if (status)
  367. goto exit;
  368. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  369. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  370. type); /* type */
  371. /* This field should also include the queue id
  372. and possibly the function id. Right now we hardcode
  373. the route field to NIC core.
  374. */
  375. cam_output = (CAM_OUT_ROUTE_NIC |
  376. (qdev->
  377. func << CAM_OUT_FUNC_SHIFT) |
  378. (0 << CAM_OUT_CQ_ID_SHIFT));
  379. if (qdev->vlgrp)
  380. cam_output |= CAM_OUT_RV;
  381. /* route to NIC core */
  382. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  383. break;
  384. }
  385. case MAC_ADDR_TYPE_VLAN:
  386. {
  387. u32 enable_bit = *((u32 *) &addr[0]);
  388. /* For VLAN, the addr actually holds a bit that
  389. * either enables or disables the vlan id we are
  390. * addressing. It's either MAC_ADDR_E on or off.
  391. * That's bit-27 we're talking about.
  392. */
  393. netif_info(qdev, ifup, qdev->ndev,
  394. "%s VLAN ID %d %s the CAM.\n",
  395. enable_bit ? "Adding" : "Removing",
  396. index,
  397. enable_bit ? "to" : "from");
  398. status =
  399. ql_wait_reg_rdy(qdev,
  400. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  401. if (status)
  402. goto exit;
  403. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  404. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  405. type | /* type */
  406. enable_bit); /* enable/disable */
  407. break;
  408. }
  409. case MAC_ADDR_TYPE_MULTI_FLTR:
  410. default:
  411. netif_crit(qdev, ifup, qdev->ndev,
  412. "Address type %d not yet supported.\n", type);
  413. status = -EPERM;
  414. }
  415. exit:
  416. return status;
  417. }
  418. /* Set or clear MAC address in hardware. We sometimes
  419. * have to clear it to prevent wrong frame routing
  420. * especially in a bonding environment.
  421. */
  422. static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
  423. {
  424. int status;
  425. char zero_mac_addr[ETH_ALEN];
  426. char *addr;
  427. if (set) {
  428. addr = &qdev->current_mac_addr[0];
  429. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  430. "Set Mac addr %pM\n", addr);
  431. } else {
  432. memset(zero_mac_addr, 0, ETH_ALEN);
  433. addr = &zero_mac_addr[0];
  434. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  435. "Clearing MAC address\n");
  436. }
  437. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  438. if (status)
  439. return status;
  440. status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
  441. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  442. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  443. if (status)
  444. netif_err(qdev, ifup, qdev->ndev,
  445. "Failed to init mac address.\n");
  446. return status;
  447. }
  448. void ql_link_on(struct ql_adapter *qdev)
  449. {
  450. netif_err(qdev, link, qdev->ndev, "Link is up.\n");
  451. netif_carrier_on(qdev->ndev);
  452. ql_set_mac_addr(qdev, 1);
  453. }
  454. void ql_link_off(struct ql_adapter *qdev)
  455. {
  456. netif_err(qdev, link, qdev->ndev, "Link is down.\n");
  457. netif_carrier_off(qdev->ndev);
  458. ql_set_mac_addr(qdev, 0);
  459. }
  460. /* Get a specific frame routing value from the CAM.
  461. * Used for debug and reg dump.
  462. */
  463. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  464. {
  465. int status = 0;
  466. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  467. if (status)
  468. goto exit;
  469. ql_write32(qdev, RT_IDX,
  470. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  471. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
  472. if (status)
  473. goto exit;
  474. *value = ql_read32(qdev, RT_DATA);
  475. exit:
  476. return status;
  477. }
  478. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  479. * to route different frame types to various inbound queues. We send broadcast/
  480. * multicast/error frames to the default queue for slow handling,
  481. * and CAM hit/RSS frames to the fast handling queues.
  482. */
  483. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  484. int enable)
  485. {
  486. int status = -EINVAL; /* Return error if no mask match. */
  487. u32 value = 0;
  488. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  489. "%s %s mask %s the routing reg.\n",
  490. enable ? "Adding" : "Removing",
  491. index == RT_IDX_ALL_ERR_SLOT ? "MAC ERROR/ALL ERROR" :
  492. index == RT_IDX_IP_CSUM_ERR_SLOT ? "IP CSUM ERROR" :
  493. index == RT_IDX_TCP_UDP_CSUM_ERR_SLOT ? "TCP/UDP CSUM ERROR" :
  494. index == RT_IDX_BCAST_SLOT ? "BROADCAST" :
  495. index == RT_IDX_MCAST_MATCH_SLOT ? "MULTICAST MATCH" :
  496. index == RT_IDX_ALLMULTI_SLOT ? "ALL MULTICAST MATCH" :
  497. index == RT_IDX_UNUSED6_SLOT ? "UNUSED6" :
  498. index == RT_IDX_UNUSED7_SLOT ? "UNUSED7" :
  499. index == RT_IDX_RSS_MATCH_SLOT ? "RSS ALL/IPV4 MATCH" :
  500. index == RT_IDX_RSS_IPV6_SLOT ? "RSS IPV6" :
  501. index == RT_IDX_RSS_TCP4_SLOT ? "RSS TCP4" :
  502. index == RT_IDX_RSS_TCP6_SLOT ? "RSS TCP6" :
  503. index == RT_IDX_CAM_HIT_SLOT ? "CAM HIT" :
  504. index == RT_IDX_UNUSED013 ? "UNUSED13" :
  505. index == RT_IDX_UNUSED014 ? "UNUSED14" :
  506. index == RT_IDX_PROMISCUOUS_SLOT ? "PROMISCUOUS" :
  507. "(Bad index != RT_IDX)",
  508. enable ? "to" : "from");
  509. switch (mask) {
  510. case RT_IDX_CAM_HIT:
  511. {
  512. value = RT_IDX_DST_CAM_Q | /* dest */
  513. RT_IDX_TYPE_NICQ | /* type */
  514. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  515. break;
  516. }
  517. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  518. {
  519. value = RT_IDX_DST_DFLT_Q | /* dest */
  520. RT_IDX_TYPE_NICQ | /* type */
  521. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  522. break;
  523. }
  524. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  525. {
  526. value = RT_IDX_DST_DFLT_Q | /* dest */
  527. RT_IDX_TYPE_NICQ | /* type */
  528. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  529. break;
  530. }
  531. case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
  532. {
  533. value = RT_IDX_DST_DFLT_Q | /* dest */
  534. RT_IDX_TYPE_NICQ | /* type */
  535. (RT_IDX_IP_CSUM_ERR_SLOT <<
  536. RT_IDX_IDX_SHIFT); /* index */
  537. break;
  538. }
  539. case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
  540. {
  541. value = RT_IDX_DST_DFLT_Q | /* dest */
  542. RT_IDX_TYPE_NICQ | /* type */
  543. (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
  544. RT_IDX_IDX_SHIFT); /* index */
  545. break;
  546. }
  547. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  548. {
  549. value = RT_IDX_DST_DFLT_Q | /* dest */
  550. RT_IDX_TYPE_NICQ | /* type */
  551. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  552. break;
  553. }
  554. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  555. {
  556. value = RT_IDX_DST_DFLT_Q | /* dest */
  557. RT_IDX_TYPE_NICQ | /* type */
  558. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  559. break;
  560. }
  561. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  562. {
  563. value = RT_IDX_DST_DFLT_Q | /* dest */
  564. RT_IDX_TYPE_NICQ | /* type */
  565. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  566. break;
  567. }
  568. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  569. {
  570. value = RT_IDX_DST_RSS | /* dest */
  571. RT_IDX_TYPE_NICQ | /* type */
  572. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  573. break;
  574. }
  575. case 0: /* Clear the E-bit on an entry. */
  576. {
  577. value = RT_IDX_DST_DFLT_Q | /* dest */
  578. RT_IDX_TYPE_NICQ | /* type */
  579. (index << RT_IDX_IDX_SHIFT);/* index */
  580. break;
  581. }
  582. default:
  583. netif_err(qdev, ifup, qdev->ndev,
  584. "Mask type %d not yet supported.\n", mask);
  585. status = -EPERM;
  586. goto exit;
  587. }
  588. if (value) {
  589. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  590. if (status)
  591. goto exit;
  592. value |= (enable ? RT_IDX_E : 0);
  593. ql_write32(qdev, RT_IDX, value);
  594. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  595. }
  596. exit:
  597. return status;
  598. }
  599. static void ql_enable_interrupts(struct ql_adapter *qdev)
  600. {
  601. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  602. }
  603. static void ql_disable_interrupts(struct ql_adapter *qdev)
  604. {
  605. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  606. }
  607. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  608. * Otherwise, we may have multiple outstanding workers and don't want to
  609. * enable until the last one finishes. In this case, the irq_cnt gets
  610. * incremented everytime we queue a worker and decremented everytime
  611. * a worker finishes. Once it hits zero we enable the interrupt.
  612. */
  613. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  614. {
  615. u32 var = 0;
  616. unsigned long hw_flags = 0;
  617. struct intr_context *ctx = qdev->intr_context + intr;
  618. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  619. /* Always enable if we're MSIX multi interrupts and
  620. * it's not the default (zeroeth) interrupt.
  621. */
  622. ql_write32(qdev, INTR_EN,
  623. ctx->intr_en_mask);
  624. var = ql_read32(qdev, STS);
  625. return var;
  626. }
  627. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  628. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  629. ql_write32(qdev, INTR_EN,
  630. ctx->intr_en_mask);
  631. var = ql_read32(qdev, STS);
  632. }
  633. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  634. return var;
  635. }
  636. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  637. {
  638. u32 var = 0;
  639. struct intr_context *ctx;
  640. /* HW disables for us if we're MSIX multi interrupts and
  641. * it's not the default (zeroeth) interrupt.
  642. */
  643. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  644. return 0;
  645. ctx = qdev->intr_context + intr;
  646. spin_lock(&qdev->hw_lock);
  647. if (!atomic_read(&ctx->irq_cnt)) {
  648. ql_write32(qdev, INTR_EN,
  649. ctx->intr_dis_mask);
  650. var = ql_read32(qdev, STS);
  651. }
  652. atomic_inc(&ctx->irq_cnt);
  653. spin_unlock(&qdev->hw_lock);
  654. return var;
  655. }
  656. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  657. {
  658. int i;
  659. for (i = 0; i < qdev->intr_count; i++) {
  660. /* The enable call does a atomic_dec_and_test
  661. * and enables only if the result is zero.
  662. * So we precharge it here.
  663. */
  664. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  665. i == 0))
  666. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  667. ql_enable_completion_interrupt(qdev, i);
  668. }
  669. }
  670. static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
  671. {
  672. int status, i;
  673. u16 csum = 0;
  674. __le16 *flash = (__le16 *)&qdev->flash;
  675. status = strncmp((char *)&qdev->flash, str, 4);
  676. if (status) {
  677. netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
  678. return status;
  679. }
  680. for (i = 0; i < size; i++)
  681. csum += le16_to_cpu(*flash++);
  682. if (csum)
  683. netif_err(qdev, ifup, qdev->ndev,
  684. "Invalid flash checksum, csum = 0x%.04x.\n", csum);
  685. return csum;
  686. }
  687. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
  688. {
  689. int status = 0;
  690. /* wait for reg to come ready */
  691. status = ql_wait_reg_rdy(qdev,
  692. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  693. if (status)
  694. goto exit;
  695. /* set up for reg read */
  696. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  697. /* wait for reg to come ready */
  698. status = ql_wait_reg_rdy(qdev,
  699. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  700. if (status)
  701. goto exit;
  702. /* This data is stored on flash as an array of
  703. * __le32. Since ql_read32() returns cpu endian
  704. * we need to swap it back.
  705. */
  706. *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
  707. exit:
  708. return status;
  709. }
  710. static int ql_get_8000_flash_params(struct ql_adapter *qdev)
  711. {
  712. u32 i, size;
  713. int status;
  714. __le32 *p = (__le32 *)&qdev->flash;
  715. u32 offset;
  716. u8 mac_addr[6];
  717. /* Get flash offset for function and adjust
  718. * for dword access.
  719. */
  720. if (!qdev->port)
  721. offset = FUNC0_FLASH_OFFSET / sizeof(u32);
  722. else
  723. offset = FUNC1_FLASH_OFFSET / sizeof(u32);
  724. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  725. return -ETIMEDOUT;
  726. size = sizeof(struct flash_params_8000) / sizeof(u32);
  727. for (i = 0; i < size; i++, p++) {
  728. status = ql_read_flash_word(qdev, i+offset, p);
  729. if (status) {
  730. netif_err(qdev, ifup, qdev->ndev,
  731. "Error reading flash.\n");
  732. goto exit;
  733. }
  734. }
  735. status = ql_validate_flash(qdev,
  736. sizeof(struct flash_params_8000) / sizeof(u16),
  737. "8000");
  738. if (status) {
  739. netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
  740. status = -EINVAL;
  741. goto exit;
  742. }
  743. /* Extract either manufacturer or BOFM modified
  744. * MAC address.
  745. */
  746. if (qdev->flash.flash_params_8000.data_type1 == 2)
  747. memcpy(mac_addr,
  748. qdev->flash.flash_params_8000.mac_addr1,
  749. qdev->ndev->addr_len);
  750. else
  751. memcpy(mac_addr,
  752. qdev->flash.flash_params_8000.mac_addr,
  753. qdev->ndev->addr_len);
  754. if (!is_valid_ether_addr(mac_addr)) {
  755. netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
  756. status = -EINVAL;
  757. goto exit;
  758. }
  759. memcpy(qdev->ndev->dev_addr,
  760. mac_addr,
  761. qdev->ndev->addr_len);
  762. exit:
  763. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  764. return status;
  765. }
  766. static int ql_get_8012_flash_params(struct ql_adapter *qdev)
  767. {
  768. int i;
  769. int status;
  770. __le32 *p = (__le32 *)&qdev->flash;
  771. u32 offset = 0;
  772. u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
  773. /* Second function's parameters follow the first
  774. * function's.
  775. */
  776. if (qdev->port)
  777. offset = size;
  778. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  779. return -ETIMEDOUT;
  780. for (i = 0; i < size; i++, p++) {
  781. status = ql_read_flash_word(qdev, i+offset, p);
  782. if (status) {
  783. netif_err(qdev, ifup, qdev->ndev,
  784. "Error reading flash.\n");
  785. goto exit;
  786. }
  787. }
  788. status = ql_validate_flash(qdev,
  789. sizeof(struct flash_params_8012) / sizeof(u16),
  790. "8012");
  791. if (status) {
  792. netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
  793. status = -EINVAL;
  794. goto exit;
  795. }
  796. if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
  797. status = -EINVAL;
  798. goto exit;
  799. }
  800. memcpy(qdev->ndev->dev_addr,
  801. qdev->flash.flash_params_8012.mac_addr,
  802. qdev->ndev->addr_len);
  803. exit:
  804. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  805. return status;
  806. }
  807. /* xgmac register are located behind the xgmac_addr and xgmac_data
  808. * register pair. Each read/write requires us to wait for the ready
  809. * bit before reading/writing the data.
  810. */
  811. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  812. {
  813. int status;
  814. /* wait for reg to come ready */
  815. status = ql_wait_reg_rdy(qdev,
  816. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  817. if (status)
  818. return status;
  819. /* write the data to the data reg */
  820. ql_write32(qdev, XGMAC_DATA, data);
  821. /* trigger the write */
  822. ql_write32(qdev, XGMAC_ADDR, reg);
  823. return status;
  824. }
  825. /* xgmac register are located behind the xgmac_addr and xgmac_data
  826. * register pair. Each read/write requires us to wait for the ready
  827. * bit before reading/writing the data.
  828. */
  829. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  830. {
  831. int status = 0;
  832. /* wait for reg to come ready */
  833. status = ql_wait_reg_rdy(qdev,
  834. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  835. if (status)
  836. goto exit;
  837. /* set up for reg read */
  838. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  839. /* wait for reg to come ready */
  840. status = ql_wait_reg_rdy(qdev,
  841. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  842. if (status)
  843. goto exit;
  844. /* get the data */
  845. *data = ql_read32(qdev, XGMAC_DATA);
  846. exit:
  847. return status;
  848. }
  849. /* This is used for reading the 64-bit statistics regs. */
  850. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  851. {
  852. int status = 0;
  853. u32 hi = 0;
  854. u32 lo = 0;
  855. status = ql_read_xgmac_reg(qdev, reg, &lo);
  856. if (status)
  857. goto exit;
  858. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  859. if (status)
  860. goto exit;
  861. *data = (u64) lo | ((u64) hi << 32);
  862. exit:
  863. return status;
  864. }
  865. static int ql_8000_port_initialize(struct ql_adapter *qdev)
  866. {
  867. int status;
  868. /*
  869. * Get MPI firmware version for driver banner
  870. * and ethool info.
  871. */
  872. status = ql_mb_about_fw(qdev);
  873. if (status)
  874. goto exit;
  875. status = ql_mb_get_fw_state(qdev);
  876. if (status)
  877. goto exit;
  878. /* Wake up a worker to get/set the TX/RX frame sizes. */
  879. queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
  880. exit:
  881. return status;
  882. }
  883. /* Take the MAC Core out of reset.
  884. * Enable statistics counting.
  885. * Take the transmitter/receiver out of reset.
  886. * This functionality may be done in the MPI firmware at a
  887. * later date.
  888. */
  889. static int ql_8012_port_initialize(struct ql_adapter *qdev)
  890. {
  891. int status = 0;
  892. u32 data;
  893. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  894. /* Another function has the semaphore, so
  895. * wait for the port init bit to come ready.
  896. */
  897. netif_info(qdev, link, qdev->ndev,
  898. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  899. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  900. if (status) {
  901. netif_crit(qdev, link, qdev->ndev,
  902. "Port initialize timed out.\n");
  903. }
  904. return status;
  905. }
  906. netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
  907. /* Set the core reset. */
  908. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  909. if (status)
  910. goto end;
  911. data |= GLOBAL_CFG_RESET;
  912. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  913. if (status)
  914. goto end;
  915. /* Clear the core reset and turn on jumbo for receiver. */
  916. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  917. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  918. data |= GLOBAL_CFG_TX_STAT_EN;
  919. data |= GLOBAL_CFG_RX_STAT_EN;
  920. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  921. if (status)
  922. goto end;
  923. /* Enable transmitter, and clear it's reset. */
  924. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  925. if (status)
  926. goto end;
  927. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  928. data |= TX_CFG_EN; /* Enable the transmitter. */
  929. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  930. if (status)
  931. goto end;
  932. /* Enable receiver and clear it's reset. */
  933. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  934. if (status)
  935. goto end;
  936. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  937. data |= RX_CFG_EN; /* Enable the receiver. */
  938. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  939. if (status)
  940. goto end;
  941. /* Turn on jumbo. */
  942. status =
  943. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  944. if (status)
  945. goto end;
  946. status =
  947. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  948. if (status)
  949. goto end;
  950. /* Signal to the world that the port is enabled. */
  951. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  952. end:
  953. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  954. return status;
  955. }
  956. static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
  957. {
  958. return PAGE_SIZE << qdev->lbq_buf_order;
  959. }
  960. /* Get the next large buffer. */
  961. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  962. {
  963. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  964. rx_ring->lbq_curr_idx++;
  965. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  966. rx_ring->lbq_curr_idx = 0;
  967. rx_ring->lbq_free_cnt++;
  968. return lbq_desc;
  969. }
  970. static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
  971. struct rx_ring *rx_ring)
  972. {
  973. struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
  974. pci_dma_sync_single_for_cpu(qdev->pdev,
  975. dma_unmap_addr(lbq_desc, mapaddr),
  976. rx_ring->lbq_buf_size,
  977. PCI_DMA_FROMDEVICE);
  978. /* If it's the last chunk of our master page then
  979. * we unmap it.
  980. */
  981. if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
  982. == ql_lbq_block_size(qdev))
  983. pci_unmap_page(qdev->pdev,
  984. lbq_desc->p.pg_chunk.map,
  985. ql_lbq_block_size(qdev),
  986. PCI_DMA_FROMDEVICE);
  987. return lbq_desc;
  988. }
  989. /* Get the next small buffer. */
  990. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  991. {
  992. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  993. rx_ring->sbq_curr_idx++;
  994. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  995. rx_ring->sbq_curr_idx = 0;
  996. rx_ring->sbq_free_cnt++;
  997. return sbq_desc;
  998. }
  999. /* Update an rx ring index. */
  1000. static void ql_update_cq(struct rx_ring *rx_ring)
  1001. {
  1002. rx_ring->cnsmr_idx++;
  1003. rx_ring->curr_entry++;
  1004. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  1005. rx_ring->cnsmr_idx = 0;
  1006. rx_ring->curr_entry = rx_ring->cq_base;
  1007. }
  1008. }
  1009. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  1010. {
  1011. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  1012. }
  1013. static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
  1014. struct bq_desc *lbq_desc)
  1015. {
  1016. if (!rx_ring->pg_chunk.page) {
  1017. u64 map;
  1018. rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
  1019. GFP_ATOMIC,
  1020. qdev->lbq_buf_order);
  1021. if (unlikely(!rx_ring->pg_chunk.page)) {
  1022. netif_err(qdev, drv, qdev->ndev,
  1023. "page allocation failed.\n");
  1024. return -ENOMEM;
  1025. }
  1026. rx_ring->pg_chunk.offset = 0;
  1027. map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
  1028. 0, ql_lbq_block_size(qdev),
  1029. PCI_DMA_FROMDEVICE);
  1030. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1031. __free_pages(rx_ring->pg_chunk.page,
  1032. qdev->lbq_buf_order);
  1033. netif_err(qdev, drv, qdev->ndev,
  1034. "PCI mapping failed.\n");
  1035. return -ENOMEM;
  1036. }
  1037. rx_ring->pg_chunk.map = map;
  1038. rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
  1039. }
  1040. /* Copy the current master pg_chunk info
  1041. * to the current descriptor.
  1042. */
  1043. lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
  1044. /* Adjust the master page chunk for next
  1045. * buffer get.
  1046. */
  1047. rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
  1048. if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
  1049. rx_ring->pg_chunk.page = NULL;
  1050. lbq_desc->p.pg_chunk.last_flag = 1;
  1051. } else {
  1052. rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
  1053. get_page(rx_ring->pg_chunk.page);
  1054. lbq_desc->p.pg_chunk.last_flag = 0;
  1055. }
  1056. return 0;
  1057. }
  1058. /* Process (refill) a large buffer queue. */
  1059. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1060. {
  1061. u32 clean_idx = rx_ring->lbq_clean_idx;
  1062. u32 start_idx = clean_idx;
  1063. struct bq_desc *lbq_desc;
  1064. u64 map;
  1065. int i;
  1066. while (rx_ring->lbq_free_cnt > 32) {
  1067. for (i = 0; i < 16; i++) {
  1068. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1069. "lbq: try cleaning clean_idx = %d.\n",
  1070. clean_idx);
  1071. lbq_desc = &rx_ring->lbq[clean_idx];
  1072. if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
  1073. netif_err(qdev, ifup, qdev->ndev,
  1074. "Could not get a page chunk.\n");
  1075. return;
  1076. }
  1077. map = lbq_desc->p.pg_chunk.map +
  1078. lbq_desc->p.pg_chunk.offset;
  1079. dma_unmap_addr_set(lbq_desc, mapaddr, map);
  1080. dma_unmap_len_set(lbq_desc, maplen,
  1081. rx_ring->lbq_buf_size);
  1082. *lbq_desc->addr = cpu_to_le64(map);
  1083. pci_dma_sync_single_for_device(qdev->pdev, map,
  1084. rx_ring->lbq_buf_size,
  1085. PCI_DMA_FROMDEVICE);
  1086. clean_idx++;
  1087. if (clean_idx == rx_ring->lbq_len)
  1088. clean_idx = 0;
  1089. }
  1090. rx_ring->lbq_clean_idx = clean_idx;
  1091. rx_ring->lbq_prod_idx += 16;
  1092. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  1093. rx_ring->lbq_prod_idx = 0;
  1094. rx_ring->lbq_free_cnt -= 16;
  1095. }
  1096. if (start_idx != clean_idx) {
  1097. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1098. "lbq: updating prod idx = %d.\n",
  1099. rx_ring->lbq_prod_idx);
  1100. ql_write_db_reg(rx_ring->lbq_prod_idx,
  1101. rx_ring->lbq_prod_idx_db_reg);
  1102. }
  1103. }
  1104. /* Process (refill) a small buffer queue. */
  1105. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1106. {
  1107. u32 clean_idx = rx_ring->sbq_clean_idx;
  1108. u32 start_idx = clean_idx;
  1109. struct bq_desc *sbq_desc;
  1110. u64 map;
  1111. int i;
  1112. while (rx_ring->sbq_free_cnt > 16) {
  1113. for (i = 0; i < 16; i++) {
  1114. sbq_desc = &rx_ring->sbq[clean_idx];
  1115. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1116. "sbq: try cleaning clean_idx = %d.\n",
  1117. clean_idx);
  1118. if (sbq_desc->p.skb == NULL) {
  1119. netif_printk(qdev, rx_status, KERN_DEBUG,
  1120. qdev->ndev,
  1121. "sbq: getting new skb for index %d.\n",
  1122. sbq_desc->index);
  1123. sbq_desc->p.skb =
  1124. netdev_alloc_skb(qdev->ndev,
  1125. SMALL_BUFFER_SIZE);
  1126. if (sbq_desc->p.skb == NULL) {
  1127. netif_err(qdev, probe, qdev->ndev,
  1128. "Couldn't get an skb.\n");
  1129. rx_ring->sbq_clean_idx = clean_idx;
  1130. return;
  1131. }
  1132. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  1133. map = pci_map_single(qdev->pdev,
  1134. sbq_desc->p.skb->data,
  1135. rx_ring->sbq_buf_size,
  1136. PCI_DMA_FROMDEVICE);
  1137. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1138. netif_err(qdev, ifup, qdev->ndev,
  1139. "PCI mapping failed.\n");
  1140. rx_ring->sbq_clean_idx = clean_idx;
  1141. dev_kfree_skb_any(sbq_desc->p.skb);
  1142. sbq_desc->p.skb = NULL;
  1143. return;
  1144. }
  1145. dma_unmap_addr_set(sbq_desc, mapaddr, map);
  1146. dma_unmap_len_set(sbq_desc, maplen,
  1147. rx_ring->sbq_buf_size);
  1148. *sbq_desc->addr = cpu_to_le64(map);
  1149. }
  1150. clean_idx++;
  1151. if (clean_idx == rx_ring->sbq_len)
  1152. clean_idx = 0;
  1153. }
  1154. rx_ring->sbq_clean_idx = clean_idx;
  1155. rx_ring->sbq_prod_idx += 16;
  1156. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  1157. rx_ring->sbq_prod_idx = 0;
  1158. rx_ring->sbq_free_cnt -= 16;
  1159. }
  1160. if (start_idx != clean_idx) {
  1161. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1162. "sbq: updating prod idx = %d.\n",
  1163. rx_ring->sbq_prod_idx);
  1164. ql_write_db_reg(rx_ring->sbq_prod_idx,
  1165. rx_ring->sbq_prod_idx_db_reg);
  1166. }
  1167. }
  1168. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  1169. struct rx_ring *rx_ring)
  1170. {
  1171. ql_update_sbq(qdev, rx_ring);
  1172. ql_update_lbq(qdev, rx_ring);
  1173. }
  1174. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  1175. * fails at some stage, or from the interrupt when a tx completes.
  1176. */
  1177. static void ql_unmap_send(struct ql_adapter *qdev,
  1178. struct tx_ring_desc *tx_ring_desc, int mapped)
  1179. {
  1180. int i;
  1181. for (i = 0; i < mapped; i++) {
  1182. if (i == 0 || (i == 7 && mapped > 7)) {
  1183. /*
  1184. * Unmap the skb->data area, or the
  1185. * external sglist (AKA the Outbound
  1186. * Address List (OAL)).
  1187. * If its the zeroeth element, then it's
  1188. * the skb->data area. If it's the 7th
  1189. * element and there is more than 6 frags,
  1190. * then its an OAL.
  1191. */
  1192. if (i == 7) {
  1193. netif_printk(qdev, tx_done, KERN_DEBUG,
  1194. qdev->ndev,
  1195. "unmapping OAL area.\n");
  1196. }
  1197. pci_unmap_single(qdev->pdev,
  1198. dma_unmap_addr(&tx_ring_desc->map[i],
  1199. mapaddr),
  1200. dma_unmap_len(&tx_ring_desc->map[i],
  1201. maplen),
  1202. PCI_DMA_TODEVICE);
  1203. } else {
  1204. netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
  1205. "unmapping frag %d.\n", i);
  1206. pci_unmap_page(qdev->pdev,
  1207. dma_unmap_addr(&tx_ring_desc->map[i],
  1208. mapaddr),
  1209. dma_unmap_len(&tx_ring_desc->map[i],
  1210. maplen), PCI_DMA_TODEVICE);
  1211. }
  1212. }
  1213. }
  1214. /* Map the buffers for this transmit. This will return
  1215. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1216. */
  1217. static int ql_map_send(struct ql_adapter *qdev,
  1218. struct ob_mac_iocb_req *mac_iocb_ptr,
  1219. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  1220. {
  1221. int len = skb_headlen(skb);
  1222. dma_addr_t map;
  1223. int frag_idx, err, map_idx = 0;
  1224. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  1225. int frag_cnt = skb_shinfo(skb)->nr_frags;
  1226. if (frag_cnt) {
  1227. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  1228. "frag_cnt = %d.\n", frag_cnt);
  1229. }
  1230. /*
  1231. * Map the skb buffer first.
  1232. */
  1233. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1234. err = pci_dma_mapping_error(qdev->pdev, map);
  1235. if (err) {
  1236. netif_err(qdev, tx_queued, qdev->ndev,
  1237. "PCI mapping failed with error: %d\n", err);
  1238. return NETDEV_TX_BUSY;
  1239. }
  1240. tbd->len = cpu_to_le32(len);
  1241. tbd->addr = cpu_to_le64(map);
  1242. dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1243. dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  1244. map_idx++;
  1245. /*
  1246. * This loop fills the remainder of the 8 address descriptors
  1247. * in the IOCB. If there are more than 7 fragments, then the
  1248. * eighth address desc will point to an external list (OAL).
  1249. * When this happens, the remainder of the frags will be stored
  1250. * in this list.
  1251. */
  1252. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  1253. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  1254. tbd++;
  1255. if (frag_idx == 6 && frag_cnt > 7) {
  1256. /* Let's tack on an sglist.
  1257. * Our control block will now
  1258. * look like this:
  1259. * iocb->seg[0] = skb->data
  1260. * iocb->seg[1] = frag[0]
  1261. * iocb->seg[2] = frag[1]
  1262. * iocb->seg[3] = frag[2]
  1263. * iocb->seg[4] = frag[3]
  1264. * iocb->seg[5] = frag[4]
  1265. * iocb->seg[6] = frag[5]
  1266. * iocb->seg[7] = ptr to OAL (external sglist)
  1267. * oal->seg[0] = frag[6]
  1268. * oal->seg[1] = frag[7]
  1269. * oal->seg[2] = frag[8]
  1270. * oal->seg[3] = frag[9]
  1271. * oal->seg[4] = frag[10]
  1272. * etc...
  1273. */
  1274. /* Tack on the OAL in the eighth segment of IOCB. */
  1275. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1276. sizeof(struct oal),
  1277. PCI_DMA_TODEVICE);
  1278. err = pci_dma_mapping_error(qdev->pdev, map);
  1279. if (err) {
  1280. netif_err(qdev, tx_queued, qdev->ndev,
  1281. "PCI mapping outbound address list with error: %d\n",
  1282. err);
  1283. goto map_error;
  1284. }
  1285. tbd->addr = cpu_to_le64(map);
  1286. /*
  1287. * The length is the number of fragments
  1288. * that remain to be mapped times the length
  1289. * of our sglist (OAL).
  1290. */
  1291. tbd->len =
  1292. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1293. (frag_cnt - frag_idx)) | TX_DESC_C);
  1294. dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1295. map);
  1296. dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1297. sizeof(struct oal));
  1298. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1299. map_idx++;
  1300. }
  1301. map =
  1302. pci_map_page(qdev->pdev, frag->page,
  1303. frag->page_offset, frag->size,
  1304. PCI_DMA_TODEVICE);
  1305. err = pci_dma_mapping_error(qdev->pdev, map);
  1306. if (err) {
  1307. netif_err(qdev, tx_queued, qdev->ndev,
  1308. "PCI mapping frags failed with error: %d.\n",
  1309. err);
  1310. goto map_error;
  1311. }
  1312. tbd->addr = cpu_to_le64(map);
  1313. tbd->len = cpu_to_le32(frag->size);
  1314. dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1315. dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1316. frag->size);
  1317. }
  1318. /* Save the number of segments we've mapped. */
  1319. tx_ring_desc->map_cnt = map_idx;
  1320. /* Terminate the last segment. */
  1321. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1322. return NETDEV_TX_OK;
  1323. map_error:
  1324. /*
  1325. * If the first frag mapping failed, then i will be zero.
  1326. * This causes the unmap of the skb->data area. Otherwise
  1327. * we pass in the number of frags that mapped successfully
  1328. * so they can be umapped.
  1329. */
  1330. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1331. return NETDEV_TX_BUSY;
  1332. }
  1333. /* Process an inbound completion from an rx ring. */
  1334. static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
  1335. struct rx_ring *rx_ring,
  1336. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1337. u32 length,
  1338. u16 vlan_id)
  1339. {
  1340. struct sk_buff *skb;
  1341. struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1342. struct skb_frag_struct *rx_frag;
  1343. int nr_frags;
  1344. struct napi_struct *napi = &rx_ring->napi;
  1345. napi->dev = qdev->ndev;
  1346. skb = napi_get_frags(napi);
  1347. if (!skb) {
  1348. netif_err(qdev, drv, qdev->ndev,
  1349. "Couldn't get an skb, exiting.\n");
  1350. rx_ring->rx_dropped++;
  1351. put_page(lbq_desc->p.pg_chunk.page);
  1352. return;
  1353. }
  1354. prefetch(lbq_desc->p.pg_chunk.va);
  1355. rx_frag = skb_shinfo(skb)->frags;
  1356. nr_frags = skb_shinfo(skb)->nr_frags;
  1357. rx_frag += nr_frags;
  1358. rx_frag->page = lbq_desc->p.pg_chunk.page;
  1359. rx_frag->page_offset = lbq_desc->p.pg_chunk.offset;
  1360. rx_frag->size = length;
  1361. skb->len += length;
  1362. skb->data_len += length;
  1363. skb->truesize += length;
  1364. skb_shinfo(skb)->nr_frags++;
  1365. rx_ring->rx_packets++;
  1366. rx_ring->rx_bytes += length;
  1367. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1368. skb_record_rx_queue(skb, rx_ring->cq_id);
  1369. if (qdev->vlgrp && (vlan_id != 0xffff))
  1370. vlan_gro_frags(&rx_ring->napi, qdev->vlgrp, vlan_id);
  1371. else
  1372. napi_gro_frags(napi);
  1373. }
  1374. /* Process an inbound completion from an rx ring. */
  1375. static void ql_process_mac_rx_page(struct ql_adapter *qdev,
  1376. struct rx_ring *rx_ring,
  1377. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1378. u32 length,
  1379. u16 vlan_id)
  1380. {
  1381. struct net_device *ndev = qdev->ndev;
  1382. struct sk_buff *skb = NULL;
  1383. void *addr;
  1384. struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1385. struct napi_struct *napi = &rx_ring->napi;
  1386. skb = netdev_alloc_skb(ndev, length);
  1387. if (!skb) {
  1388. netif_err(qdev, drv, qdev->ndev,
  1389. "Couldn't get an skb, need to unwind!.\n");
  1390. rx_ring->rx_dropped++;
  1391. put_page(lbq_desc->p.pg_chunk.page);
  1392. return;
  1393. }
  1394. addr = lbq_desc->p.pg_chunk.va;
  1395. prefetch(addr);
  1396. /* Frame error, so drop the packet. */
  1397. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1398. netif_info(qdev, drv, qdev->ndev,
  1399. "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
  1400. rx_ring->rx_errors++;
  1401. goto err_out;
  1402. }
  1403. /* The max framesize filter on this chip is set higher than
  1404. * MTU since FCoE uses 2k frames.
  1405. */
  1406. if (skb->len > ndev->mtu + ETH_HLEN) {
  1407. netif_err(qdev, drv, qdev->ndev,
  1408. "Segment too small, dropping.\n");
  1409. rx_ring->rx_dropped++;
  1410. goto err_out;
  1411. }
  1412. memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
  1413. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1414. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
  1415. length);
  1416. skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
  1417. lbq_desc->p.pg_chunk.offset+ETH_HLEN,
  1418. length-ETH_HLEN);
  1419. skb->len += length-ETH_HLEN;
  1420. skb->data_len += length-ETH_HLEN;
  1421. skb->truesize += length-ETH_HLEN;
  1422. rx_ring->rx_packets++;
  1423. rx_ring->rx_bytes += skb->len;
  1424. skb->protocol = eth_type_trans(skb, ndev);
  1425. skb_checksum_none_assert(skb);
  1426. if (qdev->rx_csum &&
  1427. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1428. /* TCP frame. */
  1429. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1430. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1431. "TCP checksum done!\n");
  1432. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1433. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1434. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1435. /* Unfragmented ipv4 UDP frame. */
  1436. struct iphdr *iph = (struct iphdr *) skb->data;
  1437. if (!(iph->frag_off &
  1438. cpu_to_be16(IP_MF|IP_OFFSET))) {
  1439. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1440. netif_printk(qdev, rx_status, KERN_DEBUG,
  1441. qdev->ndev,
  1442. "TCP checksum done!\n");
  1443. }
  1444. }
  1445. }
  1446. skb_record_rx_queue(skb, rx_ring->cq_id);
  1447. if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
  1448. if (qdev->vlgrp && (vlan_id != 0xffff))
  1449. vlan_gro_receive(napi, qdev->vlgrp, vlan_id, skb);
  1450. else
  1451. napi_gro_receive(napi, skb);
  1452. } else {
  1453. if (qdev->vlgrp && (vlan_id != 0xffff))
  1454. vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
  1455. else
  1456. netif_receive_skb(skb);
  1457. }
  1458. return;
  1459. err_out:
  1460. dev_kfree_skb_any(skb);
  1461. put_page(lbq_desc->p.pg_chunk.page);
  1462. }
  1463. /* Process an inbound completion from an rx ring. */
  1464. static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
  1465. struct rx_ring *rx_ring,
  1466. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1467. u32 length,
  1468. u16 vlan_id)
  1469. {
  1470. struct net_device *ndev = qdev->ndev;
  1471. struct sk_buff *skb = NULL;
  1472. struct sk_buff *new_skb = NULL;
  1473. struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
  1474. skb = sbq_desc->p.skb;
  1475. /* Allocate new_skb and copy */
  1476. new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
  1477. if (new_skb == NULL) {
  1478. netif_err(qdev, probe, qdev->ndev,
  1479. "No skb available, drop the packet.\n");
  1480. rx_ring->rx_dropped++;
  1481. return;
  1482. }
  1483. skb_reserve(new_skb, NET_IP_ALIGN);
  1484. memcpy(skb_put(new_skb, length), skb->data, length);
  1485. skb = new_skb;
  1486. /* Frame error, so drop the packet. */
  1487. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1488. netif_info(qdev, drv, qdev->ndev,
  1489. "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
  1490. dev_kfree_skb_any(skb);
  1491. rx_ring->rx_errors++;
  1492. return;
  1493. }
  1494. /* loopback self test for ethtool */
  1495. if (test_bit(QL_SELFTEST, &qdev->flags)) {
  1496. ql_check_lb_frame(qdev, skb);
  1497. dev_kfree_skb_any(skb);
  1498. return;
  1499. }
  1500. /* The max framesize filter on this chip is set higher than
  1501. * MTU since FCoE uses 2k frames.
  1502. */
  1503. if (skb->len > ndev->mtu + ETH_HLEN) {
  1504. dev_kfree_skb_any(skb);
  1505. rx_ring->rx_dropped++;
  1506. return;
  1507. }
  1508. prefetch(skb->data);
  1509. skb->dev = ndev;
  1510. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1511. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1512. "%s Multicast.\n",
  1513. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1514. IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
  1515. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1516. IB_MAC_IOCB_RSP_M_REG ? "Registered" :
  1517. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1518. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1519. }
  1520. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
  1521. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1522. "Promiscuous Packet.\n");
  1523. rx_ring->rx_packets++;
  1524. rx_ring->rx_bytes += skb->len;
  1525. skb->protocol = eth_type_trans(skb, ndev);
  1526. skb_checksum_none_assert(skb);
  1527. /* If rx checksum is on, and there are no
  1528. * csum or frame errors.
  1529. */
  1530. if (qdev->rx_csum &&
  1531. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1532. /* TCP frame. */
  1533. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1534. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1535. "TCP checksum done!\n");
  1536. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1537. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1538. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1539. /* Unfragmented ipv4 UDP frame. */
  1540. struct iphdr *iph = (struct iphdr *) skb->data;
  1541. if (!(iph->frag_off &
  1542. ntohs(IP_MF|IP_OFFSET))) {
  1543. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1544. netif_printk(qdev, rx_status, KERN_DEBUG,
  1545. qdev->ndev,
  1546. "TCP checksum done!\n");
  1547. }
  1548. }
  1549. }
  1550. skb_record_rx_queue(skb, rx_ring->cq_id);
  1551. if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
  1552. if (qdev->vlgrp && (vlan_id != 0xffff))
  1553. vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
  1554. vlan_id, skb);
  1555. else
  1556. napi_gro_receive(&rx_ring->napi, skb);
  1557. } else {
  1558. if (qdev->vlgrp && (vlan_id != 0xffff))
  1559. vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
  1560. else
  1561. netif_receive_skb(skb);
  1562. }
  1563. }
  1564. static void ql_realign_skb(struct sk_buff *skb, int len)
  1565. {
  1566. void *temp_addr = skb->data;
  1567. /* Undo the skb_reserve(skb,32) we did before
  1568. * giving to hardware, and realign data on
  1569. * a 2-byte boundary.
  1570. */
  1571. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1572. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1573. skb_copy_to_linear_data(skb, temp_addr,
  1574. (unsigned int)len);
  1575. }
  1576. /*
  1577. * This function builds an skb for the given inbound
  1578. * completion. It will be rewritten for readability in the near
  1579. * future, but for not it works well.
  1580. */
  1581. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1582. struct rx_ring *rx_ring,
  1583. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1584. {
  1585. struct bq_desc *lbq_desc;
  1586. struct bq_desc *sbq_desc;
  1587. struct sk_buff *skb = NULL;
  1588. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1589. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1590. /*
  1591. * Handle the header buffer if present.
  1592. */
  1593. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1594. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1595. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1596. "Header of %d bytes in small buffer.\n", hdr_len);
  1597. /*
  1598. * Headers fit nicely into a small buffer.
  1599. */
  1600. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1601. pci_unmap_single(qdev->pdev,
  1602. dma_unmap_addr(sbq_desc, mapaddr),
  1603. dma_unmap_len(sbq_desc, maplen),
  1604. PCI_DMA_FROMDEVICE);
  1605. skb = sbq_desc->p.skb;
  1606. ql_realign_skb(skb, hdr_len);
  1607. skb_put(skb, hdr_len);
  1608. sbq_desc->p.skb = NULL;
  1609. }
  1610. /*
  1611. * Handle the data buffer(s).
  1612. */
  1613. if (unlikely(!length)) { /* Is there data too? */
  1614. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1615. "No Data buffer in this packet.\n");
  1616. return skb;
  1617. }
  1618. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1619. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1620. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1621. "Headers in small, data of %d bytes in small, combine them.\n",
  1622. length);
  1623. /*
  1624. * Data is less than small buffer size so it's
  1625. * stuffed in a small buffer.
  1626. * For this case we append the data
  1627. * from the "data" small buffer to the "header" small
  1628. * buffer.
  1629. */
  1630. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1631. pci_dma_sync_single_for_cpu(qdev->pdev,
  1632. dma_unmap_addr
  1633. (sbq_desc, mapaddr),
  1634. dma_unmap_len
  1635. (sbq_desc, maplen),
  1636. PCI_DMA_FROMDEVICE);
  1637. memcpy(skb_put(skb, length),
  1638. sbq_desc->p.skb->data, length);
  1639. pci_dma_sync_single_for_device(qdev->pdev,
  1640. dma_unmap_addr
  1641. (sbq_desc,
  1642. mapaddr),
  1643. dma_unmap_len
  1644. (sbq_desc,
  1645. maplen),
  1646. PCI_DMA_FROMDEVICE);
  1647. } else {
  1648. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1649. "%d bytes in a single small buffer.\n",
  1650. length);
  1651. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1652. skb = sbq_desc->p.skb;
  1653. ql_realign_skb(skb, length);
  1654. skb_put(skb, length);
  1655. pci_unmap_single(qdev->pdev,
  1656. dma_unmap_addr(sbq_desc,
  1657. mapaddr),
  1658. dma_unmap_len(sbq_desc,
  1659. maplen),
  1660. PCI_DMA_FROMDEVICE);
  1661. sbq_desc->p.skb = NULL;
  1662. }
  1663. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1664. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1665. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1666. "Header in small, %d bytes in large. Chain large to small!\n",
  1667. length);
  1668. /*
  1669. * The data is in a single large buffer. We
  1670. * chain it to the header buffer's skb and let
  1671. * it rip.
  1672. */
  1673. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1674. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1675. "Chaining page at offset = %d, for %d bytes to skb.\n",
  1676. lbq_desc->p.pg_chunk.offset, length);
  1677. skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
  1678. lbq_desc->p.pg_chunk.offset,
  1679. length);
  1680. skb->len += length;
  1681. skb->data_len += length;
  1682. skb->truesize += length;
  1683. } else {
  1684. /*
  1685. * The headers and data are in a single large buffer. We
  1686. * copy it to a new skb and let it go. This can happen with
  1687. * jumbo mtu on a non-TCP/UDP frame.
  1688. */
  1689. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1690. skb = netdev_alloc_skb(qdev->ndev, length);
  1691. if (skb == NULL) {
  1692. netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
  1693. "No skb available, drop the packet.\n");
  1694. return NULL;
  1695. }
  1696. pci_unmap_page(qdev->pdev,
  1697. dma_unmap_addr(lbq_desc,
  1698. mapaddr),
  1699. dma_unmap_len(lbq_desc, maplen),
  1700. PCI_DMA_FROMDEVICE);
  1701. skb_reserve(skb, NET_IP_ALIGN);
  1702. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1703. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
  1704. length);
  1705. skb_fill_page_desc(skb, 0,
  1706. lbq_desc->p.pg_chunk.page,
  1707. lbq_desc->p.pg_chunk.offset,
  1708. length);
  1709. skb->len += length;
  1710. skb->data_len += length;
  1711. skb->truesize += length;
  1712. length -= length;
  1713. __pskb_pull_tail(skb,
  1714. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1715. VLAN_ETH_HLEN : ETH_HLEN);
  1716. }
  1717. } else {
  1718. /*
  1719. * The data is in a chain of large buffers
  1720. * pointed to by a small buffer. We loop
  1721. * thru and chain them to the our small header
  1722. * buffer's skb.
  1723. * frags: There are 18 max frags and our small
  1724. * buffer will hold 32 of them. The thing is,
  1725. * we'll use 3 max for our 9000 byte jumbo
  1726. * frames. If the MTU goes up we could
  1727. * eventually be in trouble.
  1728. */
  1729. int size, i = 0;
  1730. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1731. pci_unmap_single(qdev->pdev,
  1732. dma_unmap_addr(sbq_desc, mapaddr),
  1733. dma_unmap_len(sbq_desc, maplen),
  1734. PCI_DMA_FROMDEVICE);
  1735. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1736. /*
  1737. * This is an non TCP/UDP IP frame, so
  1738. * the headers aren't split into a small
  1739. * buffer. We have to use the small buffer
  1740. * that contains our sg list as our skb to
  1741. * send upstairs. Copy the sg list here to
  1742. * a local buffer and use it to find the
  1743. * pages to chain.
  1744. */
  1745. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1746. "%d bytes of headers & data in chain of large.\n",
  1747. length);
  1748. skb = sbq_desc->p.skb;
  1749. sbq_desc->p.skb = NULL;
  1750. skb_reserve(skb, NET_IP_ALIGN);
  1751. }
  1752. while (length > 0) {
  1753. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1754. size = (length < rx_ring->lbq_buf_size) ? length :
  1755. rx_ring->lbq_buf_size;
  1756. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1757. "Adding page %d to skb for %d bytes.\n",
  1758. i, size);
  1759. skb_fill_page_desc(skb, i,
  1760. lbq_desc->p.pg_chunk.page,
  1761. lbq_desc->p.pg_chunk.offset,
  1762. size);
  1763. skb->len += size;
  1764. skb->data_len += size;
  1765. skb->truesize += size;
  1766. length -= size;
  1767. i++;
  1768. }
  1769. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1770. VLAN_ETH_HLEN : ETH_HLEN);
  1771. }
  1772. return skb;
  1773. }
  1774. /* Process an inbound completion from an rx ring. */
  1775. static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
  1776. struct rx_ring *rx_ring,
  1777. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1778. u16 vlan_id)
  1779. {
  1780. struct net_device *ndev = qdev->ndev;
  1781. struct sk_buff *skb = NULL;
  1782. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1783. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1784. if (unlikely(!skb)) {
  1785. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1786. "No skb available, drop packet.\n");
  1787. rx_ring->rx_dropped++;
  1788. return;
  1789. }
  1790. /* Frame error, so drop the packet. */
  1791. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1792. netif_info(qdev, drv, qdev->ndev,
  1793. "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
  1794. dev_kfree_skb_any(skb);
  1795. rx_ring->rx_errors++;
  1796. return;
  1797. }
  1798. /* The max framesize filter on this chip is set higher than
  1799. * MTU since FCoE uses 2k frames.
  1800. */
  1801. if (skb->len > ndev->mtu + ETH_HLEN) {
  1802. dev_kfree_skb_any(skb);
  1803. rx_ring->rx_dropped++;
  1804. return;
  1805. }
  1806. /* loopback self test for ethtool */
  1807. if (test_bit(QL_SELFTEST, &qdev->flags)) {
  1808. ql_check_lb_frame(qdev, skb);
  1809. dev_kfree_skb_any(skb);
  1810. return;
  1811. }
  1812. prefetch(skb->data);
  1813. skb->dev = ndev;
  1814. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1815. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
  1816. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1817. IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
  1818. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1819. IB_MAC_IOCB_RSP_M_REG ? "Registered" :
  1820. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1821. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1822. rx_ring->rx_multicast++;
  1823. }
  1824. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1825. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1826. "Promiscuous Packet.\n");
  1827. }
  1828. skb->protocol = eth_type_trans(skb, ndev);
  1829. skb_checksum_none_assert(skb);
  1830. /* If rx checksum is on, and there are no
  1831. * csum or frame errors.
  1832. */
  1833. if (qdev->rx_csum &&
  1834. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1835. /* TCP frame. */
  1836. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1837. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1838. "TCP checksum done!\n");
  1839. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1840. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1841. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1842. /* Unfragmented ipv4 UDP frame. */
  1843. struct iphdr *iph = (struct iphdr *) skb->data;
  1844. if (!(iph->frag_off &
  1845. ntohs(IP_MF|IP_OFFSET))) {
  1846. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1847. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1848. "TCP checksum done!\n");
  1849. }
  1850. }
  1851. }
  1852. rx_ring->rx_packets++;
  1853. rx_ring->rx_bytes += skb->len;
  1854. skb_record_rx_queue(skb, rx_ring->cq_id);
  1855. if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
  1856. if (qdev->vlgrp &&
  1857. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1858. (vlan_id != 0))
  1859. vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
  1860. vlan_id, skb);
  1861. else
  1862. napi_gro_receive(&rx_ring->napi, skb);
  1863. } else {
  1864. if (qdev->vlgrp &&
  1865. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1866. (vlan_id != 0))
  1867. vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
  1868. else
  1869. netif_receive_skb(skb);
  1870. }
  1871. }
  1872. /* Process an inbound completion from an rx ring. */
  1873. static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1874. struct rx_ring *rx_ring,
  1875. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1876. {
  1877. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1878. u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1879. ((le16_to_cpu(ib_mac_rsp->vlan_id) &
  1880. IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
  1881. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1882. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
  1883. /* The data and headers are split into
  1884. * separate buffers.
  1885. */
  1886. ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
  1887. vlan_id);
  1888. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1889. /* The data fit in a single small buffer.
  1890. * Allocate a new skb, copy the data and
  1891. * return the buffer to the free pool.
  1892. */
  1893. ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
  1894. length, vlan_id);
  1895. } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
  1896. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
  1897. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
  1898. /* TCP packet in a page chunk that's been checksummed.
  1899. * Tack it on to our GRO skb and let it go.
  1900. */
  1901. ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
  1902. length, vlan_id);
  1903. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1904. /* Non-TCP packet in a page chunk. Allocate an
  1905. * skb, tack it on frags, and send it up.
  1906. */
  1907. ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
  1908. length, vlan_id);
  1909. } else {
  1910. /* Non-TCP/UDP large frames that span multiple buffers
  1911. * can be processed corrrectly by the split frame logic.
  1912. */
  1913. ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
  1914. vlan_id);
  1915. }
  1916. return (unsigned long)length;
  1917. }
  1918. /* Process an outbound completion from an rx ring. */
  1919. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1920. struct ob_mac_iocb_rsp *mac_rsp)
  1921. {
  1922. struct tx_ring *tx_ring;
  1923. struct tx_ring_desc *tx_ring_desc;
  1924. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1925. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1926. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1927. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1928. tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
  1929. tx_ring->tx_packets++;
  1930. dev_kfree_skb(tx_ring_desc->skb);
  1931. tx_ring_desc->skb = NULL;
  1932. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1933. OB_MAC_IOCB_RSP_S |
  1934. OB_MAC_IOCB_RSP_L |
  1935. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1936. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1937. netif_warn(qdev, tx_done, qdev->ndev,
  1938. "Total descriptor length did not match transfer length.\n");
  1939. }
  1940. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1941. netif_warn(qdev, tx_done, qdev->ndev,
  1942. "Frame too short to be valid, not sent.\n");
  1943. }
  1944. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1945. netif_warn(qdev, tx_done, qdev->ndev,
  1946. "Frame too long, but sent anyway.\n");
  1947. }
  1948. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1949. netif_warn(qdev, tx_done, qdev->ndev,
  1950. "PCI backplane error. Frame not sent.\n");
  1951. }
  1952. }
  1953. atomic_inc(&tx_ring->tx_count);
  1954. }
  1955. /* Fire up a handler to reset the MPI processor. */
  1956. void ql_queue_fw_error(struct ql_adapter *qdev)
  1957. {
  1958. ql_link_off(qdev);
  1959. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1960. }
  1961. void ql_queue_asic_error(struct ql_adapter *qdev)
  1962. {
  1963. ql_link_off(qdev);
  1964. ql_disable_interrupts(qdev);
  1965. /* Clear adapter up bit to signal the recovery
  1966. * process that it shouldn't kill the reset worker
  1967. * thread
  1968. */
  1969. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  1970. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1971. }
  1972. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1973. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1974. {
  1975. switch (ib_ae_rsp->event) {
  1976. case MGMT_ERR_EVENT:
  1977. netif_err(qdev, rx_err, qdev->ndev,
  1978. "Management Processor Fatal Error.\n");
  1979. ql_queue_fw_error(qdev);
  1980. return;
  1981. case CAM_LOOKUP_ERR_EVENT:
  1982. netif_err(qdev, link, qdev->ndev,
  1983. "Multiple CAM hits lookup occurred.\n");
  1984. netif_err(qdev, drv, qdev->ndev,
  1985. "This event shouldn't occur.\n");
  1986. ql_queue_asic_error(qdev);
  1987. return;
  1988. case SOFT_ECC_ERROR_EVENT:
  1989. netif_err(qdev, rx_err, qdev->ndev,
  1990. "Soft ECC error detected.\n");
  1991. ql_queue_asic_error(qdev);
  1992. break;
  1993. case PCI_ERR_ANON_BUF_RD:
  1994. netif_err(qdev, rx_err, qdev->ndev,
  1995. "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
  1996. ib_ae_rsp->q_id);
  1997. ql_queue_asic_error(qdev);
  1998. break;
  1999. default:
  2000. netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
  2001. ib_ae_rsp->event);
  2002. ql_queue_asic_error(qdev);
  2003. break;
  2004. }
  2005. }
  2006. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  2007. {
  2008. struct ql_adapter *qdev = rx_ring->qdev;
  2009. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2010. struct ob_mac_iocb_rsp *net_rsp = NULL;
  2011. int count = 0;
  2012. struct tx_ring *tx_ring;
  2013. /* While there are entries in the completion queue. */
  2014. while (prod != rx_ring->cnsmr_idx) {
  2015. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2016. "cq_id = %d, prod = %d, cnsmr = %d.\n.",
  2017. rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
  2018. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  2019. rmb();
  2020. switch (net_rsp->opcode) {
  2021. case OPCODE_OB_MAC_TSO_IOCB:
  2022. case OPCODE_OB_MAC_IOCB:
  2023. ql_process_mac_tx_intr(qdev, net_rsp);
  2024. break;
  2025. default:
  2026. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2027. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  2028. net_rsp->opcode);
  2029. }
  2030. count++;
  2031. ql_update_cq(rx_ring);
  2032. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2033. }
  2034. if (!net_rsp)
  2035. return 0;
  2036. ql_write_cq_idx(rx_ring);
  2037. tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  2038. if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
  2039. if (atomic_read(&tx_ring->queue_stopped) &&
  2040. (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  2041. /*
  2042. * The queue got stopped because the tx_ring was full.
  2043. * Wake it up, because it's now at least 25% empty.
  2044. */
  2045. netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
  2046. }
  2047. return count;
  2048. }
  2049. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  2050. {
  2051. struct ql_adapter *qdev = rx_ring->qdev;
  2052. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2053. struct ql_net_rsp_iocb *net_rsp;
  2054. int count = 0;
  2055. /* While there are entries in the completion queue. */
  2056. while (prod != rx_ring->cnsmr_idx) {
  2057. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2058. "cq_id = %d, prod = %d, cnsmr = %d.\n.",
  2059. rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
  2060. net_rsp = rx_ring->curr_entry;
  2061. rmb();
  2062. switch (net_rsp->opcode) {
  2063. case OPCODE_IB_MAC_IOCB:
  2064. ql_process_mac_rx_intr(qdev, rx_ring,
  2065. (struct ib_mac_iocb_rsp *)
  2066. net_rsp);
  2067. break;
  2068. case OPCODE_IB_AE_IOCB:
  2069. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  2070. net_rsp);
  2071. break;
  2072. default:
  2073. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2074. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  2075. net_rsp->opcode);
  2076. break;
  2077. }
  2078. count++;
  2079. ql_update_cq(rx_ring);
  2080. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2081. if (count == budget)
  2082. break;
  2083. }
  2084. ql_update_buffer_queues(qdev, rx_ring);
  2085. ql_write_cq_idx(rx_ring);
  2086. return count;
  2087. }
  2088. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  2089. {
  2090. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  2091. struct ql_adapter *qdev = rx_ring->qdev;
  2092. struct rx_ring *trx_ring;
  2093. int i, work_done = 0;
  2094. struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
  2095. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2096. "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
  2097. /* Service the TX rings first. They start
  2098. * right after the RSS rings. */
  2099. for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
  2100. trx_ring = &qdev->rx_ring[i];
  2101. /* If this TX completion ring belongs to this vector and
  2102. * it's not empty then service it.
  2103. */
  2104. if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
  2105. (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
  2106. trx_ring->cnsmr_idx)) {
  2107. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2108. "%s: Servicing TX completion ring %d.\n",
  2109. __func__, trx_ring->cq_id);
  2110. ql_clean_outbound_rx_ring(trx_ring);
  2111. }
  2112. }
  2113. /*
  2114. * Now service the RSS ring if it's active.
  2115. */
  2116. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  2117. rx_ring->cnsmr_idx) {
  2118. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2119. "%s: Servicing RX completion ring %d.\n",
  2120. __func__, rx_ring->cq_id);
  2121. work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  2122. }
  2123. if (work_done < budget) {
  2124. napi_complete(napi);
  2125. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  2126. }
  2127. return work_done;
  2128. }
  2129. static void qlge_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  2130. {
  2131. struct ql_adapter *qdev = netdev_priv(ndev);
  2132. qdev->vlgrp = grp;
  2133. if (grp) {
  2134. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2135. "Turning on VLAN in NIC_RCV_CFG.\n");
  2136. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  2137. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  2138. } else {
  2139. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2140. "Turning off VLAN in NIC_RCV_CFG.\n");
  2141. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  2142. }
  2143. }
  2144. static void qlge_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  2145. {
  2146. struct ql_adapter *qdev = netdev_priv(ndev);
  2147. u32 enable_bit = MAC_ADDR_E;
  2148. int status;
  2149. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2150. if (status)
  2151. return;
  2152. if (ql_set_mac_addr_reg
  2153. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  2154. netif_err(qdev, ifup, qdev->ndev,
  2155. "Failed to init vlan address.\n");
  2156. }
  2157. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2158. }
  2159. static void qlge_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  2160. {
  2161. struct ql_adapter *qdev = netdev_priv(ndev);
  2162. u32 enable_bit = 0;
  2163. int status;
  2164. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2165. if (status)
  2166. return;
  2167. if (ql_set_mac_addr_reg
  2168. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  2169. netif_err(qdev, ifup, qdev->ndev,
  2170. "Failed to clear vlan address.\n");
  2171. }
  2172. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2173. }
  2174. static void qlge_restore_vlan(struct ql_adapter *qdev)
  2175. {
  2176. qlge_vlan_rx_register(qdev->ndev, qdev->vlgrp);
  2177. if (qdev->vlgrp) {
  2178. u16 vid;
  2179. for (vid = 0; vid < VLAN_N_VID; vid++) {
  2180. if (!vlan_group_get_device(qdev->vlgrp, vid))
  2181. continue;
  2182. qlge_vlan_rx_add_vid(qdev->ndev, vid);
  2183. }
  2184. }
  2185. }
  2186. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  2187. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  2188. {
  2189. struct rx_ring *rx_ring = dev_id;
  2190. napi_schedule(&rx_ring->napi);
  2191. return IRQ_HANDLED;
  2192. }
  2193. /* This handles a fatal error, MPI activity, and the default
  2194. * rx_ring in an MSI-X multiple vector environment.
  2195. * In MSI/Legacy environment it also process the rest of
  2196. * the rx_rings.
  2197. */
  2198. static irqreturn_t qlge_isr(int irq, void *dev_id)
  2199. {
  2200. struct rx_ring *rx_ring = dev_id;
  2201. struct ql_adapter *qdev = rx_ring->qdev;
  2202. struct intr_context *intr_context = &qdev->intr_context[0];
  2203. u32 var;
  2204. int work_done = 0;
  2205. spin_lock(&qdev->hw_lock);
  2206. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  2207. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2208. "Shared Interrupt, Not ours!\n");
  2209. spin_unlock(&qdev->hw_lock);
  2210. return IRQ_NONE;
  2211. }
  2212. spin_unlock(&qdev->hw_lock);
  2213. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  2214. /*
  2215. * Check for fatal error.
  2216. */
  2217. if (var & STS_FE) {
  2218. ql_queue_asic_error(qdev);
  2219. netif_err(qdev, intr, qdev->ndev,
  2220. "Got fatal error, STS = %x.\n", var);
  2221. var = ql_read32(qdev, ERR_STS);
  2222. netif_err(qdev, intr, qdev->ndev,
  2223. "Resetting chip. Error Status Register = 0x%x\n", var);
  2224. return IRQ_HANDLED;
  2225. }
  2226. /*
  2227. * Check MPI processor activity.
  2228. */
  2229. if ((var & STS_PI) &&
  2230. (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
  2231. /*
  2232. * We've got an async event or mailbox completion.
  2233. * Handle it and clear the source of the interrupt.
  2234. */
  2235. netif_err(qdev, intr, qdev->ndev,
  2236. "Got MPI processor interrupt.\n");
  2237. ql_disable_completion_interrupt(qdev, intr_context->intr);
  2238. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
  2239. queue_delayed_work_on(smp_processor_id(),
  2240. qdev->workqueue, &qdev->mpi_work, 0);
  2241. work_done++;
  2242. }
  2243. /*
  2244. * Get the bit-mask that shows the active queues for this
  2245. * pass. Compare it to the queues that this irq services
  2246. * and call napi if there's a match.
  2247. */
  2248. var = ql_read32(qdev, ISR1);
  2249. if (var & intr_context->irq_mask) {
  2250. netif_info(qdev, intr, qdev->ndev,
  2251. "Waking handler for rx_ring[0].\n");
  2252. ql_disable_completion_interrupt(qdev, intr_context->intr);
  2253. napi_schedule(&rx_ring->napi);
  2254. work_done++;
  2255. }
  2256. ql_enable_completion_interrupt(qdev, intr_context->intr);
  2257. return work_done ? IRQ_HANDLED : IRQ_NONE;
  2258. }
  2259. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  2260. {
  2261. if (skb_is_gso(skb)) {
  2262. int err;
  2263. if (skb_header_cloned(skb)) {
  2264. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  2265. if (err)
  2266. return err;
  2267. }
  2268. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  2269. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  2270. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  2271. mac_iocb_ptr->total_hdrs_len =
  2272. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  2273. mac_iocb_ptr->net_trans_offset =
  2274. cpu_to_le16(skb_network_offset(skb) |
  2275. skb_transport_offset(skb)
  2276. << OB_MAC_TRANSPORT_HDR_SHIFT);
  2277. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  2278. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  2279. if (likely(skb->protocol == htons(ETH_P_IP))) {
  2280. struct iphdr *iph = ip_hdr(skb);
  2281. iph->check = 0;
  2282. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  2283. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  2284. iph->daddr, 0,
  2285. IPPROTO_TCP,
  2286. 0);
  2287. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  2288. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  2289. tcp_hdr(skb)->check =
  2290. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  2291. &ipv6_hdr(skb)->daddr,
  2292. 0, IPPROTO_TCP, 0);
  2293. }
  2294. return 1;
  2295. }
  2296. return 0;
  2297. }
  2298. static void ql_hw_csum_setup(struct sk_buff *skb,
  2299. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  2300. {
  2301. int len;
  2302. struct iphdr *iph = ip_hdr(skb);
  2303. __sum16 *check;
  2304. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  2305. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  2306. mac_iocb_ptr->net_trans_offset =
  2307. cpu_to_le16(skb_network_offset(skb) |
  2308. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  2309. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  2310. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  2311. if (likely(iph->protocol == IPPROTO_TCP)) {
  2312. check = &(tcp_hdr(skb)->check);
  2313. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  2314. mac_iocb_ptr->total_hdrs_len =
  2315. cpu_to_le16(skb_transport_offset(skb) +
  2316. (tcp_hdr(skb)->doff << 2));
  2317. } else {
  2318. check = &(udp_hdr(skb)->check);
  2319. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  2320. mac_iocb_ptr->total_hdrs_len =
  2321. cpu_to_le16(skb_transport_offset(skb) +
  2322. sizeof(struct udphdr));
  2323. }
  2324. *check = ~csum_tcpudp_magic(iph->saddr,
  2325. iph->daddr, len, iph->protocol, 0);
  2326. }
  2327. static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
  2328. {
  2329. struct tx_ring_desc *tx_ring_desc;
  2330. struct ob_mac_iocb_req *mac_iocb_ptr;
  2331. struct ql_adapter *qdev = netdev_priv(ndev);
  2332. int tso;
  2333. struct tx_ring *tx_ring;
  2334. u32 tx_ring_idx = (u32) skb->queue_mapping;
  2335. tx_ring = &qdev->tx_ring[tx_ring_idx];
  2336. if (skb_padto(skb, ETH_ZLEN))
  2337. return NETDEV_TX_OK;
  2338. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  2339. netif_info(qdev, tx_queued, qdev->ndev,
  2340. "%s: shutting down tx queue %d du to lack of resources.\n",
  2341. __func__, tx_ring_idx);
  2342. netif_stop_subqueue(ndev, tx_ring->wq_id);
  2343. atomic_inc(&tx_ring->queue_stopped);
  2344. tx_ring->tx_errors++;
  2345. return NETDEV_TX_BUSY;
  2346. }
  2347. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  2348. mac_iocb_ptr = tx_ring_desc->queue_entry;
  2349. memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
  2350. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  2351. mac_iocb_ptr->tid = tx_ring_desc->index;
  2352. /* We use the upper 32-bits to store the tx queue for this IO.
  2353. * When we get the completion we can use it to establish the context.
  2354. */
  2355. mac_iocb_ptr->txq_idx = tx_ring_idx;
  2356. tx_ring_desc->skb = skb;
  2357. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  2358. if (vlan_tx_tag_present(skb)) {
  2359. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  2360. "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
  2361. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  2362. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  2363. }
  2364. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  2365. if (tso < 0) {
  2366. dev_kfree_skb_any(skb);
  2367. return NETDEV_TX_OK;
  2368. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  2369. ql_hw_csum_setup(skb,
  2370. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  2371. }
  2372. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
  2373. NETDEV_TX_OK) {
  2374. netif_err(qdev, tx_queued, qdev->ndev,
  2375. "Could not map the segments.\n");
  2376. tx_ring->tx_errors++;
  2377. return NETDEV_TX_BUSY;
  2378. }
  2379. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  2380. tx_ring->prod_idx++;
  2381. if (tx_ring->prod_idx == tx_ring->wq_len)
  2382. tx_ring->prod_idx = 0;
  2383. wmb();
  2384. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  2385. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  2386. "tx queued, slot %d, len %d\n",
  2387. tx_ring->prod_idx, skb->len);
  2388. atomic_dec(&tx_ring->tx_count);
  2389. return NETDEV_TX_OK;
  2390. }
  2391. static void ql_free_shadow_space(struct ql_adapter *qdev)
  2392. {
  2393. if (qdev->rx_ring_shadow_reg_area) {
  2394. pci_free_consistent(qdev->pdev,
  2395. PAGE_SIZE,
  2396. qdev->rx_ring_shadow_reg_area,
  2397. qdev->rx_ring_shadow_reg_dma);
  2398. qdev->rx_ring_shadow_reg_area = NULL;
  2399. }
  2400. if (qdev->tx_ring_shadow_reg_area) {
  2401. pci_free_consistent(qdev->pdev,
  2402. PAGE_SIZE,
  2403. qdev->tx_ring_shadow_reg_area,
  2404. qdev->tx_ring_shadow_reg_dma);
  2405. qdev->tx_ring_shadow_reg_area = NULL;
  2406. }
  2407. }
  2408. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  2409. {
  2410. qdev->rx_ring_shadow_reg_area =
  2411. pci_alloc_consistent(qdev->pdev,
  2412. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  2413. if (qdev->rx_ring_shadow_reg_area == NULL) {
  2414. netif_err(qdev, ifup, qdev->ndev,
  2415. "Allocation of RX shadow space failed.\n");
  2416. return -ENOMEM;
  2417. }
  2418. memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2419. qdev->tx_ring_shadow_reg_area =
  2420. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  2421. &qdev->tx_ring_shadow_reg_dma);
  2422. if (qdev->tx_ring_shadow_reg_area == NULL) {
  2423. netif_err(qdev, ifup, qdev->ndev,
  2424. "Allocation of TX shadow space failed.\n");
  2425. goto err_wqp_sh_area;
  2426. }
  2427. memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2428. return 0;
  2429. err_wqp_sh_area:
  2430. pci_free_consistent(qdev->pdev,
  2431. PAGE_SIZE,
  2432. qdev->rx_ring_shadow_reg_area,
  2433. qdev->rx_ring_shadow_reg_dma);
  2434. return -ENOMEM;
  2435. }
  2436. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2437. {
  2438. struct tx_ring_desc *tx_ring_desc;
  2439. int i;
  2440. struct ob_mac_iocb_req *mac_iocb_ptr;
  2441. mac_iocb_ptr = tx_ring->wq_base;
  2442. tx_ring_desc = tx_ring->q;
  2443. for (i = 0; i < tx_ring->wq_len; i++) {
  2444. tx_ring_desc->index = i;
  2445. tx_ring_desc->skb = NULL;
  2446. tx_ring_desc->queue_entry = mac_iocb_ptr;
  2447. mac_iocb_ptr++;
  2448. tx_ring_desc++;
  2449. }
  2450. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  2451. atomic_set(&tx_ring->queue_stopped, 0);
  2452. }
  2453. static void ql_free_tx_resources(struct ql_adapter *qdev,
  2454. struct tx_ring *tx_ring)
  2455. {
  2456. if (tx_ring->wq_base) {
  2457. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2458. tx_ring->wq_base, tx_ring->wq_base_dma);
  2459. tx_ring->wq_base = NULL;
  2460. }
  2461. kfree(tx_ring->q);
  2462. tx_ring->q = NULL;
  2463. }
  2464. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  2465. struct tx_ring *tx_ring)
  2466. {
  2467. tx_ring->wq_base =
  2468. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  2469. &tx_ring->wq_base_dma);
  2470. if ((tx_ring->wq_base == NULL) ||
  2471. tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
  2472. netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
  2473. return -ENOMEM;
  2474. }
  2475. tx_ring->q =
  2476. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  2477. if (tx_ring->q == NULL)
  2478. goto err;
  2479. return 0;
  2480. err:
  2481. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2482. tx_ring->wq_base, tx_ring->wq_base_dma);
  2483. return -ENOMEM;
  2484. }
  2485. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2486. {
  2487. struct bq_desc *lbq_desc;
  2488. uint32_t curr_idx, clean_idx;
  2489. curr_idx = rx_ring->lbq_curr_idx;
  2490. clean_idx = rx_ring->lbq_clean_idx;
  2491. while (curr_idx != clean_idx) {
  2492. lbq_desc = &rx_ring->lbq[curr_idx];
  2493. if (lbq_desc->p.pg_chunk.last_flag) {
  2494. pci_unmap_page(qdev->pdev,
  2495. lbq_desc->p.pg_chunk.map,
  2496. ql_lbq_block_size(qdev),
  2497. PCI_DMA_FROMDEVICE);
  2498. lbq_desc->p.pg_chunk.last_flag = 0;
  2499. }
  2500. put_page(lbq_desc->p.pg_chunk.page);
  2501. lbq_desc->p.pg_chunk.page = NULL;
  2502. if (++curr_idx == rx_ring->lbq_len)
  2503. curr_idx = 0;
  2504. }
  2505. }
  2506. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2507. {
  2508. int i;
  2509. struct bq_desc *sbq_desc;
  2510. for (i = 0; i < rx_ring->sbq_len; i++) {
  2511. sbq_desc = &rx_ring->sbq[i];
  2512. if (sbq_desc == NULL) {
  2513. netif_err(qdev, ifup, qdev->ndev,
  2514. "sbq_desc %d is NULL.\n", i);
  2515. return;
  2516. }
  2517. if (sbq_desc->p.skb) {
  2518. pci_unmap_single(qdev->pdev,
  2519. dma_unmap_addr(sbq_desc, mapaddr),
  2520. dma_unmap_len(sbq_desc, maplen),
  2521. PCI_DMA_FROMDEVICE);
  2522. dev_kfree_skb(sbq_desc->p.skb);
  2523. sbq_desc->p.skb = NULL;
  2524. }
  2525. }
  2526. }
  2527. /* Free all large and small rx buffers associated
  2528. * with the completion queues for this device.
  2529. */
  2530. static void ql_free_rx_buffers(struct ql_adapter *qdev)
  2531. {
  2532. int i;
  2533. struct rx_ring *rx_ring;
  2534. for (i = 0; i < qdev->rx_ring_count; i++) {
  2535. rx_ring = &qdev->rx_ring[i];
  2536. if (rx_ring->lbq)
  2537. ql_free_lbq_buffers(qdev, rx_ring);
  2538. if (rx_ring->sbq)
  2539. ql_free_sbq_buffers(qdev, rx_ring);
  2540. }
  2541. }
  2542. static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
  2543. {
  2544. struct rx_ring *rx_ring;
  2545. int i;
  2546. for (i = 0; i < qdev->rx_ring_count; i++) {
  2547. rx_ring = &qdev->rx_ring[i];
  2548. if (rx_ring->type != TX_Q)
  2549. ql_update_buffer_queues(qdev, rx_ring);
  2550. }
  2551. }
  2552. static void ql_init_lbq_ring(struct ql_adapter *qdev,
  2553. struct rx_ring *rx_ring)
  2554. {
  2555. int i;
  2556. struct bq_desc *lbq_desc;
  2557. __le64 *bq = rx_ring->lbq_base;
  2558. memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
  2559. for (i = 0; i < rx_ring->lbq_len; i++) {
  2560. lbq_desc = &rx_ring->lbq[i];
  2561. memset(lbq_desc, 0, sizeof(*lbq_desc));
  2562. lbq_desc->index = i;
  2563. lbq_desc->addr = bq;
  2564. bq++;
  2565. }
  2566. }
  2567. static void ql_init_sbq_ring(struct ql_adapter *qdev,
  2568. struct rx_ring *rx_ring)
  2569. {
  2570. int i;
  2571. struct bq_desc *sbq_desc;
  2572. __le64 *bq = rx_ring->sbq_base;
  2573. memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
  2574. for (i = 0; i < rx_ring->sbq_len; i++) {
  2575. sbq_desc = &rx_ring->sbq[i];
  2576. memset(sbq_desc, 0, sizeof(*sbq_desc));
  2577. sbq_desc->index = i;
  2578. sbq_desc->addr = bq;
  2579. bq++;
  2580. }
  2581. }
  2582. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2583. struct rx_ring *rx_ring)
  2584. {
  2585. /* Free the small buffer queue. */
  2586. if (rx_ring->sbq_base) {
  2587. pci_free_consistent(qdev->pdev,
  2588. rx_ring->sbq_size,
  2589. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2590. rx_ring->sbq_base = NULL;
  2591. }
  2592. /* Free the small buffer queue control blocks. */
  2593. kfree(rx_ring->sbq);
  2594. rx_ring->sbq = NULL;
  2595. /* Free the large buffer queue. */
  2596. if (rx_ring->lbq_base) {
  2597. pci_free_consistent(qdev->pdev,
  2598. rx_ring->lbq_size,
  2599. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2600. rx_ring->lbq_base = NULL;
  2601. }
  2602. /* Free the large buffer queue control blocks. */
  2603. kfree(rx_ring->lbq);
  2604. rx_ring->lbq = NULL;
  2605. /* Free the rx queue. */
  2606. if (rx_ring->cq_base) {
  2607. pci_free_consistent(qdev->pdev,
  2608. rx_ring->cq_size,
  2609. rx_ring->cq_base, rx_ring->cq_base_dma);
  2610. rx_ring->cq_base = NULL;
  2611. }
  2612. }
  2613. /* Allocate queues and buffers for this completions queue based
  2614. * on the values in the parameter structure. */
  2615. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2616. struct rx_ring *rx_ring)
  2617. {
  2618. /*
  2619. * Allocate the completion queue for this rx_ring.
  2620. */
  2621. rx_ring->cq_base =
  2622. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2623. &rx_ring->cq_base_dma);
  2624. if (rx_ring->cq_base == NULL) {
  2625. netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
  2626. return -ENOMEM;
  2627. }
  2628. if (rx_ring->sbq_len) {
  2629. /*
  2630. * Allocate small buffer queue.
  2631. */
  2632. rx_ring->sbq_base =
  2633. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2634. &rx_ring->sbq_base_dma);
  2635. if (rx_ring->sbq_base == NULL) {
  2636. netif_err(qdev, ifup, qdev->ndev,
  2637. "Small buffer queue allocation failed.\n");
  2638. goto err_mem;
  2639. }
  2640. /*
  2641. * Allocate small buffer queue control blocks.
  2642. */
  2643. rx_ring->sbq =
  2644. kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
  2645. GFP_KERNEL);
  2646. if (rx_ring->sbq == NULL) {
  2647. netif_err(qdev, ifup, qdev->ndev,
  2648. "Small buffer queue control block allocation failed.\n");
  2649. goto err_mem;
  2650. }
  2651. ql_init_sbq_ring(qdev, rx_ring);
  2652. }
  2653. if (rx_ring->lbq_len) {
  2654. /*
  2655. * Allocate large buffer queue.
  2656. */
  2657. rx_ring->lbq_base =
  2658. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2659. &rx_ring->lbq_base_dma);
  2660. if (rx_ring->lbq_base == NULL) {
  2661. netif_err(qdev, ifup, qdev->ndev,
  2662. "Large buffer queue allocation failed.\n");
  2663. goto err_mem;
  2664. }
  2665. /*
  2666. * Allocate large buffer queue control blocks.
  2667. */
  2668. rx_ring->lbq =
  2669. kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
  2670. GFP_KERNEL);
  2671. if (rx_ring->lbq == NULL) {
  2672. netif_err(qdev, ifup, qdev->ndev,
  2673. "Large buffer queue control block allocation failed.\n");
  2674. goto err_mem;
  2675. }
  2676. ql_init_lbq_ring(qdev, rx_ring);
  2677. }
  2678. return 0;
  2679. err_mem:
  2680. ql_free_rx_resources(qdev, rx_ring);
  2681. return -ENOMEM;
  2682. }
  2683. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2684. {
  2685. struct tx_ring *tx_ring;
  2686. struct tx_ring_desc *tx_ring_desc;
  2687. int i, j;
  2688. /*
  2689. * Loop through all queues and free
  2690. * any resources.
  2691. */
  2692. for (j = 0; j < qdev->tx_ring_count; j++) {
  2693. tx_ring = &qdev->tx_ring[j];
  2694. for (i = 0; i < tx_ring->wq_len; i++) {
  2695. tx_ring_desc = &tx_ring->q[i];
  2696. if (tx_ring_desc && tx_ring_desc->skb) {
  2697. netif_err(qdev, ifdown, qdev->ndev,
  2698. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2699. tx_ring_desc->skb, j,
  2700. tx_ring_desc->index);
  2701. ql_unmap_send(qdev, tx_ring_desc,
  2702. tx_ring_desc->map_cnt);
  2703. dev_kfree_skb(tx_ring_desc->skb);
  2704. tx_ring_desc->skb = NULL;
  2705. }
  2706. }
  2707. }
  2708. }
  2709. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2710. {
  2711. int i;
  2712. for (i = 0; i < qdev->tx_ring_count; i++)
  2713. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2714. for (i = 0; i < qdev->rx_ring_count; i++)
  2715. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2716. ql_free_shadow_space(qdev);
  2717. }
  2718. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2719. {
  2720. int i;
  2721. /* Allocate space for our shadow registers and such. */
  2722. if (ql_alloc_shadow_space(qdev))
  2723. return -ENOMEM;
  2724. for (i = 0; i < qdev->rx_ring_count; i++) {
  2725. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2726. netif_err(qdev, ifup, qdev->ndev,
  2727. "RX resource allocation failed.\n");
  2728. goto err_mem;
  2729. }
  2730. }
  2731. /* Allocate tx queue resources */
  2732. for (i = 0; i < qdev->tx_ring_count; i++) {
  2733. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2734. netif_err(qdev, ifup, qdev->ndev,
  2735. "TX resource allocation failed.\n");
  2736. goto err_mem;
  2737. }
  2738. }
  2739. return 0;
  2740. err_mem:
  2741. ql_free_mem_resources(qdev);
  2742. return -ENOMEM;
  2743. }
  2744. /* Set up the rx ring control block and pass it to the chip.
  2745. * The control block is defined as
  2746. * "Completion Queue Initialization Control Block", or cqicb.
  2747. */
  2748. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2749. {
  2750. struct cqicb *cqicb = &rx_ring->cqicb;
  2751. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2752. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2753. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2754. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2755. void __iomem *doorbell_area =
  2756. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2757. int err = 0;
  2758. u16 bq_len;
  2759. u64 tmp;
  2760. __le64 *base_indirect_ptr;
  2761. int page_entries;
  2762. /* Set up the shadow registers for this ring. */
  2763. rx_ring->prod_idx_sh_reg = shadow_reg;
  2764. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2765. *rx_ring->prod_idx_sh_reg = 0;
  2766. shadow_reg += sizeof(u64);
  2767. shadow_reg_dma += sizeof(u64);
  2768. rx_ring->lbq_base_indirect = shadow_reg;
  2769. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2770. shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2771. shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2772. rx_ring->sbq_base_indirect = shadow_reg;
  2773. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2774. /* PCI doorbell mem area + 0x00 for consumer index register */
  2775. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2776. rx_ring->cnsmr_idx = 0;
  2777. rx_ring->curr_entry = rx_ring->cq_base;
  2778. /* PCI doorbell mem area + 0x04 for valid register */
  2779. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2780. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2781. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2782. /* PCI doorbell mem area + 0x1c */
  2783. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2784. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2785. cqicb->msix_vect = rx_ring->irq;
  2786. bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
  2787. cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
  2788. cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
  2789. cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
  2790. /*
  2791. * Set up the control block load flags.
  2792. */
  2793. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2794. FLAGS_LV | /* Load MSI-X vector */
  2795. FLAGS_LI; /* Load irq delay values */
  2796. if (rx_ring->lbq_len) {
  2797. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2798. tmp = (u64)rx_ring->lbq_base_dma;
  2799. base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
  2800. page_entries = 0;
  2801. do {
  2802. *base_indirect_ptr = cpu_to_le64(tmp);
  2803. tmp += DB_PAGE_SIZE;
  2804. base_indirect_ptr++;
  2805. page_entries++;
  2806. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2807. cqicb->lbq_addr =
  2808. cpu_to_le64(rx_ring->lbq_base_indirect_dma);
  2809. bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
  2810. (u16) rx_ring->lbq_buf_size;
  2811. cqicb->lbq_buf_size = cpu_to_le16(bq_len);
  2812. bq_len = (rx_ring->lbq_len == 65536) ? 0 :
  2813. (u16) rx_ring->lbq_len;
  2814. cqicb->lbq_len = cpu_to_le16(bq_len);
  2815. rx_ring->lbq_prod_idx = 0;
  2816. rx_ring->lbq_curr_idx = 0;
  2817. rx_ring->lbq_clean_idx = 0;
  2818. rx_ring->lbq_free_cnt = rx_ring->lbq_len;
  2819. }
  2820. if (rx_ring->sbq_len) {
  2821. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2822. tmp = (u64)rx_ring->sbq_base_dma;
  2823. base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
  2824. page_entries = 0;
  2825. do {
  2826. *base_indirect_ptr = cpu_to_le64(tmp);
  2827. tmp += DB_PAGE_SIZE;
  2828. base_indirect_ptr++;
  2829. page_entries++;
  2830. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
  2831. cqicb->sbq_addr =
  2832. cpu_to_le64(rx_ring->sbq_base_indirect_dma);
  2833. cqicb->sbq_buf_size =
  2834. cpu_to_le16((u16)(rx_ring->sbq_buf_size));
  2835. bq_len = (rx_ring->sbq_len == 65536) ? 0 :
  2836. (u16) rx_ring->sbq_len;
  2837. cqicb->sbq_len = cpu_to_le16(bq_len);
  2838. rx_ring->sbq_prod_idx = 0;
  2839. rx_ring->sbq_curr_idx = 0;
  2840. rx_ring->sbq_clean_idx = 0;
  2841. rx_ring->sbq_free_cnt = rx_ring->sbq_len;
  2842. }
  2843. switch (rx_ring->type) {
  2844. case TX_Q:
  2845. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2846. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2847. break;
  2848. case RX_Q:
  2849. /* Inbound completion handling rx_rings run in
  2850. * separate NAPI contexts.
  2851. */
  2852. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2853. 64);
  2854. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2855. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2856. break;
  2857. default:
  2858. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2859. "Invalid rx_ring->type = %d.\n", rx_ring->type);
  2860. }
  2861. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2862. "Initializing rx work queue.\n");
  2863. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2864. CFG_LCQ, rx_ring->cq_id);
  2865. if (err) {
  2866. netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
  2867. return err;
  2868. }
  2869. return err;
  2870. }
  2871. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2872. {
  2873. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2874. void __iomem *doorbell_area =
  2875. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2876. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2877. (tx_ring->wq_id * sizeof(u64));
  2878. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2879. (tx_ring->wq_id * sizeof(u64));
  2880. int err = 0;
  2881. /*
  2882. * Assign doorbell registers for this tx_ring.
  2883. */
  2884. /* TX PCI doorbell mem area for tx producer index */
  2885. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2886. tx_ring->prod_idx = 0;
  2887. /* TX PCI doorbell mem area + 0x04 */
  2888. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2889. /*
  2890. * Assign shadow registers for this tx_ring.
  2891. */
  2892. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2893. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2894. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2895. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2896. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2897. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2898. wqicb->rid = 0;
  2899. wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
  2900. wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
  2901. ql_init_tx_ring(qdev, tx_ring);
  2902. err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
  2903. (u16) tx_ring->wq_id);
  2904. if (err) {
  2905. netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
  2906. return err;
  2907. }
  2908. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2909. "Successfully loaded WQICB.\n");
  2910. return err;
  2911. }
  2912. static void ql_disable_msix(struct ql_adapter *qdev)
  2913. {
  2914. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2915. pci_disable_msix(qdev->pdev);
  2916. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2917. kfree(qdev->msi_x_entry);
  2918. qdev->msi_x_entry = NULL;
  2919. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2920. pci_disable_msi(qdev->pdev);
  2921. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2922. }
  2923. }
  2924. /* We start by trying to get the number of vectors
  2925. * stored in qdev->intr_count. If we don't get that
  2926. * many then we reduce the count and try again.
  2927. */
  2928. static void ql_enable_msix(struct ql_adapter *qdev)
  2929. {
  2930. int i, err;
  2931. /* Get the MSIX vectors. */
  2932. if (qlge_irq_type == MSIX_IRQ) {
  2933. /* Try to alloc space for the msix struct,
  2934. * if it fails then go to MSI/legacy.
  2935. */
  2936. qdev->msi_x_entry = kcalloc(qdev->intr_count,
  2937. sizeof(struct msix_entry),
  2938. GFP_KERNEL);
  2939. if (!qdev->msi_x_entry) {
  2940. qlge_irq_type = MSI_IRQ;
  2941. goto msi;
  2942. }
  2943. for (i = 0; i < qdev->intr_count; i++)
  2944. qdev->msi_x_entry[i].entry = i;
  2945. /* Loop to get our vectors. We start with
  2946. * what we want and settle for what we get.
  2947. */
  2948. do {
  2949. err = pci_enable_msix(qdev->pdev,
  2950. qdev->msi_x_entry, qdev->intr_count);
  2951. if (err > 0)
  2952. qdev->intr_count = err;
  2953. } while (err > 0);
  2954. if (err < 0) {
  2955. kfree(qdev->msi_x_entry);
  2956. qdev->msi_x_entry = NULL;
  2957. netif_warn(qdev, ifup, qdev->ndev,
  2958. "MSI-X Enable failed, trying MSI.\n");
  2959. qdev->intr_count = 1;
  2960. qlge_irq_type = MSI_IRQ;
  2961. } else if (err == 0) {
  2962. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2963. netif_info(qdev, ifup, qdev->ndev,
  2964. "MSI-X Enabled, got %d vectors.\n",
  2965. qdev->intr_count);
  2966. return;
  2967. }
  2968. }
  2969. msi:
  2970. qdev->intr_count = 1;
  2971. if (qlge_irq_type == MSI_IRQ) {
  2972. if (!pci_enable_msi(qdev->pdev)) {
  2973. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2974. netif_info(qdev, ifup, qdev->ndev,
  2975. "Running with MSI interrupts.\n");
  2976. return;
  2977. }
  2978. }
  2979. qlge_irq_type = LEG_IRQ;
  2980. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2981. "Running with legacy interrupts.\n");
  2982. }
  2983. /* Each vector services 1 RSS ring and and 1 or more
  2984. * TX completion rings. This function loops through
  2985. * the TX completion rings and assigns the vector that
  2986. * will service it. An example would be if there are
  2987. * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
  2988. * This would mean that vector 0 would service RSS ring 0
  2989. * and TX competion rings 0,1,2 and 3. Vector 1 would
  2990. * service RSS ring 1 and TX completion rings 4,5,6 and 7.
  2991. */
  2992. static void ql_set_tx_vect(struct ql_adapter *qdev)
  2993. {
  2994. int i, j, vect;
  2995. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  2996. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2997. /* Assign irq vectors to TX rx_rings.*/
  2998. for (vect = 0, j = 0, i = qdev->rss_ring_count;
  2999. i < qdev->rx_ring_count; i++) {
  3000. if (j == tx_rings_per_vector) {
  3001. vect++;
  3002. j = 0;
  3003. }
  3004. qdev->rx_ring[i].irq = vect;
  3005. j++;
  3006. }
  3007. } else {
  3008. /* For single vector all rings have an irq
  3009. * of zero.
  3010. */
  3011. for (i = 0; i < qdev->rx_ring_count; i++)
  3012. qdev->rx_ring[i].irq = 0;
  3013. }
  3014. }
  3015. /* Set the interrupt mask for this vector. Each vector
  3016. * will service 1 RSS ring and 1 or more TX completion
  3017. * rings. This function sets up a bit mask per vector
  3018. * that indicates which rings it services.
  3019. */
  3020. static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
  3021. {
  3022. int j, vect = ctx->intr;
  3023. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  3024. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  3025. /* Add the RSS ring serviced by this vector
  3026. * to the mask.
  3027. */
  3028. ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
  3029. /* Add the TX ring(s) serviced by this vector
  3030. * to the mask. */
  3031. for (j = 0; j < tx_rings_per_vector; j++) {
  3032. ctx->irq_mask |=
  3033. (1 << qdev->rx_ring[qdev->rss_ring_count +
  3034. (vect * tx_rings_per_vector) + j].cq_id);
  3035. }
  3036. } else {
  3037. /* For single vector we just shift each queue's
  3038. * ID into the mask.
  3039. */
  3040. for (j = 0; j < qdev->rx_ring_count; j++)
  3041. ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
  3042. }
  3043. }
  3044. /*
  3045. * Here we build the intr_context structures based on
  3046. * our rx_ring count and intr vector count.
  3047. * The intr_context structure is used to hook each vector
  3048. * to possibly different handlers.
  3049. */
  3050. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  3051. {
  3052. int i = 0;
  3053. struct intr_context *intr_context = &qdev->intr_context[0];
  3054. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  3055. /* Each rx_ring has it's
  3056. * own intr_context since we have separate
  3057. * vectors for each queue.
  3058. */
  3059. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3060. qdev->rx_ring[i].irq = i;
  3061. intr_context->intr = i;
  3062. intr_context->qdev = qdev;
  3063. /* Set up this vector's bit-mask that indicates
  3064. * which queues it services.
  3065. */
  3066. ql_set_irq_mask(qdev, intr_context);
  3067. /*
  3068. * We set up each vectors enable/disable/read bits so
  3069. * there's no bit/mask calculations in the critical path.
  3070. */
  3071. intr_context->intr_en_mask =
  3072. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3073. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  3074. | i;
  3075. intr_context->intr_dis_mask =
  3076. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3077. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  3078. INTR_EN_IHD | i;
  3079. intr_context->intr_read_mask =
  3080. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3081. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  3082. i;
  3083. if (i == 0) {
  3084. /* The first vector/queue handles
  3085. * broadcast/multicast, fatal errors,
  3086. * and firmware events. This in addition
  3087. * to normal inbound NAPI processing.
  3088. */
  3089. intr_context->handler = qlge_isr;
  3090. sprintf(intr_context->name, "%s-rx-%d",
  3091. qdev->ndev->name, i);
  3092. } else {
  3093. /*
  3094. * Inbound queues handle unicast frames only.
  3095. */
  3096. intr_context->handler = qlge_msix_rx_isr;
  3097. sprintf(intr_context->name, "%s-rx-%d",
  3098. qdev->ndev->name, i);
  3099. }
  3100. }
  3101. } else {
  3102. /*
  3103. * All rx_rings use the same intr_context since
  3104. * there is only one vector.
  3105. */
  3106. intr_context->intr = 0;
  3107. intr_context->qdev = qdev;
  3108. /*
  3109. * We set up each vectors enable/disable/read bits so
  3110. * there's no bit/mask calculations in the critical path.
  3111. */
  3112. intr_context->intr_en_mask =
  3113. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  3114. intr_context->intr_dis_mask =
  3115. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3116. INTR_EN_TYPE_DISABLE;
  3117. intr_context->intr_read_mask =
  3118. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  3119. /*
  3120. * Single interrupt means one handler for all rings.
  3121. */
  3122. intr_context->handler = qlge_isr;
  3123. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  3124. /* Set up this vector's bit-mask that indicates
  3125. * which queues it services. In this case there is
  3126. * a single vector so it will service all RSS and
  3127. * TX completion rings.
  3128. */
  3129. ql_set_irq_mask(qdev, intr_context);
  3130. }
  3131. /* Tell the TX completion rings which MSIx vector
  3132. * they will be using.
  3133. */
  3134. ql_set_tx_vect(qdev);
  3135. }
  3136. static void ql_free_irq(struct ql_adapter *qdev)
  3137. {
  3138. int i;
  3139. struct intr_context *intr_context = &qdev->intr_context[0];
  3140. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3141. if (intr_context->hooked) {
  3142. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  3143. free_irq(qdev->msi_x_entry[i].vector,
  3144. &qdev->rx_ring[i]);
  3145. netif_printk(qdev, ifdown, KERN_DEBUG, qdev->ndev,
  3146. "freeing msix interrupt %d.\n", i);
  3147. } else {
  3148. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  3149. netif_printk(qdev, ifdown, KERN_DEBUG, qdev->ndev,
  3150. "freeing msi interrupt %d.\n", i);
  3151. }
  3152. }
  3153. }
  3154. ql_disable_msix(qdev);
  3155. }
  3156. static int ql_request_irq(struct ql_adapter *qdev)
  3157. {
  3158. int i;
  3159. int status = 0;
  3160. struct pci_dev *pdev = qdev->pdev;
  3161. struct intr_context *intr_context = &qdev->intr_context[0];
  3162. ql_resolve_queues_to_irqs(qdev);
  3163. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3164. atomic_set(&intr_context->irq_cnt, 0);
  3165. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  3166. status = request_irq(qdev->msi_x_entry[i].vector,
  3167. intr_context->handler,
  3168. 0,
  3169. intr_context->name,
  3170. &qdev->rx_ring[i]);
  3171. if (status) {
  3172. netif_err(qdev, ifup, qdev->ndev,
  3173. "Failed request for MSIX interrupt %d.\n",
  3174. i);
  3175. goto err_irq;
  3176. } else {
  3177. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3178. "Hooked intr %d, queue type %s, with name %s.\n",
  3179. i,
  3180. qdev->rx_ring[i].type == DEFAULT_Q ?
  3181. "DEFAULT_Q" :
  3182. qdev->rx_ring[i].type == TX_Q ?
  3183. "TX_Q" :
  3184. qdev->rx_ring[i].type == RX_Q ?
  3185. "RX_Q" : "",
  3186. intr_context->name);
  3187. }
  3188. } else {
  3189. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3190. "trying msi or legacy interrupts.\n");
  3191. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3192. "%s: irq = %d.\n", __func__, pdev->irq);
  3193. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3194. "%s: context->name = %s.\n", __func__,
  3195. intr_context->name);
  3196. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3197. "%s: dev_id = 0x%p.\n", __func__,
  3198. &qdev->rx_ring[0]);
  3199. status =
  3200. request_irq(pdev->irq, qlge_isr,
  3201. test_bit(QL_MSI_ENABLED,
  3202. &qdev->
  3203. flags) ? 0 : IRQF_SHARED,
  3204. intr_context->name, &qdev->rx_ring[0]);
  3205. if (status)
  3206. goto err_irq;
  3207. netif_err(qdev, ifup, qdev->ndev,
  3208. "Hooked intr %d, queue type %s, with name %s.\n",
  3209. i,
  3210. qdev->rx_ring[0].type == DEFAULT_Q ?
  3211. "DEFAULT_Q" :
  3212. qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
  3213. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  3214. intr_context->name);
  3215. }
  3216. intr_context->hooked = 1;
  3217. }
  3218. return status;
  3219. err_irq:
  3220. netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
  3221. ql_free_irq(qdev);
  3222. return status;
  3223. }
  3224. static int ql_start_rss(struct ql_adapter *qdev)
  3225. {
  3226. static const u8 init_hash_seed[] = {
  3227. 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
  3228. 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
  3229. 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
  3230. 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
  3231. 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
  3232. };
  3233. struct ricb *ricb = &qdev->ricb;
  3234. int status = 0;
  3235. int i;
  3236. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  3237. memset((void *)ricb, 0, sizeof(*ricb));
  3238. ricb->base_cq = RSS_L4K;
  3239. ricb->flags =
  3240. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
  3241. ricb->mask = cpu_to_le16((u16)(0x3ff));
  3242. /*
  3243. * Fill out the Indirection Table.
  3244. */
  3245. for (i = 0; i < 1024; i++)
  3246. hash_id[i] = (i & (qdev->rss_ring_count - 1));
  3247. memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
  3248. memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
  3249. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "Initializing RSS.\n");
  3250. status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
  3251. if (status) {
  3252. netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
  3253. return status;
  3254. }
  3255. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3256. "Successfully loaded RICB.\n");
  3257. return status;
  3258. }
  3259. static int ql_clear_routing_entries(struct ql_adapter *qdev)
  3260. {
  3261. int i, status = 0;
  3262. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3263. if (status)
  3264. return status;
  3265. /* Clear all the entries in the routing table. */
  3266. for (i = 0; i < 16; i++) {
  3267. status = ql_set_routing_reg(qdev, i, 0, 0);
  3268. if (status) {
  3269. netif_err(qdev, ifup, qdev->ndev,
  3270. "Failed to init routing register for CAM packets.\n");
  3271. break;
  3272. }
  3273. }
  3274. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3275. return status;
  3276. }
  3277. /* Initialize the frame-to-queue routing. */
  3278. static int ql_route_initialize(struct ql_adapter *qdev)
  3279. {
  3280. int status = 0;
  3281. /* Clear all the entries in the routing table. */
  3282. status = ql_clear_routing_entries(qdev);
  3283. if (status)
  3284. return status;
  3285. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3286. if (status)
  3287. return status;
  3288. status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
  3289. RT_IDX_IP_CSUM_ERR, 1);
  3290. if (status) {
  3291. netif_err(qdev, ifup, qdev->ndev,
  3292. "Failed to init routing register "
  3293. "for IP CSUM error packets.\n");
  3294. goto exit;
  3295. }
  3296. status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
  3297. RT_IDX_TU_CSUM_ERR, 1);
  3298. if (status) {
  3299. netif_err(qdev, ifup, qdev->ndev,
  3300. "Failed to init routing register "
  3301. "for TCP/UDP CSUM error packets.\n");
  3302. goto exit;
  3303. }
  3304. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  3305. if (status) {
  3306. netif_err(qdev, ifup, qdev->ndev,
  3307. "Failed to init routing register for broadcast packets.\n");
  3308. goto exit;
  3309. }
  3310. /* If we have more than one inbound queue, then turn on RSS in the
  3311. * routing block.
  3312. */
  3313. if (qdev->rss_ring_count > 1) {
  3314. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  3315. RT_IDX_RSS_MATCH, 1);
  3316. if (status) {
  3317. netif_err(qdev, ifup, qdev->ndev,
  3318. "Failed to init routing register for MATCH RSS packets.\n");
  3319. goto exit;
  3320. }
  3321. }
  3322. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  3323. RT_IDX_CAM_HIT, 1);
  3324. if (status)
  3325. netif_err(qdev, ifup, qdev->ndev,
  3326. "Failed to init routing register for CAM packets.\n");
  3327. exit:
  3328. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3329. return status;
  3330. }
  3331. int ql_cam_route_initialize(struct ql_adapter *qdev)
  3332. {
  3333. int status, set;
  3334. /* If check if the link is up and use to
  3335. * determine if we are setting or clearing
  3336. * the MAC address in the CAM.
  3337. */
  3338. set = ql_read32(qdev, STS);
  3339. set &= qdev->port_link_up;
  3340. status = ql_set_mac_addr(qdev, set);
  3341. if (status) {
  3342. netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
  3343. return status;
  3344. }
  3345. status = ql_route_initialize(qdev);
  3346. if (status)
  3347. netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
  3348. return status;
  3349. }
  3350. static int ql_adapter_initialize(struct ql_adapter *qdev)
  3351. {
  3352. u32 value, mask;
  3353. int i;
  3354. int status = 0;
  3355. /*
  3356. * Set up the System register to halt on errors.
  3357. */
  3358. value = SYS_EFE | SYS_FAE;
  3359. mask = value << 16;
  3360. ql_write32(qdev, SYS, mask | value);
  3361. /* Set the default queue, and VLAN behavior. */
  3362. value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
  3363. mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
  3364. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  3365. /* Set the MPI interrupt to enabled. */
  3366. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  3367. /* Enable the function, set pagesize, enable error checking. */
  3368. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  3369. FSC_EC | FSC_VM_PAGE_4K;
  3370. value |= SPLT_SETTING;
  3371. /* Set/clear header splitting. */
  3372. mask = FSC_VM_PAGESIZE_MASK |
  3373. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  3374. ql_write32(qdev, FSC, mask | value);
  3375. ql_write32(qdev, SPLT_HDR, SPLT_LEN);
  3376. /* Set RX packet routing to use port/pci function on which the
  3377. * packet arrived on in addition to usual frame routing.
  3378. * This is helpful on bonding where both interfaces can have
  3379. * the same MAC address.
  3380. */
  3381. ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
  3382. /* Reroute all packets to our Interface.
  3383. * They may have been routed to MPI firmware
  3384. * due to WOL.
  3385. */
  3386. value = ql_read32(qdev, MGMT_RCV_CFG);
  3387. value &= ~MGMT_RCV_CFG_RM;
  3388. mask = 0xffff0000;
  3389. /* Sticky reg needs clearing due to WOL. */
  3390. ql_write32(qdev, MGMT_RCV_CFG, mask);
  3391. ql_write32(qdev, MGMT_RCV_CFG, mask | value);
  3392. /* Default WOL is enable on Mezz cards */
  3393. if (qdev->pdev->subsystem_device == 0x0068 ||
  3394. qdev->pdev->subsystem_device == 0x0180)
  3395. qdev->wol = WAKE_MAGIC;
  3396. /* Start up the rx queues. */
  3397. for (i = 0; i < qdev->rx_ring_count; i++) {
  3398. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  3399. if (status) {
  3400. netif_err(qdev, ifup, qdev->ndev,
  3401. "Failed to start rx ring[%d].\n", i);
  3402. return status;
  3403. }
  3404. }
  3405. /* If there is more than one inbound completion queue
  3406. * then download a RICB to configure RSS.
  3407. */
  3408. if (qdev->rss_ring_count > 1) {
  3409. status = ql_start_rss(qdev);
  3410. if (status) {
  3411. netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
  3412. return status;
  3413. }
  3414. }
  3415. /* Start up the tx queues. */
  3416. for (i = 0; i < qdev->tx_ring_count; i++) {
  3417. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  3418. if (status) {
  3419. netif_err(qdev, ifup, qdev->ndev,
  3420. "Failed to start tx ring[%d].\n", i);
  3421. return status;
  3422. }
  3423. }
  3424. /* Initialize the port and set the max framesize. */
  3425. status = qdev->nic_ops->port_initialize(qdev);
  3426. if (status)
  3427. netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
  3428. /* Set up the MAC address and frame routing filter. */
  3429. status = ql_cam_route_initialize(qdev);
  3430. if (status) {
  3431. netif_err(qdev, ifup, qdev->ndev,
  3432. "Failed to init CAM/Routing tables.\n");
  3433. return status;
  3434. }
  3435. /* Start NAPI for the RSS queues. */
  3436. for (i = 0; i < qdev->rss_ring_count; i++) {
  3437. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3438. "Enabling NAPI for rx_ring[%d].\n", i);
  3439. napi_enable(&qdev->rx_ring[i].napi);
  3440. }
  3441. return status;
  3442. }
  3443. /* Issue soft reset to chip. */
  3444. static int ql_adapter_reset(struct ql_adapter *qdev)
  3445. {
  3446. u32 value;
  3447. int status = 0;
  3448. unsigned long end_jiffies;
  3449. /* Clear all the entries in the routing table. */
  3450. status = ql_clear_routing_entries(qdev);
  3451. if (status) {
  3452. netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
  3453. return status;
  3454. }
  3455. end_jiffies = jiffies +
  3456. max((unsigned long)1, usecs_to_jiffies(30));
  3457. /* Stop management traffic. */
  3458. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
  3459. /* Wait for the NIC and MGMNT FIFOs to empty. */
  3460. ql_wait_fifo_empty(qdev);
  3461. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  3462. do {
  3463. value = ql_read32(qdev, RST_FO);
  3464. if ((value & RST_FO_FR) == 0)
  3465. break;
  3466. cpu_relax();
  3467. } while (time_before(jiffies, end_jiffies));
  3468. if (value & RST_FO_FR) {
  3469. netif_err(qdev, ifdown, qdev->ndev,
  3470. "ETIMEDOUT!!! errored out of resetting the chip!\n");
  3471. status = -ETIMEDOUT;
  3472. }
  3473. /* Resume management traffic. */
  3474. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
  3475. return status;
  3476. }
  3477. static void ql_display_dev_info(struct net_device *ndev)
  3478. {
  3479. struct ql_adapter *qdev = netdev_priv(ndev);
  3480. netif_info(qdev, probe, qdev->ndev,
  3481. "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
  3482. "XG Roll = %d, XG Rev = %d.\n",
  3483. qdev->func,
  3484. qdev->port,
  3485. qdev->chip_rev_id & 0x0000000f,
  3486. qdev->chip_rev_id >> 4 & 0x0000000f,
  3487. qdev->chip_rev_id >> 8 & 0x0000000f,
  3488. qdev->chip_rev_id >> 12 & 0x0000000f);
  3489. netif_info(qdev, probe, qdev->ndev,
  3490. "MAC address %pM\n", ndev->dev_addr);
  3491. }
  3492. static int ql_wol(struct ql_adapter *qdev)
  3493. {
  3494. int status = 0;
  3495. u32 wol = MB_WOL_DISABLE;
  3496. /* The CAM is still intact after a reset, but if we
  3497. * are doing WOL, then we may need to program the
  3498. * routing regs. We would also need to issue the mailbox
  3499. * commands to instruct the MPI what to do per the ethtool
  3500. * settings.
  3501. */
  3502. if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
  3503. WAKE_MCAST | WAKE_BCAST)) {
  3504. netif_err(qdev, ifdown, qdev->ndev,
  3505. "Unsupported WOL paramter. qdev->wol = 0x%x.\n",
  3506. qdev->wol);
  3507. return -EINVAL;
  3508. }
  3509. if (qdev->wol & WAKE_MAGIC) {
  3510. status = ql_mb_wol_set_magic(qdev, 1);
  3511. if (status) {
  3512. netif_err(qdev, ifdown, qdev->ndev,
  3513. "Failed to set magic packet on %s.\n",
  3514. qdev->ndev->name);
  3515. return status;
  3516. } else
  3517. netif_info(qdev, drv, qdev->ndev,
  3518. "Enabled magic packet successfully on %s.\n",
  3519. qdev->ndev->name);
  3520. wol |= MB_WOL_MAGIC_PKT;
  3521. }
  3522. if (qdev->wol) {
  3523. wol |= MB_WOL_MODE_ON;
  3524. status = ql_mb_wol_mode(qdev, wol);
  3525. netif_err(qdev, drv, qdev->ndev,
  3526. "WOL %s (wol code 0x%x) on %s\n",
  3527. (status == 0) ? "Successfully set" : "Failed",
  3528. wol, qdev->ndev->name);
  3529. }
  3530. return status;
  3531. }
  3532. static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
  3533. {
  3534. /* Don't kill the reset worker thread if we
  3535. * are in the process of recovery.
  3536. */
  3537. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  3538. cancel_delayed_work_sync(&qdev->asic_reset_work);
  3539. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  3540. cancel_delayed_work_sync(&qdev->mpi_work);
  3541. cancel_delayed_work_sync(&qdev->mpi_idc_work);
  3542. cancel_delayed_work_sync(&qdev->mpi_core_to_log);
  3543. cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
  3544. }
  3545. static int ql_adapter_down(struct ql_adapter *qdev)
  3546. {
  3547. int i, status = 0;
  3548. ql_link_off(qdev);
  3549. ql_cancel_all_work_sync(qdev);
  3550. for (i = 0; i < qdev->rss_ring_count; i++)
  3551. napi_disable(&qdev->rx_ring[i].napi);
  3552. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  3553. ql_disable_interrupts(qdev);
  3554. ql_tx_ring_clean(qdev);
  3555. /* Call netif_napi_del() from common point.
  3556. */
  3557. for (i = 0; i < qdev->rss_ring_count; i++)
  3558. netif_napi_del(&qdev->rx_ring[i].napi);
  3559. status = ql_adapter_reset(qdev);
  3560. if (status)
  3561. netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
  3562. qdev->func);
  3563. ql_free_rx_buffers(qdev);
  3564. return status;
  3565. }
  3566. static int ql_adapter_up(struct ql_adapter *qdev)
  3567. {
  3568. int err = 0;
  3569. err = ql_adapter_initialize(qdev);
  3570. if (err) {
  3571. netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
  3572. goto err_init;
  3573. }
  3574. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3575. ql_alloc_rx_buffers(qdev);
  3576. /* If the port is initialized and the
  3577. * link is up the turn on the carrier.
  3578. */
  3579. if ((ql_read32(qdev, STS) & qdev->port_init) &&
  3580. (ql_read32(qdev, STS) & qdev->port_link_up))
  3581. ql_link_on(qdev);
  3582. /* Restore rx mode. */
  3583. clear_bit(QL_ALLMULTI, &qdev->flags);
  3584. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3585. qlge_set_multicast_list(qdev->ndev);
  3586. /* Restore vlan setting. */
  3587. qlge_restore_vlan(qdev);
  3588. ql_enable_interrupts(qdev);
  3589. ql_enable_all_completion_interrupts(qdev);
  3590. netif_tx_start_all_queues(qdev->ndev);
  3591. return 0;
  3592. err_init:
  3593. ql_adapter_reset(qdev);
  3594. return err;
  3595. }
  3596. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  3597. {
  3598. ql_free_mem_resources(qdev);
  3599. ql_free_irq(qdev);
  3600. }
  3601. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  3602. {
  3603. int status = 0;
  3604. if (ql_alloc_mem_resources(qdev)) {
  3605. netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
  3606. return -ENOMEM;
  3607. }
  3608. status = ql_request_irq(qdev);
  3609. return status;
  3610. }
  3611. static int qlge_close(struct net_device *ndev)
  3612. {
  3613. struct ql_adapter *qdev = netdev_priv(ndev);
  3614. /* If we hit pci_channel_io_perm_failure
  3615. * failure condition, then we already
  3616. * brought the adapter down.
  3617. */
  3618. if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
  3619. netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
  3620. clear_bit(QL_EEH_FATAL, &qdev->flags);
  3621. return 0;
  3622. }
  3623. /*
  3624. * Wait for device to recover from a reset.
  3625. * (Rarely happens, but possible.)
  3626. */
  3627. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  3628. msleep(1);
  3629. ql_adapter_down(qdev);
  3630. ql_release_adapter_resources(qdev);
  3631. return 0;
  3632. }
  3633. static int ql_configure_rings(struct ql_adapter *qdev)
  3634. {
  3635. int i;
  3636. struct rx_ring *rx_ring;
  3637. struct tx_ring *tx_ring;
  3638. int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
  3639. unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
  3640. LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
  3641. qdev->lbq_buf_order = get_order(lbq_buf_len);
  3642. /* In a perfect world we have one RSS ring for each CPU
  3643. * and each has it's own vector. To do that we ask for
  3644. * cpu_cnt vectors. ql_enable_msix() will adjust the
  3645. * vector count to what we actually get. We then
  3646. * allocate an RSS ring for each.
  3647. * Essentially, we are doing min(cpu_count, msix_vector_count).
  3648. */
  3649. qdev->intr_count = cpu_cnt;
  3650. ql_enable_msix(qdev);
  3651. /* Adjust the RSS ring count to the actual vector count. */
  3652. qdev->rss_ring_count = qdev->intr_count;
  3653. qdev->tx_ring_count = cpu_cnt;
  3654. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
  3655. for (i = 0; i < qdev->tx_ring_count; i++) {
  3656. tx_ring = &qdev->tx_ring[i];
  3657. memset((void *)tx_ring, 0, sizeof(*tx_ring));
  3658. tx_ring->qdev = qdev;
  3659. tx_ring->wq_id = i;
  3660. tx_ring->wq_len = qdev->tx_ring_size;
  3661. tx_ring->wq_size =
  3662. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  3663. /*
  3664. * The completion queue ID for the tx rings start
  3665. * immediately after the rss rings.
  3666. */
  3667. tx_ring->cq_id = qdev->rss_ring_count + i;
  3668. }
  3669. for (i = 0; i < qdev->rx_ring_count; i++) {
  3670. rx_ring = &qdev->rx_ring[i];
  3671. memset((void *)rx_ring, 0, sizeof(*rx_ring));
  3672. rx_ring->qdev = qdev;
  3673. rx_ring->cq_id = i;
  3674. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3675. if (i < qdev->rss_ring_count) {
  3676. /*
  3677. * Inbound (RSS) queues.
  3678. */
  3679. rx_ring->cq_len = qdev->rx_ring_size;
  3680. rx_ring->cq_size =
  3681. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3682. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3683. rx_ring->lbq_size =
  3684. rx_ring->lbq_len * sizeof(__le64);
  3685. rx_ring->lbq_buf_size = (u16)lbq_buf_len;
  3686. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3687. "lbq_buf_size %d, order = %d\n",
  3688. rx_ring->lbq_buf_size,
  3689. qdev->lbq_buf_order);
  3690. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3691. rx_ring->sbq_size =
  3692. rx_ring->sbq_len * sizeof(__le64);
  3693. rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
  3694. rx_ring->type = RX_Q;
  3695. } else {
  3696. /*
  3697. * Outbound queue handles outbound completions only.
  3698. */
  3699. /* outbound cq is same size as tx_ring it services. */
  3700. rx_ring->cq_len = qdev->tx_ring_size;
  3701. rx_ring->cq_size =
  3702. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3703. rx_ring->lbq_len = 0;
  3704. rx_ring->lbq_size = 0;
  3705. rx_ring->lbq_buf_size = 0;
  3706. rx_ring->sbq_len = 0;
  3707. rx_ring->sbq_size = 0;
  3708. rx_ring->sbq_buf_size = 0;
  3709. rx_ring->type = TX_Q;
  3710. }
  3711. }
  3712. return 0;
  3713. }
  3714. static int qlge_open(struct net_device *ndev)
  3715. {
  3716. int err = 0;
  3717. struct ql_adapter *qdev = netdev_priv(ndev);
  3718. err = ql_adapter_reset(qdev);
  3719. if (err)
  3720. return err;
  3721. err = ql_configure_rings(qdev);
  3722. if (err)
  3723. return err;
  3724. err = ql_get_adapter_resources(qdev);
  3725. if (err)
  3726. goto error_up;
  3727. err = ql_adapter_up(qdev);
  3728. if (err)
  3729. goto error_up;
  3730. return err;
  3731. error_up:
  3732. ql_release_adapter_resources(qdev);
  3733. return err;
  3734. }
  3735. static int ql_change_rx_buffers(struct ql_adapter *qdev)
  3736. {
  3737. struct rx_ring *rx_ring;
  3738. int i, status;
  3739. u32 lbq_buf_len;
  3740. /* Wait for an oustanding reset to complete. */
  3741. if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
  3742. int i = 3;
  3743. while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
  3744. netif_err(qdev, ifup, qdev->ndev,
  3745. "Waiting for adapter UP...\n");
  3746. ssleep(1);
  3747. }
  3748. if (!i) {
  3749. netif_err(qdev, ifup, qdev->ndev,
  3750. "Timed out waiting for adapter UP\n");
  3751. return -ETIMEDOUT;
  3752. }
  3753. }
  3754. status = ql_adapter_down(qdev);
  3755. if (status)
  3756. goto error;
  3757. /* Get the new rx buffer size. */
  3758. lbq_buf_len = (qdev->ndev->mtu > 1500) ?
  3759. LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
  3760. qdev->lbq_buf_order = get_order(lbq_buf_len);
  3761. for (i = 0; i < qdev->rss_ring_count; i++) {
  3762. rx_ring = &qdev->rx_ring[i];
  3763. /* Set the new size. */
  3764. rx_ring->lbq_buf_size = lbq_buf_len;
  3765. }
  3766. status = ql_adapter_up(qdev);
  3767. if (status)
  3768. goto error;
  3769. return status;
  3770. error:
  3771. netif_alert(qdev, ifup, qdev->ndev,
  3772. "Driver up/down cycle failed, closing device.\n");
  3773. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3774. dev_close(qdev->ndev);
  3775. return status;
  3776. }
  3777. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3778. {
  3779. struct ql_adapter *qdev = netdev_priv(ndev);
  3780. int status;
  3781. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3782. netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
  3783. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3784. netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
  3785. } else
  3786. return -EINVAL;
  3787. queue_delayed_work(qdev->workqueue,
  3788. &qdev->mpi_port_cfg_work, 3*HZ);
  3789. ndev->mtu = new_mtu;
  3790. if (!netif_running(qdev->ndev)) {
  3791. return 0;
  3792. }
  3793. status = ql_change_rx_buffers(qdev);
  3794. if (status) {
  3795. netif_err(qdev, ifup, qdev->ndev,
  3796. "Changing MTU failed.\n");
  3797. }
  3798. return status;
  3799. }
  3800. static struct net_device_stats *qlge_get_stats(struct net_device
  3801. *ndev)
  3802. {
  3803. struct ql_adapter *qdev = netdev_priv(ndev);
  3804. struct rx_ring *rx_ring = &qdev->rx_ring[0];
  3805. struct tx_ring *tx_ring = &qdev->tx_ring[0];
  3806. unsigned long pkts, mcast, dropped, errors, bytes;
  3807. int i;
  3808. /* Get RX stats. */
  3809. pkts = mcast = dropped = errors = bytes = 0;
  3810. for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
  3811. pkts += rx_ring->rx_packets;
  3812. bytes += rx_ring->rx_bytes;
  3813. dropped += rx_ring->rx_dropped;
  3814. errors += rx_ring->rx_errors;
  3815. mcast += rx_ring->rx_multicast;
  3816. }
  3817. ndev->stats.rx_packets = pkts;
  3818. ndev->stats.rx_bytes = bytes;
  3819. ndev->stats.rx_dropped = dropped;
  3820. ndev->stats.rx_errors = errors;
  3821. ndev->stats.multicast = mcast;
  3822. /* Get TX stats. */
  3823. pkts = errors = bytes = 0;
  3824. for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
  3825. pkts += tx_ring->tx_packets;
  3826. bytes += tx_ring->tx_bytes;
  3827. errors += tx_ring->tx_errors;
  3828. }
  3829. ndev->stats.tx_packets = pkts;
  3830. ndev->stats.tx_bytes = bytes;
  3831. ndev->stats.tx_errors = errors;
  3832. return &ndev->stats;
  3833. }
  3834. static void qlge_set_multicast_list(struct net_device *ndev)
  3835. {
  3836. struct ql_adapter *qdev = netdev_priv(ndev);
  3837. struct netdev_hw_addr *ha;
  3838. int i, status;
  3839. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3840. if (status)
  3841. return;
  3842. /*
  3843. * Set or clear promiscuous mode if a
  3844. * transition is taking place.
  3845. */
  3846. if (ndev->flags & IFF_PROMISC) {
  3847. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3848. if (ql_set_routing_reg
  3849. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3850. netif_err(qdev, hw, qdev->ndev,
  3851. "Failed to set promiscous mode.\n");
  3852. } else {
  3853. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3854. }
  3855. }
  3856. } else {
  3857. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3858. if (ql_set_routing_reg
  3859. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3860. netif_err(qdev, hw, qdev->ndev,
  3861. "Failed to clear promiscous mode.\n");
  3862. } else {
  3863. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3864. }
  3865. }
  3866. }
  3867. /*
  3868. * Set or clear all multicast mode if a
  3869. * transition is taking place.
  3870. */
  3871. if ((ndev->flags & IFF_ALLMULTI) ||
  3872. (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
  3873. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3874. if (ql_set_routing_reg
  3875. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3876. netif_err(qdev, hw, qdev->ndev,
  3877. "Failed to set all-multi mode.\n");
  3878. } else {
  3879. set_bit(QL_ALLMULTI, &qdev->flags);
  3880. }
  3881. }
  3882. } else {
  3883. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3884. if (ql_set_routing_reg
  3885. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3886. netif_err(qdev, hw, qdev->ndev,
  3887. "Failed to clear all-multi mode.\n");
  3888. } else {
  3889. clear_bit(QL_ALLMULTI, &qdev->flags);
  3890. }
  3891. }
  3892. }
  3893. if (!netdev_mc_empty(ndev)) {
  3894. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3895. if (status)
  3896. goto exit;
  3897. i = 0;
  3898. netdev_for_each_mc_addr(ha, ndev) {
  3899. if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
  3900. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3901. netif_err(qdev, hw, qdev->ndev,
  3902. "Failed to loadmulticast address.\n");
  3903. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3904. goto exit;
  3905. }
  3906. i++;
  3907. }
  3908. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3909. if (ql_set_routing_reg
  3910. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3911. netif_err(qdev, hw, qdev->ndev,
  3912. "Failed to set multicast match mode.\n");
  3913. } else {
  3914. set_bit(QL_ALLMULTI, &qdev->flags);
  3915. }
  3916. }
  3917. exit:
  3918. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3919. }
  3920. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3921. {
  3922. struct ql_adapter *qdev = netdev_priv(ndev);
  3923. struct sockaddr *addr = p;
  3924. int status;
  3925. if (!is_valid_ether_addr(addr->sa_data))
  3926. return -EADDRNOTAVAIL;
  3927. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3928. /* Update local copy of current mac address. */
  3929. memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
  3930. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3931. if (status)
  3932. return status;
  3933. status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3934. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  3935. if (status)
  3936. netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
  3937. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3938. return status;
  3939. }
  3940. static void qlge_tx_timeout(struct net_device *ndev)
  3941. {
  3942. struct ql_adapter *qdev = netdev_priv(ndev);
  3943. ql_queue_asic_error(qdev);
  3944. }
  3945. static void ql_asic_reset_work(struct work_struct *work)
  3946. {
  3947. struct ql_adapter *qdev =
  3948. container_of(work, struct ql_adapter, asic_reset_work.work);
  3949. int status;
  3950. rtnl_lock();
  3951. status = ql_adapter_down(qdev);
  3952. if (status)
  3953. goto error;
  3954. status = ql_adapter_up(qdev);
  3955. if (status)
  3956. goto error;
  3957. /* Restore rx mode. */
  3958. clear_bit(QL_ALLMULTI, &qdev->flags);
  3959. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3960. qlge_set_multicast_list(qdev->ndev);
  3961. rtnl_unlock();
  3962. return;
  3963. error:
  3964. netif_alert(qdev, ifup, qdev->ndev,
  3965. "Driver up/down cycle failed, closing device\n");
  3966. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3967. dev_close(qdev->ndev);
  3968. rtnl_unlock();
  3969. }
  3970. static struct nic_operations qla8012_nic_ops = {
  3971. .get_flash = ql_get_8012_flash_params,
  3972. .port_initialize = ql_8012_port_initialize,
  3973. };
  3974. static struct nic_operations qla8000_nic_ops = {
  3975. .get_flash = ql_get_8000_flash_params,
  3976. .port_initialize = ql_8000_port_initialize,
  3977. };
  3978. /* Find the pcie function number for the other NIC
  3979. * on this chip. Since both NIC functions share a
  3980. * common firmware we have the lowest enabled function
  3981. * do any common work. Examples would be resetting
  3982. * after a fatal firmware error, or doing a firmware
  3983. * coredump.
  3984. */
  3985. static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
  3986. {
  3987. int status = 0;
  3988. u32 temp;
  3989. u32 nic_func1, nic_func2;
  3990. status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
  3991. &temp);
  3992. if (status)
  3993. return status;
  3994. nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
  3995. MPI_TEST_NIC_FUNC_MASK);
  3996. nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
  3997. MPI_TEST_NIC_FUNC_MASK);
  3998. if (qdev->func == nic_func1)
  3999. qdev->alt_func = nic_func2;
  4000. else if (qdev->func == nic_func2)
  4001. qdev->alt_func = nic_func1;
  4002. else
  4003. status = -EIO;
  4004. return status;
  4005. }
  4006. static int ql_get_board_info(struct ql_adapter *qdev)
  4007. {
  4008. int status;
  4009. qdev->func =
  4010. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  4011. if (qdev->func > 3)
  4012. return -EIO;
  4013. status = ql_get_alt_pcie_func(qdev);
  4014. if (status)
  4015. return status;
  4016. qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
  4017. if (qdev->port) {
  4018. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  4019. qdev->port_link_up = STS_PL1;
  4020. qdev->port_init = STS_PI1;
  4021. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  4022. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  4023. } else {
  4024. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  4025. qdev->port_link_up = STS_PL0;
  4026. qdev->port_init = STS_PI0;
  4027. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  4028. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  4029. }
  4030. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  4031. qdev->device_id = qdev->pdev->device;
  4032. if (qdev->device_id == QLGE_DEVICE_ID_8012)
  4033. qdev->nic_ops = &qla8012_nic_ops;
  4034. else if (qdev->device_id == QLGE_DEVICE_ID_8000)
  4035. qdev->nic_ops = &qla8000_nic_ops;
  4036. return status;
  4037. }
  4038. static void ql_release_all(struct pci_dev *pdev)
  4039. {
  4040. struct net_device *ndev = pci_get_drvdata(pdev);
  4041. struct ql_adapter *qdev = netdev_priv(ndev);
  4042. if (qdev->workqueue) {
  4043. destroy_workqueue(qdev->workqueue);
  4044. qdev->workqueue = NULL;
  4045. }
  4046. if (qdev->reg_base)
  4047. iounmap(qdev->reg_base);
  4048. if (qdev->doorbell_area)
  4049. iounmap(qdev->doorbell_area);
  4050. vfree(qdev->mpi_coredump);
  4051. pci_release_regions(pdev);
  4052. pci_set_drvdata(pdev, NULL);
  4053. }
  4054. static int __devinit ql_init_device(struct pci_dev *pdev,
  4055. struct net_device *ndev, int cards_found)
  4056. {
  4057. struct ql_adapter *qdev = netdev_priv(ndev);
  4058. int err = 0;
  4059. memset((void *)qdev, 0, sizeof(*qdev));
  4060. err = pci_enable_device(pdev);
  4061. if (err) {
  4062. dev_err(&pdev->dev, "PCI device enable failed.\n");
  4063. return err;
  4064. }
  4065. qdev->ndev = ndev;
  4066. qdev->pdev = pdev;
  4067. pci_set_drvdata(pdev, ndev);
  4068. /* Set PCIe read request size */
  4069. err = pcie_set_readrq(pdev, 4096);
  4070. if (err) {
  4071. dev_err(&pdev->dev, "Set readrq failed.\n");
  4072. goto err_out1;
  4073. }
  4074. err = pci_request_regions(pdev, DRV_NAME);
  4075. if (err) {
  4076. dev_err(&pdev->dev, "PCI region request failed.\n");
  4077. return err;
  4078. }
  4079. pci_set_master(pdev);
  4080. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  4081. set_bit(QL_DMA64, &qdev->flags);
  4082. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  4083. } else {
  4084. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  4085. if (!err)
  4086. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  4087. }
  4088. if (err) {
  4089. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  4090. goto err_out2;
  4091. }
  4092. /* Set PCIe reset type for EEH to fundamental. */
  4093. pdev->needs_freset = 1;
  4094. pci_save_state(pdev);
  4095. qdev->reg_base =
  4096. ioremap_nocache(pci_resource_start(pdev, 1),
  4097. pci_resource_len(pdev, 1));
  4098. if (!qdev->reg_base) {
  4099. dev_err(&pdev->dev, "Register mapping failed.\n");
  4100. err = -ENOMEM;
  4101. goto err_out2;
  4102. }
  4103. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  4104. qdev->doorbell_area =
  4105. ioremap_nocache(pci_resource_start(pdev, 3),
  4106. pci_resource_len(pdev, 3));
  4107. if (!qdev->doorbell_area) {
  4108. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  4109. err = -ENOMEM;
  4110. goto err_out2;
  4111. }
  4112. err = ql_get_board_info(qdev);
  4113. if (err) {
  4114. dev_err(&pdev->dev, "Register access failed.\n");
  4115. err = -EIO;
  4116. goto err_out2;
  4117. }
  4118. qdev->msg_enable = netif_msg_init(debug, default_msg);
  4119. spin_lock_init(&qdev->hw_lock);
  4120. spin_lock_init(&qdev->stats_lock);
  4121. if (qlge_mpi_coredump) {
  4122. qdev->mpi_coredump =
  4123. vmalloc(sizeof(struct ql_mpi_coredump));
  4124. if (qdev->mpi_coredump == NULL) {
  4125. dev_err(&pdev->dev, "Coredump alloc failed.\n");
  4126. err = -ENOMEM;
  4127. goto err_out2;
  4128. }
  4129. if (qlge_force_coredump)
  4130. set_bit(QL_FRC_COREDUMP, &qdev->flags);
  4131. }
  4132. /* make sure the EEPROM is good */
  4133. err = qdev->nic_ops->get_flash(qdev);
  4134. if (err) {
  4135. dev_err(&pdev->dev, "Invalid FLASH.\n");
  4136. goto err_out2;
  4137. }
  4138. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  4139. /* Keep local copy of current mac address. */
  4140. memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
  4141. /* Set up the default ring sizes. */
  4142. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  4143. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  4144. /* Set up the coalescing parameters. */
  4145. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  4146. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  4147. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  4148. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  4149. /*
  4150. * Set up the operating parameters.
  4151. */
  4152. qdev->rx_csum = 1;
  4153. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  4154. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  4155. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  4156. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  4157. INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
  4158. INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
  4159. INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
  4160. init_completion(&qdev->ide_completion);
  4161. mutex_init(&qdev->mpi_mutex);
  4162. if (!cards_found) {
  4163. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  4164. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  4165. DRV_NAME, DRV_VERSION);
  4166. }
  4167. return 0;
  4168. err_out2:
  4169. ql_release_all(pdev);
  4170. err_out1:
  4171. pci_disable_device(pdev);
  4172. return err;
  4173. }
  4174. static const struct net_device_ops qlge_netdev_ops = {
  4175. .ndo_open = qlge_open,
  4176. .ndo_stop = qlge_close,
  4177. .ndo_start_xmit = qlge_send,
  4178. .ndo_change_mtu = qlge_change_mtu,
  4179. .ndo_get_stats = qlge_get_stats,
  4180. .ndo_set_multicast_list = qlge_set_multicast_list,
  4181. .ndo_set_mac_address = qlge_set_mac_address,
  4182. .ndo_validate_addr = eth_validate_addr,
  4183. .ndo_tx_timeout = qlge_tx_timeout,
  4184. .ndo_vlan_rx_register = qlge_vlan_rx_register,
  4185. .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
  4186. .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
  4187. };
  4188. static void ql_timer(unsigned long data)
  4189. {
  4190. struct ql_adapter *qdev = (struct ql_adapter *)data;
  4191. u32 var = 0;
  4192. var = ql_read32(qdev, STS);
  4193. if (pci_channel_offline(qdev->pdev)) {
  4194. netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
  4195. return;
  4196. }
  4197. mod_timer(&qdev->timer, jiffies + (5*HZ));
  4198. }
  4199. static int __devinit qlge_probe(struct pci_dev *pdev,
  4200. const struct pci_device_id *pci_entry)
  4201. {
  4202. struct net_device *ndev = NULL;
  4203. struct ql_adapter *qdev = NULL;
  4204. static int cards_found = 0;
  4205. int err = 0;
  4206. ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
  4207. min(MAX_CPUS, (int)num_online_cpus()));
  4208. if (!ndev)
  4209. return -ENOMEM;
  4210. err = ql_init_device(pdev, ndev, cards_found);
  4211. if (err < 0) {
  4212. free_netdev(ndev);
  4213. return err;
  4214. }
  4215. qdev = netdev_priv(ndev);
  4216. SET_NETDEV_DEV(ndev, &pdev->dev);
  4217. ndev->features = (0
  4218. | NETIF_F_IP_CSUM
  4219. | NETIF_F_SG
  4220. | NETIF_F_TSO
  4221. | NETIF_F_TSO6
  4222. | NETIF_F_TSO_ECN
  4223. | NETIF_F_HW_VLAN_TX
  4224. | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
  4225. ndev->features |= NETIF_F_GRO;
  4226. if (test_bit(QL_DMA64, &qdev->flags))
  4227. ndev->features |= NETIF_F_HIGHDMA;
  4228. /*
  4229. * Set up net_device structure.
  4230. */
  4231. ndev->tx_queue_len = qdev->tx_ring_size;
  4232. ndev->irq = pdev->irq;
  4233. ndev->netdev_ops = &qlge_netdev_ops;
  4234. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  4235. ndev->watchdog_timeo = 10 * HZ;
  4236. err = register_netdev(ndev);
  4237. if (err) {
  4238. dev_err(&pdev->dev, "net device registration failed.\n");
  4239. ql_release_all(pdev);
  4240. pci_disable_device(pdev);
  4241. return err;
  4242. }
  4243. /* Start up the timer to trigger EEH if
  4244. * the bus goes dead
  4245. */
  4246. init_timer_deferrable(&qdev->timer);
  4247. qdev->timer.data = (unsigned long)qdev;
  4248. qdev->timer.function = ql_timer;
  4249. qdev->timer.expires = jiffies + (5*HZ);
  4250. add_timer(&qdev->timer);
  4251. ql_link_off(qdev);
  4252. ql_display_dev_info(ndev);
  4253. atomic_set(&qdev->lb_count, 0);
  4254. cards_found++;
  4255. return 0;
  4256. }
  4257. netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
  4258. {
  4259. return qlge_send(skb, ndev);
  4260. }
  4261. int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
  4262. {
  4263. return ql_clean_inbound_rx_ring(rx_ring, budget);
  4264. }
  4265. static void __devexit qlge_remove(struct pci_dev *pdev)
  4266. {
  4267. struct net_device *ndev = pci_get_drvdata(pdev);
  4268. struct ql_adapter *qdev = netdev_priv(ndev);
  4269. del_timer_sync(&qdev->timer);
  4270. ql_cancel_all_work_sync(qdev);
  4271. unregister_netdev(ndev);
  4272. ql_release_all(pdev);
  4273. pci_disable_device(pdev);
  4274. free_netdev(ndev);
  4275. }
  4276. /* Clean up resources without touching hardware. */
  4277. static void ql_eeh_close(struct net_device *ndev)
  4278. {
  4279. int i;
  4280. struct ql_adapter *qdev = netdev_priv(ndev);
  4281. if (netif_carrier_ok(ndev)) {
  4282. netif_carrier_off(ndev);
  4283. netif_stop_queue(ndev);
  4284. }
  4285. /* Disabling the timer */
  4286. del_timer_sync(&qdev->timer);
  4287. ql_cancel_all_work_sync(qdev);
  4288. for (i = 0; i < qdev->rss_ring_count; i++)
  4289. netif_napi_del(&qdev->rx_ring[i].napi);
  4290. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  4291. ql_tx_ring_clean(qdev);
  4292. ql_free_rx_buffers(qdev);
  4293. ql_release_adapter_resources(qdev);
  4294. }
  4295. /*
  4296. * This callback is called by the PCI subsystem whenever
  4297. * a PCI bus error is detected.
  4298. */
  4299. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  4300. enum pci_channel_state state)
  4301. {
  4302. struct net_device *ndev = pci_get_drvdata(pdev);
  4303. struct ql_adapter *qdev = netdev_priv(ndev);
  4304. switch (state) {
  4305. case pci_channel_io_normal:
  4306. return PCI_ERS_RESULT_CAN_RECOVER;
  4307. case pci_channel_io_frozen:
  4308. netif_device_detach(ndev);
  4309. if (netif_running(ndev))
  4310. ql_eeh_close(ndev);
  4311. pci_disable_device(pdev);
  4312. return PCI_ERS_RESULT_NEED_RESET;
  4313. case pci_channel_io_perm_failure:
  4314. dev_err(&pdev->dev,
  4315. "%s: pci_channel_io_perm_failure.\n", __func__);
  4316. ql_eeh_close(ndev);
  4317. set_bit(QL_EEH_FATAL, &qdev->flags);
  4318. return PCI_ERS_RESULT_DISCONNECT;
  4319. }
  4320. /* Request a slot reset. */
  4321. return PCI_ERS_RESULT_NEED_RESET;
  4322. }
  4323. /*
  4324. * This callback is called after the PCI buss has been reset.
  4325. * Basically, this tries to restart the card from scratch.
  4326. * This is a shortened version of the device probe/discovery code,
  4327. * it resembles the first-half of the () routine.
  4328. */
  4329. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  4330. {
  4331. struct net_device *ndev = pci_get_drvdata(pdev);
  4332. struct ql_adapter *qdev = netdev_priv(ndev);
  4333. pdev->error_state = pci_channel_io_normal;
  4334. pci_restore_state(pdev);
  4335. if (pci_enable_device(pdev)) {
  4336. netif_err(qdev, ifup, qdev->ndev,
  4337. "Cannot re-enable PCI device after reset.\n");
  4338. return PCI_ERS_RESULT_DISCONNECT;
  4339. }
  4340. pci_set_master(pdev);
  4341. if (ql_adapter_reset(qdev)) {
  4342. netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
  4343. set_bit(QL_EEH_FATAL, &qdev->flags);
  4344. return PCI_ERS_RESULT_DISCONNECT;
  4345. }
  4346. return PCI_ERS_RESULT_RECOVERED;
  4347. }
  4348. static void qlge_io_resume(struct pci_dev *pdev)
  4349. {
  4350. struct net_device *ndev = pci_get_drvdata(pdev);
  4351. struct ql_adapter *qdev = netdev_priv(ndev);
  4352. int err = 0;
  4353. if (netif_running(ndev)) {
  4354. err = qlge_open(ndev);
  4355. if (err) {
  4356. netif_err(qdev, ifup, qdev->ndev,
  4357. "Device initialization failed after reset.\n");
  4358. return;
  4359. }
  4360. } else {
  4361. netif_err(qdev, ifup, qdev->ndev,
  4362. "Device was not running prior to EEH.\n");
  4363. }
  4364. mod_timer(&qdev->timer, jiffies + (5*HZ));
  4365. netif_device_attach(ndev);
  4366. }
  4367. static struct pci_error_handlers qlge_err_handler = {
  4368. .error_detected = qlge_io_error_detected,
  4369. .slot_reset = qlge_io_slot_reset,
  4370. .resume = qlge_io_resume,
  4371. };
  4372. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  4373. {
  4374. struct net_device *ndev = pci_get_drvdata(pdev);
  4375. struct ql_adapter *qdev = netdev_priv(ndev);
  4376. int err;
  4377. netif_device_detach(ndev);
  4378. del_timer_sync(&qdev->timer);
  4379. if (netif_running(ndev)) {
  4380. err = ql_adapter_down(qdev);
  4381. if (!err)
  4382. return err;
  4383. }
  4384. ql_wol(qdev);
  4385. err = pci_save_state(pdev);
  4386. if (err)
  4387. return err;
  4388. pci_disable_device(pdev);
  4389. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  4390. return 0;
  4391. }
  4392. #ifdef CONFIG_PM
  4393. static int qlge_resume(struct pci_dev *pdev)
  4394. {
  4395. struct net_device *ndev = pci_get_drvdata(pdev);
  4396. struct ql_adapter *qdev = netdev_priv(ndev);
  4397. int err;
  4398. pci_set_power_state(pdev, PCI_D0);
  4399. pci_restore_state(pdev);
  4400. err = pci_enable_device(pdev);
  4401. if (err) {
  4402. netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
  4403. return err;
  4404. }
  4405. pci_set_master(pdev);
  4406. pci_enable_wake(pdev, PCI_D3hot, 0);
  4407. pci_enable_wake(pdev, PCI_D3cold, 0);
  4408. if (netif_running(ndev)) {
  4409. err = ql_adapter_up(qdev);
  4410. if (err)
  4411. return err;
  4412. }
  4413. mod_timer(&qdev->timer, jiffies + (5*HZ));
  4414. netif_device_attach(ndev);
  4415. return 0;
  4416. }
  4417. #endif /* CONFIG_PM */
  4418. static void qlge_shutdown(struct pci_dev *pdev)
  4419. {
  4420. qlge_suspend(pdev, PMSG_SUSPEND);
  4421. }
  4422. static struct pci_driver qlge_driver = {
  4423. .name = DRV_NAME,
  4424. .id_table = qlge_pci_tbl,
  4425. .probe = qlge_probe,
  4426. .remove = __devexit_p(qlge_remove),
  4427. #ifdef CONFIG_PM
  4428. .suspend = qlge_suspend,
  4429. .resume = qlge_resume,
  4430. #endif
  4431. .shutdown = qlge_shutdown,
  4432. .err_handler = &qlge_err_handler
  4433. };
  4434. static int __init qlge_init_module(void)
  4435. {
  4436. return pci_register_driver(&qlge_driver);
  4437. }
  4438. static void __exit qlge_exit(void)
  4439. {
  4440. pci_unregister_driver(&qlge_driver);
  4441. }
  4442. module_init(qlge_init_module);
  4443. module_exit(qlge_exit);